WO2014080557A1 - 耳型部、人工頭部及びこれらを用いた測定装置ならびに測定方法 - Google Patents

耳型部、人工頭部及びこれらを用いた測定装置ならびに測定方法 Download PDF

Info

Publication number
WO2014080557A1
WO2014080557A1 PCT/JP2013/005800 JP2013005800W WO2014080557A1 WO 2014080557 A1 WO2014080557 A1 WO 2014080557A1 JP 2013005800 W JP2013005800 W JP 2013005800W WO 2014080557 A1 WO2014080557 A1 WO 2014080557A1
Authority
WO
WIPO (PCT)
Prior art keywords
ear
model
artificial
vibration
acoustic device
Prior art date
Application number
PCT/JP2013/005800
Other languages
English (en)
French (fr)
Inventor
智義 池田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to RU2015119247A priority Critical patent/RU2613595C2/ru
Priority to CN201380060887.7A priority patent/CN104854881B/zh
Priority to JP2014548434A priority patent/JPWO2014080557A1/ja
Priority to EP13857191.4A priority patent/EP2925022A4/en
Priority to US14/646,363 priority patent/US9877125B2/en
Publication of WO2014080557A1 publication Critical patent/WO2014080557A1/ja
Priority to US15/661,379 priority patent/US9992594B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • the present invention relates to a measuring device and a measurement for evaluating an earphone type or headphone type acoustic device in which a housing having a vibrating body is accommodated in an ear of a human body or pressed against the ear to hear sound by vibration transmission.
  • the present invention relates to an ear mold part and an artificial head used in a method and a measuring apparatus.
  • Patent Document 1 describes an acoustic device such as a mobile phone that transmits air conduction sound and bone conduction sound to a user.
  • Patent Document 1 describes that air conduction sound is sound that is transmitted to the eardrum through the ear canal through the vibration of the air due to the vibration of the object, and is transmitted to the user's auditory nerve by the vibration of the eardrum.
  • Patent Document 1 describes that bone conduction sound is sound transmitted to the user's auditory nerve through a part of the user's body (for example, cartilage of the outer ear) that contacts the vibrating object. ing.
  • Patent Document 1 In the telephone set described in Patent Document 1, it is described that a short plate-like vibrating body made of a piezoelectric bimorph and a flexible material is attached to the outer surface of a housing via an elastic member. Further, in Patent Document 1, when a voltage is applied to the piezoelectric bimorph of the vibrating body, the vibrating body bends and vibrates as the piezoelectric material expands and contracts in the longitudinal direction, and the user contacts the vibrating body with the auricle. It is described that air conduction sound and bone conduction sound are transmitted to the user.
  • Headphones In addition to the phone that conveys sound by hand and by pressing it against the ear, the cartilage conduction earphone that is used by being hooked and held somewhere on the human head, Headphones are known.
  • the inventor evaluates an acoustic device that transmits a bone conduction sound through the cartilage of the outer ear to the user, such as a cartilage conduction earphone or a headphone that is used while being hooked and held somewhere on the head of the human body. It has been recognized that it is necessary to measure the amount of vibration that acts approximately on the auditory nerve of the human body due to the vibration of the vibrating body.
  • the present invention has been made in view of the above-described recognition, and a measuring device that can measure a vibration amount weighted by vibration transmission characteristics of a human ear and can evaluate an acoustic device such as an earphone or a headphone having a vibrating body, and The purpose is to provide a measurement method and the like.
  • the present invention relates to a measuring device for evaluating an acoustic device that holds a housing including a vibrating element by a head including a human ear and hears sound by vibration transmission, and an ear-shaped part that imitates the human ear And a human body model unit that holds the acoustic device, and a vibration detection unit arranged in the ear mold unit.
  • the present invention it is possible to measure the amount of vibration in consideration of the characteristics of vibration transmission to the human ear, and it is possible to evaluate an earphone having a vibrating body, a headphone type acoustic device, a hearing aid, or the like.
  • FIG. 2 is a partial detail view of the measuring apparatus of FIG. 1. It is a partial detail drawing which shows the modification of the measuring apparatus of FIG. It is a functional block diagram of the principal part of the measuring apparatus of FIG. It is a figure which shows schematic structure of the measuring apparatus which concerns on 2nd Embodiment of this invention.
  • FIG. 7 is a partial detail view of the measuring apparatus of FIG. 6. FIG. 7 is a partial detail view showing a modification of the measuring apparatus of FIG. 6.
  • FIG. 1 is a diagram showing a schematic configuration of a measuring apparatus according to the first embodiment of the present invention.
  • the measuring apparatus 10 according to the present embodiment includes an ear mold portion 50 supported by the base 30 and a human body model portion including a holding portion 70 that holds the acoustic device 100.
  • a cartilage conduction earphone as an example is shown as the acoustic device 100.
  • FIG. 1 shows a diagram showing a schematic configuration of a measuring apparatus according to the first embodiment of the present invention.
  • the measuring apparatus 10 includes an ear mold portion 50 supported by the base 30 and a human body model portion including a holding portion 70 that holds the acoustic device 100.
  • a cartilage conduction earphone as an example is shown as the acoustic device 100.
  • FIG. 1 is a diagram showing a schematic configuration of a measuring apparatus according to the first embodiment of the present invention.
  • the measuring apparatus 10 includes an ear mold portion 50 supported by the base 30 and a human body model portion including a
  • the acoustic device 100 includes a housing 101 that is embedded in a hole of a human ear, includes a piezoelectric element 102 inside the housing, and vibrates the housing 101 by the piezoelectric element 102. It is something to be made.
  • the ear mold portion 50 imitates a human ear, and is an ear model 51, an artificial external ear canal portion 52 that is coupled to or integrally formed with the ear model 51, and an artificial external ear canal portion 52 that is coupled to or integral with the artificial external ear canal portion 52. And an artificial tympanic membrane part 57 formed on the surface.
  • the artificial external auditory canal portion 52 has a size that covers the ear model 51, and an artificial external ear canal 53 is formed at the center.
  • the ear mold 50 is supported by the base 30 via a support member 54 at the peripheral edge of the artificial external ear canal 52.
  • the ear model 51 includes an auricle, an auricular nodule, a scaphoid fossa, an antiaural ring, a conch boat, an auricular cavity, an antitragus, an appendix, an tragus, an auricle leg, a lower leg of an auricle, a triangular fossa, and an auricle Either a leg or a notch between the beads may be provided. Thereby, it can cope with holding
  • the holding unit includes an anti-ankle lower leg and a notch between the beads.
  • the holding unit measures an acoustic device including a main body having an ear hook part between the ear ring and the temporal region, and a vibration part that is vibrated by an audio signal supplied from the main body and embedded in the concha cavity.
  • the ear model 51 may include an ear ring, a temporal region, and a concha cavity as a holding unit.
  • the ear model 51 includes an auricle, an auricular nodule, a scaphoid fossa, an antiaural ring, a conch boat, an auricular cavity, an antitragus, an appendix, an tragus, an auricle leg, a lower leg of an auricle, a triangular fossa, and an auricle Either a leg or a notch between the beads may be provided. Thereby, it can cope with holding
  • the holding unit includes an anti-ankle lower leg and a notch between the beads.
  • the holding unit measures an acoustic device including a main body having an ear hook part between the ear ring and the temporal region, and a vibration part that is vibrated by an audio signal supplied from the main body and embedded in the concha cavity.
  • the ear model 51 may include an ear ring, a temporal region, and a concha cavity as a holding unit.
  • the ear mold portion 50 is made of, for example, a material similar to the material of an average ear model used for HATS (Head And Torso Simulator) or KEMAR (a name of electronic mannequin for acoustic research of Knowles), for example, It may be made of a material conforming to IEC60318-7 or IEC60268-7. This material can be formed of a material such as rubber having a Shore hardness of 30 to 60 (for example, Shore hardness 35 or Shore hardness 55).
  • the thickness of the artificial external auditory canal 52 that is, the length of the artificial external auditory canal 53 is suitable if it corresponds to the length to the human eardrum (cochlea), and is appropriately set within a range of 5 mm to 40 mm, for example. In the present embodiment, the length of the artificial external ear canal 53 is approximately 28.5 mm.
  • the artificial eardrum unit 57 is formed at the end of the artificial external ear canal unit 52 so as to block the artificial external ear canal 53, and vibration from the artificial external ear canal 53 is transmitted to the artificial eardrum unit 57.
  • the artificial eardrum portion 57 is made of a material similar to an average ear model material used for, for example, HATS or KEMAR of a human body model, for example, a material conforming to IEC60318-7 or IEC60268-7, and has a thin film shape. is there.
  • the thickness may be, for example, about 0.05 mm to 2 mm so that the response to vibration of the human eardrum can be reproduced.
  • a portion contacting the space of the artificial ear canal 53 of the artificial eardrum 57 may be closer to the size of the average eardrum of a human body, for example, 0.5 cm 2 ⁇ What is necessary is just a circular shape of about 2.5 cm ⁇ 2 >, an ellipse shape, or a rectangular shape.
  • the artificial eardrum portion 57 is not limited to the materials and thicknesses described above, and is a biological material mainly composed of a polymer aminoglycoside extracted from the shell of red snow crab, which is a general artificial eardrum material, or calf dermis It may consist of a biomaterial whose main component is a component purified from the collagen. Rather than attaching an artificial eardrum made of these biomaterials to the artificial external ear canal part 52, an artificial eardrum is formed from a material compliant with the above-mentioned IEC 60318-7 or IEC60268-7, The thickness and area may be adjusted so as to approach the physical characteristics of an artificial eardrum made of a biomaterial.
  • the artificial eardrum portion 57 made of these materials is an adhesive selected in consideration of the materials of the artificial ear canal portion 52 and the artificial eardrum portion 57 so as to block the artificial ear canal 53 at the end portion of the artificial ear canal portion 52. It may be fixed by.
  • the ear mold part 50 may be made of the same material as the artificial external auditory canal part 52 and the ear model 51 or from a different material by integral molding using a mold.
  • a vibration detection part 55 is arranged on the artificial eardrum part 57 on the end surface of the artificial external ear canal part 52 opposite to the ear model 51 side.
  • the vibration detector 55 may be on the ear model side.
  • the vibration detection unit 55 includes a vibration detection element 56 such as a piezoelectric acceleration pickup, for example.
  • 3A is a plan view of the ear mold portion 50 as viewed from the base 10, and FIG. 3B is a cross-sectional view taken along the line bb of FIG. 3A.
  • FIG. 3A illustrates a case where a plurality of chip-shaped vibration detecting elements 56 are arranged on the artificial eardrum portion 57, for example.
  • One vibration detection element 56 may be provided.
  • the vibration detection elements 56 When a plurality of vibration detection elements 56 are arranged, they may be arranged at appropriate intervals around the artificial eardrum portion 57 and the artificial ear canal 53, or in an arc shape so as to surround the opening periphery of the artificial ear canal 53.
  • the vibration detection element 56 may be disposed.
  • the artificial external auditory canal portion 52 has a rectangular shape, but the artificial external auditory canal portion 52 may have an arbitrary shape.
  • the vibration detecting element 56 may be embedded in the artificial eardrum portion 57 so that only the lead wire is drawn out of the artificial eardrum portion 57 or attached to the artificial eardrum portion 57 with an adhesive or the like. It may be.
  • the vibration detecting element 56 disposed in the artificial eardrum portion 57 can mainly reproduce the vibration of cartilage conduction in the eardrum. For example, it is possible to obtain information for converting the sound into the same level as the vibration of the artificial eardrum portion 57 in the air conduction sound.
  • the vibration detection element 56 is disposed in the vicinity of the center portion of the artificial eardrum portion 57 and in the peripheral portion of the artificial eardrum portion 57.
  • the vibration detection element 56 at the center can measure the vibration of cartilage conduction in the artificial eardrum 57. Further, when arranged on the side surface of the artificial external ear canal 53, the behavior of vibration from the ear to the inner ear on the side surface of the external ear canal 53 can be measured.
  • the vibration detecting element 56 disposed around the artificial eardrum portion 57 that is, outside the artificial external ear canal 53 in FIG. 3A, measures a vibration component transmitted from the external auditory canal to the inner ear without passing through the eardrum. can do.
  • the chip-like vibration detecting element 56 for example, a commercially available one such as an ultra-compact and lightweight NP-2106 manufactured by Ono Sokki Co., Ltd., PV-08A, PV-90B manufactured by Rion Co., Ltd., or the like can be selected as appropriate. Good.
  • the weight is about 0.7 g.
  • the vibration characteristic of the artificial eardrum differs from the vibration characteristic of the actual human eardrum by adding the weight. In consideration of becoming a thing, the weight of the artificial eardrum portion 57 may be reduced in advance.
  • the vibration detection element 56 of about 0.2g is lightweight and suitable like TYPE7302 by the Accor company.
  • the vibration detecting element 56 in the artificial eardrum portion 57 is a result of vibration of the eardrum caused by a so-called air conduction component that is emitted as an air conduction sound from the acoustic device and reaches the eardrum, and the inner wall of the artificial ear canal 52 vibrates due to vibration of the acoustic device.
  • the eardrum vibration due to the emitted radiation component in the external auditory canal and the component that itself vibrates the eardrum are detected in a simulated manner.
  • the holding unit 70 that holds the acoustic device 100 such as an earphone will be described.
  • the acoustic device 100 is a cartilage conduction earphone
  • the earphone housing 101 is partially or entirely embedded in the ear hole. Since the ear mold part 50 faithfully mimics the shape of a human ear and naturally includes an auricle or an external auditory canal, it is preferable to embed an earphone in the auricle or the external auditory canal.
  • FIG. 4 shows a modification of the ear mold 50.
  • the ear mold 50 does not have the artificial eardrum 57 and includes a vibration detection element 56 at the rear end of the artificial ear canal 53, that is, on the back surface of the artificial ear canal 52.
  • a vibration component transmitted to the inner ear without passing through the so-called eardrum in the human body for example, a component (bone conduction component) transmitted to the inner ear via the jaw bone or the temporal bone can be measured.
  • the vibration detecting element 56 is disposed on the side surface of the artificial external ear canal 53. Thereby, the behavior of the vibration from the ear toward the inner ear on the side surface of the external auditory canal 53 can be measured.
  • a plurality of vibration detection elements 56 are provided, and the total sense of hearing can be detected by adding the measured values calibrated for each output value.
  • the calibration width of each output value may be adjusted by obtaining a transfer function converted to the air conduction sound base by a conventionally known threshold method or adjustment method.
  • FIG. 5 is a functional block diagram of the main part of the measuring apparatus 10 according to the present embodiment.
  • One or more vibration detection elements 56 are connected to the signal processing unit 75.
  • the signal processing unit 75 measures the amount of vibration in the artificial ear canal unit 52 or the artificial eardrum unit 57 by the acoustic device 100 based on the output of the vibration detection element 56 (each). Further, the signal processing unit 75 measures the audibility based on the measured vibration amount.
  • These measurement results are output to an output unit 76 such as a display unit, a printer, or a storage unit, and are used for evaluation of the acoustic device 100.
  • the measurement includes analyzing the frequency characteristics of the generated air conduction sound and vibration sound by processing such as fast Fourier transform.
  • the vibration level weighted by the vibration transmission characteristic of the human ear can be measured, so that the acoustic apparatus 100 can be correctly evaluated.
  • the microphone 58 supported in a hollow manner is provided in the artificial external ear canal 53 or the terminal end of the artificial external ear canal 53, air conduction through the artificial external ear canal 53 simultaneously with the vibration level.
  • the sound pressure can also be measured, and thereby the audibility level in which the vibration level corresponding to the cartilage conduction and the sound pressure level corresponding to the air conduction sound pressure are combined can be measured, so that the acoustic device 100 can be evaluated in more detail. It becomes.
  • the radiation component in the external auditory canal that has become an airway component from vibration inside the artificial external ear canal 53 can be measured.
  • the correlation between the vibration level corresponding to the cartilage conduction and the sound pressure level corresponding to the air-conducted sound pressure is determined by a large number of actual subjects at the beginning of creating the measurement device in advance, as is well known in the art.
  • correlation data between the audibility of vibration sound pressure using only a vibration sound source and the audibility of air conduction sound pressure using only an air conduction sound source, the audibility of each sound pressure when having a vibration sound source and an air conduction sound source, and air conduction It can be obtained by appropriately referring to correlation data with the audibility of the air conduction sound pressure by only the sound source.
  • FIG. 6 is a diagram showing a schematic configuration of a measuring apparatus according to the second embodiment of the present invention.
  • the human body model portion further includes a human head model 130.
  • the head model 130 is made of, for example, HATS or KEMAR.
  • the artificial ear 131 of the head model 130 is detachable from the head model 130.
  • an ear model 132 similar to the ear mold unit 50 of the first embodiment and the ear model 132 are coupled.
  • a vibration detection unit 135 including a vibration detection element 136 is disposed around the opening of the artificial external ear canal 133, similarly to the ear mold portion 50 of the first embodiment.
  • the artificial ear 131 is detachably attached to an attachment portion 138 formed on the side surface of the head model 130 as shown in FIG.
  • the holding unit 150 includes an ear pinna or a hole that communicates with the artificial external auditory canal 133 of the artificial external auditory canal 134 for holding the acoustic device 100 such as an earphone.
  • the same effect as the measuring apparatus 10 according to the first embodiment can be obtained.
  • the acoustic device 100 is evaluated by detachably attaching the artificial ear 131 for vibration detection to the human head model 130, an actual usage mode in which the influence of the head is taken into consideration. This makes it possible to evaluate more appropriately.
  • the acoustic device 100 to be measured is assumed to be an acoustic device such as an earphone, in which the piezoelectric vibrator 102 vibrates and transmits vibration to the housing 101 and vibrates to the ear via the housing.
  • the acoustic device 100 to be measured can be used to cover the entire ear, such as headphones held by a person's head, or to transmit vibrations to the ear by an acoustic device provided on a head-mounted display, or to the vine part of glasses. Even if the vibration element is embedded and the vine vibrates to transmit the vibration sound, it can be similarly evaluated by easily deforming the holding portion that holds the acoustic device.
  • FIG. 8 shows a modification of the measuring apparatus of FIG.
  • the measuring apparatus shown in FIG. 8 does not have the artificial eardrum 137 in the artificial ear 131 and includes a vibration detecting element 136 at the rear end of the artificial external ear canal 133.
  • the vibration component transmitted to the inner ear without passing through the eardrum in the human body can be measured.
  • the vibration detecting element 136 is disposed on the side surface of the artificial external ear canal 133. Thereby, the behavior of vibration from the ear toward the inner ear on the side surface of the external auditory canal 133 can be measured.
  • the air conduction sound pressure in the artificial external auditory canal 133 can be measured simultaneously with the vibration level. Since the audibility level obtained by combining the corresponding vibration level and the sound pressure level corresponding to the air conduction sound pressure can be measured, the acoustic device 100 can be evaluated in more detail.
  • the correlation between the vibration level corresponding to the cartilage conduction and the sound pressure level corresponding to the air-conducted sound pressure is determined by a large number of actual subjects at the beginning of creating the measurement device in advance, as is well known in the art.
  • correlation data between the audibility of vibration sound pressure using only a vibration sound source and the audibility of air conduction sound pressure using only an air conduction sound source, the audibility of each sound pressure when having a vibration sound source and an air conduction sound source, and air conduction It can be obtained by appropriately referring to correlation data with the audibility of the air conduction sound pressure by only the sound source.
  • the acoustic device 100 that generates vibration is attached to the measurement device in a predetermined posture.
  • the acoustic device is driven with a predetermined power.
  • the detection result of the vibration detection unit is obtained by the measuring device.
  • this is sufficient, but it is also effective to compare it with the measurement result of the air conduction sound pressure obtained as follows, for example. That is, before or after, (1) an acoustic device that generates vibration is attached to the measuring device in a predetermined posture. (2) The acoustic device is driven with a predetermined power. (3) A normal air conduction volume is measured in a measuring device in which a microphone is mounted in a hollow shape in the ear canal of an ear mold such as HATS or KEMAR of a well-known human body model that does not include an eardrum unit. (4) Then, the correspondence between the measurement result of the vibration amount of the artificial eardrum obtained by the measurement apparatus of the present invention and the measurement result of the air conduction volume is taken.
  • the measurement device of the present invention detects the amount of vibration when driven by applying the same power using a speaker that outputs 150 dB at the air conduction volume. As a result, the vibration amount of the artificial eardrum when a 150 dB sound is heard can be measured.
  • the vibration amount equivalent to 150 dB is detected in the above-described air conduction volume by using an acoustic device that transmits sound only by vibration sound or vibration sound and air conduction sound. Thereby, the vibration amount equivalent to the air conduction volume of a general speaker can be measured.
  • the vibration amount equivalent to 150 dB is measured by combining the sound due to vibration transmission and the air conduction sound.
  • a vibration amount equivalent to 150 dB which is a general air conduction volume.

Abstract

 振動素子102を備える筺体101を人体の耳を含む頭部により保持させて振動伝達により音を聞かせる音響装置100を評価するための測定装置10であって、人体の耳を模した耳型部50を備えるとともに、音響装置100を保持する人体模型部と、前記耳型部50に配置された振動検出部55と、を備える。

Description

耳型部、人工頭部及びこれらを用いた測定装置ならびに測定方法 関連出願の相互参照
 本出願は、2012年11月22日に日本国に特許出願された特願2012-256654の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、振動体を有する筐体を人体の耳内部に収容させて、或いは耳に押し当てて振動伝達により音を聞かせるイヤホンタイプやヘッドホンタイプの音響装置を評価するための測定装置及び測定方法並びに測定装置に使用する耳型部及び人工頭部に関するものである。
 特許文献1には、携帯電話などの音響装置として、気導音と骨導音とを利用者に伝えるものが記載されている。また特許文献1には、気導音とは、物体の振動に起因する空気の振動が外耳道を通って鼓膜に伝わり、鼓膜が振動することによって利用者の聴覚神経に伝わる音であることが記載されている。また、特許文献1には、骨導音とは、振動する物体に接触する利用者の体の一部(例えば外耳の軟骨)を介して利用者の聴覚神経に伝わる音であることが記載されている。
 特許文献1に記載された電話機では、圧電バイモルフ及び可撓性物質からなる短形板状の振動体が、筐体の外面に弾性部材を介して取り付けられる旨が記載されている。また、特許文献1には、この振動体の圧電バイモルフに電圧が印加されると、圧電材料が長手方向に伸縮することにより振動体が屈曲振動し、利用者が耳介に振動体を接触させると、気導音と骨導音とが利用者に伝えられることが記載されている。
 そして、このような伝達原理により音を伝えるものとして、手にもって、耳に押し付けて音を伝える電話機以外にも、人体の頭部のどこかに引っ掛けて保持されて使用される軟骨伝導イヤホンやヘッドホンが知られている。
特開2005-348193号公報
 そして、発明者は、人体の頭部のどこかに引っ掛けて保持されて使用される軟骨伝導イヤホンやヘッドホン等の、外耳の軟骨を介しての骨導音を利用者に伝える音響装置を評価するには、振動体の振動によって人体の聴覚神経に近似的に作用する振動量を測定する必要があるとの認識に至った。
 本発明は、上述した認識に鑑みてなされたもので、人体の耳の振動伝達の特徴が重み付けされた振動量を測定でき、振動体を有するイヤホンやヘッドホン等の音響装置を評価できる測定装置及び測定方法等を提供することを目的とするものである。
 本発明は、振動素子を備える筺体を人体の耳を含む頭部により保持させて振動伝達により音を聞かせる音響装置を評価するための測定装置であって、人体の耳を模した耳型部を備えるとともに、音響装置を保持する人体模型部と、前記耳型部に配置された振動検出部と、を備える。
 本発明によれば、人体の耳への振動伝達の特徴が考慮された振動量を測定でき、振動体を有するイヤホンやヘッドホンタイプの音響装置や補聴器等を評価することが可能となる。
本発明の第1実施の形態に係る測定装置の概略構成を示す図である。 測定対象のイヤホンの一例を示す概略断面図である。 図1の測定装置の部分詳細図である。 図1の測定装置の変形例を示す部分詳細図である。 図1の測定装置の要部の機能ブロック図である。 本発明の第2実施の形態に係る測定装置の概略構成を示す図である。 図6の測定装置の部分詳細図である。 図6の測定装置の変形例を示す部分詳細図である。
 以下、本発明の実施の形態について、図を参照して説明する。
(第1実施の形態)
 図1は、本発明の第1実施の形態に係る測定装置の概略構成を示す図である。本実施の形態に係る測定装置10は、基台30に支持された耳型部50を備えるとともに、音響装置100を保持する保持部70を備える人体模型部を備える。なお、以下の説明において、一例としての軟骨伝導イヤホンを音響装置100として示している。音響装置100は、図2の断面図に示すように、人の耳の穴に埋入させる筐体101を有し、当該筺体内部に圧電素子102を備え、当該圧電素子102により筺体101を振動させるものである。
 まず、耳型部50について説明する。
 耳型部50は、人の耳を模したもので、耳模型51と、該耳模型51に結合された或いは一体に形成された人工外耳道部52と、人工外耳道部52に結合された或いは一体に形成された人工鼓膜部57とを備える。人工外耳道部52は、耳模型51を覆う大きさを有し、中央部に人工外耳道53が形成されている。耳型部50は、人工外耳道部52の周縁部において、支持部材54を介して基台30に支持されている。
 耳模型51は、耳輪、耳介結節、舟状窩、対耳輪、耳甲介艇、耳甲介腔、対耳珠、耳垂、耳珠、耳輪脚、対耳輪下脚、三角窩、対耳輪上脚、珠間切痕等のいずれかを備えていてもよい。これにより様々な構造をもち、さまざまな耳の部位に保持される音響装置を保持することに対応できる。例えば対耳輪下脚と、珠間切痕との間で突っ張るように、音響装置を保持させる場合は、対耳輪下脚および珠間切痕を備えていることが好ましい。即ち、保持部は、対耳輪下脚と珠間切痕とを備える。また、耳輪と側頭部との間に係る耳掛け部を有する本体部と、本体部から供給される音声信号により振動するとともに耳甲介腔に埋め込まれる振動部とを備えた音響機器を計測する場合は、耳模型51は、保持部として耳輪と側頭部、並びに耳甲介腔を備えるとよい。耳模型51は、耳輪、耳介結節、舟状窩、対耳輪、耳甲介艇、耳甲介腔、対耳珠、耳垂、耳珠、耳輪脚、対耳輪下脚、三角窩、対耳輪上脚、珠間切痕等のいずれかを備えていてもよい。これにより様々な構造をもち、さまざまな耳の部位に保持される音響装置を保持することに対応できる。例えば対耳輪下脚と、珠間切痕との間で突っ張るように、音響装置を保持させる場合は、対耳輪下脚および珠間切痕を備えていることが好ましい。即ち、保持部は、対耳輪下脚と珠間切痕とを備える。また、耳輪と側頭部との間に係る耳掛け部を有する本体部と、本体部から供給される音声信号により振動するとともに耳甲介腔に埋め込まれる振動部とを備えた音響機器を計測する場合は、耳模型51は、保持部として耳輪と側頭部、並びに耳甲介腔を備えるとよい。
 耳型部50は、例えば人体模型のHATS(Head And Torso Simulator)やKEMAR(ノウルズ社の音響研究用の電子マネキン名)等に使用される平均的な耳模型の素材と同様の素材、例えば、IEC60318-7やIEC60268-7に準拠した素材からなっていてもよい。この素材は、例えばショア硬度30から60(例えばショア硬度35やショア硬度55)のゴム等の素材で形成することができる。
 人工外耳道部52の厚さ、つまり人工外耳道53の長さは、人の鼓膜(蝸牛)までの長さに相当するものであれば好適で、例えば5mmから40mmの範囲で適宜設定される。本実施の形態では、人工外耳道53の長さを、ほぼ28.5mmとしている。
 人工鼓膜部57は、人工外耳道部52の端部に人工外耳道53を塞ぐように形成されており、人工外耳道53からの振動が人工鼓膜部57に伝達される。
 人工鼓膜部57は、例えば人体模型のHATSやKEMAR等に使用される平均的な耳模型の素材と同様の素材、例えば、IEC60318-7やIEC60268-7に準拠した素材からなり、薄い膜状である。概ねその厚みは、人体の鼓膜の振動に対する応答性を再現できるように、例えば0.05mmから2mm程度の厚みであればよい。また、人工鼓膜部57の人工外耳道53の空間に接する部位、つまり人工外耳道53に向かって露出する部位の面積は、人体の平均的な鼓膜の大きさに近ければよく、例えば0.5cm~2.5cm程度の円形状や楕円形状或いは矩形状であればよい。
 人工鼓膜部57は、上述した材料や厚みに限られず、一般的な人工鼓膜の材料である紅ズワイガニの甲羅から抽出される高分子アミノ配糖体などを主成分とする生体材料、或いは仔牛真皮のコラーゲンから精製された成分を主成分とする生体材料からなっていてもよい。尚、人工外耳道部52にこれらの生体材料からなる人工鼓膜を取り付けるよりも、上述のIEC60318-7やIEC60268-7に準拠した素材から人工鼓膜を形成し、当該素材からなる人工鼓膜を、上述の生体材料からなる人工鼓膜の物理特性に近づけるように、厚みや面積を調整してもよい。或いは、従来から鼓膜穿孔修復材料に用いられているゴム膜やゴム球、紙片、コロジオン膜、卵膜等、セロファン、ポリテトラフルオロエチレン、シリコーン膜、コラーゲン、フィブリン膜等の天然由来物の加工品や人工材料でもよい。尚、これらの材料からなる人工鼓膜部57は、人工外耳道部52の端部に、人工外耳道53を塞ぐように、人工外耳道部52と人工鼓膜部57の材料を考慮して選択された接着剤により固定されてもよい。もちろん耳型部50は、人工外耳道部52や耳模型51と同じ材料あるいは異種材料から金型による一体成型によって作製されてもよい。
 耳型部50には、人工外耳道部52の耳模型51側とは反対側の端面において、人工鼓膜部57に振動検出部55が配置されている。尚、振動検出部55は耳模型側にあってもよい。振動検出部55は、例えば、圧電式加速度ピックアップ等の振動検出素子56を備える。図3(a)は、耳型部50を基台10側から見た平面図であり、図3(b)は図3(a)のb-b線断面図である。図3(a)では、人工鼓膜部57に例えばチップ状の振動検出素子56を複数個配置した場合を例示している。振動検出素子56は、1個であってもよい。複数個の振動検出素子56を配置する場合は、人工鼓膜部57及び人工外耳道53の周辺部に適時の間隔で配置してもよいし、人工外耳道53の開口周辺部を取り囲むように円弧状に振動検出素子56を配置してもよい。なお、図3(a)において、人工外耳道部52は矩形状を成しているが、人工外耳道部52は任意の形状とすることができる。振動検出素子56は、例えば、人工鼓膜部57の内部に埋設されて、リード線だけを人工鼓膜部57の外側に引き出すようにしてもよいし、接着剤等により人工鼓膜部57に貼り付けられていてもよい。
 人工鼓膜部57に配置された振動検出素子56は、主として、鼓膜における軟骨伝導の振動を再現することができる。例えば気導音における人工鼓膜部57の振動と同程度の音に換算するための情報を得ることができる。図3では、振動検出素子56は、人工鼓膜部57の中心部近傍と、人工鼓膜部57の周囲部とにそれぞれ配置されている。中心部の振動検出素子56は、人工鼓膜部57における軟骨伝導の振動を測定することができる。また、人工外耳道53の側面に配置された場合は、当該外耳道53の側面における耳から内耳に向かう振動の挙動を測定できる。また、人工鼓膜部57の周囲、即ち図3(a)における人工外耳道53の外側に配置された振動検出素子56は、人体でいうところの外耳道から鼓膜を経由しないで内耳へ伝わる振動成分を測定することができる。
 またチップ状の振動検出素子56は、例えば、小野測器社製の超小型軽量タイプのNP-2106や、リオン株式会社製のPV-08A、PV-90B等、市販のものを適宜選択すればよい。尚、例えばリオン株式会社のPV-08Aの場合、重量は、0.7g程度であるが、その重量が追加されることにより人工鼓膜部の振動特性が実際の人体の鼓膜の振動特性と異なったものとなってしまうことを考慮して、人工鼓膜部57の重量を予め軽量化しておいてもよい。そして、株式会社アコー社製のTYPE7302のように、0.2g程度の振動検出素子56は軽量であり、好適である。
 人工鼓膜部57における振動検出素子56は、音響装置から気導音として放出されて鼓膜に届くいわゆる気導成分による鼓膜の振動、及び、音響機器の振動により人工外耳道52の内壁が振動する結果、放出される外耳道内放射成分による鼓膜の振動、並びに振動自体が鼓膜を振動させる成分を模擬的に検出する。
 次に、イヤホン等の音響装置100が保持される保持部70について説明する。音響装置100が、軟骨伝導イヤホンの場合、イヤホンの筺体101を部分的にあるいは全部、耳の穴に埋入させる。耳型部50は、人体の耳の形状を忠実に模しており、当然、耳介や外耳道を備えていることから、当該耳介や外耳道にイヤホンを埋入させるとよい。
 図4では、耳型部50の変形例を示す。当該耳型部50には、人工鼓膜部57がなく、人工外耳道53の後端部、即ち人工外耳道部52の裏面に振動検出素子56を備える。この場合、いわゆる人体における鼓膜を経ないで内耳へと伝達される振動成分、例えば顎骨或いは側頭骨を介して内耳へと伝わる成分(骨導成分)等を測定することができる。また、この例においても、人工外耳道53の側面に振動検出素子56を配置している。これにより、当該外耳道53の側面における耳から内耳に向かう振動の挙動を測定できる。これら複数の成分を測定するために、複数の振動検出素子56を備え、出力値毎に校正された測定値を合算することによりトータルの聴感を検出できる。尚、各出力値の校正幅の調整は、従来周知の閾値法や調整法により、気導音ベースに換算する伝達関数を求めることにより行えばよい。
 図5は、本実施の形態に係る測定装置10の要部の機能ブロック図である。一または複数の振動検出素子56は、信号処理部75に接続される。信号処理部75は、振動検出素子56(のそれぞれ)の出力に基づいて、音響装置100による人工外耳道部52或いは人工鼓膜部57における振動量を測定する。また、信号処理部75は、測定した振動量に基づいて聴感を測定する。これらの測定結果は、表示部、プリンタ、記憶部等の出力部76に出力されて、音響装置100の評価に供される。測定には、高速フーリエ変換などの処理により、発生された気導音、振動音それぞれの周波数特性を分析することが含まれる。
 このように、本実施の形態に係る測定装置10によると、人体の耳の振動伝達の特徴が重み付けされた振動レベルを測定することができるので、音響装置100を正しく評価することができる。
 また、図4に示す変形例のように、人工外耳道53内、或いは人工外耳道部53の終端部に中空に支持されたマイクロフォン58を備える場合、振動レベルと同時に人工外耳道53を介しての気導音圧も測定でき、これにより軟骨伝導に相当する振動レベルと気導音圧に相当する音圧レベルとが合成された聴感レベルを測定できるので、音響装置100をより詳細に評価することが可能となる。人工外耳道53の内部で振動から気道成分となった外耳道内放射成分を測定できる。
 尚、軟骨伝導に相当する振動レベルがどの程度の気導音圧に相当する音圧レベルとなるかの相関は、予め測定装置を作成する当初において、従来周知のごとく、実際の多数の被験者による実験によって、振動音源のみによる振動音圧の聴感と気導音源のみによる気導音圧の聴感との相関データ、振動音源と気導音源とを有する場合のそれぞれの音圧の聴感と、気導音源のみによる気導音圧の聴感との相関データ等を適宜参照することにより得ることができる。
(第2実施の形態)
 図6は、本発明の第2実施の形態に係る測定装置の概略構成を示す図である。本実施の形態に係る測定装置110は、人体模型部がさらに人体の頭部模型130を備える。頭部模型130は、例えばHATSやKEMAR等からなる。頭部模型130の人工耳131は、頭部模型130に対して着脱自在である。
 人工耳131は、図7(a)に頭部模型130から取り外した側面図を示すように、第1実施の形態の耳型部50と同様の耳模型132と、該耳模型132に結合され、人工外耳道133が形成された人工外耳道部134と、該人工外耳道部134の端部に配置された膜状の人工鼓膜部137とを備える。人工外耳道部134には、人工外耳道133の開口周辺部に、第1実施の形態の耳型部50と同様に、振動検出素子136を備える振動検出部135が配置されている。人工耳131は、図7(b)に人工耳131を取り外した頭部模型130の側面図を示すように、頭部模型130の側面に形成された装着部138に着脱自在に装着される。
 保持部150は、イヤホン等の音響装置100を保持するための人工外耳道部134の人工外耳道133に通じる耳の耳介或いは孔部からなる。
 本実施の形態に係る測定装置110によると、第1実施の形態の測定装置10と同様の効果が得られる。特に、本実施の形態では、人体の頭部模型130に、振動検出用の人工耳131を着脱自在に装着して音響装置100を評価するので、頭部の影響が考慮された実際の使用態様により即した評価が可能となる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、上記実施の形態では、測定対象の音響装置100として、イヤホン等の音響装置で、圧電振動子102が振動して筺体101に振動を伝え、当該筺体を介して耳に振動するものを想定したが、人の頭部により保持されたヘッドホンのように耳全体を覆うようにして使用するものやヘッドマウントディスプレイに設けられた音響装置によって耳に振動を伝達するものや眼鏡のつるの部分に振動素子が埋設され、当該つるが振動することにより振動音を伝達させるものであっても、容易に音響装置を保持する保持部の変形により同様に評価することが可能である。
 図8では、図6の測定装置の変形例を示す。図8に示す測定装置は、人工耳131に人工鼓膜部137がなく、人工外耳道133の後端部に振動検出素子136を備える。この場合、人体における鼓膜を経ないで内耳へと伝達される振動成分を測定することができる。また、この例においても、人工外耳道133の側面に振動検出素子136を配置している。これにより、当該外耳道133の側面における耳から内耳に向かう振動の挙動を測定できる。
 また、図8に示す変形例のように、人工外耳道部133内に中空に支持されたマイクロフォン139を備える場合、振動レベルと同時に人工外耳道133における気導音圧も測定でき、これにより軟骨伝導に相当する振動レベルと気導音圧に相当する音圧レベルとが合成された聴感レベルを測定できるので、音響装置100をより詳細に評価することが可能となる。
 尚、軟骨伝導に相当する振動レベルがどの程度の気導音圧に相当する音圧レベルとなるかの相関は、予め測定装置を作成する当初において、従来周知のごとく、実際の多数の被験者による実験によって、振動音源のみによる振動音圧の聴感と気導音源のみによる気導音圧の聴感との相関データ、振動音源と気導音源とを有する場合のそれぞれの音圧の聴感と、気導音源のみによる気導音圧の聴感との相関データ等を適宜参照することにより得ることができる。
(第3実施の形態)
 次に、本発明の測定装置を用いた一例にかかる測定方法について、以下に説明する。
 例えば下記にかかる測定のステップにより種々の判定ができる。(1)振動を発する音響装置100を所定の姿勢にて測定装置に取り付ける。(2)音響装置を所定のパワーで駆動させる。(3)測定装置にて振動検出部の検出結果を得る。
 基本的にはこれでよいが、例えば以下のようにして得た気導音圧の測定結果と比較することも有効である。即ち、事前あるいは事後に、(1)振動を発する音響装置を所定の姿勢にて測定装置に取り付ける。(2)音響装置を所定のパワーで駆動させる。(3)鼓膜部を備えない従来周知の人体模型のHATSやKEMAR等の耳型部の外耳道内にマイクを中空状に取り付けた測定装置において、通常の気導音量を測定する。(4)そして、本発明の測定装置により得られた人工鼓膜部の振動量の測定結果と、気導音量の測定結果との対応を取る。これにより、所謂、気導音量と人工鼓膜における相関、即ち伝達関数を容易に得ることもできる。この場合、同じ音響装置を用いた場合は、同じ印可パワーに対する気導音量と振動量のそれぞれを計測していることとなる。即ち同じ音響装置におけるそれぞれの相関を得たこととなる。
 これに対して、別の音響装置を用いて以下のような測定も有効である。即ち、気導音量において150dBの出力をさせたスピーカをもちいて、同じパワーを印加して駆動させたときの振動量を本発明の測定装置により検出する。これにより、150dBの音を聞いたときの人工鼓膜部の振動量が測定できたこととなる。
 次に、振動音だけ或いは振動音と気導音とで音声を伝達する音響装置を用いて、上記した気導音量において150dB相当と同じ振動量を検出する。これにより、一般的なスピーカの気導音量相当の振動量を測定できる。尚、振動伝達による音と気導音とを共に出力できる音響装置においては、この150dB相当の振動量は、振動伝達による音と気導音とを合わせたものが測定される。振動伝達のみを行う音響装置においては、一般にいう気導音量の150dB相当の振動量を測定できたこととなる。
 このような比較にかかる測定方法の用い方として、例えば、気導音量で鼓膜が破れる危険があるとされる大音量に対応する、人工鼓膜部の振動量をある程度特定できることから、得られた知見を基に、振動量の上限値を制限する等、安全性に配慮した音響装置の作製に寄与できる。或いは、気導音量と、人工鼓膜部における振動量との相関が把握できることから、例えば高度難聴者向けの携帯音響装置における設計等が容易となる。即ち、予め病院等で把握された高度難聴者の気導音ベースでの聞こえに関するデータをそのまま用いて、対応する振動量の下限、或いは上限値を設定することが容易となる。
10 測定装置
30 基台
50 耳型部
51 耳模型
52 人工外耳道部
53 人工外耳道
54 支持部材
55 振動検出部
56 振動検出素子
57 人工鼓膜部
58 マイクロフォン
70 保持部
100 音響装置
101 筐体
102 振動素子
110 測定装置
130 頭部模型
131 人工耳
132 耳模型
133 人工外耳道
134 人工外耳道部
135 振動検出部
137 人工鼓膜部
138 装着部
139 マイクロフォン
150 保持部
 

Claims (22)

  1.  振動素子を備える筺体を人体の耳を含む頭部により保持させて振動伝達により音を聞かせる音響装置を評価するための測定装置であって、
     人体の耳を模した耳型部を備えるとともに、音響装置を保持する人体模型部と、前記耳型部に配置された振動検出部と、を備える測定装置。
  2.  前記耳型部は、耳模型と、該耳模型に連なる人工外耳道部と、を含み、
     前記人工外耳道部に人工外耳道が形成されている、請求項1に記載の測定装置。
  3.  前記人工外耳道は、5mmから40mmの長さを有する、請求項2に記載の測定装置。
  4.  前記耳型部は、前記人工外耳道部に連なる人工鼓膜部を含む請求項2又は3に記載の測定装置。
  5.  前記人工鼓膜部は、0.05mmから2mmの厚みを有する、請求項4に記載の測定装置。
  6.  前記人工鼓膜部は、前記人工外耳道に向かって露出する部位の面積が、0.5cmから2.5cmである、請求項4又は5に記載の測定装置。
  7.  前記振動検出部は、前記人工鼓膜部に配置された一または複数個の振動検出素子を備える、請求項4から6のいずれか一項に記載の測定装置。
  8.  前記振動検出部は、前記人工外耳道の周辺部に配置された一または複数の振動検出素子を備える、請求項2乃至請求項7のいずれか一項に記載の測定装置。
  9.  前記音響装置は、前記耳型部の耳介部或いは孔部によって保持される、請求項1乃至請求項8のいずれか一項に記載の測定装置。
  10.  前記人体模型部は、人体の頭部模型をさらに備え、前記耳型部は、前記頭部模型を構成する人工耳として、当該頭部模型に着脱自在である、請求項1乃至請求項9のいずれか一項に記載の測定装置。
  11.  前記音響装置は、前記頭部模型によって保持される、請求項10に記載の測定装置。
  12.  前記耳型部は、IEC60318-7に準拠した耳介モデル或いはIEC60268-7に準拠した耳介モデルと同じ素材からなる部位を含む、請求項1乃至請求項11のいずれか一項に記載の測定装置。
  13.  振動素子を備える筺体を人体により保持させて振動伝達により音を聞かせる音響装置を評価するための測定方法であって、
     人体模型部に前記音響装置を保持させて、人体の耳を模した耳型部に前記音響装置の振動を伝達させ、該振動体の振動により前記耳型部に伝達される振動を、振動検出部により検出する、測定方法。
  14.  耳模型と当該耳模型に連なる人工外耳道部とを備え、前記耳模型が、振動素子を有する音響装置を保持する耳型部。
  15.  人工鼓膜部をさらに備える請求項14に記載の耳型部。
  16.  前記耳模型及び前記人工外耳道部は、同一材料から一体的に作製されたものである請求項14に記載の耳型部。
  17.  前記人工外耳道部に、前記耳模型が、接着或いは溶着されている請求項14に記載の耳型部。
  18.  請求項14乃至請求項17のいずれか一項に記載の耳型部、および当該耳型部に配置された振動検出部を備える振動検出用耳型部。
  19.  前記振動検出部は、前記耳型部に埋設あるいは固着されている請求項18に記載の振動検出用耳型部。
  20.  耳模型と当該耳模型に連なる人工外耳道部とを備えた耳型部と、頭部模型とを備え、振動素子を有する音響機器が、前記耳型部或いは頭部模型のいずれか或いは双方により保持される人工頭部。
  21.  請求項18或いは請求項19に記載の振動検出用耳型部と、頭部模型とを備えた振動検出用人工頭部。
  22.  振動素子を備えるとともに人体の耳を含む頭部により保持されて、振動伝達により音を聞かせる音響装置を評価するための測定装置であって、
     人体の耳介を模した耳模型と人体の外耳道を模した人工外耳道部とを備える耳型部と、
     当該耳型部に配置されたマイクロフォンと、を備え、
     前記音響機器を前記耳型部に振動を伝達させる状態で保持する測定装置。
PCT/JP2013/005800 2012-11-22 2013-09-30 耳型部、人工頭部及びこれらを用いた測定装置ならびに測定方法 WO2014080557A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2015119247A RU2613595C2 (ru) 2012-11-22 2013-09-30 Блок модели уха, искусственная голова и измерительное устройство и способ, использующие упомянутые блок модели уха и искусственную голову
CN201380060887.7A CN104854881B (zh) 2012-11-22 2013-09-30 耳模型单元、人工头部及使用耳模型单元和人工头部的测量设备和方法
JP2014548434A JPWO2014080557A1 (ja) 2012-11-22 2013-09-30 測定装置及び測定方法
EP13857191.4A EP2925022A4 (en) 2012-11-22 2013-09-30 EAR MODEL, ARTIFICIAL HEAD PART, AND MEASURING DEVICE AND METHOD USING THE SAME MODEL AND HEAD
US14/646,363 US9877125B2 (en) 2012-11-22 2013-09-30 Ear model unit, artificial head, and measurement device and method using said ear model unit and artificial head
US15/661,379 US9992594B2 (en) 2012-11-22 2017-07-27 Ear model unit, artificial head, and measurement device and method using said ear model unit and artificial head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012256654 2012-11-22
JP2012-256654 2012-11-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/646,363 A-371-Of-International US9877125B2 (en) 2012-11-22 2013-09-30 Ear model unit, artificial head, and measurement device and method using said ear model unit and artificial head
US15/661,379 Continuation US9992594B2 (en) 2012-11-22 2017-07-27 Ear model unit, artificial head, and measurement device and method using said ear model unit and artificial head

Publications (1)

Publication Number Publication Date
WO2014080557A1 true WO2014080557A1 (ja) 2014-05-30

Family

ID=50775755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005800 WO2014080557A1 (ja) 2012-11-22 2013-09-30 耳型部、人工頭部及びこれらを用いた測定装置ならびに測定方法

Country Status (6)

Country Link
US (2) US9877125B2 (ja)
EP (1) EP2925022A4 (ja)
JP (3) JPWO2014080557A1 (ja)
CN (1) CN104854881B (ja)
RU (1) RU2613595C2 (ja)
WO (1) WO2014080557A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059847A1 (ja) * 2013-10-23 2015-04-30 京セラ株式会社 耳型部、人工頭部及びこれらを用いた測定システムならびに測定方法
JP7426512B2 (ja) 2020-08-29 2024-02-01 シェンツェン・ショックス・カンパニー・リミテッド 振動伝達関数を取得する方法及びシステム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352678B2 (ja) 2013-08-28 2018-07-04 京セラ株式会社 耳型部、人工頭部及びこれらを用いた測定装置ならびに測定方法
JP6243223B2 (ja) * 2013-12-26 2017-12-06 京セラ株式会社 測定システム及び測定方法
KR20150142925A (ko) * 2014-06-12 2015-12-23 한국전자통신연구원 스테레오 음향 입력 장치
CN105187970B (zh) * 2015-09-21 2018-06-15 歌尔股份有限公司 一种头戴耳机的佩戴检测用工装
DK3160163T3 (da) 2015-10-21 2020-08-31 Oticon Medical As Måleanordning til en knogleledningshøreanordning
ITUA20162485A1 (it) * 2016-04-11 2017-10-11 Inst Rundfunktechnik Gmbh Mikrofonanordnung
US10632278B2 (en) * 2017-07-20 2020-04-28 Bose Corporation Earphones for measuring and entraining respiration
CN109273092B (zh) * 2018-08-23 2021-08-06 温州医科大学附属第一医院 一种制备鼓膜模型以及鼓膜雕刻参考模型的方法
CN110269626B (zh) * 2019-06-21 2022-07-19 佛山博智医疗科技有限公司 一种客观的模拟并调控真耳听力状态的装置及方法
JP2021025800A (ja) * 2019-07-31 2021-02-22 日東電工株式会社 評価システム、評価装置、評価方法、プログラム、および遮音デバイス
US11451893B2 (en) * 2020-02-06 2022-09-20 Audix Corporation Integrated acoustic coupler for professional sound industry in-ear monitors
DK180757B1 (en) 2020-04-16 2022-02-24 Gn Audio As Method and puppet for electroacoustic simulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198338A (ja) * 1982-05-17 1983-11-18 株式会社日立製作所 人工耳
JPH03168000A (ja) * 1989-11-28 1991-07-19 Nissan Motor Co Ltd ダミーヘッドマイクロホン
JPH11500284A (ja) * 1995-02-16 1999-01-06 ラーソン−デイヴィス・インコーポレーテッド ヒトの乳様突起をシュミレートする装置及び方法
JP2005348193A (ja) 2004-06-04 2005-12-15 Nec Tokin Corp 受話器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU562953A1 (ru) * 1975-08-25 1977-06-25 Предприятие П/Я В-2203 Стереофоническое трансл ционное устройство
JPS5352101A (en) * 1976-10-22 1978-05-12 Pioneer Electronic Corp Dummy head microphone
US4741035A (en) * 1983-06-01 1988-04-26 Head Stereo Gmbh Wide band, low noise artificial head for transmission of aural phenomena
US4924502A (en) * 1987-05-08 1990-05-08 Allen Clayton H Means for stabilizing sound pressure produced at the eardrum under an earpad
DE19618019A1 (de) * 1996-05-04 1997-11-06 Siegfried Dipl Ing Enderlein Anordnung zur Anpassung von Übertragungsparametern in der Hörakustik und Anordnungsverwendung
JP4237424B2 (ja) * 2001-04-16 2009-03-11 スター精密株式会社 電気音響変換器
EP1614323B1 (en) * 2003-04-15 2007-09-05 Brüel & Kjaer Sound & Vibration Measurement A/S A method and device for determining acoustical transfer impedance
KR100851286B1 (ko) 2003-11-11 2008-08-08 마테크, 인코포레이티드 단일 트랜스듀서를 갖는 쌍방향 통신 장치
CA2694286A1 (en) * 2007-07-23 2009-01-29 Asius Technologies, Llc Diaphonic acoustic transduction coupler and ear bud
TW201106272A (en) * 2009-08-14 2011-02-16 Univ Nat Chiao Tung Headset acoustics simulation system and optimized simulation method
US20120088215A1 (en) * 2010-10-11 2012-04-12 Colorado State University Research Foundation Integrated model for otoscopic procedures
US9438985B2 (en) * 2012-09-28 2016-09-06 Apple Inc. System and method of detecting a user's voice activity using an accelerometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198338A (ja) * 1982-05-17 1983-11-18 株式会社日立製作所 人工耳
JPH03168000A (ja) * 1989-11-28 1991-07-19 Nissan Motor Co Ltd ダミーヘッドマイクロホン
JPH11500284A (ja) * 1995-02-16 1999-01-06 ラーソン−デイヴィス・インコーポレーテッド ヒトの乳様突起をシュミレートする装置及び方法
JP2005348193A (ja) 2004-06-04 2005-12-15 Nec Tokin Corp 受話器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2925022A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059847A1 (ja) * 2013-10-23 2015-04-30 京セラ株式会社 耳型部、人工頭部及びこれらを用いた測定システムならびに測定方法
US10264378B2 (en) 2013-10-23 2019-04-16 Kyocera Corporation Ear model, artificial head, and measurement system and measurement method using the ear model and artificial head
JP7426512B2 (ja) 2020-08-29 2024-02-01 シェンツェン・ショックス・カンパニー・リミテッド 振動伝達関数を取得する方法及びシステム

Also Published As

Publication number Publication date
CN104854881A (zh) 2015-08-19
JP6267751B2 (ja) 2018-01-24
EP2925022A1 (en) 2015-09-30
JP2016201816A (ja) 2016-12-01
US9992594B2 (en) 2018-06-05
CN104854881B (zh) 2018-05-18
RU2015119247A (ru) 2016-12-10
JPWO2014080557A1 (ja) 2017-01-05
RU2613595C2 (ru) 2017-03-17
US9877125B2 (en) 2018-01-23
US20170325040A1 (en) 2017-11-09
US20150341733A1 (en) 2015-11-26
EP2925022A4 (en) 2016-06-22
JP2018038085A (ja) 2018-03-08
JP6317025B2 (ja) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6317025B2 (ja) 測定装置及び測定方法
JP6352678B2 (ja) 耳型部、人工頭部及びこれらを用いた測定装置ならびに測定方法
JP5806178B2 (ja) 振動検出用耳型部、振動検出用頭部模型、測定装置及び測定方法
JP5762505B2 (ja) 耳型部、人工頭部及びこれらを用いた測定システムならびに測定方法
Shimokura et al. Simulating cartilage conduction sound to estimate the sound pressure level in the external auditory canal
JP5755360B2 (ja) 耳型部、人工頭部及びこれらを用いた測定システムならびに測定方法
JP5774150B2 (ja) 測定装置及び測定方法
JP6224796B2 (ja) 測定装置
JP6059292B2 (ja) 測定装置及び測定方法
JP2015165717A (ja) 測定システムならびに測定方法
JP2013243489A (ja) 測定装置及び測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548434

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14646363

Country of ref document: US

Ref document number: 2013857191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015119247

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE