WO2014080446A1 - 通音膜、及び通音膜を備えた電子機器 - Google Patents

通音膜、及び通音膜を備えた電子機器 Download PDF

Info

Publication number
WO2014080446A1
WO2014080446A1 PCT/JP2012/008341 JP2012008341W WO2014080446A1 WO 2014080446 A1 WO2014080446 A1 WO 2014080446A1 JP 2012008341 W JP2012008341 W JP 2012008341W WO 2014080446 A1 WO2014080446 A1 WO 2014080446A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
permeable membrane
membrane
permeable
resin porous
Prior art date
Application number
PCT/JP2012/008341
Other languages
English (en)
French (fr)
Inventor
将明 森
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020157011067A priority Critical patent/KR101948969B1/ko
Priority to CN201280076922.XA priority patent/CN104782141B/zh
Priority to EP12888901.1A priority patent/EP2925014B1/en
Priority to US13/868,607 priority patent/US8739926B1/en
Publication of WO2014080446A1 publication Critical patent/WO2014080446A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/023Screens for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • H04R1/086Protective screens, e.g. all weather or wind screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0207Elastomeric fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0207Elastomeric fibres
    • B32B2262/0215Thermoplastic elastomer fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a sound permeable membrane and an electronic device including the sound permeable membrane.
  • a sounding unit such as a speaker or a buzzer, or a sound receiving unit such as a microphone is arranged inside the housing of an electronic device having an audio function.
  • a sounding unit such as a speaker or a buzzer, or a sound receiving unit such as a microphone is arranged inside the housing of an electronic device having an audio function.
  • An opening is provided at a corresponding position. Sound is transmitted through this opening.
  • a sound-permeable membrane that allows passage of sound and prevents passage of foreign matter is disposed so as to block the opening. Yes.
  • a plastic porous membrane in which a polytetrafluoroethylene (hereinafter sometimes referred to as “PTFE”) film or an ultrahigh molecular weight polyethylene film is made porous is known (see Patent Document 1).
  • Patent Document 1 proposes a sound-permeable membrane in which a support is bonded to a plastic porous membrane in consideration of the ease of secondary processing of the sound-permeable membrane such as cutting, punching, and adhesion to a case. .
  • the support include nets, nonwoven fabrics, and woven fabrics.
  • Patent Document 1 proposes a sound-permeable membrane in which a support is bonded to a plastic porous membrane and the surface density is in a predetermined range so that the sound-permeable property of the sound-permeable membrane does not deteriorate.
  • Patent Document 2 proposes a waterproof sound-permeable membrane that is a laminate composed of a plastic membrane and a support.
  • the support include porous bodies such as nets, foam rubber, and sponge sheets, nonwoven fabrics, and woven fabrics.
  • An object of the present invention is to provide a sound-permeable membrane that exhibits good acoustic characteristics in a high-frequency region while using a nonwoven fabric as a support. Moreover, it aims at providing the electronic device provided with such a sound-permeable film.
  • the present invention A sound-permeable membrane that allows passage of sound and prevents foreign matter from passing through, A support material; Laminated with the support material, and comprises a resin porous membrane mainly composed of polytetrafluoroethylene, A sound-permeable membrane is provided in which the support material is a nonwoven fabric containing an elastomer.
  • the present invention also provides: An electronic device provided with a sound generator or a sound receiver, Provided is an electronic device in which the sound transmission film is disposed so as to close an opening provided at a position corresponding to the sound generation unit or the sound receiving unit.
  • a sound-permeable membrane using a nonwoven fabric containing an elastomer as a support material can reduce insertion loss with respect to a sound of 3000 Hz as compared with a sound-permeable membrane using another nonwoven fabric as a support material.
  • Sectional drawing which shows one Embodiment of the sound-permeable film of this invention Sectional drawing which shows other embodiment of the sound-permeable film of this invention.
  • the perspective view which shows an example of embodiment of the sound-permeable member of this invention Process chart showing measurement procedure of acoustic characteristics of sound-permeable membrane Sectional drawing explaining arrangement of sound-permeable membrane in measurement of acoustic characteristics
  • the graph which shows the acoustic characteristic of the sound-permeable film which concerns on an Example
  • the graph which shows the acoustic characteristic of the sound-permeable film which concerns on a comparative example
  • the sound-permeable membrane 1 of this embodiment includes a support material 12 and a resin porous membrane 11 containing PTFE as a main component.
  • the “main component” refers to a component that is contained most in mass ratio.
  • the resin porous membrane 11 is laminated on the support material 12.
  • the support material 12 is comprised with the nonwoven fabric containing an elastomer.
  • the sound-permeable membrane 1 has a characteristic of preventing the passage of foreign matters such as water or dust and allowing gas to permeate due to the porous structure of the resin porous membrane 11. Moreover, the sound-permeable membrane 1 allows passage of sound.
  • the sound transmission membrane 1 is disposed in an opening of a housing corresponding to the sound generation unit or the sound reception unit. In addition, it is preferably used for ensuring dust resistance.
  • the resin porous membrane 11 is formed, for example, by extruding and rolling a kneaded product of PTFE fine powder and a molding aid, and removing the forming aid to obtain a sheet body of the molded body. Can be produced by further stretching.
  • the resin porous membrane 11 thus produced has a porous structure in which voids between infinitely formed PTFE fine fibers (fibrils) are pores. The average pore diameter and porosity of the porous structure of the resin porous membrane 11 can be adjusted by changing the stretching conditions of the sheet.
  • the average pore diameter of the resin porous membrane 11 is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, and even more preferably 0.5 ⁇ m from the viewpoint of achieving both waterproofness or dustproofness and sound permeability. It is as follows. Although the lower limit of the average pore diameter of the resin porous membrane 11 is not particularly limited, it is, for example, 0.1 ⁇ m.
  • the “average pore diameter” of the resin porous membrane 11 can be measured in accordance with the provisions of ASTM (American Testing Materials Association) F316-86. For example, a commercially available measuring apparatus capable of automatic measurement in conformity with this provision ( It can be measured using a Perm-Porometer manufactured by Porous® Material.
  • the surface density of the resin porous membrane 11 is preferably 2 to 10 g / m 2 , more preferably 2 to 8 g / m 2 , and further preferably 2 to 5 g / m 2 . is there.
  • the resin porous membrane 11 may be colored. Since the main component of the resin porous membrane 11 is PTFE, the original color of the resin porous membrane 11 is white. Therefore, when the resin porous film 11 is disposed so as to close the opening of the housing, the resin porous film 11 is easily noticeable. Thus, the resin porous film 11 is colored according to the color of the casing, whereby the resin porous film 11 that is not noticeable when placed in the casing can be realized.
  • the resin porous membrane 11 is colored, for example, black.
  • the resin porous film 11 may be subjected to a liquid repellent treatment.
  • a porous film excellent in water repellency or oil repellency can be realized.
  • Such a porous membrane is suitable for uses such as a sound-permeable membrane having waterproofness.
  • the liquid repellent treatment can be realized by a known method.
  • the liquid repellent used for the liquid repellent treatment is not particularly limited, and is typically a material containing a polymer having a perfluoroalkyl group.
  • the support material 12 only needs to exhibit flexibility so as not to hinder the sound transmission mechanism due to vibration of the resin porous membrane 11, and the elastomer of the support material 12 is desirably a thermoplastic elastomer.
  • the thermoplastic elastomer include styrene thermoplastic elastomer (SBC), olefin thermoplastic elastomer (TPO), vinyl chloride thermoplastic elastomer (TPVC), urethane thermoplastic elastomer (TPU), and ester thermoplastic elastomer. (TPEE) or amide-based thermoplastic elastomer (TPAE).
  • the support material 12 may be comprised with the nonwoven fabric which consists of elastomers.
  • the elastomer of the support material 12 may include at least one selected from an ethylene vinyl acetate elastomer, a polyurethane elastomer, and a polyamide elastomer.
  • the support material 12 can be manufactured by the method shown below, for example.
  • An elastomer material heated and melted is applied to a release film in a fibrous form.
  • the release film provides a flat surface for applying the elastomeric material.
  • the release film is not particularly limited, but a resin film such as silicone or polyethylene terephthalate may be used.
  • the EVA resin is applied by spraying the release film at a high temperature (170 ° C. to 200 ° C.) and a high pressure (2 to 5 kg / cm 2 ).
  • the support material 12 can be obtained by peeling the nonwoven fabric from the release film.
  • the sound-permeable membrane 1 can be obtained by laminating the support material 12 and the resin porous membrane 11 obtained as described above using, for example, a heating press.
  • the surface density of the sound-permeable membrane 1 is preferably 5 to 50 g / m 2 , more preferably 5 to 30 g / m 2 , and still more preferably 5 to 15 g / m 2 . .
  • the sound-permeable membrane 1 exhibits acoustic characteristics that the insertion loss with respect to the sound of 3000 Hz is 5 dB or less with respect to the insertion loss. For this reason, although the sound-permeable membrane 1 has a structure in which the porous resin film 11 is laminated on the support material 12 including the nonwoven fabric, it has good acoustic characteristics with low insertion loss in a relatively high frequency region. .
  • the insertion loss is the difference between the sound pressure level when the sound-permeable membrane 1 is present in the path through which sound is transmitted and the sound pressure level when the sound-permeable film 1 is not present in the path through which sound is transmitted.
  • the sound-permeable membrane 1 exhibits acoustic characteristics in which the ratio of the insertion loss of 3000 Hz sound to the loss loss of 1000 Hz sound is 1.0 to 2.0. For this reason, the sound-permeable membrane 1 can show the same level of insertion loss for both the 1000 Hz sound and the 3000 Hz sound.
  • the ratio of the insertion loss of 3000 Hz sound to the loss loss of 1000 Hz sound indicated by the sound-permeable membrane 1 is preferably 1.0 to 1.5, and more preferably 1.0 to 1.2.
  • the sound-permeable membrane 1 exhibits acoustic characteristics such that the difference between the maximum value and the minimum value of insertion loss for sound of 100 Hz to 4000 Hz is 5 dB or less. For this reason, the sound-permeable membrane 1 can exhibit acoustic characteristics with little variation in insertion loss with respect to sound whose frequency region is 100 Hz to 4000 Hz.
  • the resin porous membrane 11 of the sound-permeable membrane 1 may have a laminated structure in which, for example, two resin porous membranes are laminated.
  • the resin porous membrane 11 has a laminated structure of the first resin porous membrane 11A and the second resin porous membrane 11B.
  • each of the first resin porous membrane 11A and the second resin porous membrane 11B has pores between voids of innumerably formed PTFE fibers (fibrils). It has a porous structure.
  • 11A of 1st resin porous membranes or the 2nd resin porous membrane 11B may be color-processed by arbitrary colors, and the color process does not need to be performed.
  • the first resin porous membrane 11A forming one main surface of the sound-permeable membrane 1 may be colored black, for example. In this case, if the sound-permeable membrane 1 is disposed in the opening of the housing of the electronic device so that the first resin porous membrane 11A faces the outside of the housing, the sound-permeable membrane 1 is hardly noticeable.
  • the sound-permeable membrane 1 may have a laminated structure in which three or more resin porous membranes are laminated. In this case, the resin porous membrane forming one main surface of the sound-permeable membrane 1 may be colored according to the color (for example, black) of the casing. Further, the first resin porous film 11A or the second resin porous film 11B may be subjected to a liquid repellent treatment.
  • the average pore diameter of each of the first resin porous film 11 ⁇ / b> A and the second resin porous film 11 ⁇ / b> B may be in the range described above as the average pore diameter of the resin porous film 11.
  • the average pore diameters of the first resin porous membrane 11A and the second resin porous membrane 11B may be the same or different.
  • the surface density of the resin porous membrane 11 formed by laminating a plurality of resin porous membranes is preferably 2 to 10 g / cm 2 , more preferably 2 to 8 g / cm 2 , more preferably 2 to 5 g / cm 2 .
  • the resin porous membrane 11 may have a single layer structure as shown in FIG. According to this aspect, the surface density of the sound-permeable membrane 1 can be kept low. For this reason, since sound transmission loss becomes small, the sound permeability of the sound-permeable membrane 1 becomes better.
  • the sound-permeable member 3 may be configured by attaching a ring-shaped reinforcing member 14 to the periphery of the sound-permeable film 1.
  • the sound-permeable membrane 1 can be reinforced and the sound-permeable member 3 can be easily handled.
  • the reinforcing member 14 can be attached to the housing, the work of attaching the sound-permeable membrane 1 to the housing is improved.
  • the shape of the reinforcing member 14 is not particularly limited as long as the sound-permeable membrane 1 can be supported.
  • the material of the reinforcing member 14 is not particularly limited, and resin, metal, or a composite material thereof can be used.
  • the joining method of the sound-permeable membrane 1 and the reinforcing member 14 is not particularly limited, and for example, heat welding, ultrasonic welding, adhesion using an adhesive, and adhesion using a double-sided tape can be employed.
  • the electronic device includes a sound generation unit or a sound reception unit.
  • a speaker or a buzzer can be used as the sound generation unit.
  • a microphone etc. can be mentioned as a sound-receiving part.
  • the electronic device has a housing in which an opening is formed so as to correspond to the sound generation unit or the sound receiving unit.
  • the above-described sound-transmitting film is arranged so as to close the opening corresponding to the sound generation unit or the sound receiving unit, whereby the electronic apparatus of the present embodiment is configured.
  • Air permeability The air permeability of the resin porous membrane or the sound-permeable membrane was evaluated based on the method B (Gurley method) of the air permeability measurement method defined in JIS (Japanese Industrial Standard) L 1096.
  • the water pressure resistance of the porous resin membrane or the sound-permeable membrane was measured using a water resistance tester (high water pressure method) described in JIS L 1092: 2009. However, since the resin porous membrane is remarkably deformed in the area of the test piece shown in this regulation, the resin porous membrane is provided by providing a stainless mesh (opening diameter: 2 mm) on the opposite side of the pressure surface of the resin porous membrane. The water pressure resistance of the porous resin membrane was measured in a state where deformation of the resin was suppressed to some extent.
  • ⁇ Deformation amount at 50 kPa water pressure resistance> Using a water resistance tester (high water pressure method) described in JIS L 1092: 2009, a sound-permeable membrane is attached so as to block the through-hole of the plate material having a through-hole of 2.5 mm in diameter. The water pressure was applied to the sound-permeable membrane. After this water pressure reached 50 kPa, the sample was allowed to stand for 10 minutes, and before and after pressurization using a CCD laser displacement meter (LK-G87, manufactured by Keyence Corporation) from the opposite side to the surface of the sound-transmitting membrane subjected to the water pressure. The deformation amount of the sound-permeable membrane was determined.
  • LK-G87 CCD laser displacement meter
  • a simulated case 20 (outer shape 60 mm ⁇ 50 mm ⁇ 28 mm) made of polystyrene simulating the case of a mobile phone was prepared.
  • This simulated housing 20 is provided with one speaker mounting hole 22 having a diameter of 2 mm and one conduction hole 24 for the speaker cable 44, and no other openings were formed.
  • a speaker 40 (SCG-16A, manufactured by Star Seimitsu Co., Ltd.) is attached to a urethane sponge filler 30 in which a sound passage hole 32 having a diameter of 5 mm is formed. Enclosed inside.
  • the speaker cable 42 was led out of the simulated housing 20 from the conduction hole 24. Thereafter, the conduction hole 24 was closed with putty.
  • the sound-permeable membrane 1 according to each example or comparative example, a PET film 5 having a thickness of 0.1 mm, a PET support material double-sided tape 6 (No. 5603, manufactured by Nitto Denko Corporation, thickness) : 0.03 mm) and a polyethylene foam support double-sided tape 7 (No. 57120B manufactured by Nitto Denko Corporation, thickness: 0.20 mm), and an evaluation sample punched into an outer diameter of 2.5 mm and an outer diameter of 5.8 mm 10 was produced. Then, this evaluation sample 10 was attached to the outside of the speaker mounting hole 22 of the simulated housing 20.
  • a PET film 5 having a thickness of 0.1 mm
  • a PET support material double-sided tape 6 No. 5603, manufactured by Nitto Denko Corporation, thickness
  • a polyethylene foam support double-sided tape 7 No. 57120B manufactured by Nitto Denko Corporation, thickness: 0.20 mm
  • the sound-permeable membrane 1 covers the entire speaker mounting hole 22 and does not cause a gap between the double-sided tape 7 and the simulated housing 20 and between the sound-permeable membrane 1 and the double-sided tape 7. Was affixed to the simulated housing 20.
  • a microphone 50 (Knowles Acoustic, Spm0405Hd4H-W8) is installed above the sound-permeable membrane 1 so as to cover the sound-permeable membrane 1, and the microphone 50 is connected to an acoustic evaluation device (B & K, Multi-analyzer System 3560). -B-030). The distance between the speaker 40 and the microphone 50 was 21 mm.
  • SSR analysis test signal: 20 Hz to 10 kHz, sweep
  • the sound pressure level of the blank measured with the through-hole having a diameter of 2.5 mm formed by breaking the sound-permeable membrane 1 was ⁇ 21 dB at 1000 Hz.
  • the insertion loss is automatically obtained from the test signal input to the speaker 40 from the acoustic evaluation device and the signal received by the microphone 50, and the sound-permeable membrane 1 is pasted from the blank sound pressure level. Obtained by subtracting the sound pressure level measured in. It can be determined that the smaller the insertion loss is, the more the volume output from the speaker 40 is maintained.
  • Example 1 100 parts by weight of PTFE fine powder (Daikin Kogyo Co., Ltd., F-104) and 20 parts by weight of molding aid n-dodecane (Japan Energy Co., Ltd.) are uniformly mixed, and the resulting mixture is compressed by a cylinder. After that, ram extrusion was performed to obtain a sheet-like mixture. Next, the obtained sheet-like mixture was rolled to a thickness of 0.16 mm through a pair of metal rolls, and the molding aid was dried and removed by heating at 150 ° C. to obtain a PTFE sheet compact.
  • PTFE fine powder Daikin Kogyo Co., Ltd., F-104
  • molding aid n-dodecane Japan Energy Co., Ltd.
  • the obtained sheet compact was stretched in the longitudinal direction (rolling direction) at a stretching temperature of 260 ° C. and a stretching ratio of 10 times to obtain a PTFE porous membrane.
  • a black dye manufactured by Orient Chemical Industry Co., Ltd., SP BLACK 91-L, ethanol dilution solution 25% by weight
  • 80 parts by weight of ethanol (purity 95%) as a solvent for the dye
  • these were heated to 100 ° C. to dry-remove the solvent, and a black PTFE porous membrane was obtained.
  • the oil repellent treatment liquid was prepared as follows. 100 g of a compound having a linear fluoroalkyl group represented by the following (formula 1), 0.1 g of azobisisobutyronitrile as a polymerization initiator, and 300 g of a solvent (manufactured by Shin-Etsu Chemical Co., Ltd., FS thinner) are introduced into a nitrogen introduction tube.
  • the PTFE porous membrane subjected to the liquid repellent treatment is stretched in the width direction at a stretching temperature of 150 ° C. and a stretching ratio of 10 times, and the whole is further fired at 360 ° C. which is a temperature exceeding the melting point of PTFE (327 ° C.).
  • a resin porous membrane (PTFE porous membrane) according to Example 1 was obtained.
  • the obtained porous resin membrane had an average pore size of 0.5 ⁇ m, an areal density of 5 g / m 2 , an air permeability of 1.0 sec / 100 mL, and a water pressure resistance of 80 kPa.
  • the obtained porous resin membrane and a nonwoven fabric made of ethylene vinyl acetate (EVA) resin (ethylene vinyl acetate elastomer) (fiber diameter 10-15 ⁇ m, surface density 5 g / m 2 ) are laminated by heating press.
  • EVA ethylene vinyl acetate
  • the lamination process was implemented by pressurizing for 2 seconds on the conditions of heating temperature 200 degreeC and 0.5 Mpa.
  • the nonwoven fabric made of EVA resin is obtained by applying EVA resin heated and melted at 200 ° C. onto a PET release film having a thickness of 0.075 mm at a pressure of 5 kg / cm 2. It was.
  • the sound-permeable membrane thus obtained exhibited characteristics such as areal density of 10 g / cm 2 , air permeability of 2.0 seconds / 100 mL, water pressure resistance of 110 kPa, and liquid repellency “Yes”.
  • Example 2 A sound-permeable membrane according to Example 2 in the same manner as in Example 1 except that a nonwoven fabric made of EVA resin (ethylene vinyl acetate elastomer) having an areal density of 10 g / cm 2 and a fiber diameter of 10 to 15 ⁇ m was used. Got.
  • EVA resin ethylene vinyl acetate elastomer
  • Example 3 A sound-permeable membrane according to Example 3 in the same manner as in Example 1 except that a nonwoven fabric made of EVA resin (ethylene vinyl acetate elastomer) having an areal density of 15 g / cm 2 and a fiber diameter of 10 to 15 ⁇ m was used. Got.
  • EVA resin ethylene vinyl acetate elastomer
  • Example 4 Except for using a nonwoven fabric made of polyurethane resin (polyurethane elastomer) with a surface density of 25 g / cm 2 and a fiber diameter of 25 to 30 ⁇ m (KB Selen Co., Espancione FF), the same as in Example 1 Thus, a sound-permeable membrane according to Example 4 was obtained.
  • polyurethane resin polyurethane elastomer
  • KB Selen Co., Espancione FF KB Selen Co., Espancione FF
  • Example 5 The same procedure as in Example 1 was performed except that a non-woven fabric made of polyamide-based elastomer resin (Idemitsu Unitech Co., Ltd., Straflex P PN5065R) having an areal density of 40 g / cm 2 and a fiber diameter of 18 to 25 ⁇ m was used. A sound-permeable membrane according to Example 5 was obtained.
  • polyamide-based elastomer resin Idemitsu Unitech Co., Ltd., Straflex P PN5065R
  • a sound-permeable membrane according to Example 5 was obtained.
  • non-woven fabric manufactured by Hirose Paper Co., Ltd., HOP6
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • PE polyethylene
  • the laminating temperature was a temperature suitable for the material of each nonwoven fabric, and the heating time and the pressurizing pressure were the same as in Example 1.
  • thermosetting silicone resin (Toray Dow Corning) diluted with toluene was cast on a silicone release treatment separator (MRS50, manufactured by Mitsubishi Plastics), and a thin film was formed using an applicator. .
  • This silicone resin thin film was laminated with a resin porous membrane produced in the same manner as in Example 1, and dried by heating to obtain a laminate of a silicone resin sheet and a resin porous membrane (PTFE porous membrane). In this way, a sound-permeable membrane according to Comparative Example 3 was obtained.
  • Table 1 shows the characteristics of the sound-permeable membrane according to each example and each comparative example.
  • FIG. 6 is a graph showing the relationship between the sound frequency and the insertion loss for Examples 1 to 5
  • FIG. 7 is a graph showing the relationship between the sound frequency and the insertion loss for Comparative Examples 1 to 3.
  • the insertion loss of the 3000 Hz sound of the sound-permeable membranes according to Examples 1 to 5 was all 5 dB or less. Further, the ratio of the loss loss of 3000 Hz sound to the insertion loss of 1000 Hz sound of the sound-permeable membranes according to Examples 1 to 5 was 1.00 to 1.32. In other words, the sound-permeable membranes according to Examples 1 to 5 showed the same level of insertion loss for both the 1000 Hz sound and the 3000 Hz sound. Further, in the sound-permeable membranes according to Examples 1 to 5, the difference between the maximum value and the minimum value of the insertion loss with respect to the sound of 100 Hz to 4000 Hz was 1.92 to 4.11 dB. For this reason, it was suggested that the sound-permeable membranes according to Examples 1 to 5 exhibit acoustic characteristics with little variation in insertion loss with respect to sounds whose frequency range is 100 Hz to 4000 Hz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 本発明は、音の通過を許容しつつ、異物が通過することを阻止する通音膜(1)であって、支持材(12)と、支持材(12)に積層され、ポリテトラフルオロエチレンを主成分とする樹脂多孔質膜(11)と、を備え、支持材(12)がエラストマーを含む不織布である、通音膜(1)を提供する。支持材(12)がエラストマーを含む不織布であることによって、通音膜(1)の3000Hzの音に対する挿入損失を低減できる。

Description

通音膜、及び通音膜を備えた電子機器
 本発明は、通音膜、及びその通音膜を備えた電子機器に関する。
 近年、携帯電話、ノートパソコン、電子手帳、デジタルカメラ又はゲーム機器などの電子機器が音声機能を備えることが一般的である。音声機能を備えた電子機器の筐体の内部には、スピーカー、ブザーなどの発音部、又はマイクロフォンなどの受音部などが配置されており、電子機器の筐体の発音部又は受音部に対応する位置に開口が設けられている。この開口を通して音声が伝わる。また、電子機器の筐体の内部に水滴等の異物が進入することを阻止するため、音の通過を許容しつつ異物の通過を阻止する通音膜が、その開口を塞ぐように配置されている。
 通音膜としては、ポリテトラフルオロエチレン(以下、「PTFE」ということがある)フィルム又は超高分子ポリエチレンフィルムを多孔化したプラスチック多孔質膜が知られている(特許文献1参照)。
 特許文献1には、切断、打ち抜き、ケースへの接着等の通音膜の二次加工の容易性を考慮して、プラスチック多孔質膜に支持体が接着された通音膜が提案されている。支持体としては、ネット、不織布、及び織布が例示されている。また、特許文献1には、通音膜の通音性が低下しないように、プラスチック多孔質膜に支持体が接着され、面密度が所定の範囲である通音膜が提案されている。
 特許文献2には、プラスチック膜と支持体とからなる積層物である防水通音膜が提案されている。支持体としては、ネット、フォームラバー、スポンジシート等の多孔体、不織布、及び織布が例示されている。
特開2003-53872号公報 特開2004-83811号公報
 上記のいずれの特許文献においても、支持体として不織布を用いた通音膜の音響特性に関する具体的な検討はなされていない。特に、高周波領域(例えば、3000Hz)における音響特性については何ら検討されていない。
 本発明は、支持体として不織布を用いつつ、高周波領域において良好な音響特性を示す通音膜を提供することを目的とする。また、そのような通音膜を備えた電子機器を提供することを目的とする。
 本発明は、
 音の通過を許容しつつ、異物が通過することを阻止する通音膜であって、
 支持材と、
 前記支持材に積層され、ポリテトラフルオロエチレンを主成分する樹脂多孔質膜と、を備え、
 前記支持材がエラストマーを含む不織布である、通音膜を提供する。
 また、本発明は、
 発音部又は受音部を備えた電子機器であって、
 前記発音部又は前記受音部に対応する位置に設けられた開口を塞ぐように上記の通音膜が配置されている、電子機器を提供する。
 エラストマーを含む不織布を支持材として用いた通音膜は、その他の不織布を支持材として用いた通音膜と比較して、3000Hzの音に対する挿入損失を低減できる。
本発明の通音膜の一の実施形態を示す断面図 本発明の通音膜の他の実施形態を示す断面図 本発明の通音部材の実施形態の一例を示す斜視図 通音膜の音響特性の測定手順を示す工程図 音響特性の測定における通音膜の配置を説明する断面図 実施例に係る通音膜の音響特性を示すグラフ 比較例に係る通音膜の音響特性を示すグラフ
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
 図1に示すように、本実施形態の通音膜1は、支持材12とPTFEを主成分とする樹脂多孔質膜11とを備えている。本明細書で「主成分」とは、質量比で最も多く含まれている成分をいう。樹脂多孔質膜11は、支持材12に積層されている。支持材12は、エラストマーを含む不織布で構成されている。通音膜1は、樹脂多孔質膜11が有する多孔質構造によって、水又は粉塵等の異物が通過することを阻止し、気体を透過させる特性を有する。また、通音膜1は、音の通過を許容する。このため、通音膜1は、例えば発音部又は受音部を備えた電子機器において、その発音部又は受音部に対応する筐体の開口に配置され、その開口における通音性、防水性及び防塵性を確保するために好適に用いられる。
 樹脂多孔質膜11は、例えば、PTFEファインパウダーと成形助剤との混練物を押出し成形及び圧延によりシート状にし、形成助剤を除去して成形体のシート体を得た後、このシート体をさらに延伸することによって、作製することができる。このようにして作製した樹脂多孔質膜11は、無数に形成されたPTFEの微細な繊維(フィブリル)同士の間の空隙を細孔とする多孔質構造を有する。樹脂多孔質膜11の多孔質構造の平均孔径及び空孔率は、シートの延伸条件を変更することによって、調整することができる。
 樹脂多孔質膜11の平均孔径は、防水性又は防塵性と通音性との両立を図る観点から、好ましくは1μm以下であり、より好ましくは0.7μm以下であり、さらに好ましくは0.5μm以下である。樹脂多孔質膜11の平均孔径の下限値は特に限定されないが、例えば0.1μmである。ここで、樹脂多孔質膜11の「平均孔径」は、ASTM(米国試験材料協会) F316-86の規定に準拠して測定でき、例えばこの規定に準拠した自動測定が可能な市販の測定装置(Porous Material社製のPerm-Porometer等)を用いて測定できる。
 通音性の観点から、樹脂多孔質膜11の面密度は、好ましくは2~10g/mであり、より好ましくは2~8g/mであり、さらに好ましくは2~5g/mである。
 樹脂多孔質膜11は、着色処理が施されていてもよい。樹脂多孔質膜11の主成分はPTFEであるので、樹脂多孔質膜11の本来の色は白色である。従って、樹脂多孔質膜11が筐体の開口を塞ぐように配置された場合、樹脂多孔質膜11が目立ちやすい。そこで、その筐体の色に応じて樹脂多孔質膜11に着色処理が施されていることにより、筐体に配置された場合に目立ちにくい樹脂多孔質膜11を実現することができる。樹脂多孔質膜11は、例えば黒色に着色されている。
 樹脂多孔質膜11は、撥液処理されていてもよい。この場合、撥水性能又は撥油性能が優れた多孔質膜を実現できる。このような多孔質膜は、防水性を有する通音膜等の用途に好適である。撥液処理は、公知の方法によって実現することができる。撥液処理に用いる撥液剤は特に限定されず、典型的にはパーフルオロアルキル基を有する高分子を含む材料である。
 支持材12は、樹脂多孔質膜11の振動による通音メカニズムを妨げない程度に柔軟性を示せばよく、支持材12のエラストマーは、熱可塑性エラストマーであることが望ましい。この熱可塑性エラストマーは、例えば、スチレン系熱可塑性エラストマー(SBC)、オレフィン系熱可塑性エラストマー(TPO)、塩化ビニル系熱可塑性エラストマー(TPVC)、ウレタン系熱可塑性エラストマー(TPU)、エステル系熱可塑性エラストマー(TPEE)、又はアミド系熱可塑性エラストマー(TPAE)などである。具体的には、スチレン・ブタジエン・スチレンブロックコポリマー(SBS)、スチレン・イソプレン・スチレンブロックコポリマー(SIS)、エチレン酢酸ビニルエラストマー(EVA)、ポリアミドエラストマー、又はポリウレタンエラストマー等を挙げることができる。支持材12は、エラストマーからなる不織布で構成されていてもよい。支持材12のエラストマーは、エチレン酢酸ビニルエラストマー、ポリウレタンエラストマー及びポリアミドエラストマーから選ばれる少なくとも1つを含むとよい。
 支持材12は例えば以下に示す方法で作製できる。離型フィルム上に加熱溶融したエラストマー材料を繊維状に塗布して形成する。離型フィルムは、エラストマー材料を塗布するための平坦な表面を提供する。離型フィルムは、特に限定されないが、シリコーン、ポリエチレンテレフタレート等の樹脂フィルムを用いるとよい。例えば、EVA樹脂は、高温(170℃~200℃)、高圧(2~5kg/cm)で離型フィルムに吹き付けることによって塗布される。このようにエラストマー材料を塗布すれば、離型フィルム上に厚さが均一な不織布を容易に形成することができる。この不織布を離型フィルムから剥離することによって、支持材12を得ることができる。
 通音膜1は、上記の様にして得られた支持材12及び樹脂多孔質膜11を例えば加熱プレスを用いて積層することによって、得ることができる。通音性の観点から、通音膜1の面密度は、好ましくは5~50g/mであり、より好ましくは5~30g/mであり、さらに好ましくは5~15g/mである。
 通音膜1は、挿入損失に関し、3000Hzの音に対する挿入損失が5dB以下という音響特性を示す。このため、通音膜1は、不織布を含む支持材12に樹脂多孔質膜11を積層している構造であるにもかかわらず、比較的高い周波数領域において挿入損失の低い良好な音響特性を示す。ここで、挿入損失は、音が伝わる経路に通音膜1が存在する場合の音圧レベルと音が伝わる経路に通音膜1が存在しない場合の音圧レベルとの差分である。また、通音膜1は、1000Hzの音の損入損失に対する3000Hzの音の挿入損失の比が1.0~2.0である音響特性を示す。このため、通音膜1は、1000Hzの音及び3000Hzの音の双方に対して、同程度の挿入損失を示すことができる。通音膜1が示す1000Hzの音の損入損失に対する3000Hzの音の挿入損失の比は、好ましくは1.0~1.5であり、より好ましくは1.0~1.2である。さらに、通音膜1は、100Hz~4000Hzの音に対する挿入損失の最大値と最小値の差が5dB以下という音響特性を示す。このため、通音膜1は、周波数領域が100Hz~4000Hzである音に対して、挿入損失のばらつきが少ない音響特性を示すことができる。
 図2に示すように、通音膜1の樹脂多孔質膜11は、例えば2つの樹脂多孔質膜が積層された積層構造を有していてもよい。樹脂多孔質膜11は、第1樹脂多孔質膜11Aと第2樹脂多孔質膜11Bとの積層構造を有している。また、第1樹脂多孔質膜11A及び第2樹脂多孔質膜11Bのそれぞれは、上記で説明したとおり、無数に形成されたPTFEの微細な繊維(フィブリル)同士の間の空隙を細孔とする多孔質構造を有する。第1樹脂多孔質膜11A又は第2樹脂多孔質膜11Bは、任意の色に着色処理されていてもよく、着色処理が施されていなくてもよい。
 通音膜1の一方の主面を形成している第1樹脂多孔質膜11Aは、例えば黒色に着色されているとよい。この場合、第1樹脂多孔質膜11Aが筐体の外部に面するように通音膜1を電子機器の筐体の開口に配置すれば、通音膜1が目立ちにくい。通音膜1は、3層以上の樹脂多孔質膜が積層された積層構造を有していてもよい。この場合に、通音膜1の一方の主面を形成している樹脂多孔質膜が筐体の色(例えば黒色)に応じて着色されているとよい。また、第1樹脂多孔質膜11A又は第2樹脂多孔質膜11Bは、撥液処理が施されていてもよい。
 第1樹脂多孔質膜11A及び第2樹脂多孔質膜11Bのそれぞれの平均孔径は、樹脂多孔質膜11の平均孔径として上述した範囲であるとよい。また、第1樹脂多孔質膜11A及び第2樹脂多孔質膜11Bのそれぞれの平均孔径は、同一であってもよいし、異なっていてもよい。また、通音性を確保する観点から、複数の樹脂多孔質膜が積層されることによって構成された樹脂多孔質膜11の面密度は、好ましくは2~10g/cmであり、より好ましくは2~8g/cmであり、さらに好ましくは2~5g/cmである。
 樹脂多孔質膜11は、図1に示すように単層構造であってもよい。この態様によれば、通音膜1の面密度を低く抑えることができる。このため、音響透過損失が小さくなるので、通音膜1の通音性がより良好となる。
 図3に示すように、通音膜1の周縁部にリング状の補強部材14を取り付けることによって、通音部材3を構成してもよい。この態様によれば、通音膜1を補強することができ、通音部材3の取扱いが容易になる。また、補強部材14が筐体への取付けしろとなるので、通音膜1の筐体への取付け作業が向上する。補強部材14の形状は、通音膜1を支持できる限り特に限定されない。補強部材14の材質は特に限定されず、樹脂、金属又はこれらの複合材料を用いることができる。通音膜1と補強部材14との接合方法は特に限定されず、例えば、加熱溶着、超音波溶着、接着剤による接着及び両面テープによる接着などを採用することができる。
 本実施形態に係る電子機器は、発音部又は受音部を備えている。発音部としてスピーカー又はブザーなどを挙げることができる。また、受音部としてはマイクロフォンなどを挙げることができる。電子機器は、この発音部又は受音部に対応するように開口が形成された筐体を有する。この発音部又は受音部に対応する開口を塞ぐように、上記の通音膜が配置されることによって、本実施形態の電子機器が構成されている。
 実施例により、本発明を詳細に説明する。ただし、以下の実施例は、本発明の一例を示すものであり、本発明は以下の実施例に限定されない。まず、実施例及び比較例に係る樹脂多孔質膜又は通音膜の評価方法を説明する。
 <通気度>
 樹脂多孔質膜又は通音膜の通気度をJIS(日本工業規格) L 1096に規定されている通気性測定法のB法(ガーレー法)に準拠して評価した。
 <耐水圧>
 樹脂多孔質膜又は通音膜の耐水圧を、JIS L 1092:2009に記載されている耐水度試験機(高水圧法)を用いて測定した。ただし、この規定に示された試験片の面積では樹脂多孔質膜が著しく変形するので、ステンレスメッシュ(開口径:2mm)を樹脂多孔質膜の加圧面の反対側に設けることによって樹脂多孔質膜の変形をある程度抑制した状態で、樹脂多孔質膜の耐水圧を測定した。
 <50kPa耐水圧時の変形量>
 径が2.5mmの貫通孔が形成された板材のその貫通孔を塞ぐように通音膜を取り付けて、JIS L 1092:2009に記載されている耐水度試験機(高水圧法)を用いて、通音膜に対して水圧をかけた。この水圧が50kPaに達してから10分間静置した後、通音膜の水圧を受けた面に対して反対側からCCDレーザー変位計(キーエンス社製、LK-G87)を用いて加圧前後での通音膜の変形量を求めた。
 <撥液性>
 コピー用紙(普通紙)及び樹脂多孔質膜を、コピー用紙が下になるように積層し、スポイトを用いて樹脂多孔質膜に灯油を一滴垂らした後1分間放置した。その後、樹脂多孔質膜を取り除いてコピー用紙の状態を確認し、コピー用紙が灯油で濡れている場合を撥液性なし、コピー用紙が灯油で濡れていない場合を撥液性ありと評価した。
 <音響特性>
 作製した通音膜の音響特性を以下のように評価した。最初に、図4に示すように、携帯電話の筐体を模したポリスチレン製の模擬筐体20(外形60mm×50mm×28mm)を準備した。この模擬筐体20には、径が2mmであるスピーカー取付穴22及びスピーカーケーブル44の導通孔24が1つずつ設けており、これ以外に開口は形成しなかった。次に、図4に示すように、径が5mmの通音孔32が形成されたウレタンスポンジ製の充填材30にスピーカー40(スター精密社製、SCG-16A)を取り付け、模擬筐体20の内部に封入した。スピーカーケーブル42を導通孔24から模擬筐体20の外部へ導き出した。その後、導通孔24をパテで塞いだ。
 次に、図5に示すように、各実施例又は比較例に係る通音膜1、厚みが0.1mmであるPETフィルム5、PET支持材両面テープ6(日東電工社製No.5603、厚み:0.03mm)及びポリエチレン系発泡体支持材両面テープ7(日東電工社製No.57120B、厚み:0.20mm)を用いて、内径2.5mm、外形5.8mmに打ち抜き加工した評価用サンプル10を作製した。そして、この評価用サンプル10を模擬筐体20のスピーカー取付穴22の外側に貼り付けた。通音膜1がスピーカー取付穴22の全体を覆うとともに、両面テープ7と模擬筐体20との間及び通音膜1と両面テープ7との間に隙間が生じないように、通音膜1を模擬筐体20に貼り付けた。
 次に、通音膜1を覆うように通音膜1の上方にマイクロフォン50(Knowles Acoustic社製、Spm0405Hd4H-W8)を設置し、マイクロフォン50を音響評価装置(B&K社製、Multi-analyzer System 3560-B-030)に接続した。スピーカー40とマイクロフォン50との距離は21mmであった。次に、評価方式として、SSR分析(試験信号:20Hz~10kHz、sweep)を選択して実行し、通音膜1の音響特性(挿入損失)を評価した。通音膜1を破ることによって径が2.5mmである貫通孔を形成した状態で測定したブランクの音圧レベルは、1000Hzにおいて‐21dBであった。挿入損失は、音響評価装置からスピーカー40に入力された試験信号と、マイクロフォン50で受信された信号とから自動的に求められ、上記のブランクの音圧レベルから通音膜1を貼り付けた状態で測定された音圧レベルを引くことによって求めた。なお、挿入損失が小さいほど、スピーカー40から出力された音量が維持されていると判断できる。
 <実施例1>
 PTFEファインパウダー(ダイキン工業社製、F-104)100重量部と、成形助剤であるn-ドデカン(ジャパンエナジー社製)20重量部とを均一に混合し、得られた混合物をシリンダーによって圧縮した後にラム押出してシート状の混合物とした。次に、得られたシート状の混合物を一対の金属ロールを通して厚さ0.16mmに圧延し、さらに150℃の加熱によって成形助剤を乾燥除去してPTFEのシート成形体を得た。
 次に、得られたシート成形体を、その長手方向(圧延方向)に延伸温度260℃、延伸倍率10倍で延伸し、PTFE多孔質膜を得た。このPTFE多孔質膜に、黒色染料(オリエント化学工業社製、SP BLACK 91-L、エタノール希釈溶液25重量%)20重量部と、染料の溶剤であるエタノール(純度95%)80重量部とを混合して得た染色液に数秒間浸漬した後、これらを100℃に加熱して溶剤を乾燥除去して、黒色に着色されたPTFE多孔質膜を得た。
 次に、上記のように作製したPTFE多孔質膜を、撥液処理液に数秒間浸漬した後、100℃で加熱して溶媒を乾燥除去することにより、撥液処理されたPTFE多孔質膜を得た。撥油処理液は、以下のようにして調製した。下記の(式1)で示す直鎖状フルオロアルキル基を有する化合物100g、重合開始剤であるアゾビスイソブチロニトリル0.1g、及び溶媒(信越化学社製、FSシンナー)300gを窒素導入管、温度計及び攪拌機を装着したフラスコの中に投入し、窒素ガスを導入して70℃で撹拌しながら16時間付加重合を行い、フッ素含有重合体80gを得た。このフッ素含有重合体の数平均分子量は、100000であった。このフッ素含有重合体の濃度が3.0質量%となるように、希釈剤(信越化学社製、FSシンナー)で希釈して撥液処理液を調製した。
CH=CHCOOCHCH13  (式1)
 次に、撥液処理されたPTFE多孔質膜を延伸温度150℃、延伸倍率10倍で幅方向に延伸し、さらに全体をPTFEの融点(327℃)を超える温度である360℃で焼成して、実施例1に係る樹脂多孔質膜(PTFE多孔質膜)を得た。得られた樹脂多孔質膜の平均孔径は0.5μm、面密度は5g/m、通気度は1.0秒/100mL、耐水圧は80kPaであった。
 次に、得られた樹脂多孔質膜と、エチレン酢酸ビニル(EVA)樹脂(エチレン酢酸ビニルエラストマー)製の不織布(繊維径10~15μm、面密度5g/m)とを加熱プレスによるラミネート加工を行うことによって、実施例1に係る通音膜を得た。ここで、ラミネート加工は、加熱温度200℃、かつ、0.5MPaの条件で2秒間加圧することによって実施した。また、EVA樹脂製の不織布は、厚みが0.075mmであるPET製の離型フィルム上に200℃で加熱溶融したEVA樹脂を繊維状に5kg/cmの圧力で塗布することによって、得られた。この様にして得られた通音膜は、面密度10g/cm、通気度2.0秒/100mL、耐水圧110kPa、撥液性「あり」という特性を示した。
 <実施例2>
 面密度が10g/cmであり、繊維径が10~15μmであるEVA樹脂(エチレン酢酸ビニルエラストマー)製の不織布を用いた以外は、実施例1と同様にして実施例2に係る通音膜を得た。
 <実施例3>
 面密度が15g/cmであり、繊維径が10~15μmであるEVA樹脂(エチレン酢酸ビニルエラストマー)製の不織布を用いた以外は、実施例1と同様にして実施例3に係る通音膜を得た。
 <実施例4>
 面密度が25g/cmであり、繊維径が25~30μmであるポリウレタン樹脂(ポリウレタンエラストマー)製の不織布(KBセーレン社製、エスパンシオーネFF)を用いた以外は、実施例1と同様にして実施例4に係る通音膜を得た。
 <実施例5>
 面密度が40g/cmであり、繊維径が18~25μmであるポリアミド系エラストマー樹脂製の不織布(出光ユニテック社製、ストラフレックスP PN5065R)を用いた以外は、実施例1と同様にして実施例5に係る通音膜を得た。
 <比較例1>
 面密度が6g/cmであり、繊維径が20~22μmである、ポリプロピレン(PP)とポリエチレン(PE)の芯鞘繊維の不織布(廣瀬製紙社製、HOP6)を用いた以外は、実施例1と同様にして比較例1に係る通音膜を得た。
 <比較例2>
 面密度が30g/cmであり、繊維径が20~25μmである、ポリエチレンテレフタレート(PET)とポリエチレン(PE)の芯鞘繊維の不織布(ユニチカ社製、エルベスT0303WDO)を用いた以外は、実施例1と同様にして比較例2に係る通音膜を得た。
 実施例2~5、比較例1、2において、ラミネート加工の温度は、それぞれの不織布の材料に適合した温度を採用し、加熱時間及び加圧圧力は実施例1と同様にして行った。
 <比較例3>
 2液加熱硬化シリコーン樹脂(東レ・ダウコーニング社製)をトルエンで希釈したものを、シリコーン離型処理セパレータ(三菱樹脂社製、MRS50)上に流延し、アプリケータを用いて薄膜を形成した。このシリコーン樹脂の薄膜を実施例1と同様に作製した樹脂多孔質膜と積層し、加熱乾燥させてシリコーン樹脂のシートと樹脂多孔質膜(PTFE多孔質膜)との積層体を得た。このようにして、比較例3に係る通音膜を得た。
 表1に、各実施例及び各比較例に係る通音膜の特性を示す。また、実施例1~5に関する音の周波数と挿入損失との関係を示すグラフを図6に示し、比較例1~3に関する音の周波数と挿入損失との関係を示すグラフを図7に示す。
 表1に示す通り、実施例1~5に係る通音膜の3000Hzの音の挿入損失はいずれも5dB以下であった。また、実施例1~5に係る通音膜の1000Hzの音の挿入損失に対する3000Hzの音の損入損失の比は、1.00~1.32であった。換言すると、実施例1~5に係る通音膜は、1000Hzの音及び3000Hzの音の双方に対して、同程度の挿入損失を示した。さらに、実施例1~5に係る通音膜は、100Hz~4000Hzの音に対する挿入損失の最大値と最小値の差が1.92~4.11dBであった。このため、実施例1~5に係る通音膜は、周波数領域が100Hz~4000Hzである音に対して、挿入損失のばらつきが少ない音響特性を示すことが示唆された。
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  音の通過を許容しつつ、異物が通過することを阻止する通音膜であって、
     支持材と、
     前記支持材に積層され、ポリテトラフルオロエチレンを主成分とする樹脂多孔質膜と、を備え、
     前記支持材がエラストマーを含む不織布である、通音膜。
  2.  3000Hzの音に対する挿入損失が5dB以下である、請求項1に記載の通音膜。
  3.  1000Hzの音の挿入損失に対する3000Hzの音の損入損失の比が、1.0~2.0である、請求項2に記載の通音膜。
  4.  100Hz~4000Hzの音に対する挿入損失の最大値と最小値との差が5dB以下である、請求項1に記載の通音膜。
  5.  面密度が5~50g/mである、請求項1に記載の通音膜。
  6.  発音部又は受音部を備えた電子機器であって、
     前記発音部又は前記受音部に対応する開口を塞ぐように請求項1に記載の通音膜が配置されている、電子機器。
PCT/JP2012/008341 2012-11-21 2012-12-26 通音膜、及び通音膜を備えた電子機器 WO2014080446A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157011067A KR101948969B1 (ko) 2012-11-21 2012-12-26 통음막, 및 통음막을 구비한 전자 기기
CN201280076922.XA CN104782141B (zh) 2012-11-21 2012-12-26 透声膜和具备透声膜的电子设备
EP12888901.1A EP2925014B1 (en) 2012-11-21 2012-12-26 Sound-transmitting membrane and electronic device equipped with sound-transmitting membrane
US13/868,607 US8739926B1 (en) 2012-11-21 2013-04-23 Sound-transmitting membrane and electronic device equipped with sound-transmitting membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-255236 2012-11-21
JP2012255236 2012-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/868,607 Continuation US8739926B1 (en) 2012-11-21 2013-04-23 Sound-transmitting membrane and electronic device equipped with sound-transmitting membrane

Publications (1)

Publication Number Publication Date
WO2014080446A1 true WO2014080446A1 (ja) 2014-05-30

Family

ID=49041830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008341 WO2014080446A1 (ja) 2012-11-21 2012-12-26 通音膜、及び通音膜を備えた電子機器

Country Status (6)

Country Link
EP (1) EP2925014B1 (ja)
JP (2) JP5244257B1 (ja)
KR (1) KR101948969B1 (ja)
CN (1) CN104782141B (ja)
TW (1) TW201422001A (ja)
WO (1) WO2014080446A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306352B2 (en) * 2013-09-27 2019-05-28 3M Innovative Properties Company Microphone having closed cell foam body
US10092883B2 (en) * 2013-10-30 2018-10-09 Nitto Denko Corporation Waterproof ventilation structure and waterproof ventilation member
CN105706459B (zh) * 2013-11-07 2019-07-30 日东电工株式会社 防水透声膜和电子设备
US20160376144A1 (en) * 2014-07-07 2016-12-29 W. L. Gore & Associates, Inc. Apparatus and Method For Protecting a Micro-Electro-Mechanical System
US10110981B2 (en) * 2015-06-30 2018-10-23 W. L. Gore & Associates, Inc. Vibro acoustic cover using expanded PTFE composite
WO2017196101A2 (ko) * 2016-05-13 2017-11-16 주식회사 아모그린텍 방수통음시트
KR101807681B1 (ko) 2016-05-13 2017-12-13 주식회사 아모그린텍 방수통음시트
WO2021025378A1 (ko) * 2019-08-07 2021-02-11 주식회사 아모센스 차량용 마이크로폰 모듈
KR102359781B1 (ko) * 2019-08-07 2022-02-08 주식회사 아모센스 차량용 마이크로폰 모듈
US11417311B2 (en) * 2020-08-03 2022-08-16 W. L. Gore & Associates, Inc. Acoustically resistive supported membrane assemblies including at least one support structure
CN114989616B (zh) * 2022-05-25 2024-03-08 歌尔股份有限公司 发声装置的振膜及其制备方法、发声装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165787A (ja) * 1996-12-11 1998-06-23 Nitto Denko Corp ポリテトラフルオロエチレン多孔質膜およびその製造方法
JP2003053872A (ja) 2001-08-13 2003-02-26 Nitto Denko Corp 通気性通音膜
JP2004083811A (ja) 2002-08-28 2004-03-18 Nitto Denko Corp 防水通音膜

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720880B2 (ja) * 1995-09-08 2005-11-30 帝人株式会社 多孔質複合シートの製造方法
US5828012A (en) * 1996-05-31 1998-10-27 W. L. Gore & Associates, Inc. Protective cover assembly having enhanced acoustical characteristics
US6512834B1 (en) * 1999-07-07 2003-01-28 Gore Enterprise Holdings, Inc. Acoustic protective cover assembly
JP3729820B2 (ja) * 2003-06-12 2005-12-21 シーダム株式会社 積層シート及びその製造方法
JP4708134B2 (ja) * 2005-09-14 2011-06-22 日東電工株式会社 通音膜、通音膜付き電子部品及びその電子部品を実装した回路基板の製造方法
CN101154377A (zh) * 2006-09-29 2008-04-02 广州新静界消音材料有限公司 布质吸声结构
JP5160984B2 (ja) * 2007-07-18 2013-03-13 日東電工株式会社 防水通音膜、防水通音膜の製造方法およびそれを用いた電気製品
JP5286006B2 (ja) * 2008-09-17 2013-09-11 日本ゴア株式会社 防水通音フード
US8157048B2 (en) * 2009-04-22 2012-04-17 Gore Enterprise Holdings, Inc. Splash proof acoustically resistive color assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165787A (ja) * 1996-12-11 1998-06-23 Nitto Denko Corp ポリテトラフルオロエチレン多孔質膜およびその製造方法
JP2003053872A (ja) 2001-08-13 2003-02-26 Nitto Denko Corp 通気性通音膜
JP2004083811A (ja) 2002-08-28 2004-03-18 Nitto Denko Corp 防水通音膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2925014A4 *

Also Published As

Publication number Publication date
EP2925014B1 (en) 2021-09-01
CN104782141A (zh) 2015-07-15
CN104782141B (zh) 2018-02-13
TW201422001A (zh) 2014-06-01
JP5859475B2 (ja) 2016-02-10
JP5244257B1 (ja) 2013-07-24
KR101948969B1 (ko) 2019-02-15
JP2014123935A (ja) 2014-07-03
JP2014123931A (ja) 2014-07-03
EP2925014A1 (en) 2015-09-30
EP2925014A4 (en) 2016-04-13
KR20150087201A (ko) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5244257B1 (ja) 通音膜、及び通音膜を備えた電子機器
JP5856102B2 (ja) 通音構造、通音膜、及び防水ケース
US8739926B1 (en) Sound-transmitting membrane and electronic device equipped with sound-transmitting membrane
JP6118131B2 (ja) 防水通音膜、通音部材、及び電気機器
JP5947655B2 (ja) ポリテトラフルオロエチレン多孔質膜、並びに、それを用いた通気膜および通気部材
CN109716784B (zh) 防水透声盖部、防水透声盖部构件和声学装置
JP6438733B2 (ja) 防水通音膜および電子機器
CN110024415B (zh) 防水透声构件和具有该防水透声构件的电子设备
KR20100041839A (ko) 방수 통음막, 방수 통음막의 제조 방법 및 그것을 사용한 전기 제품
JP6853400B2 (ja) 防水膜とこれを備える防水部材及び電子機器
JP6324109B2 (ja) 防水通音膜の製造方法、防水通音膜及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011067

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012888901

Country of ref document: EP