WO2014077248A1 - Photoreactive composition, and photoalignment film and optical anisotropic film using same - Google Patents

Photoreactive composition, and photoalignment film and optical anisotropic film using same Download PDF

Info

Publication number
WO2014077248A1
WO2014077248A1 PCT/JP2013/080575 JP2013080575W WO2014077248A1 WO 2014077248 A1 WO2014077248 A1 WO 2014077248A1 JP 2013080575 W JP2013080575 W JP 2013080575W WO 2014077248 A1 WO2014077248 A1 WO 2014077248A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
photoreactive composition
monomer represented
ring
Prior art date
Application number
PCT/JP2013/080575
Other languages
French (fr)
Japanese (ja)
Inventor
喜弘 川月
瑞穂 近藤
耕平 後藤
ダニエル アントニオ 櫻葉汀
Original Assignee
日産化学工業株式会社
兵庫県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社, 兵庫県 filed Critical 日産化学工業株式会社
Priority to JP2014546989A priority Critical patent/JP6369942B2/en
Publication of WO2014077248A1 publication Critical patent/WO2014077248A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a photoreactive composition suitable for production of an optical element having controlled molecular orientation such as a retardation film or a liquid crystal alignment film, and an optical anisotropic film using the same.
  • Patent Document 1 and Patent Document 2 in the side chain type liquid crystal polymer that induces birefringence by light irradiation or light irradiation and heating and cooling, it is produced by a process including an operation of light irradiation or light irradiation and heat treatment.
  • a retardation film and a manufacturing method thereof are proposed
  • Patent Document 3 proposes a liquid crystal alignment film imparted with a liquid crystal alignment ability by light irradiation and a manufacturing method thereof.
  • anisotropy can be imparted by an axially selective photocrosslinking reaction of polymer side chains when irradiated with linearly polarized ultraviolet light after being applied to a substrate and formed into a film. Furthermore, when such a film is heated, since the material itself has liquid crystallinity, the unreacted side chain is aligned along the side chain that has been photocrosslinked selectively, or perpendicular to the direction of the photocrosslinked side chain. The entire film can be molecularly oriented because it is oriented in the direction. Such a film can be used as a retardation film because it exhibits birefringence due to molecular orientation, and when liquid crystal molecules are brought into contact with the film surface, it exhibits the ability to align liquid crystal molecules. It also functions as a membrane.
  • these materials can be used in various applications due to the property of molecular orientation by light irradiation and heating.
  • the materials proposed in these methods cannot be said to have sufficient photoreactivity, and a longer irradiation time is required.
  • the temperature in the heat treatment after the light irradiation is not preferable because a considerable time is required at a high temperature exceeding 150 ° C.
  • a material capable of improving photoreactivity and inducing molecular orientation by irradiation with linearly polarized ultraviolet rays for a short time has been proposed, but the temperature in the heat treatment after light irradiation is 150. A considerable time is required at a high temperature exceeding 0 ° C., which is not preferable.
  • Japanese Unexamined Patent Publication No. 2002-202409 Japanese Unexamined Patent Publication No. 2003-307618 Japanese Unexamined Patent Publication No. 2002-90750 Japanese Unexamined Patent Publication No. 2007-304215
  • An object of the present invention is to provide a photoreactive composition that can also use a low-boiling solvent, and a photoalignment film having a retardation obtained therefrom.
  • the present inventor conducted research to achieve the above-mentioned problems, and found that a benzoic acid ester compound having a specific structure in a polymer having a repeating unit derived from a monomer composed of a cinnamic acid compound having a specific structure. It has been found that the above object can be achieved by using a photoreactive composition containing a polymer into which a repeating unit derived from a monomer is introduced, and the present invention has been achieved.
  • a light comprising a copolymer having a repeating unit derived from a monomer represented by the following formula (1) and a repeating unit derived from a monomer represented by the following formula (2): Reactive composition.
  • X 1 and X 2 are each independently —O—, —O—CO—, —CO—O—, —NH—CO—, or —CO—NH—.
  • X 3 is —O—CO— or —CO—O—.
  • Y is a group selected from the group consisting of a benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, benzophenone, and phenylbenzoate, and each ring is an alkyl group, an alkoxy group, a halogen atom, a nitro group, or It may be substituted with a cyano group.
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group.
  • p1 and p2 are each independently an integer of 2 to 12.
  • W is a group selected from the group consisting of a benzene ring, a naphthalene ring, and a biphenyl ring, and each ring may be substituted with an alkyl group, an alkoxy group, a halogen atom, a nitro group, or a cyano group.
  • Z 1 to Z 4 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, a nitro group, or a cyano group.
  • the monomer represented by the above formula (1) is a cinnamic acid compound represented by the following formula (3), and the monomer represented by the above formula (2) is benzoic acid represented by the following formula (4).
  • X 4 is a single bond, —O—CO—, or —CO—O—.
  • m is 0 or 1, and when m is 0, X 4 is a single bond.
  • R 2 , p 2 , X 3, and Z 1 to Z 4 are respectively synonymous with those defined in the above formula (2).
  • R 3 is a hydrogen atom, an alkyl group, or an alkoxy group.
  • m 1 is 1 or 2.
  • 4). 4.
  • the organic solvent is a low boiling point solvent having a boiling point of 60 to 170 ° C. 7). 7.
  • the temperature in the heat treatment performed subsequent to the light irradiation treatment necessary for expressing the phase difference can be controlled, and this temperature can be greatly reduced.
  • the plastic material having low heat resistance it can be used as a base material, and a solvent having a low boiling point can be used as a solvent necessary for forming the retardation layer.
  • a retardation film having excellent characteristics formed on a plastic film having low heat resistance which has been difficult in the past, and orientation of molecules such as a polarization diffraction element at low temperature It is possible to manufacture an optical element or a liquid crystal alignment film in which control is performed.
  • a copolymer having a repeating unit derived from the monomer represented by the above formula (1) and a repeating unit derived from the monomer represented by the above formula (2) Contains a polymer.
  • X 1 , X 2 , Y, Z 1 to Z 4 , R 1 , R 2 , W, p1, and p2 are as defined above.
  • X 1 and X 2 are each preferably —O—, —O—CO—, —CO—O—
  • Y is a benzene ring, naphthalene ring, biphenyl ring, furan ring, respectively.
  • Z 1 to Z 4 are preferably a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom, and W is preferably a benzene ring or a biphenyl ring.
  • p1 and p2 are preferably 4 to 10.
  • the monomer represented by the above formula (1) include monomers having the following structure.
  • preferred specific examples of the monomer represented by the formula (2) include monomers having the following structure.
  • the copolymer having is represented by the following formula (5).
  • X 1 , X 2 , X 3 , Y, Z 1 to Z 4 , R 1 , R 2 , W, p1, and p2 each include the above formula (1).
  • the ratio of n / m is the ratio of (repeating unit derived from the monomer represented by the above formula (1)) / (repeating unit derived from the monomer represented by the above formula (2)).
  • the molar ratio of n / m is preferably 10/90 to 80/20, and particularly preferably 20/80 to 50/50.
  • the copolymer having a repeating unit derived from the monomer represented by the above formula (1) and a repeating unit derived from the monomer represented by the above formula (2) preferably has a number average molecular weight. 1000 to 100,000, and preferably 5000 to 30,000. If this number average molecular weight is smaller than the above range, molecular orientation cannot be induced, and if it is larger than the above range, the production becomes extremely difficult and the solubility in a low boiling point solvent decreases. It is not preferable.
  • the copolymer having a crosslinkable monomer for improving heat resistance to such an extent that liquid crystallinity is not impaired, a photosensitive monomer that does not impair liquid crystallinity, or liquid crystalline Monomers and the like for adjusting the expression temperature can be copolymerized.
  • the cross-linkable monomer include the following phenoplast type and epoxy group-containing compounds.
  • epoxy group-containing compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1 , 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′ , N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl Such as 4,4'-d
  • the amount used is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the resin component contained in the liquid crystal aligning agent. Is 0.5 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving heat resistance cannot be expected, and if it exceeds 30 parts by mass, the liquid crystallinity may be impaired.
  • the photosensitive monomer include polymerizable compounds having the following structure or a derivative thereof in the side chain.
  • the amount used is the sum of the repeating unit derived from the monomer represented by the formula (1) and the repeating unit derived from the monomer represented by the formula (2) / the photosensitive monomer. ) Is preferably 95/5 to 50/50, more preferably 95/5 to 80/20. If the ratio is less than 95/5, the effect of improving the photosensitivity cannot be expected, and if it exceeds 50/50, the liquid crystallinity may be impaired.
  • the monomer for adjusting the liquid crystalline expression temperature include a polymerizable compound having a structure that becomes a liquid crystal mesogen structure alone, such as biphenyl and phenylbenzoate as shown below. And polymerizable compounds having a structure such that a liquid crystal mesogen structure is formed by hydrogen bonding of side chains such as benzoic acid.
  • the amount used is (total of repeating units derived from the monomer represented by the above formula (1) and repeating units derived from the monomer represented by the above formula (2)) / single photosensitive amount Body) is preferably 95/5 to 20/80, more preferably 95/5 to 50/50. If the ratio is less than 95/5, the effect of adjusting the liquid crystal expression temperature cannot be expected, and if it exceeds 30/70, the sensitivity of the photoreaction may be impaired.
  • a copolymer having a repeating unit derived from the monomer represented by the above formula (1) and a repeating unit derived from the monomer represented by the above formula (2) is copolymerized.
  • the monomer include industrially available monomers capable of radical polymerization reaction. Specific examples of these monomers include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound, vinyl compound and the like.
  • the unsaturated carboxylic acid include acrylic acid, methacrylic acid (acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid), itaconic acid, maleic acid, and fumaric acid.
  • Specific examples of the (meth) acrylic acid ester compound include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, benzyl (meth) acrylate, naphthyl (meth) acrylate, anthryl (meth) acrylate, anne Tolylmethyl (meth) acrylate, phenyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 2-methoxy Ethyl (meth) acrylate, methoxy
  • vinyl compound examples include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
  • styrene compound examples include styrene, methylstyrene, chlorostyrene, and bromostyrene.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • the manufacturing method of the copolymer which has a repeating unit derived from the monomer represented by the said Formula (1) of this invention, and a repeating unit derived from the monomer represented by the said Formula (2) It is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization. Of these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
  • the polymerization initiator for radical polymerization known radical thermal polymerization initiators, radical photopolymerization initiators, known reversible addition-fragmentation chain transfer (RAFT) polymerization reagents, and the like can be used.
  • the amount of the polymerization initiator used is preferably 0.1 to 10 mol% with respect to the monomer (1 mol) represented by the above formula (1).
  • the above-mentioned radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher.
  • radical thermal polymerization initiators include ketone peroxides (such as methyl ethyl ketone peroxide and cyclohexanone peroxide), diacyl peroxides (such as acetyl peroxide and benzoyl peroxide), hydroperoxides (peroxides).
  • a radical thermal polymerization initiator can be used individually by 1 type, and can
  • the radical photopolymerization initiator is a compound that initiates radical polymerization by light irradiation.
  • radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropyl xanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-4′-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-
  • the radical polymerization method using the above-described radical thermal polymerization initiator is not particularly limited, and known emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method, etc. This method can be used.
  • the photoreactive composition of the present invention includes a copolymer having a repeating unit derived from the monomer represented by the formula (1) and a repeating unit derived from the monomer represented by the formula (2).
  • it preferably contains an organic solvent that dissolves the copolymer.
  • a thin film can be easily formed from the photoreactive composition of the present invention by adding a polymer solution containing such an organic solvent.
  • the content of the organic solvent in the photoreactive composition of the present invention is preferably 99.7 to 60% by mass, particularly preferably 99.5 to 70% by mass. By setting it as this content, it can be set as the solution of a preferable viscosity for forming a thin film easily from the photoreactive composition of this invention.
  • the organic solvent contained in the photoreactive composition of the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, Tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethyl Propanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl
  • the photo-alignment film obtained from the photoreactive composition of the present invention when used as a liquid crystal alignment film, when firing at a low temperature, if there is a large amount of residual solvent after firing, the orientation of the liquid crystal and the adhesion to the substrate will be Since the liquid crystal cell may deteriorate and the electrical characteristics of the liquid crystal cell may deteriorate, it is preferable to use an organic solvent having a low boiling point or a high vapor pressure.
  • organic solvents include ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone, isopropyl Alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, Ethylene glycol monobutyl ether, propylene glycol, propylene glycol Monoacetate, propylene glycol monomethyl
  • the photoreactive composition of the present invention can further contain a photosensitizer as an additive.
  • a photosensitizer as an additive.
  • these photosensitizers colorless sensitizers and triplet sensitizers are preferable.
  • the photosensitizer include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted compounds.
  • Aromatic 2-hydroxy ketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl- ⁇ -naphthothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-biphenoylmethylene)- 3-methylbenzothiazo 2- ( ⁇ -naphthoylmethylene) -3-methyl- ⁇ -naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl- ⁇ -naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl- ⁇ -
  • aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonylbiscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferable.
  • the photoreactive composition of the present invention includes a dielectric material for the purpose of changing electrical characteristics such as dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and density of the film when formed into a liquid crystal alignment film.
  • a surfactant such as a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant may be added.
  • F-Top 301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by DIC
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Examples include Guard AG710 (manufactured by Asahi Glass Co., Ltd.), Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.).
  • the surfactant is preferably contained in an amount of 0.01 to 2 parts by weight, more preferably 0.01 to 1 part by weight, based on 100 parts by weight of the copolymer contained in the photoreactive composition of the present invention. Is done.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
  • an optically anisotropic film having excellent characteristics can be obtained from the photoreactive composition of the present invention.
  • the production of the optically anisotropic film is preferably carried out as follows. .
  • the photoreactive composition of the present invention is applied to a substrate to form a coating film.
  • the coating film is usually formed by a spin coating method, a printing method, an ink jet method, a bar coating method, a gravure coating method, or the like.
  • the drying is usually performed at 40 to 150 ° C. for 1 to 15 minutes, preferably at 50 to 110 ° C. for 1 to 5 minutes.
  • the thickness of the coating film is usually 0.02 to 5.0 ⁇ m, preferably 0.02 to 2.0 ⁇ m.
  • the substrate for forming the coating film of the photoreactive composition is not particularly limited as long as it is a highly transparent substrate, and a plate-like to film-like one is used.
  • the material of the base material ceramics such as glass, silicon nitride, and silicon wafer, plastics such as acrylic resin, polycarbonate resin, triacetyl cellulose resin, polyethylene terephthalate resin, and cycloolefin resin can be used.
  • acrylic resin polycarbonate resin
  • triacetyl cellulose resin polyethylene terephthalate resin
  • cycloolefin resin cycloolefin resin
  • the coating film of the photoreactive composition can then be oriented and imparted with anisotropy by irradiation treatment with polarized ultraviolet rays.
  • polarized ultraviolet rays those having a wavelength of preferably 200 to 400 nm, particularly preferably 254 to 365 nm are used.
  • the irradiation amount is preferably 1 to 10000 mJ, particularly preferably 1 to 500 mJ.
  • the irradiation with polarized ultraviolet rays may be performed while heating the coating film preferably at 10 to 150 ° C., particularly preferably at 20 to 120 ° C.
  • the coating film of the photoreactive composition formed on the substrate is then subjected to heat treatment.
  • the heat treatment is preferably performed at 50 to 150 ° C. for 1 to 30 minutes, particularly preferably at 70 to 120 ° C. for 1 to 15 minutes.
  • the upper limit of the heating temperature is selected depending on the substrate to be used, and the lower limit is selected depending on the liquid crystalline expression temperature of the polymer.
  • a thin film of a photoreactive composition can be produced on a substrate.
  • the film thickness of the thin film of the photoreactive composition is preferably 20 to 5000 nm, and more preferably 20 to 2000 nm.
  • Polymer 2 was obtained by performing the same operation as in Synthesis Example 4 except that the ratio of Formula (1) and Formula (2) in Synthesis Example 4 was 40:60.
  • the molecular weight of this polymer 2 was Mn: 27000, and this polymer 2 exhibited liquid crystallinity in the temperature range of 53 to 132 ° C.
  • Polymer 3 was obtained by performing the same operation as in Synthesis Example 4 except that the ratio of Formula (1) and Formula (2) in Synthesis Example 4 was 20:80.
  • the molecular weight of this polymer 3 was Mn: 43000, and this polymer 3 exhibited liquid crystallinity in the temperature range of 43 to 119 ° C.
  • Example 1 The polymer 1 (0.3 g) obtained in Synthesis Example 4 is dissolved in tetrahydrofuran (14.7 ml) and spin-coated on a glass substrate with a thickness of about 190 nm, whereby a side chain polymer film is formed on the substrate. Formed. After measuring the ultraviolet absorption spectrum using this substrate, the side chain type polymer film was irradiated with ultraviolet rays having a wavelength of 300 nm or less cut and converted into linearly polarized light using a Grand Taylor prism.
  • the side-chain polymer film on the substrate thus obtained was used to measure the ultraviolet absorption spectrum, and the side-chain polymer film was measured in a direction perpendicular to the UV absorbance in the direction parallel to the polarization direction of the irradiated polarized UV light.
  • ⁇ A which is the difference from the ultraviolet absorbance, was evaluated.
  • ⁇ A reaches a maximum of 0.15 at 314 nm when irradiated with polarized ultraviolet rays at a wavelength of 365 nm in an amount of 70 mJ.
  • Example 2 Polymer 2 (0.3 g) obtained in Synthesis Example 5 was used, except that the irradiation amount of polarized ultraviolet rays was 5 mJ (the irradiation amount at which ⁇ A was 25% of the maximum value of ⁇ A), and the heating temperature was 95 ° C. In the same manner as in Example 1, irradiation with polarized ultraviolet rays and subsequent heat treatment were performed. As a result, ⁇ A before and after the heat treatment was greatly amplified, the degree of orientation was 0.58 at 314 nm, and the birefringence at that time was 0.12.
  • Example 3 Polymer 3 (0.3 g) obtained in Synthesis Example 6 was used, the amount of irradiation with polarized ultraviolet rays was 8 mJ (the amount of irradiation with which ⁇ A was 33% of the maximum value of ⁇ A), and the heating temperature was 85 ° C. In the same manner as in Example 1, irradiation with polarized ultraviolet rays and subsequent heat treatment were performed. As a result, ⁇ A before and after the heat treatment was greatly amplified, the degree of orientation was 0.48 at 314 nm, and the birefringence at that time was 0.16.
  • Example 4 Polymer 1 (0.3 g) obtained in Synthesis Example 4 was dissolved in a mixed solvent of propylene glycol monomethyl ether and cyclohexanone (volume ratio 7: 3, 2.7 ml), and a thickness of about 800 nm was formed on the acrylic film.
  • the side chain type polymer film was formed on the film by coating with (1).
  • the film on which this polymer film was formed was irradiated with 20 mJ of ultraviolet rays converted to linearly polarized light of 313 nm using a Grand Taylor prism. Thereafter, this substrate was heated to 100 ° C. in a hot air circulating oven, and the side chain type polymer film was held as it was for 10 minutes as a liquid crystal alignment layer. Then, it cooled to room temperature and obtained the film which has a side chain type polymer film (film thickness of 800 nm) in which anisotropy was introduced in the film. The birefringence of this film was 0.08.
  • Example 5 Polymer 2 (0.3 g) obtained in Synthesis Example 5 was dissolved in a mixed solvent of propylene glycol monomethyl ether and cyclohexanone (volume ratio 7: 3, 2.7 ml), and irradiated with 10 mJ of ultraviolet rays converted to linearly polarized light. Except for the above, a film having a side chain polymer film having anisotropy introduced therein was obtained in the same manner as in Example 4. The birefringence of this film was 0.074.
  • Example 6 Polymer 4 (0.3 g) obtained in Synthesis Example 7 was dissolved in a mixed solvent of propylene glycol monomethyl ether acetate and cyclohexanone (volume ratio 7: 3, 2.7 ml) and irradiated with 7 mJ of ultraviolet light converted to linearly polarized light. Except for the above, a film having a side chain polymer film having anisotropy introduced therein was obtained in the same manner as in Example 4. The birefringence of this film was 0.056.
  • Example 7 Polymer 1 (0.3 g) obtained in Synthesis Example 4 was dissolved in a mixed solvent of propylene glycol monomethyl ether and cyclohexanone (volume ratio 3: 7, 4.7 ml) to obtain a liquid crystal aligning agent (A).
  • the liquid crystal aligning agent (A) was applied to a glass substrate by a spin coating method, and then dried on a hot plate at 50 ° C. for 5 minutes to obtain a polymer film having a thickness of 80 nm.
  • This polymer film was irradiated with 4 mJ of ultraviolet rays converted to 313 nm linearly polarized light using a Grand Taylor prism. Thereafter, this substrate was heated to 100 ° C.
  • Example 8 Polymer 2 (0.3 g) obtained in Synthesis Example 5 was used, except that the irradiation amount of polarized ultraviolet rays was 5 mJ (the irradiation amount at which ⁇ A was 25% of the maximum value of ⁇ A), and the heating temperature was 95 ° C. Produced a liquid crystal cell in the same manner as in Example 7. The results are summarized in Table 1.
  • Example 9 Polymer 3 (0.3 g) obtained in Synthesis Example 6 was used, the amount of irradiation with polarized ultraviolet rays was 8 mJ (the amount of irradiation with which ⁇ A was 33% of the maximum value of ⁇ A), and the heating temperature was 85 ° C. Produced a liquid crystal cell in the same manner as in Example 7. The results are summarized in Table 1.
  • the photo-alignment film and retardation film formed from the photoreactive composition of the present invention can be formed on a plastic having low heat resistance, it is widely used as an optical element or liquid crystal alignment film with controlled molecular orientation. It can be used and has high industrial utility.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-250558 filed on November 14, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a photoreactive composition suited to the production of an optical anisotropic film having controlled molecular orientation for a phase difference film, polarization diffraction element, or the like. A photoreactive composition containing a copolymer having repeating units derived from a monomer represented by formula (1) and repeating units derived from a monomer represented by formula (2).

Description

光反応性組成物、それを用いた光配向膜、及び光学異方性膜Photoreactive composition, photo-alignment film using the same, and optically anisotropic film
 本発明は、位相差フィルムなどの分子配向を制御した光学素子や液晶配向膜の製造に好適である光反応性組成物、及びそれを用いた光学異方性膜に関する。 The present invention relates to a photoreactive composition suitable for production of an optical element having controlled molecular orientation such as a retardation film or a liquid crystal alignment film, and an optical anisotropic film using the same.
 これまで、特許文献1、及び特許文献2において、光照射又は光照射と加熱冷却により複屈折を誘起する側鎖型液晶高分子において、光照射又は光照射と加熱処理する操作を含む工程によって作製される位相差フィルム及びその製造法を提案し、また、特許文献3において、光照射により液晶配向能を付与させた液晶配向膜及びその製造法を提案されている。 So far, in Patent Document 1 and Patent Document 2, in the side chain type liquid crystal polymer that induces birefringence by light irradiation or light irradiation and heating and cooling, it is produced by a process including an operation of light irradiation or light irradiation and heat treatment. A retardation film and a manufacturing method thereof are proposed, and Patent Document 3 proposes a liquid crystal alignment film imparted with a liquid crystal alignment ability by light irradiation and a manufacturing method thereof.
 これら特許文献1~3で提案した材料では、基材に塗布して製膜した後、直線偏光性紫外線を照射すると、高分子側鎖の軸選択的な光架橋反応によって異方性を付与でき、更に、このような膜を加熱すると、材料自体が液晶性を有することから未反応側鎖が軸選択的に光架橋した側鎖に沿って配向したり、光架橋した側鎖の方向と垂直方向に配向したりすることから膜全体を分子配向させることができる。このような膜では、分子配向により複屈折性が発現することから位相差フィルムとして利用することができ、また、膜表面に液晶分子を接触させると液晶分子の配向能を発現することから液晶配向膜としても機能する。 In these materials proposed in Patent Documents 1 to 3, anisotropy can be imparted by an axially selective photocrosslinking reaction of polymer side chains when irradiated with linearly polarized ultraviolet light after being applied to a substrate and formed into a film. Furthermore, when such a film is heated, since the material itself has liquid crystallinity, the unreacted side chain is aligned along the side chain that has been photocrosslinked selectively, or perpendicular to the direction of the photocrosslinked side chain. The entire film can be molecularly oriented because it is oriented in the direction. Such a film can be used as a retardation film because it exhibits birefringence due to molecular orientation, and when liquid crystal molecules are brought into contact with the film surface, it exhibits the ability to align liquid crystal molecules. It also functions as a membrane.
 このように光照射と加熱により分子配向するという特性から、これら材料は様々な用途で利用することができる。しかし、これらで提案した材料では光反応性が充分であるとはいえず、照射時間の長時間化などを必要とされる。さらに、光照射後の熱処理における温度は150℃を超える高温度でかなりの時間が必要とされ、好ましくない。また、特許文献1で開示されているように、光反応性を改善し短時間の直線偏光紫外線の照射で分子配向を誘起できる材料も提案されているが、光照射後の熱処理における温度は150℃を超える高温度でかなりの時間が必要とされ、好ましくない。 Thus, these materials can be used in various applications due to the property of molecular orientation by light irradiation and heating. However, the materials proposed in these methods cannot be said to have sufficient photoreactivity, and a longer irradiation time is required. Furthermore, the temperature in the heat treatment after the light irradiation is not preferable because a considerable time is required at a high temperature exceeding 150 ° C. Further, as disclosed in Patent Document 1, a material capable of improving photoreactivity and inducing molecular orientation by irradiation with linearly polarized ultraviolet rays for a short time has been proposed, but the temperature in the heat treatment after light irradiation is 150. A considerable time is required at a high temperature exceeding 0 ° C., which is not preferable.
 上記光照射後の熱処理において、高温度で長い時間の温度が必要とされる場合、一般的に耐熱性の低いプラスチック材料を基材とするフィルムには適用することを困難にせしめる。さらに、これらの光学性材料フィルムを得る場合には、通常、材料を有機溶媒に溶解した溶液から被膜を形成するが、上記先行技術で開示された材料では、溶解性の問題から、一般的に用いられる低沸点溶媒の使用を困難にせしめていた。 When the heat treatment after the light irradiation requires a high temperature for a long time, it is generally difficult to apply to a film having a plastic material having a low heat resistance as a base material. Furthermore, when these optical material films are obtained, a film is usually formed from a solution in which the material is dissolved in an organic solvent. However, in the materials disclosed in the above-mentioned prior art, in general, due to solubility problems, The use of the low-boiling solvent used has been made difficult.
日本特開2002-202409号Japanese Unexamined Patent Publication No. 2002-202409 日本特開2003-307618号Japanese Unexamined Patent Publication No. 2003-307618 日本特開2002-90750号Japanese Unexamined Patent Publication No. 2002-90750 日本特開2007-304215号Japanese Unexamined Patent Publication No. 2007-304215
 本発明は、位相差を発現させるのに必要な熱処理温度を低くし得るために、耐熱性の低いプラスチック材料を基材とすることができ、また、位相差層を形成するのに必要な溶媒として低沸点の溶媒も使用できる光反応性組成物、及びこれから得られる位相差を有する光配向膜を提供することを目的とする。 In the present invention, since a heat treatment temperature necessary for developing a retardation can be lowered, a plastic material having low heat resistance can be used as a base material, and a solvent necessary for forming a retardation layer. An object of the present invention is to provide a photoreactive composition that can also use a low-boiling solvent, and a photoalignment film having a retardation obtained therefrom.
 本発明者は、上記の課題を達成するべく研究を進めたところ、特定構造を有する桂皮酸化合物からなる単量体に由来する繰り返し単位を有する重合体中に、特定構造を有する安息香酸エステル化合物からなる単量体に由来する繰り返し単位を導入せしめた重合体を含有する光反応性組成物を使用することにより、上記目的が達成し得ることを見出し、本発明に到達したものである。 The present inventor conducted research to achieve the above-mentioned problems, and found that a benzoic acid ester compound having a specific structure in a polymer having a repeating unit derived from a monomer composed of a cinnamic acid compound having a specific structure. It has been found that the above object can be achieved by using a photoreactive composition containing a polymer into which a repeating unit derived from a monomer is introduced, and the present invention has been achieved.
 かくして、本発明は、以下に記載する特徴を有する。
1.下記式(1)で表わされる単量体に由来する繰り返し単位と、下記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体を含有することを特徴とする光反応性組成物。
Figure JPOXMLDOC01-appb-C000004
(X、及びXは、それぞれ独立に、-O-、-O-CO-、-CO-O-、-NH-CO-、又は-CO-NH-である。
は、-O-CO-又は-CO-O-である。Yは、ベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、ベンゾフェノン、及びフェニルベンゾエートからなる群から選ばれる基であり、それぞれの環はアルキル基、アルコキシ基、ハロゲン原子、ニトロ基、又はシアノ基で置換されていてもよい。
、及びRは、それぞれ独立に、水素原子又はメチル基である。
p1、及びp2は、それぞれ独立に、2~12の整数である。
Wは、ベンゼン環、ナフタレン環、及びビフェニル環からなる群から選ばれる基であり、それぞれの環はアルキル基、アルコキシ基、ハロゲン原子、ニトロ基、又はシアノ基で置換されてもよい。
~Zは、それぞれ独立して、水素原子、アルキル基、アルコキシ基、ハロゲン原子、ニトロ基、又はシアノ基である。)
Thus, the present invention has the features described below.
1. A light comprising a copolymer having a repeating unit derived from a monomer represented by the following formula (1) and a repeating unit derived from a monomer represented by the following formula (2): Reactive composition.
Figure JPOXMLDOC01-appb-C000004
(X 1 and X 2 are each independently —O—, —O—CO—, —CO—O—, —NH—CO—, or —CO—NH—.
X 3 is —O—CO— or —CO—O—. Y is a group selected from the group consisting of a benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, benzophenone, and phenylbenzoate, and each ring is an alkyl group, an alkoxy group, a halogen atom, a nitro group, or It may be substituted with a cyano group.
R 1 and R 2 are each independently a hydrogen atom or a methyl group.
p1 and p2 are each independently an integer of 2 to 12.
W is a group selected from the group consisting of a benzene ring, a naphthalene ring, and a biphenyl ring, and each ring may be substituted with an alkyl group, an alkoxy group, a halogen atom, a nitro group, or a cyano group.
Z 1 to Z 4 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, a nitro group, or a cyano group. )
2.(上記式(1)で表わされる単量体に由来する繰り返し単位)/(上記式(2)で表わされる単量体に由来する繰り返し単位)のモル比率が、10/90~80/20である上記1に記載の光反応性組成物。
3.上記式(1)で表わされる単量体が、下記式(3)で表わされる桂皮酸化合物であり、上記式(2)で表わされる単量体が、下記式(4)で表わされる安息香酸エステル化合物である上記1又は2に記載の光反応性組成物。
Figure JPOXMLDOC01-appb-C000005
(R1、及びp1はそれぞれ、上記式(1)で定義したものと同義である。
は、単結合、-O-CO-、又は-CO-O-である。
mは、0又は1であり、mが0のとき、Xは単結合である。)
Figure JPOXMLDOC01-appb-C000006
(R、p23、及びZ~Zはそれぞれ、上記式(2)で定義したものと同義である。
Rは、水素原子、アルキル基、又はアルコキシ基である。
は、1又は2である。)
4.共重合体の数平均分子量が1000~100000である上記1~3のいずれかに記載の光反応性組成物。
5.さらに、有機溶媒を含有する上記1~4のいずれかに記載の光反応性組成物。
6.有機溶媒が、沸点として60~170℃を有する低沸点溶媒である上記5に記載の光反応性組成物。
7.有機溶媒の含有量が、光反応性組成物の全量に対して60~99.5質量%である上記5又は6に記載の光反応性組成物。
8.上記1~7のいずれかに記載の光反応性組成物の被膜に直線偏光成分を含む光を照射し、次いで、熱処理して液晶配向能を付与した光学異方性膜。
9.温度70~120℃にて熱処理する上記8に記載の光学異方性膜。
10.膜厚が20~5000nmである上記8又は9に記載の光学異方性膜。
2. The molar ratio of (repeat unit derived from the monomer represented by the above formula (1)) / (repeat unit derived from the monomer represented by the above formula (2)) was 10/90 to 80/20. 2. The photoreactive composition according to 1 above.
3. The monomer represented by the above formula (1) is a cinnamic acid compound represented by the following formula (3), and the monomer represented by the above formula (2) is benzoic acid represented by the following formula (4). 3. The photoreactive composition according to 1 or 2 above, which is an ester compound.
Figure JPOXMLDOC01-appb-C000005
(R 1 and p 1 are respectively synonymous with those defined in the above formula (1).
X 4 is a single bond, —O—CO—, or —CO—O—.
m is 0 or 1, and when m is 0, X 4 is a single bond. )
Figure JPOXMLDOC01-appb-C000006
(R 2 , p 2 , X 3, and Z 1 to Z 4 are respectively synonymous with those defined in the above formula (2).
R 3 is a hydrogen atom, an alkyl group, or an alkoxy group.
m 1 is 1 or 2. )
4). 4. The photoreactive composition according to any one of 1 to 3 above, wherein the copolymer has a number average molecular weight of 1,000 to 100,000.
5. 5. The photoreactive composition according to any one of the above 1 to 4, further comprising an organic solvent.
6). 6. The photoreactive composition according to 5 above, wherein the organic solvent is a low boiling point solvent having a boiling point of 60 to 170 ° C.
7). 7. The photoreactive composition according to 5 or 6 above, wherein the content of the organic solvent is 60 to 99.5% by mass with respect to the total amount of the photoreactive composition.
8). 8. An optically anisotropic film obtained by irradiating a film of the photoreactive composition according to any one of 1 to 7 above with light containing a linearly polarized component, followed by heat treatment to impart liquid crystal alignment ability.
9. 9. The optically anisotropic film as described in 8 above, which is heat-treated at a temperature of 70 to 120 ° C.
10. 10. The optically anisotropic film as described in 8 or 9 above, having a thickness of 20 to 5000 nm.
 本発明の光反応性組成物によれば、位相差を発現させるのに必要な光照射処理に次いで行われる熱処理における温度が制御でき、この温度を大きく低下し得る結果、耐熱性の低いプラスチック材料でも基材とすることができ、また、位相差層を形成するのに必要な溶媒として低沸点の溶媒も使用できる。
 この結果、かかる光反応性組成物を使用することにより、従来困難であった耐熱性の低いプラスチックフィルム上に形成された優れた特性の位相差フィルムや、低温において偏光回折素子などの分子の配向を制御した光学素子や液晶配向膜を製造できる。
According to the photoreactive composition of the present invention, the temperature in the heat treatment performed subsequent to the light irradiation treatment necessary for expressing the phase difference can be controlled, and this temperature can be greatly reduced. As a result, the plastic material having low heat resistance However, it can be used as a base material, and a solvent having a low boiling point can be used as a solvent necessary for forming the retardation layer.
As a result, by using such a photoreactive composition, a retardation film having excellent characteristics formed on a plastic film having low heat resistance, which has been difficult in the past, and orientation of molecules such as a polarization diffraction element at low temperature It is possible to manufacture an optical element or a liquid crystal alignment film in which control is performed.
 本発明の光反応性組成物においては、上記式(1)で表わされる単量体に由来する繰り返し単位と、上記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体を含有する。
 上記した式(1)及び式(2)における、X、X、Y、Z~Z、R、R、W、p1、及びp2は、それぞれ、上記で定義したとおりであるが、なかでも、それぞれ、X、及びXは、-O-、-O-CO-、-CO-O-であるのが好ましく、Yは、ベンゼン環、ナフタレン環、ビフェニル環、フラン環、フェニルベンゾエートであるのが好ましく、Z~Zは、水素原子、アルキル基、アルコキシ基、ハロゲン原子であるのが好ましく、Wは、ベンゼン環、ビフェニル環であるのが好ましい。また、p1、及びp2は、4~10であるのが好ましい。
In the photoreactive composition of the present invention, a copolymer having a repeating unit derived from the monomer represented by the above formula (1) and a repeating unit derived from the monomer represented by the above formula (2). Contains a polymer.
In the above formula (1) and formula (2), X 1 , X 2 , Y, Z 1 to Z 4 , R 1 , R 2 , W, p1, and p2 are as defined above. In particular, X 1 and X 2 are each preferably —O—, —O—CO—, —CO—O—, and Y is a benzene ring, naphthalene ring, biphenyl ring, furan ring, respectively. And phenyl benzoate, Z 1 to Z 4 are preferably a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom, and W is preferably a benzene ring or a biphenyl ring. In addition, p1 and p2 are preferably 4 to 10.
 本発明において、上記式(1)で表わされる単量体の好ましい具体例としては、下記の構造の単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000007
In the present invention, preferable specific examples of the monomer represented by the above formula (1) include monomers having the following structure.
Figure JPOXMLDOC01-appb-C000007
 また、本発明において、上記式(2)で表わされる単量体の好ましい具体例としては、下記の構造の単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000008
In the present invention, preferred specific examples of the monomer represented by the formula (2) include monomers having the following structure.
Figure JPOXMLDOC01-appb-C000008
 本発明の光反応性組成物に含有される、上記式(1)で表わされる単量体に由来する繰り返し単位と、上記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体は、以下の式(5)で表わされる。
Figure JPOXMLDOC01-appb-C000009
A repeating unit derived from the monomer represented by the above formula (1) and a repeating unit derived from the monomer represented by the above formula (2), which are contained in the photoreactive composition of the present invention. The copolymer having is represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000009
 上記式(5)における、X、X、X、Y、Z~Z、R、R、W、p1、及びp2は、それぞれ、好ましい場合も含めて、上記式(1)、及び式(2)における定義と同じである。
 また、n/mの比率は、(上記式(1)で表わされる単量体に由来する繰り返し単位)/(上記式(2)で表わされる単量体に由来する繰り返し単位)の比率である。本発明では、n/mのモル比率は、好ましくは10/90~80/20であり、特に好ましくは、20/80~50/50である。n/mの比率が過度に大きい場合には上記光照射後の熱処理において、高温で長時間の加熱が必要となり、耐熱性の低いプラスチック材料を基材とするフィルムに適用することが困難となり、逆に過度に小さい場合には、光反応性が十分でなくなり、分子配向が誘起できなくなり、好ましくない。
In the above formula (5), X 1 , X 2 , X 3 , Y, Z 1 to Z 4 , R 1 , R 2 , W, p1, and p2 each include the above formula (1). ) And the definition in the formula (2).
The ratio of n / m is the ratio of (repeating unit derived from the monomer represented by the above formula (1)) / (repeating unit derived from the monomer represented by the above formula (2)). . In the present invention, the molar ratio of n / m is preferably 10/90 to 80/20, and particularly preferably 20/80 to 50/50. When the ratio of n / m is excessively large, in the heat treatment after the light irradiation, it is necessary to heat at a high temperature for a long time, and it becomes difficult to apply to a film based on a plastic material having low heat resistance, On the other hand, if it is too small, the photoreactivity is not sufficient, and molecular orientation cannot be induced, which is not preferable.
 上記式(1)で表わされる単量体に由来する繰り返し単位と、上記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体は、その数平均分子量が好ましくは、1000~100000であり、なかでも、5000~30000が好ましい。この数平均分子量が、上記範囲よりも小さい場合には分子配向が誘起できなくなり、また、上記範囲よりも大きい場合には製造が著しく困難になると共に、低沸点溶媒への溶解性が低下するため好ましくない。 The copolymer having a repeating unit derived from the monomer represented by the above formula (1) and a repeating unit derived from the monomer represented by the above formula (2) preferably has a number average molecular weight. 1000 to 100,000, and preferably 5000 to 30,000. If this number average molecular weight is smaller than the above range, molecular orientation cannot be induced, and if it is larger than the above range, the production becomes extremely difficult and the solubility in a low boiling point solvent decreases. It is not preferable.
 本発明の光反応性組成物に含有される、上記式(1)で表わされる単量体に由来する繰り返し単位と、上記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体には、液晶性を損なわない程度に耐熱性を向上させるための架橋性単量体を併用することや、液晶性を損なうことのない感光性の単量体、又は液晶性の発現温度を調整するための単量体などを共重合することができる。
 上記した架橋性単量体の例としては、以下のようなフェノプラスト系やエポキシ基含有化合物が挙げられる。
A repeating unit derived from the monomer represented by the above formula (1) and a repeating unit derived from the monomer represented by the above formula (2), which are contained in the photoreactive composition of the present invention. The copolymer having a crosslinkable monomer for improving heat resistance to such an extent that liquid crystallinity is not impaired, a photosensitive monomer that does not impair liquid crystallinity, or liquid crystalline Monomers and the like for adjusting the expression temperature can be copolymerized.
Examples of the cross-linkable monomer include the following phenoplast type and epoxy group-containing compounds.
 上記フェノプラスト系単量体の具体例を以下に示すが、この構造に限定されない。
Figure JPOXMLDOC01-appb-C000010
Although the specific example of the said phenoplast type monomer is shown below, it is not limited to this structure.
Figure JPOXMLDOC01-appb-C000010
 上記エポキシ基含有化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが例示される。 Specific examples of the epoxy group-containing compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1 , 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′ , N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl Such as 4,4'-diaminodiphenylmethane and the like.
 液晶性を損なわない程度に耐熱性を向上させる場合、その使用量は、液晶配向剤に含有される樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.5~20質量部である。使用量が0.1質量部未満であると耐熱性向上の効果は期待できず、30質量部よりも多くなると液晶性が損なわれる場合がある。 When the heat resistance is improved to such an extent that the liquid crystal properties are not impaired, the amount used is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the resin component contained in the liquid crystal aligning agent. Is 0.5 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving heat resistance cannot be expected, and if it exceeds 30 parts by mass, the liquid crystallinity may be impaired.
 上記感光性の単量体の具体例としては、下記の構造若しくはその誘導体を側鎖に有する重合性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 その使用量は、(上記式(1)で表わされる単量体に由来する繰り返し単位と上記式(2)で表わされる単量体に由来する繰り返し単位との合計/上記感光性の単量体)のモル比率が95/5~50/50であることが好ましく、より好ましくは95/5~80/20である。かかる比率が95/5未満であると感光性向上の効果は期待できず、50/50よりも大きくなると液晶性が損なわれる場合がある。
Specific examples of the photosensitive monomer include polymerizable compounds having the following structure or a derivative thereof in the side chain.
Figure JPOXMLDOC01-appb-C000011
The amount used is the sum of the repeating unit derived from the monomer represented by the formula (1) and the repeating unit derived from the monomer represented by the formula (2) / the photosensitive monomer. ) Is preferably 95/5 to 50/50, more preferably 95/5 to 80/20. If the ratio is less than 95/5, the effect of improving the photosensitivity cannot be expected, and if it exceeds 50/50, the liquid crystallinity may be impaired.
 また、上記液晶性の発現温度を調整するための単量体の具体例としては、下記に示すようなビフェニルやフェニルベンゾエートなどの、単独で液晶メソゲン構造となるような構造を有する重合性化合物や、安息香酸などのように側鎖同士が水素結合することで液晶メソゲン構造となるような構造を有する重合性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 その使用量は、(上記式(1)で表わされる単量体に由来する繰り返し単位と上記式(2)で表わされる単量体に由来する繰り返し単位との合計)/上記感光性の単量体)のモル比率が95/5~20/80であることが好ましく、より好ましくは95/5~50/50である。かかる比率が95/5未満であると液晶性の発現温度の調整に効果は期待できず、30/70よりも大きくなると光反応の感度が損なわれる場合がある。
Specific examples of the monomer for adjusting the liquid crystalline expression temperature include a polymerizable compound having a structure that becomes a liquid crystal mesogen structure alone, such as biphenyl and phenylbenzoate as shown below. And polymerizable compounds having a structure such that a liquid crystal mesogen structure is formed by hydrogen bonding of side chains such as benzoic acid.
Figure JPOXMLDOC01-appb-C000012
The amount used is (total of repeating units derived from the monomer represented by the above formula (1) and repeating units derived from the monomer represented by the above formula (2)) / single photosensitive amount Body) is preferably 95/5 to 20/80, more preferably 95/5 to 50/50. If the ratio is less than 95/5, the effect of adjusting the liquid crystal expression temperature cannot be expected, and if it exceeds 30/70, the sensitivity of the photoreaction may be impaired.
 さらに、上記式(1)で表わされる単量体に由来する繰り返し単位と、上記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体には、共重合される単量体として、工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
 これらのモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物などが挙げられる。
Furthermore, a copolymer having a repeating unit derived from the monomer represented by the above formula (1) and a repeating unit derived from the monomer represented by the above formula (2) is copolymerized. Examples of the monomer include industrially available monomers capable of radical polymerization reaction.
Specific examples of these monomers include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound, vinyl compound and the like.
 上記不飽和カルボン酸の具体例としては、アクリル酸、メタアクリル酸(アクリル酸、メタアクリル酸を総称して、(メタ)アクリル酸という。)、イタコン酸、マレイン酸、フマル酸などが挙げられる。
 (メタ)アクリル酸エステル化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ナフチル(メタ)アクリレート、アントリル(メタ)アクリレート、アントリルメチル(メタ)アクリレート、フェニル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-プロピル-2-アダマンチル(メタ)アクリレート、8-メチル-8-トリシクロデシル(メタ)アクリレート、8-エチル-8-トリシクロデシル(メタ)アクリレート、グリシジル(メタ)アクリレート、(3-メチル-3-オキセタニル)メチル(メタ)アクリレート、(3-エチル-3-オキセタニル)メチル(メタ)アクリレートなどの環状エーテル基を有する(メタ)アクリレートが挙げられる。
Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid (acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid), itaconic acid, maleic acid, and fumaric acid. .
Specific examples of the (meth) acrylic acid ester compound include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, benzyl (meth) acrylate, naphthyl (meth) acrylate, anthryl (meth) acrylate, anne Tolylmethyl (meth) acrylate, phenyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 2-methoxy Ethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 3-methoxybutyl (meth) acrylate 2-methyl-2-adamantyl (meth) acrylate, 2-propyl-2-adamantyl (meth) acrylate, 8-methyl-8-tricyclodecyl (meth) acrylate, 8-ethyl-8-tricyclodecyl ( (Meth) acrylates having a cyclic ether group such as (meth) acrylate, glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, (3-ethyl-3-oxetanyl) methyl (meth) acrylate Is mentioned.
 上記ビニル化合物の具体例としては、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテルなどが挙げられる。
 上記スチレン化合物の具体例としては、スチレン、メチルスチレン、クロロスチレン、ブロモスチレンなどが挙げられる。
 上記マレイミド化合物の具体例としては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミドなどが挙げられる。
Specific examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
Specific examples of the styrene compound include styrene, methylstyrene, chlorostyrene, and bromostyrene.
Specific examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
 本発明の上記式(1)で表わされる単量体に由来する繰り返し単位と、上記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が使用できる。具体的には、カチオン重合、ラジカル重合、アニオン重合により製造することができる。なかでも反応制御のしやすさなどの観点からラジカル重合が特に好ましい。
 ラジカル重合の重合開始剤としては、既知のラジカル熱重合開始剤やラジカル光重合開始剤、既知の可逆的付加-開裂型連鎖移動(RAFT)重合試薬などが使用できる。
 また、重合開始剤の使用量は、上記式(1)で表わされる単量体(1モル)に対して、0.1~10モル%であることが好ましい。
About the manufacturing method of the copolymer which has a repeating unit derived from the monomer represented by the said Formula (1) of this invention, and a repeating unit derived from the monomer represented by the said Formula (2), It is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization. Of these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
As the polymerization initiator for radical polymerization, known radical thermal polymerization initiators, radical photopolymerization initiators, known reversible addition-fragmentation chain transfer (RAFT) polymerization reagents, and the like can be used.
The amount of the polymerization initiator used is preferably 0.1 to 10 mol% with respect to the monomer (1 mol) represented by the above formula (1).
 上記ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤の具体例としては、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイドなど)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイドなど)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドパーオキサイド、クメンハイドロパーオキサイドなど)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイドなど)、パーオキシケタール類(ジブチルパーオキシシクロヘキサンなど)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ 2-エチルシクロヘキサン酸-tert-アミルエステルなど)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなど)、アゾ系化合物(アゾビスイソブチロニトリル、2,2′-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリルなど)などが挙げられる。ラジカル熱重合開始剤は、1種を単独で使用できるし、2種以上を組み合わせて使用することもできる。 The above-mentioned radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher. Specific examples of such radical thermal polymerization initiators include ketone peroxides (such as methyl ethyl ketone peroxide and cyclohexanone peroxide), diacyl peroxides (such as acetyl peroxide and benzoyl peroxide), hydroperoxides (peroxides). Hydrogen oxide, tert-butyl hydride peroxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxide) Cyclohexane etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethyl Chlorohexanoic acid-tert-amyl ester), persulfates (potassium persulfate, sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, 2,2'-di (2-hydroxyethyl) And azobisisobutyronitrile). A radical thermal polymerization initiator can be used individually by 1 type, and can also be used in combination of 2 or more type.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物である。このようなラジカル光重合開始剤の具体例としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノンなどを挙げることができる。
 これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。
The radical photopolymerization initiator is a compound that initiates radical polymerization by light irradiation. Specific examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropyl xanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-4′-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4′-di (t-butylperoxycarbonyl) ) Benzophenone, 3,4,4′-tri (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4′-methoxystyryl) -4,6-bis (trichloro) Methyl) -s-triazine, 2- (3 ′, 4′-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2 ′, 4′-dimethoxystyryl) -4,6 -Bis (trichloromethyl) -s-triazine, 2- (2'-methoxystyryl) -4,6-bis (trichloromethyl)- -Triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pN, N-di (ethoxycarbonylmethyl)]-2,6-di (Trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2′-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (4′-methoxyphenyl) ) -S-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3′-carbonylbis (7-diethylaminocoumarin), 2- (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis (2-chlorophenyl) Enyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2,2′-bis (2,4-dichlorophenyl) -4,4 ′, 5 , 5′-tetraphenyl-1,2′-biimidazole, 2,2′bis (2,4-dibromophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 3- (2-methyl-2-dimethylaminopropionyl) ) Carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenyl ketone, bis (5-2,4-cyclopentadien-1-yl) -bis (2,6-Diff Oro-3- (1H-pyrrol-1-yl) -phenyl) titanium, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetra ( t-hexylperoxycarbonyl) benzophenone, 3,3′-di (methoxycarbonyl) -4,4′-di (t-butylperoxycarbonyl) benzophenone, 3,4′-di (methoxycarbonyl) -4,3′- Di (t-butylperoxycarbonyl) benzophenone, 4,4′-di (methoxycarbonyl) -3,3′-di (t-butylperoxycarbonyl) benzophenone, 2- (3-methyl-3H-benzothiazole-2- Ylidene) -1-naphthalen-2-yl-ethanone or 2- (3-methyl-1,3-benzothiazole-2 (3H) -ylidene) -1 (2-benzoyl) ethanone, and the like.
These compounds may be used alone or in combination of two or more.
 上記したラジカル熱重合開始剤を使用したラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法などの既知の方法を用いて実施することができる。 The radical polymerization method using the above-described radical thermal polymerization initiator is not particularly limited, and known emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method, etc. This method can be used.
 本発明の光反応性組成物には、上記式(1)で表わされる単量体に由来する繰り返し単位と、上記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体に加えて、かかる共重合体を溶解する有機溶媒を含有するのが好ましい。かかる有機溶媒を含有せしめて重合体溶液とすることにより、本発明の光反応性組成物から容易に薄膜を形成することができる。
 本発明の光反応性組成物における有機溶媒の含有量は、99.7~60質量%が好ましく、特には、99.5~70質量%が好ましい。かかる含有量とすることにより、本発明の光反応性組成物から容易に薄膜を形成するのに、好ましい粘度の溶液とすることができる。
The photoreactive composition of the present invention includes a copolymer having a repeating unit derived from the monomer represented by the formula (1) and a repeating unit derived from the monomer represented by the formula (2). In addition to the polymer, it preferably contains an organic solvent that dissolves the copolymer. A thin film can be easily formed from the photoreactive composition of the present invention by adding a polymer solution containing such an organic solvent.
The content of the organic solvent in the photoreactive composition of the present invention is preferably 99.7 to 60% by mass, particularly preferably 99.5 to 70% by mass. By setting it as this content, it can be set as the solution of a preferable viscosity for forming a thin film easily from the photoreactive composition of this invention.
 本発明の光反応性組成物に含有される有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。 The organic solvent contained in the photoreactive composition of the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, Tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethyl Propanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme 4-hydroxy-4-methyl-2-pentanone, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene Glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, Jeechile Glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene , Propyl ether, dihexyl ether, 1-hexanol, n- Xanthone, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3-methoxypropionic acid Methyl, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether -Acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, Examples thereof include lactic acid isoamyl ester. These may be used alone or in combination.
 なかでも、本発明の光反応性組成物から得られる光配向膜を液晶配向膜として用いる場合は、低温焼成するときには、焼成後の残存溶媒が多いと液晶の配向性や基板との密着性が悪化する場合があり、また、液晶セルの電気特性が悪化する場合があるため、沸点が低いか、蒸気圧の大きい有機溶媒を使用するのが好ましい。かかる有機溶媒の具体例としては、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルが好ましい。 In particular, when the photo-alignment film obtained from the photoreactive composition of the present invention is used as a liquid crystal alignment film, when firing at a low temperature, if there is a large amount of residual solvent after firing, the orientation of the liquid crystal and the adhesion to the substrate will be Since the liquid crystal cell may deteriorate and the electrical characteristics of the liquid crystal cell may deteriorate, it is preferable to use an organic solvent having a low boiling point or a high vapor pressure. Specific examples of such organic solvents include ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone, isopropyl Alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, Ethylene glycol monobutyl ether, propylene glycol, propylene glycol Monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl Ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxy Butanol, di Sopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, Diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, Ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol- 1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, and lactate isoamyl ester are preferred.
 本発明の光反応性組成物には、さらに、添加剤として、光増感剤を含有することもできる。これらの光増感剤としては、無色増感剤や三重項増感剤が好ましい。
 上記光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、アミノ置換された、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-若しくはジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン)、ベンゾチアゾール、ニトロアニリン(m-若しくはp-ニトロアニリン、2,4,6-トリニトロアニリン)又はニトロアセナフテン(5-ニトロアセナフテン)、(2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、9-アントラセンカルボン酸)、ベンゾピラン、アゾインドリジン、メロクマリンなどがある。
 なかでも、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、アセトフェノンケタールが好ましい。
The photoreactive composition of the present invention can further contain a photosensitizer as an additive. As these photosensitizers, colorless sensitizers and triplet sensitizers are preferable.
Examples of the photosensitizer include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted compounds. Aromatic 2-hydroxy ketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl-β-naphthothiazoline, 2- (β-naphthoylmethylene) -3-methylbenzothiazoline, 2- (α-naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-biphenoylmethylene)- 3-methylbenzothiazo 2- (β-naphthoylmethylene) -3-methyl-β-naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl-β-naphthothiazoline, 2- (p-fluorobenzoylmethylene)- 3-methyl-β-naphthothiazoline), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2- (α-naphthoylmethylene) ) -3-methylbenzoxazoline, 2- (4-biphenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-biphenoyl) Methylene) -3-methyl-β-naphthoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β-na Toxazoline), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4,6-trinitroaniline) or nitroacenaphthene (5-nitroacenaphthene), (2-[(m-hydroxy-p -Methoxy) styryl] benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone), naphthalene, anthracene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, 9-anthracenemethanol 9-anthracenecarboxylic acid), benzopyran, azoindolizine, melocoumarin and the like.
Of these, aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonylbiscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferable.
 本発明の光反応性組成物には、上記したものの他、本発明の効果が損なわれない限りであれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、また、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。
 さらに、膜厚の均一性や表面平滑性を向上させるために、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などの界面活性剤を添加してもよい。
 より具体的には、例えば、エフトップ301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710(旭硝子社製)、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)などが挙げられる。
 上記界面活性剤は、本発明の光反応性組成物に含有される共重合体の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部含有される。
In addition to the above, the photoreactive composition of the present invention includes a dielectric material for the purpose of changing electrical characteristics such as dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. In addition, a crosslinkable compound may be added for the purpose of increasing the hardness and density of the film when formed into a liquid crystal alignment film.
Furthermore, in order to improve film thickness uniformity and surface smoothness, a surfactant such as a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant may be added.
More specifically, for example, F-Top 301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Examples include Guard AG710 (manufactured by Asahi Glass Co., Ltd.), Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.).
The surfactant is preferably contained in an amount of 0.01 to 2 parts by weight, more preferably 0.01 to 1 part by weight, based on 100 parts by weight of the copolymer contained in the photoreactive composition of the present invention. Is done.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシランなどが挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Examples thereof include propyltrimethoxysilane and N-bis (oxyethylene) -3-aminopropyltriethoxysilane.
 本発明の光反応性組成物からは、上記したように、優れた特性を有する光学異方性膜が得られるが、光学異方性膜の作製は、以下のようにして実施するのが好ましい。
 本発明の光反応性組成物を基材に塗布して塗膜を形成する。塗膜の形成は、通常、スピンコート法、印刷法、インクジェット法、バーコート法、グラビアコート法などで行われる。
 乾燥は、通常、40~150℃で1~15分間、好ましくは、50~110℃で1~5分間行われる。
 塗膜の厚みは、通常、0.02~5.0μmであり、好ましくは、0.02~2.0μmである。
As described above, an optically anisotropic film having excellent characteristics can be obtained from the photoreactive composition of the present invention. However, the production of the optically anisotropic film is preferably carried out as follows. .
The photoreactive composition of the present invention is applied to a substrate to form a coating film. The coating film is usually formed by a spin coating method, a printing method, an ink jet method, a bar coating method, a gravure coating method, or the like.
The drying is usually performed at 40 to 150 ° C. for 1 to 15 minutes, preferably at 50 to 110 ° C. for 1 to 5 minutes.
The thickness of the coating film is usually 0.02 to 5.0 μm, preferably 0.02 to 2.0 μm.
 本発明において、光反応性組成物の塗膜を形成する基材としては、好ましくは透明性の高い基材であれば特に限定されず、板状からフィルム状のものが使用される。
 基材の材質は、ガラス、窒化珪素、シリコンウェハなどのセラミックス、アクリル樹脂、ポリカーボネート樹脂、トリアセチルセルロース樹脂、ポリエチレンテレフタレート樹脂、シクロオレフィン樹脂などのプラスチックスなどを用いることができる。なかでも、本発明では、上記したように、基材として、耐熱性の小さい、プラスチックスを用いることができる特徴を有する。
In the present invention, the substrate for forming the coating film of the photoreactive composition is not particularly limited as long as it is a highly transparent substrate, and a plate-like to film-like one is used.
As the material of the base material, ceramics such as glass, silicon nitride, and silicon wafer, plastics such as acrylic resin, polycarbonate resin, triacetyl cellulose resin, polyethylene terephthalate resin, and cycloolefin resin can be used. Especially, in this invention, as mentioned above, it has the characteristics which can use plastics with small heat resistance as a base material.
 光反応性組成物の塗膜は、次いで、偏光紫外線で照射処理することにより、配向させて異方性を付与することができる。偏光紫外線としては、波長が、好ましくは200~400nm、特に好ましくは254~365nmのものが使用される。照射量は、好ましくは1~10000mJ、特に好ましくは1~500mJである。偏光紫外線の照射は、塗膜を好ましくは、10~150℃、特に好ましくは20~120℃に加熱しながら照射してもよい。 The coating film of the photoreactive composition can then be oriented and imparted with anisotropy by irradiation treatment with polarized ultraviolet rays. As the polarized ultraviolet rays, those having a wavelength of preferably 200 to 400 nm, particularly preferably 254 to 365 nm are used. The irradiation amount is preferably 1 to 10000 mJ, particularly preferably 1 to 500 mJ. The irradiation with polarized ultraviolet rays may be performed while heating the coating film preferably at 10 to 150 ° C., particularly preferably at 20 to 120 ° C.
 基材上に形成された光反応性組成物の塗膜は、次いで、加熱処理が行われる。加熱処理は、好ましくは50~150℃で1~30分間、特に好ましくは70~120℃で1~15分間の加熱を行う。このとき、加熱温度の上限としては、用いる基材により選択され、また、下限については、該重合体の液晶性発現温度により選択される。
 上記のようにして基板上に、光反応性組成物の薄膜を製造することができる。
 光反応性組成物の薄膜の膜厚は、20~5000nmが好ましく、20~2000nmがより好ましい。
The coating film of the photoreactive composition formed on the substrate is then subjected to heat treatment. The heat treatment is preferably performed at 50 to 150 ° C. for 1 to 30 minutes, particularly preferably at 70 to 120 ° C. for 1 to 15 minutes. At this time, the upper limit of the heating temperature is selected depending on the substrate to be used, and the lower limit is selected depending on the liquid crystalline expression temperature of the polymer.
As described above, a thin film of a photoreactive composition can be produced on a substrate.
The film thickness of the thin film of the photoreactive composition is preferably 20 to 5000 nm, and more preferably 20 to 2000 nm.
 以下、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明はこれらに限定して解釈されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples of the present invention, but the present invention is not construed as being limited thereto.
<合成例1>
 特許文献(WO2011-084546)に記載の合成法にて下記式(1)に示される化合物を合成した。
<Synthesis Example 1>
A compound represented by the following formula (1) was synthesized by a synthesis method described in a patent document (WO2011-084546).
<合成例2>
 特許文献(特開平9-118717)に記載の合成法にて化合物(A)を得た。この化合物(A)10.0g、DMAP(4-ジメチルアミノピリジン)(0.3g)とメトキシフェノール(4.1g)を室温でジクロロメタン100mlに溶解した後、DCC(N,N'-ジシクロヘキシルカルボジイミド)(7.9g)を加え、室温で反応させることにより下記式(2)に示される化合物11.4g(収率85%)を得た。
<Synthesis Example 2>
Compound (A) was obtained by the synthesis method described in the patent document (Japanese Patent Laid-Open No. 9-118717). After dissolving 10.0 g of this compound (A), DMAP (4-dimethylaminopyridine) (0.3 g) and methoxyphenol (4.1 g) in 100 ml of dichloromethane at room temperature, DCC (N, N′-dicyclohexylcarbodiimide) (7.9 g) was added and reacted at room temperature to obtain 11.4 g (yield 85%) of a compound represented by the following formula (2).
<合成例3>
 4-(6-アクリロイルオキシ-1-ヘキシルオキシ)安息香酸29.2g、4-ヒドロキシビフェニル17.0g、DMAP0.6g、及び少量のジブチルヒドロキシトルエン(BHT)を室温にて塩化メチレン200mLに懸濁させた。その後、本懸濁液にDCC24.0g(116mmol)を溶解させた塩化メチレン溶液(塩化メチレン100ml)を加え、室温で反応させることにより、下記式(3)に示される化合物39.6g(収率89%)を得た。
Figure JPOXMLDOC01-appb-C000013
<Synthesis Example 3>
Suspend 2-9.2 g of 4- (6-acryloyloxy-1-hexyloxy) benzoic acid, 17.0 g of 4-hydroxybiphenyl, 0.6 g of DMAP, and a small amount of dibutylhydroxytoluene (BHT) in 200 mL of methylene chloride at room temperature. I let you. Thereafter, a methylene chloride solution (100 ml of methylene chloride) in which 24.0 g (116 mmol) of DCC was dissolved was added to this suspension and reacted at room temperature, whereby 39.6 g of a compound represented by the following formula (3) (yield) 89%).
Figure JPOXMLDOC01-appb-C000013
<合成例4>
 上記式(1)で示されるメタクリル酸エステル(1.5g)と上記式(2)で示されるメタクリル酸エステル(1.24g)を60対40となる割合(モル比)でテトラヒドロフラン(25ml)中に溶解し、反応開始剤としてアゾビスイソブチロニトリル(AIBN)を添加(式(1)と式(2)のメタクリル酸エステルの合計に対して2.0モル%)して重合(重合温度50℃)することにより重合体1を得た。
 この重合体1の分子量はMn:41000であり、この重合体1は77~152℃の温度範囲で液晶性を示した。
<Synthesis Example 4>
Methacrylic acid ester (1.5 g) represented by the above formula (1) and methacrylic acid ester (1.24 g) represented by the above formula (2) in tetrahydrofuran (25 ml) at a ratio (molar ratio) of 60:40. And then added with azobisisobutyronitrile (AIBN) as a reaction initiator (2.0 mol% with respect to the total of the methacrylic acid esters of the formula (1) and the formula (2)) and polymerized (polymerization temperature). To obtain a polymer 1.
The molecular weight of this polymer 1 was Mn: 41000, and this polymer 1 exhibited liquid crystallinity in the temperature range of 77 to 152 ° C.
<合成例5>
 合成例4の上記式(1)と上記式(2)の割合を40対60としたこと以外は合成例4と同様な操作をすることにより、重合体2を得た。この重合体2の分子量はMn:27000であり、この重合体2は53~132℃の温度範囲で液晶性を示した。
<Synthesis Example 5>
Polymer 2 was obtained by performing the same operation as in Synthesis Example 4 except that the ratio of Formula (1) and Formula (2) in Synthesis Example 4 was 40:60. The molecular weight of this polymer 2 was Mn: 27000, and this polymer 2 exhibited liquid crystallinity in the temperature range of 53 to 132 ° C.
<合成例6>
 合成例4の上記式(1)と上記式(2)の割合を20対80としたこと以外は合成例4と同様な操作をすることにより、重合体3を得た。この重合体3の分子量はMn:43000であり、この重合体3は43~119℃の温度範囲で液晶性を示した。
<Synthesis Example 6>
Polymer 3 was obtained by performing the same operation as in Synthesis Example 4 except that the ratio of Formula (1) and Formula (2) in Synthesis Example 4 was 20:80. The molecular weight of this polymer 3 was Mn: 43000, and this polymer 3 exhibited liquid crystallinity in the temperature range of 43 to 119 ° C.
<合成例7>
 合成例4の上記式(2)を上記式(3)に変更し、上記式(1)と上記式(3)の割合を30対70としたこと以外は合成例4と同様な操作をすることにより、重合体4を得た。この重合体4の分子量はMn:11000であり、この重合体4は80~135℃の温度範囲で液晶性を示した。
<Synthesis Example 7>
The same operation as the synthesis example 4 is performed except that the formula (2) of the synthesis example 4 is changed to the formula (3) and the ratio of the formula (1) and the formula (3) is set to 30:70. As a result, a polymer 4 was obtained. The molecular weight of this polymer 4 was Mn: 11000, and this polymer 4 exhibited liquid crystallinity in the temperature range of 80 to 135 ° C.
<合成例8>
 上記式(1)で示されるメタクリル酸エステル(1.0g)をテトラヒドロフラン(9.1ml)中に溶解し、反応開始剤としてアゾビスイソブチロニトリル(AIBN)を添加(式(1)のメタクリル酸エステルに対して1.5モル%)して重合(重合温度50℃)することにより重合体5を得た。この重合体5の分子量はMn:31000であり、この重合体5は147~199℃の温度範囲で液晶性を示した。
<Synthesis Example 8>
A methacrylic acid ester (1.0 g) represented by the above formula (1) is dissolved in tetrahydrofuran (9.1 ml), and azobisisobutyronitrile (AIBN) is added as a reaction initiator (methacrylic acid of the formula (1)). Polymer 5 was obtained by polymerization (polymerization temperature 50 ° C.) by polymerization (1.5 mol% with respect to the acid ester). The molecular weight of this polymer 5 was Mn: 31000, and this polymer 5 exhibited liquid crystallinity in the temperature range of 147 to 199 ° C.
<異方性を導入された配向フィルムの作製>
<実施例1>
 合成例4で得られた重合体1(0.3g)をテトラヒドロフラン(14.7ml)に溶解し、ガラス基板に、約190nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成した。この基板を用いて紫外吸収スペクトルを測定した後、側鎖型高分子膜に、グランテーラープリズムを用いて、300nm以下がカットされ、直線偏光に変換した紫外線を照射した。
 こうして得られた基板上の側鎖型高分子膜を用いて紫外吸収スペクトルを測定し、側鎖型高分子膜について、照射した偏光紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価した。
 ΔAは偏光紫外線を波長365nm換算で70mJ照射した際に、314nmで最大0.15となる。一方、ΔAが0.035(最大値に対して23%の差)になるように300nm以下がカットされた偏光紫外線を4mJ(波長365nmで測定)照射し、続いて、この基板を100℃まで加熱し、側鎖型高分子膜を液晶配向層として、そのまま5分間保持した。その後、室温まで冷却して、膜中に異方性の導入された側鎖型高分子膜(膜厚190nm)を有する基板を得た。その場合、ΔAは大きく増幅され、配向度は0.45となり、そのときの複屈折率は0.11であった。
<Preparation of oriented film with anisotropy introduced>
<Example 1>
The polymer 1 (0.3 g) obtained in Synthesis Example 4 is dissolved in tetrahydrofuran (14.7 ml) and spin-coated on a glass substrate with a thickness of about 190 nm, whereby a side chain polymer film is formed on the substrate. Formed. After measuring the ultraviolet absorption spectrum using this substrate, the side chain type polymer film was irradiated with ultraviolet rays having a wavelength of 300 nm or less cut and converted into linearly polarized light using a Grand Taylor prism.
The side-chain polymer film on the substrate thus obtained was used to measure the ultraviolet absorption spectrum, and the side-chain polymer film was measured in a direction perpendicular to the UV absorbance in the direction parallel to the polarization direction of the irradiated polarized UV light. ΔA, which is the difference from the ultraviolet absorbance, was evaluated.
ΔA reaches a maximum of 0.15 at 314 nm when irradiated with polarized ultraviolet rays at a wavelength of 365 nm in an amount of 70 mJ. On the other hand, irradiated with polarized ultraviolet rays (measured at a wavelength of 365 nm) with 300 nm or less cut so that ΔA is 0.035 (23% difference from the maximum value), and then the substrate is heated to 100 ° C. It heated and the side chain type polymer film was kept as a liquid crystal alignment layer for 5 minutes. Then, it cooled to room temperature and obtained the board | substrate which has the side chain type polymer film (film thickness 190nm) by which the anisotropy was introduce | transduced in the film | membrane. In that case, ΔA was greatly amplified, the degree of orientation was 0.45, and the birefringence at that time was 0.11.
<実施例2>
 合成例5で得られた重合体2(0.3g)を用い、偏光紫外線の照射量を5mJ(ΔAの最大値の25%のΔAとなる照射量)とし、加熱温度を95℃とした以外は実施例1と同様に偏光紫外線照射とその後の熱処理を行った。その結果、熱処理前後のΔAは大きく増幅され、配向度は314nmで0.58となり、そのときの複屈折率は0.12であった。
<Example 2>
Polymer 2 (0.3 g) obtained in Synthesis Example 5 was used, except that the irradiation amount of polarized ultraviolet rays was 5 mJ (the irradiation amount at which ΔA was 25% of the maximum value of ΔA), and the heating temperature was 95 ° C. In the same manner as in Example 1, irradiation with polarized ultraviolet rays and subsequent heat treatment were performed. As a result, ΔA before and after the heat treatment was greatly amplified, the degree of orientation was 0.58 at 314 nm, and the birefringence at that time was 0.12.
<実施例3>
 合成例6で得られた重合体3(0.3g)を用い、偏光紫外線の照射量を8mJ(ΔAの最大値の33%のΔAとなる照射量)とし、加熱温度を85℃とした以外は実施例1と同様に偏光紫外線照射とその後の熱処理を行った。その結果、熱処理前後のΔAは大きく増幅され、配向度は314nmで0.48となり、そのときの複屈折率は0.16であった。
<Example 3>
Polymer 3 (0.3 g) obtained in Synthesis Example 6 was used, the amount of irradiation with polarized ultraviolet rays was 8 mJ (the amount of irradiation with which ΔA was 33% of the maximum value of ΔA), and the heating temperature was 85 ° C. In the same manner as in Example 1, irradiation with polarized ultraviolet rays and subsequent heat treatment were performed. As a result, ΔA before and after the heat treatment was greatly amplified, the degree of orientation was 0.48 at 314 nm, and the birefringence at that time was 0.16.
<実施例4>
 合成例4で得られた重合体1(0.3g)をプロピレングリコールモノメチルエーテルとシクロヘキサノンの混合溶媒(容積比7:3、2.7ml)に溶解し、アクリルフィルム上に、約800nmの厚さで塗布することでフィルム上に側鎖型高分子膜を形成した。この高分子膜が形成されたフィルムにグランテーラープリズムを用いて、313nmの直線偏光に変換した紫外線を20mJ照射した。その後、この基板を熱風循環オーブン中で100℃まで加熱し、側鎖型高分子膜を液晶配向層として、そのまま10分間保持した。その後、室温まで冷却して、膜中に異方性の導入された側鎖型高分子膜(膜厚800nm)を有するフィルムを得た。このフィルムの複屈折率は0.08であった。
<Example 4>
Polymer 1 (0.3 g) obtained in Synthesis Example 4 was dissolved in a mixed solvent of propylene glycol monomethyl ether and cyclohexanone (volume ratio 7: 3, 2.7 ml), and a thickness of about 800 nm was formed on the acrylic film. The side chain type polymer film was formed on the film by coating with (1). The film on which this polymer film was formed was irradiated with 20 mJ of ultraviolet rays converted to linearly polarized light of 313 nm using a Grand Taylor prism. Thereafter, this substrate was heated to 100 ° C. in a hot air circulating oven, and the side chain type polymer film was held as it was for 10 minutes as a liquid crystal alignment layer. Then, it cooled to room temperature and obtained the film which has a side chain type polymer film (film thickness of 800 nm) in which anisotropy was introduced in the film. The birefringence of this film was 0.08.
<実施例5>
 合成例5で得られた重合体2(0.3g)をプロピレングリコールモノメチルエーテルとシクロヘキサノンの混合溶媒(容積比7:3、2.7ml)に溶解し、直線偏光に変換した紫外線を10mJ照射した以外は、実施例4と同様にして膜中に異方性の導入された側鎖型高分子膜を有するフィルムを得た。このフィルムの複屈折率は0.074であった。
<Example 5>
Polymer 2 (0.3 g) obtained in Synthesis Example 5 was dissolved in a mixed solvent of propylene glycol monomethyl ether and cyclohexanone (volume ratio 7: 3, 2.7 ml), and irradiated with 10 mJ of ultraviolet rays converted to linearly polarized light. Except for the above, a film having a side chain polymer film having anisotropy introduced therein was obtained in the same manner as in Example 4. The birefringence of this film was 0.074.
<実施例6>
 合成例7で得られた重合体4(0.3g)をプロピレングリコールモノメチルエーテルアセテートとシクロヘキサノンの混合溶媒(容積比7:3、2.7ml)に溶解し、直線偏光に変換した紫外線を7mJ照射した以外は、実施例4と同様にして膜中に異方性の導入された側鎖型高分子膜を有するフィルムを得た。このフィルムの複屈折率は0.056であった。
<Example 6>
Polymer 4 (0.3 g) obtained in Synthesis Example 7 was dissolved in a mixed solvent of propylene glycol monomethyl ether acetate and cyclohexanone (volume ratio 7: 3, 2.7 ml) and irradiated with 7 mJ of ultraviolet light converted to linearly polarized light. Except for the above, a film having a side chain polymer film having anisotropy introduced therein was obtained in the same manner as in Example 4. The birefringence of this film was 0.056.
<比較例1>
 合成例8で得られた重合体5(0.3g)をテトラヒドロフラン(14.7ml)に溶解し、ガラス基板に、約150nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成したこと、偏光紫外線の照射量を5mJ(ΔAの最大値の10%のΔAとなる照射量)とした以外は、実施例1と同様に偏光紫外線照射とその後の熱処理を行い、膜中に異方性の導入された側鎖型高分子膜を有する基板を得た。この際、熱処理前後のΔAは0.07から0.07と変化せず、ΔAの増幅は確認されなかった。そのときの複屈折率は0.01であった。
<Comparative Example 1>
The polymer 5 (0.3 g) obtained in Synthesis Example 8 is dissolved in tetrahydrofuran (14.7 ml), and spin-coated on a glass substrate with a thickness of about 150 nm, whereby a side chain polymer film is formed on the substrate. In the film, irradiation with polarized ultraviolet light and subsequent heat treatment were performed in the same manner as in Example 1 except that the amount of irradiation with polarized ultraviolet light was 5 mJ (the amount of irradiation with which ΔA was 10% of the maximum value of ΔA). A substrate having a side chain polymer film with anisotropy introduced therein was obtained. At this time, ΔA before and after the heat treatment did not change from 0.07 to 0.07, and amplification of ΔA was not confirmed. At that time, the birefringence was 0.01.
<比較例2>
 合成例8で得られた重合体5(0.3g)をプロピレングリコールモノメチルエーテルとジエチレングリコールモノメチルエーテル混合溶媒(容積比7:3、2.7ml)に溶解し、アクリルフィルム上に、約800nmの厚さで塗布することでフィルム上に側鎖型高分子膜を形成した。この高分子膜が形成されたフィルムにグランテーラープリズムを用いて、313nmの直線偏光に変換した紫外線を5mJ照射した。その後、この基板を熱風循環オーブン中で100℃まで加熱し、側鎖型高分子膜を液晶配向層として、そのまま10分間保持した。その後、室温まで冷却して、膜中に異方性の導入された側鎖型高分子膜を有するフィルムを得た。このフィルムの複屈折率は0.01であった。
<Comparative Example 2>
Polymer 5 (0.3 g) obtained in Synthesis Example 8 was dissolved in a mixed solvent of propylene glycol monomethyl ether and diethylene glycol monomethyl ether (volume ratio 7: 3, 2.7 ml), and the thickness of about 800 nm was formed on the acrylic film. By coating, a side chain type polymer film was formed on the film. The film on which this polymer film was formed was irradiated with 5 mJ of ultraviolet rays converted to 313 nm linearly polarized light using a Grand Taylor prism. Thereafter, this substrate was heated to 100 ° C. in a hot air circulating oven, and the side chain type polymer film was held as it was for 10 minutes as a liquid crystal alignment layer. Then, it cooled to room temperature and obtained the film which has a side chain type polymer film into which anisotropy was introduced in the film. The birefringence of this film was 0.01.
[液晶セルの作製]
<実施例7>
 合成例4で得られた重合体1(0.3g)をプロピレングリコールモノメチルエーテルとシクロヘキサノンの混合溶媒(容積比3:7、4.7ml)に溶解し、液晶配向剤(A)を得た。この液晶配向剤(A)をガラス基板にスピンコート法により塗布した後、50℃で5分間、ホットプレート上で乾燥させることにより、厚さ80nmの高分子膜を得た。この高分子膜にグランテーラープリズムを用いて313nmの直線偏光に変換した紫外線を4mJ照射した。その後、この基板をホットプレート上で100℃まで加熱し、側鎖型高分子膜を液晶相として、そのまま10分間保持した。その後、室温まで冷却して、膜中に異方性の導入された液晶配向膜を有する基板を得た。
 このようにして得られた、配向処理を施された液晶配向膜付き基板2枚を用いて、液晶MLC-2003(メルクジャパン社製)を挟持したアンチパラレル液晶セルを得た。
 得られた液晶セルを直交ニコル下で観察したところ、配向不良のない均一な液晶配向が観察された。
 また、このような異方性を導入された液晶配向膜付きのITO(Indium Tin Oxide)基板を2枚作製し、それらの間に液晶MLC-2003(C60)を挟持し、得られた液晶セルを、さらに一対の直線偏光板で挟持することにより、液晶の厚さが6μmのTN(Twisted Nematic)型液晶表示素子を作製した。
 このTN型液晶表示素子ではITO電極への電圧印加による液晶の駆動が確認できた。
 また、この液晶表示素子は全面にわたり配向欠陥の無いことが確認され、電圧印加による均一な液晶の配向変化が確認された。
 すなわち、上記で得られた液晶配向膜を用い、液晶表示素子を製造することができた。評価結果を表1にまとめる。
[Production of liquid crystal cell]
<Example 7>
Polymer 1 (0.3 g) obtained in Synthesis Example 4 was dissolved in a mixed solvent of propylene glycol monomethyl ether and cyclohexanone (volume ratio 3: 7, 4.7 ml) to obtain a liquid crystal aligning agent (A). The liquid crystal aligning agent (A) was applied to a glass substrate by a spin coating method, and then dried on a hot plate at 50 ° C. for 5 minutes to obtain a polymer film having a thickness of 80 nm. This polymer film was irradiated with 4 mJ of ultraviolet rays converted to 313 nm linearly polarized light using a Grand Taylor prism. Thereafter, this substrate was heated to 100 ° C. on a hot plate, and the side chain polymer film was kept as a liquid crystal phase for 10 minutes. Then, it cooled to room temperature and obtained the board | substrate which has the liquid crystal aligning film into which the anisotropic was introduce | transduced in the film | membrane.
An anti-parallel liquid crystal cell sandwiching liquid crystal MLC-2003 (manufactured by Merck Japan Co., Ltd.) was obtained using the two substrates with a liquid crystal alignment film that had been subjected to the alignment treatment.
When the obtained liquid crystal cell was observed under crossed Nicols, uniform liquid crystal alignment without alignment failure was observed.
In addition, two ITO (Indium Tin Oxide) substrates with a liquid crystal alignment film introduced with such anisotropy were produced, and a liquid crystal MLC-2003 (C60) was sandwiched between them to obtain a liquid crystal cell Was further sandwiched between a pair of linear polarizing plates to produce a TN (Twisted Nematic) type liquid crystal display element having a liquid crystal thickness of 6 μm.
In this TN type liquid crystal display element, it was confirmed that the liquid crystal was driven by applying a voltage to the ITO electrode.
In addition, it was confirmed that the liquid crystal display element had no alignment defect over the entire surface, and a uniform change in the alignment of liquid crystal due to voltage application was confirmed.
That is, a liquid crystal display element could be manufactured using the liquid crystal alignment film obtained above. The evaluation results are summarized in Table 1.
<実施例8>
 合成例5で得られた重合体2(0.3g)を用い、偏光紫外線の照射量を5mJ(ΔAの最大値の25%のΔAとなる照射量)とし、加熱温度を95℃とした以外は実施例7と同様にして液晶セルを作製した。結果を表1にまとめる。
<Example 8>
Polymer 2 (0.3 g) obtained in Synthesis Example 5 was used, except that the irradiation amount of polarized ultraviolet rays was 5 mJ (the irradiation amount at which ΔA was 25% of the maximum value of ΔA), and the heating temperature was 95 ° C. Produced a liquid crystal cell in the same manner as in Example 7. The results are summarized in Table 1.
<実施例9>
 合成例6で得られた重合体3(0.3g)を用い、偏光紫外線の照射量を8mJ(ΔAの最大値の33%のΔAとなる照射量)とし、加熱温度を85℃とした以外は実施例7と同様にして液晶セルを作製した。結果を表1にまとめる。
<Example 9>
Polymer 3 (0.3 g) obtained in Synthesis Example 6 was used, the amount of irradiation with polarized ultraviolet rays was 8 mJ (the amount of irradiation with which ΔA was 33% of the maximum value of ΔA), and the heating temperature was 85 ° C. Produced a liquid crystal cell in the same manner as in Example 7. The results are summarized in Table 1.
<比較例3>
 合成例8で得られた重合体5(0.3g)をテトラヒドロフラン(14.7ml)に溶解し、ガラス基板に、約80nmの厚さでスピンコートすることで基板上に高分子膜を形成したこと、偏光紫外線の照射量を5mJとした以外は、実施例7と同様にして液晶セルを作製した。
 得られたアンチパラレルセルを直交ニコル下で観察したところ、液晶は無配向となり、均一な液晶の配向は得られなかった。結果を表1にまとめる。
<Comparative Example 3>
Polymer 5 (0.3 g) obtained in Synthesis Example 8 was dissolved in tetrahydrofuran (14.7 ml), and a polymer film was formed on the substrate by spin coating on a glass substrate with a thickness of about 80 nm. In addition, a liquid crystal cell was produced in the same manner as in Example 7 except that the irradiation amount of polarized ultraviolet rays was changed to 5 mJ.
When the obtained antiparallel cell was observed under crossed Nicols, the liquid crystal was non-aligned, and uniform liquid crystal alignment was not obtained. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明の光反応性組成物から形成された光配向膜や位相差フィルムは、耐熱性の小さいプラスチック上にも形成し得るために、分子配向を制御した光学素子や液晶配向膜として広い範囲において使用し得るもので、産業上の高い有用性を有する。
 なお、2012年11月14日に出願された日本特許出願2012-250558号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Since the photo-alignment film and retardation film formed from the photoreactive composition of the present invention can be formed on a plastic having low heat resistance, it is widely used as an optical element or liquid crystal alignment film with controlled molecular orientation. It can be used and has high industrial utility.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-250558 filed on November 14, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (10)

  1.  下記式(1)で表わされる単量体に由来する繰り返し単位と、下記式(2)で表わされる単量体に由来する繰り返し単位と、を有する共重合体を含有することを特徴とする光反応性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (X、及びXは、それぞれ独立に、-O-、-O-CO-、-CO-O-、-NH-CO-、又は-CO-NH-である。
    は、-O-CO-又は-CO-O-である。Yは、ベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、ベンゾフェノン、及びフェニルベンゾエートからなる群から選ばれる基であり、それぞれの環はアルキル基、アルコキシ基、ハロゲン原子、ニトロ基、又はシアノ基で置換されていてもよい。
    、及びRは、それぞれ独立に、水素原子又はメチル基である。
    p1、及びp2は、それぞれ独立に、2~12の整数である。
    Wは、ベンゼン環、ナフタレン環、及びビフェニル環からなる群から選ばれる基であり、それぞれの環はアルキル基、アルコキシ基、ハロゲン原子、ニトロ基、又はシアノ基で置換されてもよい。
    ~Zは、それぞれ独立して、水素原子、アルキル基、アルコキシ基、ハロゲン原子、ニトロ基、又はシアノ基である。)
    A light comprising a copolymer having a repeating unit derived from a monomer represented by the following formula (1) and a repeating unit derived from a monomer represented by the following formula (2): Reactive composition.
    Figure JPOXMLDOC01-appb-C000001
    (X 1 and X 2 are each independently —O—, —O—CO—, —CO—O—, —NH—CO—, or —CO—NH—.
    X 3 is —O—CO— or —CO—O—. Y is a group selected from the group consisting of a benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, benzophenone, and phenylbenzoate, and each ring is an alkyl group, an alkoxy group, a halogen atom, a nitro group, or It may be substituted with a cyano group.
    R 1 and R 2 are each independently a hydrogen atom or a methyl group.
    p1 and p2 are each independently an integer of 2 to 12.
    W is a group selected from the group consisting of a benzene ring, a naphthalene ring, and a biphenyl ring, and each ring may be substituted with an alkyl group, an alkoxy group, a halogen atom, a nitro group, or a cyano group.
    Z 1 to Z 4 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, a nitro group, or a cyano group. )
  2.  (上記式(1)で表わされる単量体に由来する繰り返し単位)/(上記式(2)で表わされる単量体に由来する繰り返し単位)のモル比率が、10/90~80/20である請求項1に記載の光反応性組成物。 The molar ratio of (repeat unit derived from the monomer represented by the above formula (1)) / (repeat unit derived from the monomer represented by the above formula (2)) was 10/90 to 80/20. The photoreactive composition according to claim 1.
  3.  上記式(1)で表わされる単量体が、下記式(3)で表わされる桂皮酸化合物であり、上記式(2)で表わされる単量体が、下記式(4)で表わされる安息香酸エステル化合物である請求項1又は2に記載の光反応性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (R1、及びp1はそれぞれ、上記式(1)で定義したものと同義である。
    は、単結合、-O-CO-、又は-CO-O-である。
    mは、0又は1であり、mが0のとき、Xは単結合である。)
    Figure JPOXMLDOC01-appb-C000003
    (R、p23、及びZ~Zはそれぞれ、上記式(2)で定義したものと同義である。
    Rは、水素原子、アルキル基、又はアルコキシ基である。
    は、1又は2である。)
    The monomer represented by the above formula (1) is a cinnamic acid compound represented by the following formula (3), and the monomer represented by the above formula (2) is benzoic acid represented by the following formula (4). The photoreactive composition according to claim 1, which is an ester compound.
    Figure JPOXMLDOC01-appb-C000002
    (R 1 and p 1 are respectively synonymous with those defined in the above formula (1).
    X 4 is a single bond, —O—CO—, or —CO—O—.
    m is 0 or 1, and when m is 0, X 4 is a single bond. )
    Figure JPOXMLDOC01-appb-C000003
    (R 2 , p 2 , X 3, and Z 1 to Z 4 are respectively synonymous with those defined in the above formula (2).
    R 3 is a hydrogen atom, an alkyl group, or an alkoxy group.
    m 1 is 1 or 2. )
  4.  共重合体の数平均分子量が1000~100000である請求項1~3のいずれかに記載の光反応性組成物。 The photoreactive composition according to any one of claims 1 to 3, wherein the copolymer has a number average molecular weight of 1,000 to 100,000.
  5.  さらに、有機溶媒を含有する請求項1~4のいずれかに記載の光反応性組成物。 The photoreactive composition according to any one of claims 1 to 4, further comprising an organic solvent.
  6.  有機溶媒が、沸点として60~170℃を有する低沸点溶媒である請求項5に記載の光反応性組成物。 6. The photoreactive composition according to claim 5, wherein the organic solvent is a low boiling point solvent having a boiling point of 60 to 170 ° C.
  7.  有機溶媒の含有量が、光反応性組成物の全量に対して60~99.5質量%である請求項5又は6に記載の光反応性組成物。 The photoreactive composition according to claim 5 or 6, wherein the content of the organic solvent is 60 to 99.5% by mass relative to the total amount of the photoreactive composition.
  8.  請求項1~7のいずれかに記載の光反応性組成物の被膜に直線偏光成分を含む光を照射し、次いで、熱処理して液晶配向能を付与した光学異方性膜。 An optically anisotropic film obtained by irradiating the coating of the photoreactive composition according to any one of claims 1 to 7 with light containing a linearly polarized component and then heat-treating to impart liquid crystal alignment ability.
  9.  温度70~120℃にて熱処理する請求項8に記載の光学異方性膜。 The optically anisotropic film according to claim 8, which is heat-treated at a temperature of 70 to 120 ° C.
  10.  膜厚が20~5000nmである請求項8又は9に記載の光学異方性膜。 The optically anisotropic film according to claim 8 or 9, wherein the film thickness is 20 to 5000 nm.
PCT/JP2013/080575 2012-11-14 2013-11-12 Photoreactive composition, and photoalignment film and optical anisotropic film using same WO2014077248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014546989A JP6369942B2 (en) 2012-11-14 2013-11-12 Photoreactive composition, photo-alignment film using the same, and optically anisotropic film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012250558 2012-11-14
JP2012-250558 2012-11-14

Publications (1)

Publication Number Publication Date
WO2014077248A1 true WO2014077248A1 (en) 2014-05-22

Family

ID=50731160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080575 WO2014077248A1 (en) 2012-11-14 2013-11-12 Photoreactive composition, and photoalignment film and optical anisotropic film using same

Country Status (3)

Country Link
JP (1) JP6369942B2 (en)
TW (1) TWI597317B (en)
WO (1) WO2014077248A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199986A1 (en) * 2016-05-18 2017-11-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2018043529A1 (en) * 2016-08-31 2019-06-24 日産化学株式会社 Retardation film having water vapor barrier property and method for producing the same
WO2024038887A1 (en) * 2022-08-18 2024-02-22 日産化学株式会社 Polymer composition and single-layer retardation material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102540421B1 (en) * 2015-05-20 2023-06-05 닛산 가가쿠 가부시키가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
JP6769921B2 (en) * 2017-04-28 2020-10-14 日東電工株式会社 Manufacturing method of liquid crystal alignment film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086243A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Alignment layer, method for manufacturing the same and composition for forming alignment layer, and liquid crystal cell having alignment layer, and liquid crystal display device
WO2011062170A1 (en) * 2009-11-18 2011-05-26 株式会社林技術研究所 Photocrosslinkable electrolyte composition and dye-sensitized solar cell
WO2011125876A1 (en) * 2010-03-31 2011-10-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film
WO2012093682A1 (en) * 2011-01-07 2012-07-12 大阪有機化学工業株式会社 Composition for photoaligned films and optical anisotropic films
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086243A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Alignment layer, method for manufacturing the same and composition for forming alignment layer, and liquid crystal cell having alignment layer, and liquid crystal display device
WO2011062170A1 (en) * 2009-11-18 2011-05-26 株式会社林技術研究所 Photocrosslinkable electrolyte composition and dye-sensitized solar cell
WO2011125876A1 (en) * 2010-03-31 2011-10-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film
WO2012093682A1 (en) * 2011-01-07 2012-07-12 大阪有機化学工業株式会社 Composition for photoaligned films and optical anisotropic films
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199986A1 (en) * 2016-05-18 2017-11-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN109153839A (en) * 2016-05-18 2019-01-04 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
JPWO2017199986A1 (en) * 2016-05-18 2019-03-14 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6992746B2 (en) 2016-05-18 2022-01-13 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JPWO2018043529A1 (en) * 2016-08-31 2019-06-24 日産化学株式会社 Retardation film having water vapor barrier property and method for producing the same
WO2024038887A1 (en) * 2022-08-18 2024-02-22 日産化学株式会社 Polymer composition and single-layer retardation material

Also Published As

Publication number Publication date
TW201431938A (en) 2014-08-16
JPWO2014077248A1 (en) 2017-01-05
TWI597317B (en) 2017-09-01
JP6369942B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP7140336B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2020122154A (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2014148569A1 (en) Method for manufacturing in-plane-switching-type liquid-crystal display element
WO2017199986A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6369942B2 (en) Photoreactive composition, photo-alignment film using the same, and optically anisotropic film
JP7517327B2 (en) Polymer composition and single-layer retardation material
WO2014196590A1 (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2016113931A1 (en) Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
CN108603036B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN107636081B (en) Liquid crystal aligning agent and liquid crystal alignment film using photoreactive hydrogen bonding polymer liquid crystal
JP6571524B2 (en) Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
WO2015016301A1 (en) Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
JP7319599B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and retardation material
WO2017069133A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2016021570A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN105431770B (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
CN116323702A (en) Method for producing single-layer phase difference material
WO2014185413A1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
JP7517328B2 (en) Polymer composition and single-layer retardation material
WO2024071364A1 (en) Polymer composition and single-layer retardation material
JP2017082140A (en) Liquid crystal orientation agent, liquid crystal orientation film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855238

Country of ref document: EP

Kind code of ref document: A1