JP6769921B2 - Manufacturing method of liquid crystal alignment film - Google Patents

Manufacturing method of liquid crystal alignment film Download PDF

Info

Publication number
JP6769921B2
JP6769921B2 JP2017090138A JP2017090138A JP6769921B2 JP 6769921 B2 JP6769921 B2 JP 6769921B2 JP 2017090138 A JP2017090138 A JP 2017090138A JP 2017090138 A JP2017090138 A JP 2017090138A JP 6769921 B2 JP6769921 B2 JP 6769921B2
Authority
JP
Japan
Prior art keywords
liquid crystal
film
side chain
polymer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017090138A
Other languages
Japanese (ja)
Other versions
JP2018189724A (en
Inventor
暢 鈴木
暢 鈴木
敏行 飯田
敏行 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2017090138A priority Critical patent/JP6769921B2/en
Priority to KR1020197026500A priority patent/KR102275287B1/en
Priority to CN201780090004.5A priority patent/CN110573915B/en
Priority to PCT/JP2017/046040 priority patent/WO2018198434A1/en
Priority to TW107113322A priority patent/TWI770162B/en
Publication of JP2018189724A publication Critical patent/JP2018189724A/en
Application granted granted Critical
Publication of JP6769921B2 publication Critical patent/JP6769921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、液晶配向フィルムの製造方法に関する。 The present invention relates to a process for the manufacture of liquid crystal alignment fill-time.

液晶表示装置の光学補償、有機EL素子の外光反射防止等の目的で、種々の屈折率異方性を有する光学フィルム(位相差フィルム)が用いられている。位相差フィルムとしては、ポリマーフィルムを延伸したものが一般的である。薄型化や軽量化の観点から、液晶分子を所定方向に配向させた液晶配向フィルムも用いられている。 Optical films (phase difference films) having various refractive index anisotropies are used for the purpose of optical compensation of liquid crystal display devices, prevention of external light reflection of organic EL elements, and the like. As the retardation film, a stretched polymer film is generally used. From the viewpoint of thinning and weight reduction, a liquid crystal alignment film in which liquid crystal molecules are oriented in a predetermined direction is also used.

液晶配向フィルムとしては、配向膜を設けた基板上で、液晶分子をホモジニアス配向またはホメオトロピック配向させたものが知られている。特許文献1には、垂直配向膜有していない基板上で、自発的にホメオトロピック配向する液晶組成物が記載されている。 As the liquid crystal alignment film, a film in which liquid crystal molecules are homogenically or homeotropically oriented on a substrate provided with an alignment film is known. Patent Document 1 describes a liquid crystal composition that spontaneously orients homeotropically on a substrate that does not have a vertically oriented film.

厚み方向の屈折率nzが、面内の遅相軸方向の屈折率nxと進相軸方向の屈折率nyの中間的な値である位相差フィルムは、視認方向の変化によるレターデーションの変化が小さく、ディスプレイの視野角補償等に用いられている。1枚のフィルムでnx>nz>nyの屈折率異方性を実現するためには、フィルム内で分子を面内方向と厚み方向に配向させる必要がある。 In a retardation film in which the refractive index nz in the thickness direction is an intermediate value between the refractive index nz in the slow axis direction in the plane and the refractive index ny in the phase advance axis direction, the retardation changes due to the change in the viewing direction. It is small and is used for viewing angle compensation of displays. In order to realize the refractive index anisotropy of nx> nz> ny in one film, it is necessary to orient the molecules in the in-plane direction and the thickness direction in the film.

ポリマーフィルムでは、両面に熱収縮性フィルムを貼着し、熱収縮性フィルムの収縮力によってポリマーフィルムが厚み方向に膨張するように延伸する方法により、nx>nz>nyの屈折率異方性を有する位相差フィルムが得られる。一方、液晶分子を多方向に配向させることは容易ではない。nx>nz>nyの屈折率異方性を有する液晶配向フィルムは、複数の液晶配向フィルムを積層した例(例えば特許文献2)や、複数種のリオトロピック液晶化合物を用いた例(例えば特許文献3)等わずかである。 In the polymer film, a heat-shrinkable film is attached to both sides, and the polymer film is stretched so as to expand in the thickness direction by the shrinkage force of the heat-shrinkable film to obtain refractive index anisotropy of nx> nz> ny. A retardation film having is obtained. On the other hand, it is not easy to orient liquid crystal molecules in multiple directions. As the liquid crystal alignment film having a refractive index anisotropy of nx> nz> ny, an example in which a plurality of liquid crystal alignment films are laminated (for example, Patent Document 2) and an example in which a plurality of types of lyotropic liquid crystal compounds are used (for example, Patent Document 3). ) Etc. are few.

特許第4174192号Patent No. 4174192 特開2008−122851号公報Japanese Unexamined Patent Publication No. 2008-122851 WO2011/138869号パンフレットWO2011 / 138869 Pamphlet

本発明は、薄型化が可能であり、屈折率異方性が制御された液晶配向フィルムの提供を目的とする。 An object of the present invention is to provide a liquid crystal alignment film which can be made thinner and whose refractive index anisotropy is controlled.

本発明は、側鎖型サーモトロピック液晶ポリマー、およびサーモトロピック液晶化合物の重合物を含有する液晶配向フィルムに関する。側鎖型サーモトロピック液晶ポリマーは、液晶性フラグメント側鎖を含有するモノマーユニットと、非液晶性フラグメント側鎖を含有するモノマーユニットとを有するものが好ましく用いられる。サーモトロピック液晶化合物の重合物の含有量は、側鎖型サーモトロピック液晶ポリマーの含有量の1.2〜20倍が好ましい。 The present invention relates to a liquid crystal alignment film containing a side chain type thermotropic liquid crystal polymer and a polymer of a thermotropic liquid crystal compound. As the side chain type thermotropic liquid crystal polymer, one having a monomer unit containing a liquid crystal fragment side chain and a monomer unit containing a non-liquid crystal fragment side chain is preferably used. The content of the polymer of the thermotropic liquid crystal compound is preferably 1.2 to 20 times the content of the side chain type thermotropic liquid crystal polymer.

本発明の液晶配向フィルムの一実施形態は、面内の遅相軸方向の屈折率nx、面内の進相軸方向の屈折率ny、および厚み方向の屈折率nzが、nx>nz>nyを満たす。好ましくは、NZ=(nx−nz)/(nx−ny)で表されるNZ係数が0.2〜0.8である。 In one embodiment of the liquid crystal alignment film of the present invention, the refractive index nx in the slow axis direction in the plane, the refractive index ny in the phase advance axis direction in the plane, and the refractive index nz in the thickness direction are nx> nz> ny. Meet. Preferably, the NZ coefficient represented by NZ = (nx-nz) / (nx-ny) is 0.2 to 0.8.

液晶配向フィルムは、配向膜が設けられていないフィルム基板上に、側鎖型サーモトロピック液晶ポリマーおよび光重合性のサーモトロピック液晶化合物を含有する液晶性組成物を塗布し(塗布工程)、側鎖型サーモトロピック液晶ポリマーおよびサーモトロピック液晶化合物を加熱して配向させ(液晶配向工程)、光照射によりサーモトロピック液晶化合物を重合または架橋する(光重合工程)ことにより作製できる。 Liquid crystal alignment film, the Oriented film is not provided a film on a substrate, coating a liquid crystal composition containing a side chain type thermotropic liquid crystal polymer and photopolymerizable the thermotropic liquid crystal compound (coating step), the side It can be produced by heating and aligning a chain-type thermotropic liquid crystal polymer and a thermotropic liquid crystal compound (liquid crystal alignment step), and polymerizing or cross-linking the thermotropic liquid crystal compound by light irradiation (photopolymerization step).

本発明においては、フィルム基板として延伸フィルムが用いられる。フィルム基板として用いられる延伸フィルムの面内レターデーションは、例えば10〜1000nmが好ましい。フィルム基板の面内レターデーションおよび面内複屈折が大きいほど、液晶配向フィルムのNZ係数が大きくなる(1に近付く)傾向がある。フィルム基板としては、例えばノルボルネン系ポリマーフィルムが用いられる。 In the present invention, a stretched film is used as the film substrate. The in-plane retardation of the stretched film used as the film substrate is preferably 10 to 1000 nm, for example. The larger the in-plane retardation and the in-plane birefringence of the film substrate, the larger the NZ coefficient of the liquid crystal alignment film tends to be (approaching 1). As the film substrate, for example, a norbornene-based polymer film is used.

加熱による液晶配向時の加熱温度が高いほど、液晶分子のホモジニアス配向性が高くなり、液晶配向フィルムのNZ係数が大きくなる傾向がある。液晶配向時の加熱温度T(℃)と、フィルム基板の面内複屈折Δnが、T≧90−5×10Δnを満たすことが好ましい。加熱温度Tを当該範囲に調整することにより、NZ係数が0より大きい液晶配向フィルムが得られやすい。 The higher the heating temperature at the time of liquid crystal alignment by heating, the higher the homogenous orientation of the liquid crystal molecules, and the larger the NZ coefficient of the liquid crystal alignment film tends to be. It is preferable that the heating temperature T (° C.) at the time of liquid crystal orientation and the in-plane birefringence Δn of the film substrate satisfy T ≧ 90-5 × 10 3 Δn. By adjusting the heating temperature T to this range, it is easy to obtain a liquid crystal alignment film having an NZ coefficient larger than 0.

本発明によれば、屈折率異方性が制御された液晶配向フィルムが得られる。 According to the present invention, a liquid crystal oriented film having controlled refractive index anisotropy can be obtained.

本発明の液晶配向フィルムは、側鎖型液晶ポリマーと液晶化合物の重合物を含有する。側鎖型液晶ポリマーおよび液晶化合物(光重合性液晶モノマー)は、いずれもサーモトロピック液晶性を示す。液晶配向フィルムは、液晶ポリマーと液晶モノマーとを含む液晶性組成物を基板上に塗布し、その配向を固定することにより作製される。 The liquid crystal alignment film of the present invention contains a polymer of a side chain type liquid crystal polymer and a liquid crystal compound. Both the side chain type liquid crystal polymer and the liquid crystal compound (photopolymerizable liquid crystal monomer) exhibit thermotropic liquid crystal properties. The liquid crystal alignment film is produced by applying a liquid crystal composition containing a liquid crystal polymer and a liquid crystal monomer on a substrate and fixing the orientation thereof.

[液晶性組成物]
液晶配向フィルムの作製に用いられる液晶性組成物は、側鎖型サーモトロピック液晶ポリマー、および光重合性のサーモトロピック液晶化合物(モノマー)を含む。
[Liquid crystal composition]
The liquid crystal composition used for producing the liquid crystal alignment film contains a side chain type thermotropic liquid crystal polymer and a photopolymerizable thermotropic liquid crystal compound (monomer).

<側鎖型液晶ポリマー>
側鎖型サーモトロピック液晶ポリマーとしては、サーモトロピック液晶性フラグメント側鎖を含有するモノマーユニットと、非液晶性フラグメント側鎖を含有するモノマーユニットとを有するコポリマーが用いられる。ポリマーが側鎖にサーモトロピック液晶性フラグメントを有することにより、液晶性組成物を所定温度に加熱した際に、側鎖型液晶ポリマーが配向する。また、側鎖型ポリマーが側鎖に非液晶性フラグメントを有することにより、非液晶性フラグメントが光重合性液晶モノマーと相互作用して、光重合性液晶モノマーをホメオトロピック配向させる作用が生じる。
<Side chain type liquid crystal polymer>
As the side chain type thermotropic liquid crystal polymer, a copolymer having a monomer unit containing a thermotropic liquid crystal fragment side chain and a monomer unit containing a non-liquid crystal fragment side chain is used. Since the polymer has a thermotropic liquid crystal fragment in the side chain, the side chain type liquid crystal polymer is oriented when the liquid crystal composition is heated to a predetermined temperature. Further, when the side chain type polymer has a non-liquid crystal fragment in the side chain, the non-liquid crystal fragment interacts with the photopolymerizable liquid crystal monomer to cause a homeotropic orientation of the photopolymerizable liquid crystal monomer.

液晶性フラグメント側鎖を有するモノマーとしては、メソゲン基を含むネマチック液晶性の置換基を有する重合性化合物が挙げられる。メソゲン基としては、ビフェニル基、フェニルベンゾエート基、フェニルシクロヘキサン基、アゾキシベンゼン基、アゾメチン基、アゾベンゼン基、フェニルピリミジン基、ジフェニルアセチレン基、ジフェニルベンゾエート基、ビシクロヘキサン基、シクロヘキシルベンゼン基、ターフェニル基等の環状構造が挙げられる。これらの環状単位の末端は、シアノ基、アルキル基、アルコキシ基、ハロゲン基等の置換基を有していてもよい。中でも、メソゲン基としては、ビフェニル基、フェニルベンゾエート基を有するものが好ましい。 Examples of the monomer having a liquid crystal fragment side chain include a polymerizable compound having a nematic liquid crystalline substituent containing a mesogen group. The mesogen group includes a biphenyl group, a phenylbenzoate group, a phenylcyclohexane group, an azoxybenzene group, an azomethine group, an azobenzene group, a phenylpyrimidine group, a diphenylacetylene group, a diphenylbenzoate group, a bicyclohexane group, a cyclohexylbenzene group and a terphenyl group. And the like, an annular structure can be mentioned. The terminal of these cyclic units may have a substituent such as a cyano group, an alkyl group, an alkoxy group, or a halogen group. Among them, those having a biphenyl group and a phenylbenzoate group are preferable as the mesogen group.

非液晶性フラグメント側鎖を有するモノマーとしては、炭素数7以上の長鎖アルキル等の直鎖状の置換基を有する重合性化合物が挙げられる。液晶性モノマーおよび非液晶性モノマーの重合性官能基としては、例えば(メタ)アクリロイル基が挙げられる。 Examples of the monomer having a non-liquid crystal fragment side chain include a polymerizable compound having a linear substituent such as a long-chain alkyl having 7 or more carbon atoms. Examples of the polymerizable functional group of the liquid crystalline monomer and the non-liquid crystalline monomer include a (meth) acryloyl group.

側鎖型サーモトロピック液晶ポリマーとしては、一般式(I)で表される液晶性モノマーユニットと、一般式(II)で表される非液晶性モノマーユニットとを有するコポリマーが好ましく用いられる。 As the side chain type thermotropic liquid crystal polymer, a copolymer having a liquid crystal monomer unit represented by the general formula (I) and a non-liquid crystal monomer unit represented by the general formula (II) is preferably used.

Figure 0006769921
Figure 0006769921

Figure 0006769921
Figure 0006769921

式(I)において、Rは水素原子またはメチル基であり、Rは、シアノ基、フルオロ基、炭素数1〜6のアルキル基、または炭素数1〜6のアルコキシ基であり、Xは−CO−または−OCO−である。aは1〜6の整数であり、bおよびcは、それぞれ独立に1または2である。 In formula (I), R 1 is a hydrogen atom or a methyl group, R 2 is a cyano group, a fluoro group, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms, and X 1 Is -CO 2- or -OCO-. a is an integer of 1 to 6, and b and c are independently 1 or 2, respectively.

式(II)において、Rは水素原子またはメチル基であり、Rは、炭素数7〜22のアルキル基、炭素数1〜22のフルオロアルキル基、または下記一般式(III)で表される基である。 In the formula (II), R 3 is a hydrogen atom or a methyl group, and R 4 is represented by an alkyl group having 7 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or the following general formula (III). It is a base.

Figure 0006769921
Figure 0006769921

式(III)において、Rは炭素数1〜5のアルキル基であり、dは1〜6の整数である。 In formula (III), R 5 is an alkyl group having 1 to 5 carbon atoms, and d is an integer of 1 to 6.

側鎖型液晶モノマーにおける液晶性モノマーユニットと非液晶性モノマーユニットの比率は特に限定されないが、非液晶性モノマーユニットの割合が少ない場合は、側鎖型液晶ポリマーの配向に伴う光重合性液晶モノマーの配向が不十分となる傾向があり、液晶性モノマーユニットの割合が少ない場合は、側鎖型液晶ポリマーが液晶モノドメイン配向性を示し難くなる。そのため、液晶性モノマーユニットと非液晶性モノマーユニットの合計に対する非液晶性モノマーの割合は、モル比で0.05〜0.8が好ましく、0.1〜0.6がより好ましく、0.15〜0.5がさらに好ましい。液晶性組成物の成膜性と配向性とを両立する観点から、側鎖型液晶ポリマーの重量平均分子量は、2000〜100000程度が好ましく、2500〜50000程度がより好ましい。 The ratio of the liquid crystal monomer unit to the non-liquid crystal monomer unit in the side chain type liquid crystal monomer is not particularly limited, but when the ratio of the non-liquid crystal monomer unit is small, the photopolymerizable liquid crystal monomer accompanying the orientation of the side chain type liquid crystal polymer When the proportion of the liquid crystal monomer unit is small, it becomes difficult for the side chain type liquid crystal polymer to exhibit the liquid crystal monodomain orientation. Therefore, the ratio of the non-liquid crystal monomer to the total of the liquid crystal monomer unit and the non-liquid crystal monomer unit is preferably 0.05 to 0.8, more preferably 0.1 to 0.6, and 0.15 in terms of molar ratio. ~ 0.5 is more preferable. From the viewpoint of achieving both film formation property and orientation of the liquid crystal composition, the weight average molecular weight of the side chain type liquid crystal polymer is preferably about 2000 to 100,000, more preferably about 2500 to 50000.

側鎖型液晶ポリマーは、各種公知の方法により重合できる。例えば、モノマーユニットが重合性官能基として(メタ)アクリロイル基を有する場合は、光または熱を利用したラジカル重合により、液晶性フラグメントおよび非液晶性フラグメントを有する側鎖型液晶ポリマーが得られる。 The side chain type liquid crystal polymer can be polymerized by various known methods. For example, when the monomer unit has a (meth) acryloyl group as a polymerizable functional group, a side chain type liquid crystal polymer having a liquid crystal fragment and a non-liquid crystal fragment can be obtained by radical polymerization using light or heat.

<光重合性サーモトロピック液晶モノマー>
光重合性サーモトロピック液晶モノマーは、1分子中にメソゲン基と少なくとも1つの光重合性官能基とを有する。メソゲン基としては、側鎖型液晶ポリマーの液晶性フラグメントとして上述したものが挙げられる。光重合性官能基としては、(メタ)アクリロイル基、エポキシ基、ビニルエーテル基等が挙げられる。中でも、(メタ)アクリロイル基が好ましい。
<Photopolymerizable thermotropic liquid crystal monomer>
The photopolymerizable thermotropic liquid crystal monomer has a mesogen group and at least one photopolymerizable functional group in one molecule. Examples of the mesogen group include those described above as liquid crystal fragments of the side chain type liquid crystal polymer. Examples of the photopolymerizable functional group include (meth) acryloyl group, epoxy group, vinyl ether group and the like. Of these, the (meth) acryloyl group is preferred.

光重合性液晶モノマーは、1分子中に2以上の光重合性官能基を有するものが好ましい。2以上の光重合性官能基を含む液晶モノマーを用いることにより、光重合後の液晶層に架橋構造が導入されるため、液晶配向フィルムの耐久性が向上する傾向がある。 The photopolymerizable liquid crystal monomer preferably has two or more photopolymerizable functional groups in one molecule. By using a liquid crystal monomer containing two or more photopolymerizable functional groups, a crosslinked structure is introduced into the liquid crystal layer after photopolymerization, so that the durability of the liquid crystal alignment film tends to be improved.

1分子中にメソゲン基と複数の(メタ)アクリロイル基とを有する光重合性液晶化合物としては、例えば、下記の一般式(IV)で表される化合物が挙げられる。 Examples of the photopolymerizable liquid crystal compound having a mesogen group and a plurality of (meth) acryloyl groups in one molecule include a compound represented by the following general formula (IV).

Figure 0006769921
Figure 0006769921

式(IV)において、Rは水素原子またはメチル基であり、AおよびDはそれぞれ独立に1,4−フェニレン基または1,4−シクロヘキシレン基であり、Bは1,4−フェニレン基、1,4−シクロヘキシレン基、4,4’−ビフェニレン基または4,4’−ビシクロヘキシレン基であり、YおよびZはそれぞれ独立に−COO−、−OCO−または−O−である。gおよびhはそれぞれ独立に2〜6の整数である。 In formula (IV), R is a hydrogen atom or a methyl group, A and D are independently 1,4-phenylene groups or 1,4-cyclohexylene groups, and B is a 1,4-phenylene group, 1 , 4-Cyclohexylene group, 4,4'-biphenylene group or 4,4'-bicyclohexylene group, where Y and Z are independently -COO-, -OCO- or -O-, respectively. g and h are independently integers of 2 to 6.

上記一般式(IV)で表される光重合性液晶モノマーの市販品としては、BASF社製「Paliocolor LC242」を例示できる。 As a commercially available product of the photopolymerizable liquid crystal monomer represented by the above general formula (IV), "Pariocolor LC242" manufactured by BASF Corporation can be exemplified.

<組成>
液晶性組成物中の光重合性液晶化合物と側鎖型液晶ポリマーの比率は特に制限されない。側鎖型液晶ポリマーの含有量が多い場合は、ポリマーとの相互作用に起因するホメオトロピック配向が優勢となり、(nx−nz)/(nx−ny)で表されるNZ係数が小さくなる傾向がある。一方、光重合性液晶化合物の含有量が多い場合は、基板の配向規制力による液晶化合物のホモジニアス配向が優勢となり、(nx−nz)/(nx−ny)で表されるNZ係数が大きくなる傾向がある。NZ係数が0.2〜0.8の範囲の液晶配向フィルムを得るためには、光重合性液晶化合物の含有量が、側鎖型液晶ポリマーの含有量の1.2〜20倍が好ましい。NZ係数が0.5に近い液晶配向フィルムを得るためには、光重合性液晶化合物の含有量が、側鎖型液晶ポリマーの含有量の1.3〜10倍が好ましく、1.4〜9倍がより好ましく、1.5〜8倍がさらに好ましい。
<Composition>
The ratio of the photopolymerizable liquid crystal compound to the side chain type liquid crystal polymer in the liquid crystal composition is not particularly limited. When the content of the side chain type liquid crystal polymer is high, the homeotropic orientation due to the interaction with the polymer becomes predominant, and the NZ coefficient represented by (nx-nz) / (nx-ny) tends to be small. is there. On the other hand, when the content of the photopolymerizable liquid crystal compound is large, the homogeneous orientation of the liquid crystal compound due to the orientation regulating force of the substrate becomes predominant, and the NZ coefficient represented by (nx-nz) / (nx-ny) becomes large. Tend. In order to obtain a liquid crystal alignment film having an NZ coefficient in the range of 0.2 to 0.8, the content of the photopolymerizable liquid crystal compound is preferably 1.2 to 20 times the content of the side chain type liquid crystal polymer. In order to obtain a liquid crystal alignment film having an NZ coefficient close to 0.5, the content of the photopolymerizable liquid crystal compound is preferably 1.3 to 10 times the content of the side chain type liquid crystal polymer, and 1.4 to 9 times. Double is more preferable, and 1.5 to 8 times is further preferable.

光照射による光重合性液晶化合物の硬化を促進するために、液晶性組成物は、光重合開始剤を含有することが好ましい。光重合開始剤としては、例えば、BASF社製のイルガキュア907,イルガキュア184、イルガキュア651、イルガキュア369等を例示できる。液晶性組成物中の光重合開始剤の含有量は、光重合性液晶化合物100重量部に対して、通常0.5〜20重量部程度であり、好ましくは3〜15重量部程度、より好ましくは5〜10重量部程度である。 In order to accelerate the curing of the photopolymerizable liquid crystal compound by light irradiation, the liquid crystal composition preferably contains a photopolymerization initiator. Examples of the photopolymerization initiator include Irgacure 907, Irgacure 184, Irgacure 651, and Irgacure 369 manufactured by BASF. The content of the photopolymerization initiator in the liquid crystal composition is usually about 0.5 to 20 parts by weight, preferably about 3 to 15 parts by weight, more preferably about 3 to 15 parts by weight, based on 100 parts by weight of the photopolymerizable liquid crystal compound. Is about 5 to 10 parts by weight.

側鎖型液晶ポリマー、光重合性液晶化合物および光重合開始剤と溶媒とを混合することにより、液晶性組成物を調製できる。溶媒は、側鎖型液晶ポリマーおよび光重合性液晶化合物を溶解可能であり、かつフィルム基板を侵食しない(または侵食性が低い)ものであれば特に限定されず、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、オルソジクロロベンゼン等のハロゲン化炭化水素類;フェノール、バラクロロフェノール等のフェノール類;ベンゼン、トルエン、キシレン、メトキシベンゼン、1,2−ジメトキシベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2−ピロリドン、N−メチル−2−ピロリドン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;t−ブチルアルコール、グリセリン、エチレングリコール、トリエチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコール、ジプロピレングリコール、2−メチル−2,4−ペンタンジオール等のアルコール系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;アセトニトリル、ブチロニトリル等のニトリル系溶媒;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等のエーテル系溶媒;エチルセルソルブ、ブチルセルソルブ等が挙げられる。液晶性組成物の濃度は、通常3〜50重量%程度であり、好ましくは7〜35重量%程度である。 A liquid crystal composition can be prepared by mixing a side chain type liquid crystal polymer, a photopolymerizable liquid crystal compound, a photopolymerization initiator and a solvent. The solvent is not particularly limited as long as it can dissolve the side chain type liquid crystal polymer and the photopolymerizable liquid crystal compound and does not erode the film substrate (or has low erosion resistance), and chloroform, dichloromethane, carbon tetrachloride, etc. Halogenized hydrocarbons such as dichloroethane, tetrachloroethane, trichloroethylene, tetrachloroethylene, chlorobenzene and orthodichlorobenzene; solvents such as phenol and barachlorophenol; aromatics such as benzene, toluene, xylene, methoxybenzene and 1,2-dimethoxybenzene. Hydrocarbons; Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-pyrrolidone, N-methyl-2-pyrrolidone; ester solvents such as ethyl acetate and butyl acetate; t-butyl alcohol , Glycerin, ethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, diethylene glycol dimethyl ether, propylene glycol, dipropylene glycol, 2-methyl-2,4-pentanediol and other alcohol solvents; dimethylformamide, dimethylacetamide and other amide-based solvents. Solvents; nitrile solvents such as acetonitrile and butyronitrile; ether solvents such as diethyl ether, dibutyl ether and tetrahydrofuran; ethyl cell solves, butyl cell solves and the like can be mentioned. The concentration of the liquid crystal composition is usually about 3 to 50% by weight, preferably about 7 to 35% by weight.

[フィルム基板]
nx>nz>nyの屈折率異方性を有する液晶配向フィルムを得るためには、液晶性組成物を塗布する基板として、配向膜が設けられていない延伸フィルムを用いることが好ましい。延伸フィルム基板を用いることにより、光重合性液晶化合物には、側鎖型液晶ポリマーとの相互作用によるホメオトロピック配向作用と、延伸フィルム基板を構成するポリマーの分子配向に起因するホモジニアス配向作用が働く。これらの配向作用をバランスさせることにより、光重合性液晶化合物の配向を調整し、液晶配向フィルムの屈折率異方性を制御できる。
[Film substrate]
To obtain a liquid crystal alignment film having a refractive index anisotropy of nx>nz> ny is used as the substrate for coating the liquid crystalline composition, it is preferable to use a stretched film Oriented film is not provided. By using the stretched film substrate, the photopolymerizable liquid crystal compound has a homeotropic orientation action due to interaction with the side chain type liquid crystal polymer and a homogeneous alignment action due to the molecular orientation of the polymer constituting the stretched film substrate. .. By balancing these orientation actions, the orientation of the photopolymerizable liquid crystal compound can be adjusted and the refractive index anisotropy of the liquid crystal alignment film can be controlled.

フィルム基板として用いられる延伸フィルムの面内レターデーションRは、一般に10nm以上である。フィルム基板の面内レターデーションが大きいほど、フィルムを構成するポリマーの所定方向(遅相軸方向または進相軸方向)への配向性が大きく、これに伴ってフィルム基板上に形成される液晶配向層のホモジニアス配向性が大きくなり、NZ係数が大きくなる(1に近付く)傾向がある。延伸フィルムの面内レターデーションが過度に大きい場合は、液晶分子の配向性の制御が困難となる傾向があるため、延伸フィルムの面内レターデーションRは、1000nm以下が好ましく、500nm以下がより好ましく、400nm以下がさらに好ましい。 The in-plane retardation R 0 of the stretched film used as the film substrate is generally 10 nm or more. The larger the in-plane retardation of the film substrate, the greater the orientation of the polymer constituting the film in a predetermined direction (late phase axis direction or phase advance axis direction), and the liquid crystal orientation formed on the film substrate accordingly. The homogeneous orientation of the layer tends to increase, and the NZ coefficient tends to increase (approach 1). If the in-plane retardation of the stretched film is excessively large, it tends to be difficult to control the orientation of the liquid crystal molecules. Therefore, the in-plane retardation R 0 of the stretched film is preferably 1000 nm or less, more preferably 500 nm or less. It is preferable, and 400 nm or less is more preferable.

フィルム基板の厚みは特に限定されないが、ハンドリング性等を考慮すると、通常10〜200μm程度である。延伸フィルムの面内複屈折Δn(面内レターデーションRを厚みで割った値)は、0.0001〜0.05が好ましく、0.0005〜0.03がより好ましく、0.001〜0.02がさらに好ましい。 The thickness of the film substrate is not particularly limited, but is usually about 10 to 200 μm in consideration of handleability and the like. The in-plane birefringence Δn (value obtained by dividing the in-plane retardation R 0 by the thickness) of the stretched film is preferably 0.0001 to 0.05, more preferably 0.0005 to 0.03, and 0.001 to 0. .02 is more preferred.

フィルム基板を構成する樹脂材料は、液晶性組成物の溶媒に溶解せず、かつ液晶性組成物を配向させるための加熱時の耐熱性を有していれば特に制限されず、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ノルボルネン系ポリマー等の環状ポリオレフィン;ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー;アクリル系ポリマー;スチレン系ポリマー;ポリカーボネート、ポリアミド、ポリイミド等が挙げられる。中でも、成形時の流動性に優れ、平滑性の高いフィルムが得られやすいことから、フィルム基板としてノルボルネン系ポリマーフィルムを用いることが特に好ましい。液晶配向フィルムを他の基材等に転写する際の剥離性に優れることからも、ノルボルネン系ポリマーフィルムが好ましい。ノルボルネン系ポリマーとしては、日本ゼオン製のゼオノア、ゼオネックス、JSR製のアートン等が挙げられる。 The resin material constituting the film substrate is not particularly limited as long as it is insoluble in the solvent of the liquid crystal composition and has heat resistance at the time of heating for orienting the liquid crystal composition, and is not particularly limited. Polyethylene terephthalate, polyethylene Polyesters such as naphthalate; Polyethylenes such as polyethylene and polypropylene; Cyclic polyolefins such as norbornene polymers; Cellulosic polymers such as diacetylcellulose and triacetylcellulose; Acrylic polymers; Styrene polymers; Polycarbonates, polyamides, polyimides and the like. .. Above all, it is particularly preferable to use a norbornene-based polymer film as a film substrate because it is easy to obtain a film having excellent fluidity during molding and high smoothness. A norbornene-based polymer film is preferable because it has excellent peelability when the liquid crystal alignment film is transferred to another substrate or the like. Examples of the norbornene-based polymer include Zeonoa and Zeonex manufactured by Zeon Corporation of Japan, and Arton manufactured by JSR.

フィルム基板は第一主面および第二主面を有し、第一主面上に液晶性組成物が塗布される。フィルム基板の第一主面の算術平均粗さRaは、3nm以下が好ましく、2nm以下がより好ましく、1.5nm以下がさらに好ましい。Raが小さく平滑性の高いフィルム基板面に液晶組成物を塗布することにより、液晶配向フィルムの配向欠陥が低減する傾向がある。 The film substrate has a first main surface and a second main surface, and the liquid crystal composition is applied on the first main surface. The arithmetic average roughness Ra of the first main surface of the film substrate is preferably 3 nm or less, more preferably 2 nm or less, still more preferably 1.5 nm or less. By applying the liquid crystal composition to the surface of the film substrate having a small Ra and high smoothness, the orientation defects of the liquid crystal alignment film tend to be reduced.

フィルムを延伸することにより、成膜時ダイライン等の凹凸が平準化されるため、フィルム基板のRaが小さくなる傾向がある。そのため、延伸フィルム基板を用いることにより、液晶配向フィルムの屈折率異方性を制御できることに加えて、配向欠陥が低減する傾向がある。表面の均一性が高いことから、フィルム基板として二軸延伸フィルムを用いることが特に好ましい。 By stretching the film, irregularities such as die lines during film formation are leveled, so that Ra of the film substrate tends to be small. Therefore, by using the stretched film substrate, in addition to being able to control the refractive index anisotropy of the liquid crystal alignment film, orientation defects tend to be reduced. It is particularly preferable to use a biaxially stretched film as the film substrate because the surface uniformity is high.

算術平均粗さを上記範囲とするために、フィルム基板は内部にフィラーを含有していないものが好ましい。フィラーを含有せず表面の平滑性が高いフィルムは、滑り性が低いため、ブロッキングを生じたり、ロール・トゥー・ロールプロセスでの搬送不良や巻き不良を生じる場合がある。高平滑性に起因するブロッキングや搬送不良等の防止には、フィルム基板に滑り性の高い他のフィルムを貼り合わせる方法や、フィルム基板に易滑層を設ける方法が挙げられる。フィルム基板に他のフィルムを貼り合わせる場合は、第一主面(液晶性組成物を塗布する面)への接着層等の転写に起因する不具合(液晶の配向不良や光学的欠陥等)を抑制する観点から、第二主面(液晶性組成物の塗布面と反対側の面)に貼り合わせることが好ましい。ただし、ロール・トゥー・ロールプロセスでは、フィルム基板の巻取り時に、第二主面に付着した粘着剤等が第一主面に移着して、配向不良や光学的な欠陥の原因となり得る。 In order to keep the arithmetic mean roughness in the above range, it is preferable that the film substrate does not contain a filler inside. A film that does not contain a filler and has a high surface smoothness has low slipperiness, which may cause blocking, transfer failure in a roll-to-roll process, and winding failure. Examples of prevention of blocking and poor transport due to high smoothness include a method of attaching another highly slippery film to the film substrate and a method of providing an easy-slip layer on the film substrate. When another film is attached to the film substrate, defects caused by transfer of the adhesive layer, etc. to the first main surface (the surface on which the liquid crystal composition is applied) (such as poor alignment of the liquid crystal and optical defects) are suppressed. From the viewpoint of this, it is preferable to bond it to the second main surface (the surface opposite to the coated surface of the liquid crystal composition). However, in the roll-to-roll process, when the film substrate is wound, the adhesive or the like adhering to the second main surface may be transferred to the first main surface, which may cause misalignment or optical defects.

そのため、フィルム基板の少なくとも一方の面に易滑層を設けることにより、滑り性を改善することが好ましい。易滑層としては、例えば、ポリエステル、ポリウレタン等のバインダー中に平均粒径が100nm以下の微小フィラーを含有させたものが挙げられる。ホメオトロピック配向液晶フィルムを他の基材等に転写する際の剥離性を維持し、かつフィルム基板からの剥離時のホメオトロピック配向液晶フィルムへの易滑層の転写等の不具合を抑制する観点から、フィルム基板は、液晶性組成物を塗布する面には易滑層を有していないことが好ましい。すなわち、第二主面に易滑層を有し、第一主面には易滑層を有していないフィルム基板を用いることが好ましい。 Therefore, it is preferable to improve the slipperiness by providing the slippery layer on at least one surface of the film substrate. Examples of the slippery layer include those in which a binder such as polyester or polyurethane contains a fine filler having an average particle size of 100 nm or less. From the viewpoint of maintaining the peelability when transferring the homeotropic-oriented liquid crystal film to another substrate or the like, and suppressing defects such as transfer of the slippery layer to the homeotropic-oriented liquid crystal film when peeling from the film substrate. The film substrate preferably does not have an easy-slip layer on the surface to which the liquid crystal composition is applied. That is, it is preferable to use a film substrate having an easy-slip layer on the second main surface and no easy-slip layer on the first main surface.

[フィルム基板上への液晶配向フィルムの形成]
フィルム基板上に液晶性組成物を塗布し、加熱により液晶状態として液晶性分子を配向させた後、冷却により配向を固定化し、光照射により液晶モノマーを重合または架橋することにより、液晶配向フィルムが得られる。そのため、液晶配向フィルムは、液晶ポリマーと液晶化合物の重合物とを含有する。
[Formation of liquid crystal alignment film on film substrate]
A liquid crystal alignment film is formed by applying a liquid crystal composition on a film substrate, aligning the liquid crystal molecules in a liquid crystal state by heating, fixing the orientation by cooling, and polymerizing or cross-linking the liquid crystal monomers by light irradiation. can get. Therefore, the liquid crystal alignment film contains a liquid crystal polymer and a polymer of a liquid crystal compound.

フィルム基板上に液晶性組成物を塗布する方法は特に限定されず、スピンコート、ダイコート、キスロールコート、グラビアコート、リバースコート、スプレーコート、マイヤーバーコート、ナイフロールコート、エアーナイフコート等を採用できる。溶液を塗布後、溶媒を除去することにより、フィルム基板上に液晶性組成物層が形成される。塗布厚みは、溶媒を乾燥後の液晶性組成物層の厚み(液晶配向フィルムの厚み)が0.5〜5μm程度となるように調整することが好ましい。液晶配向フィルムの面内レターデーションは、面内複屈折(nx−ny)と厚みの積で表されるため、厚みが大きいほど面内レターデーションが大きくなる。また、後述の実験例に結果を示すように、塗布厚みが大きいほど、液晶配向フィルムのNZ係数が大きくなる傾向がある。 The method of applying the liquid crystal composition on the film substrate is not particularly limited, and spin coating, die coating, kiss roll coating, gravure coating, reverse coating, spray coating, Meyer bar coating, knife roll coating, air knife coating, etc. are adopted. it can. After applying the solution, the solvent is removed to form a liquid crystal composition layer on the film substrate. The coating thickness is preferably adjusted so that the thickness of the liquid crystal composition layer (thickness of the liquid crystal alignment film) after drying the solvent is about 0.5 to 5 μm. Since the in-plane retardation of the liquid crystal alignment film is represented by the product of the in-plane birefringence (nx-ny) and the thickness, the larger the thickness, the larger the in-plane retardation. Further, as shown in the experimental examples described later, the larger the coating thickness, the larger the NZ coefficient of the liquid crystal alignment film tends to be.

フィルム基板上に形成された液晶性組成物層を加熱して液晶相とすることにより、側鎖型液晶ポリマーはホメオトロピック配向する。その際、側鎖型液晶ポリマーの非液晶性フラグメントとの相互作用により、光重合性液晶化合物にはホメオトロピック配向作用が生じる。無延伸フィルム基板を用いた場合は、基板による配向規制力が作用しないため、側鎖型液晶ポリマーと光重合性液晶化合物の両方がホメオトロピック配向し、ホメオトロピック配向液晶層が形成される。一方、延伸フィルム基板を用いた場合は、加熱温度により液晶配向フィルムの屈折率異方性が異なり、温度が高いほど、厚み方向の屈折率nzが小さくなり、(nx−nz)/(nx−ny)で表されるNZ係数が大きくなる傾向がある。 By heating the liquid crystal composition layer formed on the film substrate to form a liquid crystal phase, the side chain type liquid crystal polymer is homeotropically oriented. At that time, the photopolymerizable liquid crystal compound undergoes a homeotropic orientation effect due to the interaction with the non-liquid crystal fragment of the side chain type liquid crystal polymer. When an unstretched film substrate is used, the orientation regulating force of the substrate does not act, so that both the side chain type liquid crystal polymer and the photopolymerizable liquid crystal compound are homeotropically oriented to form a homeotropic oriented liquid crystal layer. On the other hand, when a stretched film substrate is used, the refractive index anisotropy of the liquid crystal alignment film differs depending on the heating temperature, and the higher the temperature, the smaller the refractive index nz in the thickness direction, and (nx-nz) / (nx-). The NZ coefficient represented by ny) tends to increase.

加熱温度が高いほど厚み方向の屈折率nzが小さくなることは、加熱温度により光重合性液晶化合物の配向挙動が異なることに起因すると考えられる。すなわち、加熱温度が低い場合は、液晶モノマーの非液晶フラグメントと光重合性液晶化合物との相互作用が強く、光重合性液晶化合物はホメオトロピック配向が優勢となるのに対して、加熱温度が高くなるにつれて、延伸フィルム基板の配向規制力の影響が強くなり、光重合性液晶化合物はホモジニアス配向が優勢になると考えられる。高温ほどフィルム基板の配向規制力の影響が大きくなる一因として、高温では重合性液晶化合物が等方相転移し、冷却により液晶相に戻る際にフィルム基板の配向規制力による影響を受けやすいことが考えられる。 It is considered that the higher the heating temperature, the smaller the refractive index nz in the thickness direction is due to the difference in the orientation behavior of the photopolymerizable liquid crystal compound depending on the heating temperature. That is, when the heating temperature is low, the interaction between the non-liquid crystal fragment of the liquid crystal monomer and the photopolymerizable liquid crystal compound is strong, and the photopolymerizable liquid crystal compound is predominantly homeotropic orientation, whereas the heating temperature is high. Therefore, it is considered that the influence of the orientation restricting force of the stretched film substrate becomes stronger, and the homogeneous orientation of the photopolymerizable liquid crystal compound becomes predominant. One of the reasons why the influence of the orientation restricting force of the film substrate increases as the temperature rises is that the polymerizable liquid crystal compound undergoes an isotropic phase transition at high temperature and is easily affected by the orientation regulating force of the film substrate when returning to the liquid crystal phase by cooling. Can be considered.

本発明においては、上記の知見を利用することにより、液晶組成物の配向を制御し、厚み方向の屈折率nzが面内の遅相軸方向の屈折率nxと進相軸方向の屈折率nyとの中間の値を有する(NZ係数が0より大きく1より小さい)液晶配向フィルムを作製できる。 In the present invention, by utilizing the above findings, the orientation of the liquid crystal composition is controlled, and the refractive index nz in the thickness direction is the refractive index nz in the slow axis direction in the plane and the refractive index ny in the phase advance axis direction. A liquid crystal oriented film having an intermediate value between and (NZ coefficient is greater than 0 and less than 1) can be produced.

延伸フィルム基板を用いる場合は、加熱温度以外に、液晶性組成物の組成や、延伸フィルム基板の面内レターデーションおよび面内複屈折も、液晶配向フィルムの屈折率異方性に影響を与える。そのため、延伸フィルム基板上に液晶性組成物を塗布後に液晶性化合物を配向させる際の適切な温度範囲を一概に定めることはできないが、NZ係数が0より大きい液晶配向フィルムを得るための加熱温度Tは、70℃以上が好ましく、75℃以上がより好ましく、80℃以上がさらに好ましい。また、加熱温度T(℃)と、フィルム基板の面内複屈折Δnとが、T≧90−5×10Δnを満たすことが好ましい。加熱温度T(℃)は、95−5×10Δn以上がより好ましく、100−5×10Δn以上がより好ましく、105−5×10Δn以上がさらに好ましい。 When a stretched film substrate is used, in addition to the heating temperature, the composition of the liquid crystal composition, the in-plane retardation of the stretched film substrate, and the in-plane birefringence also affect the refractive index anisotropy of the liquid crystal oriented film. Therefore, it is not possible to unconditionally determine an appropriate temperature range for aligning the liquid crystal compound after applying the liquid crystal composition on the stretched film substrate, but the heating temperature for obtaining a liquid crystal oriented film having an NZ coefficient greater than 0. T is preferably 70 ° C. or higher, more preferably 75 ° C. or higher, and even more preferably 80 ° C. or higher. Further, it is preferable that the heating temperature T (° C.) and the in-plane birefringence Δn of the film substrate satisfy T ≧ 90-5 × 10 3 Δn. The heating temperature T (° C.) is more preferably 95-5 × 10 3 Δn or more, more preferably 100-5 × 10 3 Δn or more, and further preferably 105-5 × 10 3 Δn or more.

液晶分子が均一にホモジニアス配向した場合、液晶配向フィルムは、nx=nz>ny(NZ=1)のポジティブAプレートとなる。ホメオトロピック配向成分とホモジニアス配向成分とを共存させ、nx>nz(NZ<1)の液晶配向フィルムを得るための加熱温度Tは、150℃以下が好ましく、140℃以下がより好ましく、130℃以下がさらに好ましい。また、加熱温度T(℃)と、フィルム基板の面内複屈折Δnとが、T≦150−3×10Δnを満たすことが好ましい。加熱温度T(℃)は、140−3×10Δn以下がより好ましく、135−3×10Δn以下がより好ましく、130−3×10Δn以下がさらに好ましい。 When the liquid crystal molecules are uniformly homogenically oriented, the liquid crystal oriented film becomes a positive A plate of nx = nz> ny (NZ = 1). The heating temperature T for coexisting the homeotropic alignment component and the homogenius alignment component to obtain a liquid crystal alignment film of nx> nz (NZ <1) is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, and 130 ° C. or lower. Is even more preferable. Further, it is preferable that the heating temperature T (° C.) and the in-plane birefringence Δn of the film substrate satisfy T ≦ 150-3 × 10 3 Δn. Heating temperature T (° C.) is more preferably 140-3 × 10 3 [Delta] n or less, more preferably 135 - 3 × 10 3 [Delta] n or less, more preferably 130-3 × 10 3 [Delta] n or less.

上記と同様の観点から、NZ係数が0より大きく1より小さい液晶配向フィルムを得るために、加熱温度T(℃)は、(90−0.1×R)〜(150−0.06×R)が好ましく、(95−0.1×R)〜(140−0.06×R)がより好ましく、(100−0.1×R)〜(135−0.06×R)がさらに好ましく、(105−0.1×R)〜(130−0.06×R)が特に好ましい。Rは、延伸フィルム基材の面内レターデーション(nm)である。 From the same viewpoint as above, in order to obtain a liquid crystal oriented film having an NZ coefficient greater than 0 and smaller than 1, the heating temperature T (° C.) is (90-0.1 × R 0 ) to (150-0.06 ×). R 0 ) is preferable, (95-0.1 × R 0 ) to (140-0.06 × R 0 ) is more preferable, and (100-0.1 × R 0 ) to (135-0.06 × R). 0 ) is more preferable, and (105-0.1 × R 0 ) to (130-0.06 × R 0 ) are particularly preferable. R 0 is the in-plane retardation (nm) of the stretched film substrate.

液晶性組成物層を加熱後に、液晶ポリマーのガラス転移温度以下の温度に冷却することにより、液晶性化合物の配向が固定される。冷却方法は特に限定されず、例えば、加熱雰囲気から室温に取り出せばよい。空冷、水冷等の強制冷却を行ってもよい。 After heating the liquid crystal composition layer, the orientation of the liquid crystal compound is fixed by cooling it to a temperature equal to or lower than the glass transition temperature of the liquid crystal polymer. The cooling method is not particularly limited, and for example, it may be taken out from the heating atmosphere to room temperature. Forced cooling such as air cooling or water cooling may be performed.

配向が固定された液晶性組成物層に光照射を行い、光重合性液晶化合物を重合または架橋させることにより、光重合性液晶化合物の配向が固定され、液晶配向フィルムの耐久性が向上する。照射する光としては、光重合開始剤が開裂する波長の光を選択すればよく、一般には紫外線が用いられる。光重合反応を促進するために、光照射は窒素ガス等の不活性ガス雰囲気下で行うことが好ましい。 By irradiating the liquid crystal composition layer having a fixed orientation with light to polymerize or crosslink the photopolymerizable liquid crystal compound, the orientation of the photopolymerizable liquid crystal compound is fixed and the durability of the liquid crystal alignment film is improved. As the light to be irradiated, light having a wavelength at which the photopolymerization initiator cleaves may be selected, and ultraviolet rays are generally used. In order to promote the photopolymerization reaction, it is preferable that the light irradiation is carried out in an atmosphere of an inert gas such as nitrogen gas.

[液晶配向フィルムの特性および用途]
上記により得られる液晶配向フィルムは、nx>ny>nzの屈折率異方性を有し、視野角補償等を目的としたディスプレイ用光学フィルムとして用いることができる。液晶配向フィルムの面内レターデーションは、例えば50〜500nmである。本発明においては、液晶性組成物の配合、延伸フィルム基材の面内レターデーションおよび面内複屈折、液晶性組成物の塗布厚み、ならびに液晶配向時の加熱温度等を調整することにより、所望のレターデーションおよびNZ係数を有する液晶配向フィルムが得られる。本発明によれば、同一のフィルム基板および液晶組成物を用いて、液晶配向時の加熱温度を調整するのみで、種々の正面レターデーションやNZ係数を有する液晶配向フィルムを作製できるため、生産性を向上可能であり、小ロット生産等への対応も容易である。
[Characteristics and applications of liquid crystal alignment film]
The liquid crystal alignment film obtained as described above has a refractive index anisotropy of nx>ny> nz and can be used as an optical film for a display for the purpose of compensating the viewing angle and the like. The in-plane retardation of the liquid crystal alignment film is, for example, 50 to 500 nm. In the present invention, it is desired by adjusting the composition of the liquid crystal composition, the in-plane retardation and in-plane birefringence of the stretched film substrate, the coating thickness of the liquid crystal composition, the heating temperature at the time of liquid crystal orientation, and the like. A liquid crystal alignment film having the above retardation and NZ coefficient is obtained. According to the present invention, using the same film substrate and liquid crystal composition, a liquid crystal oriented film having various front retardations and NZ coefficients can be produced only by adjusting the heating temperature at the time of liquid crystal alignment, so that productivity can be obtained. It is possible to improve, and it is easy to handle small lot production.

視認方向によるレターデーションの変化を小さくするためには、液晶配向フィルムのNZ係数が、0.2〜0.8であることが好ましく、0.3〜0.7であることがより好ましく、0.4〜0.6であることがさらに好ましく、0.45〜0.55であることが特に好ましい。 In order to reduce the change in retardation depending on the viewing direction, the NZ coefficient of the liquid crystal alignment film is preferably 0.2 to 0.8, more preferably 0.3 to 0.7, and is 0. It is more preferably 0.4 to 0.6, and particularly preferably 0.45 to 0.55.

液晶配向フィルムの面内レターデーションRoおよびNZ係数の好ましい範囲は、使用目的等により異なる。例えば、Roが200〜350nmであり、NZ係数が0.4〜0.6である場合は、視認方向によるレターデーションの変化の少ないλ/2位相差板として適しており、IPS液晶表示装置の視野角補償フィルム等に好適に用いられる。Roが120〜170nmであり、NZ係数が0.4〜0.6である場合は、視認方向によるレターデーションの変化の少ないλ/4位相差板として適しており、偏光板と積層することにより広視野角円偏光板が得られる。広視野角円偏光板は、OLEDの外光反射防止フィルム等に好適に用いられる。 The preferable ranges of the in-plane retardation Ro and the NZ coefficient of the liquid crystal alignment film differ depending on the purpose of use and the like. For example, when Ro is 200 to 350 nm and the NZ coefficient is 0.4 to 0.6, it is suitable as a λ / 2 retardation plate with little change in retardation depending on the viewing direction, and is suitable for an IPS liquid crystal display device. It is preferably used for a viewing angle compensation film or the like. When Ro is 120 to 170 nm and the NZ coefficient is 0.4 to 0.6, it is suitable as a λ / 4 retardation plate in which there is little change in retardation depending on the viewing direction, and by laminating it with a polarizing plate. A wide viewing angle circular polarizing plate can be obtained. The wide viewing angle circular polarizing plate is preferably used as an external light reflection antireflection film for OLEDs.

液晶配向フィルムは、フィルム基板と積層したままの状態で用いてもよく、フィルム基板から剥離して用いてもよい。液晶配向フィルムは、フィルム基板から剥離して、位相差フィルム、偏光板、ガラス等の基材と積層して用いてもよい。 The liquid crystal alignment film may be used in a state of being laminated with the film substrate, or may be peeled off from the film substrate and used. The liquid crystal alignment film may be peeled off from the film substrate and laminated with a substrate such as a retardation film, a polarizing plate, or glass.

以下に、液晶配向フィルムの作製例を挙げて本発明をより詳細に説明するが、本発明は下記の例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of producing a liquid crystal alignment film, but the present invention is not limited to the following examples.

[評価方法]
(算術平均粗さ)
走査型プローブ顕微鏡(AFM)を用いた1μm四方のAFM観察像から、算術平均粗さを求めた。
[Evaluation method]
(Arithmetic mean roughness)
The arithmetic mean roughness was determined from an AFM observation image of 1 μm square using a scanning probe microscope (AFM).

(レターデーション)
レターデーションの測定には、偏光・位相差測定システム(Axometrics製 製品名「AxoScan」)を用い、23℃の環境下にて、波長590nmの値を測定した。液晶配向フィルムのレターデーションの測定には、表面に粘着剤を設けたガラス板の粘着剤付設面上に、液晶配向フィルムを転写したサンプルを用い、面内レターデーションR、および40°傾斜時のレターデーションを測定し、これらの測定値から、液晶配向フィルムの平均屈折率を1.52として、屈折率nx,ny,nzを算出し、NZ=(nx−nz)/(nx−ny)を求めた。
(Letteration)
For the measurement of the retardation, a polarization / phase difference measurement system (product name "AxoScan" manufactured by Axometrics) was used, and the value at a wavelength of 590 nm was measured in an environment of 23 ° C. For the measurement of the liquid crystal alignment film retardation, a sample obtained by transferring the liquid crystal alignment film onto the adhesive-attached surface of a glass plate provided with an adhesive on the surface was used, and the in-plane retardation R 0 and when tilted by 40 ° The refractive index nz, ny, nz was calculated from these measured values, assuming that the average refractive index of the liquid crystal alignment film was 1.52, and NZ = (nx-nz) / (nx-ny). Asked.

[液晶性組成物1〜8の調製]
下記の化学式(n=0.35であり、便宜上ブロックポリマー体で示している)の重量平均分子量5000の側鎖型液晶ポリマーと、サーモトロピックネマチック液晶相を示す重合性液晶モノマー(BASF製「Paliocolor LC242」)とを合計100重量部、および光重合開始剤(BASF製「イルガキュア907」)5重量部を、シクロペンタノン400重量部に溶解して液晶性組成物を調製した。ポリマーとモノマーの比を表1に示すように、100/0〜20/80の比で変更して、液晶性組成物1〜8とした。
[Preparation of liquid crystal compositions 1 to 8]
A side-chain liquid crystal polymer having a weight average molecular weight of 5000 having the following chemical formula (n = 0.35, which is shown as a block polymer for convenience) and a polymerizable liquid crystal monomer showing a thermotropic nematic liquid crystal phase (BASF "Pariocolor"). A liquid crystal composition was prepared by dissolving 100 parts by weight of LC242 ") and 5 parts by weight of a photopolymerization initiator ("Irgacure 907" manufactured by BASF) in 400 parts by weight of cyclopentanone. As shown in Table 1, the ratio of the polymer to the monomer was changed to a ratio of 100/0 to 20/80 to obtain liquid crystal compositions 1 to 8.

Figure 0006769921
Figure 0006769921

[液晶性組成物9の調製]
下記の化学式で表される繰り返し単位を有する重量平均分子量5000の側鎖型液晶ポリマー50重量部、BASF製「Paliocolor LC242」50重量部、およびBASF製「イルガキュア907」5重量部を、シクロペンタノン400重量部に溶解して液晶性組成物9を調製した。
[Preparation of liquid crystal composition 9]
50 parts by weight of a side chain liquid crystal polymer having a repeating unit represented by the following chemical formula and a weight average molecular weight of 5000, 50 parts by weight of BASF's "Pariocolor LC242", and 5 parts by weight of BASF's "Irgacure 907" are cyclopentanone. The liquid crystal composition 9 was prepared by dissolving in 400 parts by weight.

Figure 0006769921
Figure 0006769921

[実験例1]
一方の面に易滑層を有する二軸延伸ノルボルネン系フィルム(日本ゼオン製「ゼオノアフィルム」、厚み;52μm、面内レターデーション:50nm、易滑層非形成面の算術平均粗さ:1.2nm)の易滑層非形成面に、マイヤーバー(#4)を用いて上記の液晶性組成物1〜9を塗布し、100℃で2分間加熱して液晶を配向させた。その後、室温に冷却して配向を固定し、窒素雰囲気下で700mJ/cmの紫外線を照射して、液晶モノマーを光硬化させ、液晶配向フィルムを作製した。
[Experimental Example 1]
Biaxially stretched norbornene film having an I Ching layer on one surface (“Zeonor film” manufactured by Nippon Zeon, thickness: 52 μm, in-plane retardation: 50 nm, arithmetic mean roughness of non-I Ching layer non-formed surface: 1.2 nm ), The above liquid crystal compositions 1 to 9 were applied to the non-slip layer non-forming surface using a Meyer bar (# 4), and heated at 100 ° C. for 2 minutes to orient the liquid crystal. Then, the film was cooled to room temperature to fix the orientation, and irradiated with ultraviolet rays of 700 mJ / cm 2 in a nitrogen atmosphere to photocure the liquid crystal monomer to prepare a liquid crystal alignment film.

[実験例2,3]
実験例2では#8、実験例3では#12のマイヤーバーを用いたこと以外は、実験例1と同様にして、液晶性組成物1〜8の塗布、加熱、冷却および光硬化を実施して、液晶配向フィルムを作製した。
[Experimental Examples 2 and 3]
The liquid crystal compositions 1 to 8 were coated, heated, cooled and photocured in the same manner as in Experimental Example 1 except that # 8 was used in Experimental Example 2 and # 12 Meyer Bar was used in Experimental Example 3. To prepare a liquid crystal alignment film.

[実験例4]
一方の面に易滑層を有する二軸延伸ノルボルネン系フィルム(日本ゼオン製「ゼオノアフィルム」、厚み;34μm、面内レターデーション:270nm、易滑層非形成面の算術平均粗さ:0.9nm)の易滑層非形成面に、#12のマイヤーバーロールを用いて液晶性組成物1〜8を塗布し、実験例3と同様にして液晶配向フィルムを作製した。
[Experimental Example 4]
Biaxially stretched norbornene film having an easy-slip layer on one surface (“Zeonor film” manufactured by Nippon Zeon, thickness: 34 μm, in-plane retardation: 270 nm, arithmetic mean roughness of non-slip layer non-formed surface: 0.9 nm ), The liquid crystal compositions 1 to 8 were applied to the non-slip layer non-forming surface using # 12 Meyer bar roll to prepare a liquid crystal alignment film in the same manner as in Experimental Example 3.

[実験例5]
未延伸のノルボルネン系フィルム(日本ゼオン製「ゼオノアフィルム」、厚み;34μm、面内レターデーション:0nm、算術平均粗さ2.3nm)に、#12のマイヤーバーロールを用いて液晶性組成物4を塗布し、実験例3と同様にして液晶配向フィルムを作製した。
[Experimental Example 5]
Liquid crystal composition 4 using # 12 Meyer bar roll on an unstretched norbornene film (Zeon Corporation "Zeonoa film", thickness; 34 μm, in-plane retardation: 0 nm, arithmetic mean roughness 2.3 nm). Was applied to prepare a liquid crystal alignment film in the same manner as in Experimental Example 3.

実験例1〜5に用いた基材の面内レターデーションR、液晶配向フィルムの厚み、および液晶配向フィルムのレターデーションの測定結果(面内レターデーションRおよびNZ)を、表1に示す。 Experimental Examples 1-5 plane retardation R 0 of the base material used for, thickness of the liquid crystal alignment film, and retardation of the measurement results of the liquid crystal alignment film (in-plane retardation R 0 and NZ), are shown in Table 1 ..

Figure 0006769921
Figure 0006769921

[実験例6〜8]
実験例1〜3と同様の面内レターデーションが50nmの二軸延伸フィルム上に、#12のマイヤーバーを用いて、液晶性組成物4(ポリマー/モノマーの比が80/20)を塗布し、その後の加熱温度を70〜120℃の範囲で変更した。それ以外は、実験例3と同様にして、液晶配向フィルムを作製した。実験例6〜8の加熱温度、および液晶配向フィルムのレターデーションの測定結果を、実験例3の結果(再掲)とともに、表2に示す。
[Experimental Examples 6-8]
Liquid crystal composition 4 (polymer / monomer ratio of 80/20) was applied onto a biaxially stretched film having an in-plane retardation of 50 nm, which was the same as in Experimental Examples 1 to 3, using a # 12 Meyer bar. After that, the heating temperature was changed in the range of 70 to 120 ° C. A liquid crystal alignment film was produced in the same manner as in Experimental Example 3 except for the above. The measurement results of the heating temperatures of Experimental Examples 6 to 8 and the retardation of the liquid crystal alignment film are shown in Table 2 together with the results of Experimental Example 3 (reposted).

Figure 0006769921
Figure 0006769921

表1において、液晶組成物中のサーモトロピック液晶化合物の割合が小さい液晶組成物7,8を延伸フィルム基板上に塗布した場合は、実験例1〜4のいずれにおいても、得られた液晶配向フィルムは、面内レターデーションRが略0でNZ係数がマイナスのポジティブCプレートであった。実験例1〜4では、サーモトロピック液晶化合物の割合が増加するにつれて、液晶配向フィルムのRが大きくなり、これに伴ってNZ係数が大きくなる傾向がみられた。一方、無延伸フィルムを用いた実験例5では、サーモトロピック液晶化合物の割合が大きい場合(モノマー/ポリマー=80/20)でも液晶配向フィルムのRは略0であった。 In Table 1, when the liquid crystal compositions 7 and 8 having a small proportion of the thermotropic liquid crystal compound in the liquid crystal composition were applied onto the stretched film substrate, the obtained liquid crystal alignment film was obtained in any of Experimental Examples 1 to 4. Was a positive C plate with an in-plane retardation R 0 of approximately 0 and a negative NZ coefficient. In Experimental Examples 1 to 4, as the proportion of the thermotropic liquid crystal compound increased, R 0 of the liquid crystal alignment film increased, and the NZ coefficient tended to increase accordingly. On the other hand, in Experimental Example 5 using the non-stretched film, R 0 of the liquid crystal oriented film was approximately 0 even when the proportion of the thermotropic liquid crystal compound was large (monomer / polymer = 80/20).

実験例1〜3を対比すると、同一の液晶組成物を用いた場合でも、塗布厚みが大きくなるほど液晶配向フィルムのNZが大きくなる傾向がみられた。実験例3と実験例4との対比から、延伸基板フィルムの面内複屈折が大きいほど、ホモジニアス配向成分が増加し、液晶配向フィルムのNZ係数が大きくなることが分かる。 Comparing Experimental Examples 1 to 3, even when the same liquid crystal composition was used, the NZ of the liquid crystal alignment film tended to increase as the coating thickness increased. From the comparison between Experimental Example 3 and Experimental Example 4, it can be seen that the larger the in-plane birefringence of the stretched substrate film, the more the homogeneous orientation component increases, and the larger the NZ coefficient of the liquid crystal alignment film.

表2に示す結果から、同一の液晶組成物を用いた場合でも、液晶性組成物を塗布後の加熱温度が高いほど、液晶配向フィルムのNZ係数が大きくなることが分かる。 From the results shown in Table 2, it can be seen that even when the same liquid crystal composition is used, the higher the heating temperature after coating the liquid crystal composition, the larger the NZ coefficient of the liquid crystal alignment film.

以上の結果から、延伸フィルム基板上に側鎖型サーモトロピック液晶ポリマーとサーモトロピック液晶化合物とを含む液晶性組成物を塗布後の加熱温度等を調整することにより、液晶配向フィルムの屈折率異方性を制御できることが分かる。すなわち、本発明によれば、液晶組成物の配合、液晶組成物を塗布する基板の面内レターデーション(面内複屈折)、塗布厚み、および加熱温度等を調整することにより、種々の面内レターデーションおよびNZ係数を有する液晶配向フィルムが得られることが分かる。 From the above results, the refractive index of the liquid crystal alignment film is anisotropic by adjusting the heating temperature after coating the liquid crystal composition containing the side chain type thermotropic liquid crystal polymer and the thermotropic liquid crystal compound on the stretched film substrate. It turns out that the sex can be controlled. That is, according to the present invention, various in-planes are adjusted by adjusting the composition of the liquid crystal composition, the in-plane retardation (in-plane birefringence) of the substrate on which the liquid crystal composition is applied, the coating thickness, the heating temperature, and the like. It can be seen that a liquid crystal oriented film having a retardation and an NZ coefficient can be obtained.

Claims (7)

側鎖型サーモトロピック液晶ポリマー、およびサーモトロピック液晶化合物の重合物を含有する液晶層からなる液晶配向フィルムの製造方法であって、
第一主面と第二主面とを有するフィルム基板の第一主面上に、側鎖型サーモトロピック液晶ポリマーおよび光重合性サーモトロピック液晶化合物を含有する液晶性組成物を塗布する塗布工程;
前記側鎖型サーモトロピック液晶ポリマーおよび光重合性サーモトロピック液晶化合物を加熱して配向させる液晶配向工程;および
光照射により前記光重合性サーモトロピック液晶化合物を重合または架橋する光重合工程、
を有し、
前記フィルム基板は、配向膜を有していない延伸フィルムであり、
前記側鎖型サーモトロピック液晶ポリマーは、液晶性フラグメント側鎖を含有するモノマーユニットと、非液晶性フラグメント側鎖を含有するモノマーユニットとを有し、
前記光重合性サーモトロピック液晶化合物は、1分子中にメソゲン基と複数の(メタ)アクリロイル基とを有し、
前記液晶層は、単層で、面内の遅相軸方向の屈折率nx、面内の進相軸方向の屈折率ny、および厚み方向の屈折率nzが、0.2≦(nx−nz)/(nx−ny)≦0.8を満たす、
液晶配向フィルムの製造方法
A method for producing a liquid crystal alignment film composed of a liquid crystal layer containing a side chain type thermotropic liquid crystal polymer and a polymer of a thermotropic liquid crystal compound .
A coating step of applying a liquid crystal composition containing a side chain type thermotropic liquid crystal polymer and a photopolymerizable thermotropic liquid crystal compound on the first main surface of a film substrate having a first main surface and a second main surface;
A liquid crystal alignment step in which the side chain thermotropic liquid crystal polymer and the photopolymerizable thermotropic liquid crystal compound are heated and oriented; and
A photopolymerization step of polymerizing or cross-linking the photopolymerizable thermotropic liquid crystal compound by light irradiation.
Have,
The film substrate is a stretched film that does not have an alignment film.
The side chain type thermotropic liquid crystal polymer has a monomer unit containing a liquid crystal fragment side chain and a monomer unit containing a non-liquid crystal fragment side chain.
The photopolymerizable thermotropic liquid crystal compound has a mesogen group and a plurality of (meth) acryloyl groups in one molecule.
The liquid crystal layer is a single layer, and has an in- plane refractive index nx in the slow axis direction, an in-plane refractive index ny in the phase advance axis direction, and a refractive index nz in the thickness direction of 0.2 ≦ (nx-nz). ) / (Nx-ny) ≤ 0.8,
A method for producing a liquid crystal alignment film.
前記側鎖型サーモトロピック液晶ポリマーは、下記一般式(I)で表される液晶性モノマーユニットと、下記一般式(II)で表される非液晶性モノマーユニットとを有する、請求項1に記載の液晶配向フィルムの製造方法
Figure 0006769921
Figure 0006769921
およびRは、それぞれ独立に水素原子またはメチル基であり、
は−CO−基または−OCO−基であり、
はシアノ基、フルオロ基、炭素数1〜6のアルキル基、または炭素数1〜6のアルコキシ基であり、
aは1〜6の整数であり、bおよびcは、それぞれ独立に1または2であり、
は、炭素数7〜22のアルキル基、炭素数1〜22のフルオロアルキル基、または下記一般式(III)で表される基であり、
Figure 0006769921
は炭素数1〜5のアルキル基であり、dは1〜6の整数である。
The side chain type thermotropic liquid crystal polymer has a liquid crystal monomer unit represented by the following general formula (I) and a non-liquid crystal monomer unit represented by the following general formula (II), according to claim 1. Manufacturing method of liquid crystal alignment film:
Figure 0006769921
Figure 0006769921
R 1 and R 3 are independently hydrogen atoms or methyl groups, respectively.
X 1 is a -CO 2- or -OCO- group and
R 2 is a cyano group, a fluoro group, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
a is an integer from 1 to 6, and b and c are independently 1 or 2, respectively.
R 4 is an alkyl group having 7 to 22 carbon atoms, a fluoroalkyl group having 1 to 22 carbon atoms, or a group represented by the following general formula (III).
Figure 0006769921
R 5 is an alkyl group having 1 to 5 carbon atoms, and d is an integer of 1 to 6.
前記液晶性組成物において、前記光重合性サーモトロピック液晶化合物の含有量が、前記側鎖型サーモトロピック液晶ポリマーの含有量の1.2〜20倍である、請求項1または2に記載の液晶配向フィルムの製造方法The liquid crystal composition according to claim 1 or 2, wherein the content of the photopolymerizable thermotropic liquid crystal compound is 1.2 to 20 times the content of the side chain type thermotropic liquid crystal polymer. A method for producing a liquid crystal alignment film. 前記液晶層の面内レターデーションが、50〜500nmである、請求項1〜3のいずれか1項に記載の液晶配向フィルムの製造方法 The method for producing a liquid crystal oriented film according to any one of claims 1 to 3, wherein the in- plane retardation of the liquid crystal layer is 50 to 500 nm. 前記フィルム基板が10〜1000nmの面内レターデーションを有する、請求項1〜4のいずれか1項に記載の液晶配向フィルムの製造方法。 The method for producing a liquid crystal oriented film according to any one of claims 1 to 4 , wherein the film substrate has an in-plane retardation of 10 to 1000 nm. 前記液晶配向工程における加熱温度T(℃)と、前記フィルム基板の面内複屈折Δnとが、T≧90−5×10Δnを満たす、請求項1〜5のいずれか1項に記載の液晶配向フィルムの製造方法。 The invention according to any one of claims 1 to 5 , wherein the heating temperature T (° C.) in the liquid crystal alignment step and the in-plane birefringence Δn of the film substrate satisfy T ≧ 90-5 × 10 3 Δn. A method for producing a liquid crystal alignment film. 前記フィルム基板がノルボルネン系ポリマーフィルムである、請求項1〜6のいずれか1項に記載の液晶配向フィルムの製造方法。 The method for producing a liquid crystal oriented film according to any one of claims 1 to 6 , wherein the film substrate is a norbornene-based polymer film.
JP2017090138A 2017-04-28 2017-04-28 Manufacturing method of liquid crystal alignment film Active JP6769921B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017090138A JP6769921B2 (en) 2017-04-28 2017-04-28 Manufacturing method of liquid crystal alignment film
KR1020197026500A KR102275287B1 (en) 2017-04-28 2017-12-21 Liquid crystal aligning film and its manufacturing method
CN201780090004.5A CN110573915B (en) 2017-04-28 2017-12-21 Liquid crystal alignment film and method for producing same
PCT/JP2017/046040 WO2018198434A1 (en) 2017-04-28 2017-12-21 Liquid crystal alignment film and method of manufacturing same
TW107113322A TWI770162B (en) 2017-04-28 2018-04-19 Liquid crystal alignment film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017090138A JP6769921B2 (en) 2017-04-28 2017-04-28 Manufacturing method of liquid crystal alignment film

Publications (2)

Publication Number Publication Date
JP2018189724A JP2018189724A (en) 2018-11-29
JP6769921B2 true JP6769921B2 (en) 2020-10-14

Family

ID=63918859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017090138A Active JP6769921B2 (en) 2017-04-28 2017-04-28 Manufacturing method of liquid crystal alignment film

Country Status (5)

Country Link
JP (1) JP6769921B2 (en)
KR (1) KR102275287B1 (en)
CN (1) CN110573915B (en)
TW (1) TWI770162B (en)
WO (1) WO2018198434A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845849A (en) * 2021-10-18 2021-12-28 北京化工大学 Thermotropic liquid crystal polymer doped heat-peelable photocuring pressure-sensitive adhesive

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241019A (en) * 1992-02-27 1993-09-21 Sumitomo Chem Co Ltd Composite phase difference film
JP4174192B2 (en) * 2001-05-08 2008-10-29 日東電工株式会社 Homeotropic alignment liquid crystal composition, method for producing homeotropic alignment liquid crystal film, and homeotropic alignment liquid crystal film
US6885423B2 (en) * 2000-12-06 2005-04-26 Nitto Denko Corporation Method for manufacturing homeotropic alignment liquid crystal film
JP4207180B2 (en) * 2001-11-15 2009-01-14 日東電工株式会社 Phase difference plate, method for producing the same, and optical film
JP2003226682A (en) * 2002-02-01 2003-08-12 Nitto Denko Corp Cholesteric liquid-crystalline dendrimer and method for producing the same
JP2004287416A (en) * 2003-03-06 2004-10-14 Nitto Denko Corp Method of manufacturing inclined alignment film, inclined alignment film and image display device
DE602004001116T2 (en) * 2003-10-15 2006-10-05 Nippon Oil Corp. Polymerizable liquid-crystal mixture and liquid-crystal film produced therefrom
JP3880996B2 (en) * 2004-05-26 2007-02-14 日東電工株式会社 Elliptical polarizing plate and liquid crystal display device
JP2007206605A (en) * 2006-02-06 2007-08-16 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
KR20080034405A (en) * 2006-10-16 2008-04-21 다이니폰 인사츠 가부시키가이샤 Retardation film and polarizing plate
JP2008122851A (en) 2006-11-15 2008-05-29 Nitto Denko Corp Optical laminated body, method of manufacturing optical laminated body and application of optical laminated body
JP2008164925A (en) * 2006-12-28 2008-07-17 Hayashi Telempu Co Ltd Retardation film and method for producing the same
CN102576108A (en) * 2009-08-10 2012-07-11 吉坤日矿日石能源株式会社 Liquid-crystal film and optical element obtained using same
CN102884456B (en) 2010-05-07 2014-12-31 日本化药株式会社 Optical element and method for improving viewing angle of polarizing film using same
JP6369942B2 (en) * 2012-11-14 2018-08-08 日産化学株式会社 Photoreactive composition, photo-alignment film using the same, and optically anisotropic film
JP2014197119A (en) * 2013-03-29 2014-10-16 Jx日鉱日石エネルギー株式会社 Optical film, polarizing plate, image display device, and manufacturing method for optical film
JP6131709B2 (en) * 2013-05-16 2017-05-24 東ソー株式会社 Optical film using polymer composition
EP3044289B1 (en) * 2013-09-13 2017-10-25 Merck Patent GmbH Polymerisable liquid crystal material and polymerised liquid crystal film
JP6448979B2 (en) * 2014-10-20 2019-01-09 富士フイルム株式会社 Retardation film, composition, method for producing retardation film, polarizing plate and liquid crystal display
US9678384B2 (en) * 2014-10-20 2017-06-13 Fujifilm Corporation Retardation film, composition, method of manufacturing retardation film, polarizing plate and liquid crystal display device
JP6616963B2 (en) * 2015-05-22 2019-12-04 富士フイルム株式会社 Coloring composition, light absorption anisotropic film, laminate, polarizing plate, image display device and compound
KR102473676B1 (en) * 2016-01-21 2022-12-01 삼성전자주식회사 Composition for optical film, optical films, antireflection films and display device
JP2018151535A (en) * 2017-03-14 2018-09-27 大日本印刷株式会社 Phase difference film, transfer laminate, optical member, method for producing optical member, and display device
JP6363252B1 (en) * 2017-04-24 2018-07-25 日東電工株式会社 Method for producing homeotropic alignment liquid crystal film

Also Published As

Publication number Publication date
KR20190141124A (en) 2019-12-23
KR102275287B1 (en) 2021-07-12
CN110573915A (en) 2019-12-13
TW201842170A (en) 2018-12-01
TWI770162B (en) 2022-07-11
WO2018198434A1 (en) 2018-11-01
JP2018189724A (en) 2018-11-29
CN110573915B (en) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2005116741A1 (en) Liquid crystal display
JP4737629B2 (en) Elliptical polarizing plate and image display device using the same
JP2006163343A (en) Elliptical polarization plate and picture display device using it
JP2006268007A (en) Method of producing elliptically polarizing plate and image display device using the elliptically polarizing plate
JPWO2008010497A1 (en) Retardation film, brightness enhancement film, polarizing plate, retardation film production method, and liquid crystal display device
WO2007122888A1 (en) Film, process for producing film, and use thereof
WO2007122889A1 (en) Film, process for producing the film, and use of the film
JP7147766B2 (en) Optical film and image display device
JPWO2018123725A1 (en) Circular polarizing plate, organic electroluminescence display device
JP2016224128A (en) Method for manufacturing optical laminate, optical laminate, optically anisotropic laminate, circularly polarizing plate, and organic electroluminescence display device
JP2005202313A (en) Optical retardation film, manufacturing method for same, and optical film using same
CN109416429B (en) Vertically aligned liquid crystal film and method for manufacturing the same
JP4413117B2 (en) Retardation film, polarizing plate, liquid crystal panel, liquid crystal display device and method for producing retardation film
JP6769921B2 (en) Manufacturing method of liquid crystal alignment film
KR20200090097A (en) Aligned liquid crystal film and production method thereof, and image display device
JP2006039164A (en) Method for manufacturing optical film, optical film, polarizing plate, liquid crystal panel and liquid crystal display
JP4592046B2 (en) Manufacturing method of optical film
CN116848443A (en) Circularly polarizing plate and image display device using same
JP2004029062A (en) Liquid crystal composition and liquid crystal phase difference film using the same
US20050266175A1 (en) Retardation coating
JP6878662B1 (en) Manufacturing method of oriented liquid crystal film
JP7353052B2 (en) Laminated optical film and its manufacturing method, polarizing plate, and image display device
CN115113440A (en) Method for manufacturing oriented liquid crystal film
KR20230045084A (en) Optical film, circular polarizer, organic electroluminescence display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200924

R150 Certificate of patent or registration of utility model

Ref document number: 6769921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250