WO2014077006A1 - 電動パワーステアリング装置 - Google Patents
電動パワーステアリング装置 Download PDFInfo
- Publication number
- WO2014077006A1 WO2014077006A1 PCT/JP2013/070394 JP2013070394W WO2014077006A1 WO 2014077006 A1 WO2014077006 A1 WO 2014077006A1 JP 2013070394 W JP2013070394 W JP 2013070394W WO 2014077006 A1 WO2014077006 A1 WO 2014077006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing member
- resin
- electric power
- power steering
- bearing
- Prior art date
Links
- 229920005989 resin Polymers 0.000 claims abstract description 102
- 239000011347 resin Substances 0.000 claims abstract description 102
- 238000005096 rolling process Methods 0.000 claims abstract description 92
- 239000000835 fiber Substances 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000012765 fibrous filler Substances 0.000 claims abstract description 18
- 238000010521 absorption reaction Methods 0.000 claims abstract description 16
- 239000011342 resin composition Substances 0.000 claims abstract description 11
- 230000005674 electromagnetic induction Effects 0.000 claims description 38
- 230000002093 peripheral effect Effects 0.000 claims description 19
- 230000014759 maintenance of location Effects 0.000 claims description 6
- 230000001154 acute effect Effects 0.000 claims description 5
- 238000012360 testing method Methods 0.000 description 38
- 239000007769 metal material Substances 0.000 description 24
- 230000003014 reinforcing effect Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 238000000465 moulding Methods 0.000 description 14
- 239000003365 glass fiber Substances 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 238000001514 detection method Methods 0.000 description 11
- 239000004734 Polyphenylene sulfide Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- 229920000069 polyphenylene sulfide Polymers 0.000 description 9
- 229920002302 Nylon 6,6 Polymers 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000005011 phenolic resin Substances 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 229920006351 engineering plastic Polymers 0.000 description 5
- 229920013633 Fortron Polymers 0.000 description 4
- 239000004738 Fortron® Substances 0.000 description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229920006097 Ultramide® Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920003189 Nylon 4,6 Polymers 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000003711 photoprotective effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- IWELDVXSEVIIGI-UHFFFAOYSA-N piperazin-2-one Chemical class O=C1CNCCN1 IWELDVXSEVIIGI-UHFFFAOYSA-N 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920006128 poly(nonamethylene terephthalamide) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006394 polyamide 410 Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 102220097517 rs876659265 Human genes 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- WSNJABVSHLCCOX-UHFFFAOYSA-J trilithium;trimagnesium;trisodium;dioxido(oxo)silane;tetrafluoride Chemical compound [Li+].[Li+].[Li+].[F-].[F-].[F-].[F-].[Na+].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WSNJABVSHLCCOX-UHFFFAOYSA-J 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0403—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0409—Electric motor acting on the steering column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/08—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
- B62D6/10—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
- F16C19/56—Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/042—Housings for rolling element bearings for rotary movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/06—Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/24—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
- F16C19/26—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2202/00—Solid materials defined by their properties
- F16C2202/20—Thermal properties
- F16C2202/22—Coefficient of expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/20—Thermoplastic resins
- F16C2208/52—Polyphenylene sulphide [PPS]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/20—Thermoplastic resins
- F16C2208/60—Polyamides [PA]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/20—Thermoplastic resins
- F16C2208/70—Polyesters, e.g. polyethylene-terephthlate [PET], polybutylene-terephthlate [PBT]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/80—Thermosetting resins
- F16C2208/90—Phenolic resin
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/20—Land vehicles
- F16C2326/24—Steering systems, e.g. steering rods or columns
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/06—Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
- F16C35/067—Fixing them in a housing
Definitions
- the present invention relates to an electric power steering system (EPS: Electric Power Steering system).
- EPS Electric Power Steering system
- Patent Document 1 Conventionally, as an electric power steering device mounted on an automobile or the like, for example, the one described in Patent Document 1 is known.
- a torsion bar that is elastically deformable in a torsional direction is provided in a part of a steering system of a vehicle, and is proportional to the steering torque between an input shaft and an output shaft that are connected via the torsion bar. Relative rotation is generated. Then, the steering torque is detected by measuring the relative rotation, and the steering assist torque corresponding to the detected steering torque is generated to reduce the burden on the driver.
- an input shaft, an output shaft, and a steering assist mechanism that generates steering assist torque are included in a housing.
- the housing is generally formed of a metal material such as aluminum.
- the steering assist mechanism that generates the steering assist torque includes a torque sensor that detects the steering force input to the input shaft as the steering torque, and the steering assist torque is calculated from the detection value detected by the torque sensor.
- the steering assist torque is applied to the output shaft from an electric motor connected to the output shaft via a worm and a worm wheel.
- FIG. 2 An example of a conventional electric power steering apparatus in which the housing is formed of a metal material is shown in FIG.
- the electric power steering apparatus shown in FIG. 2 includes in a housing 101 an input shaft 102, an output shaft 103, and a torque sensor 108 that detects a steering force input to the input shaft 102 as a steering torque.
- the input shaft 102 is rotatably supported with respect to the housing 101 by a rolling bearing (not shown).
- the output shaft 103 is rotatably supported with respect to the housing 101 by two rolling bearings 105a and 105b.
- the input shaft 102 and the output shaft 103 are respectively formed with cylindrical holes 102a and 103a concentric with the shaft center, and the torsion bar 104 is inserted into the cylindrical holes 102a and 103a. They are connected via a torsion bar 104.
- One end portion of the torsion bar 104 and the input shaft 102 are provided with a communication hole 106 communicating in the radial direction at a fitting portion between the one end portion of the torsion bar 104 and the input shaft 102, and a pin (not shown) is provided in the communication hole 106. ) Are inserted.
- the other end portion of the torsion bar 104 and the output shaft 103 are provided with a communication hole (not shown) communicating in the radial direction at the fitting portion between the other end portion of the torsion bar 104 and the output shaft 3.
- the holes are connected by inserting pins (not shown).
- a steering wheel is integrally attached to the right end (not shown) of the input shaft 102 in the rotational direction, and a known rack and pinion type steering device is connected to the left end of the output shaft 103 via a universal joint, for example.
- the pinion shaft which comprises is connected. Therefore, the steering force generated when the steering wheel steers the steering wheel is transmitted to the steered wheels via the input shaft 102, the torsion bar 104, the output shaft 103, the universal joint, and the rack and pinion type steering device.
- a worm wheel 109 that rotates coaxially and integrally with the output shaft 103 is fitted on the output shaft 103.
- a resin engagement portion 109a provided on the worm wheel 109 and a worm 110a formed on the outer peripheral surface of an output shaft (not shown) of the electric motor 110 are engaged with each other. Therefore, the rotational force of the electric motor 110 is transmitted to the output shaft 103 via the output shaft, the worm 110a and the worm wheel 109, and the output shaft can be switched by appropriately switching the rotation direction of the electric motor 110.
- the steering assist torque in an arbitrary direction is applied to 103.
- This steering assist torque is calculated from a value detected by a torque sensor 108 that detects a steering force transmitted to the input shaft 102 via the steering wheel as a steering torque (and / or steering angle).
- the torque sensor 108 is an electromagnetic induction type sensor, and includes a first sensor member 108a including a magnetic member such as a permanent magnet, and a second sensor member 108b including a member forming a magnetic circuit.
- the first sensor member 108 a is fixed to the output shaft 103, while the second sensor member 108 b is fixed to the input shaft 102.
- the steering torque (and / or steering angle) is detected by the relative angular displacement between the first sensor member 108a and the second sensor member 108b that is generated when the steering force is transmitted to the input shaft 102.
- the steering assist mechanism for applying the steering assist torque includes such a torque sensor 108 and is included in the housing 101 together with the input shaft 102 and the output shaft 103.
- the housing 101 includes an output side housing member 101a, a bearing supporting housing member 101c, and an input side housing member 101b.
- the output-side housing member 101a includes the output shaft 103, the worm wheel 109, and the worm 110a, and supports the output shaft 103 rotatably via the rolling bearing 105a.
- a motor attachment portion (not shown) for attaching the electric motor 110 is provided in the output-side housing member 101a.
- the output side housing member 101a is made of a metal material such as aluminum.
- the input side housing member 101b includes the input shaft 102 and the torque sensor 108.
- the input side housing member 101b is also formed of a metal material such as aluminum.
- the output-side housing member 101a and the input-side housing member 101b have the same outer peripheral surface shape at the coupling position, and are coupled to each other by bolts or the like not shown. Thereby, the inside of the housing 101 is sealed.
- the bearing supporting housing member 101c and the rolling bearings 105a and 105b support the rolling bearing 105b located closest to the torque sensor 108, and the output shaft 103 is rotatably supported via the rolling bearing 105b. is doing.
- the bearing supporting housing member 101c includes a first portion 111 that is press-fitted into the inner peripheral surface of the output-side housing member 101a, and a second portion 112 that supports the rolling bearing 105b.
- the first portion 111 and the second portion 112 are connected by a linear portion 113 that extends obliquely and linearly in a cross section along the axial direction of the output shaft 3.
- the first portion 111 of the bearing supporting housing member 101c there are a large-diameter portion 111a fitted to the inner peripheral surface of the output-side housing member 101a, and a small-diameter portion 111b fitted to the input-side housing member 101b. Is provided.
- the first portion 111 of the bearing supporting housing member 101c is fitted and fixed by press-fitting the large-diameter portion 111a into the inner peripheral surface of the output-side housing member 101a.
- a stepped portion 111c is provided on an end surface in the axial direction of the output side housing member 101a to which the large diameter portion 111a is fitted.
- the large diameter portion 111a of the bearing supporting housing member 1c is sandwiched between the stepped portion 111c and the end surface of the input side housing member 101b, and its axial position is restricted.
- a fitting portion 112a that fits on the outer peripheral surface of the rolling bearing 105b and a step surface that contacts one side surface in the axial direction of the rolling bearing 105b. 112b.
- the rolling bearing 105b is supported by the bearing supporting housing member 101c by being press-fitted into the fitting portion 112a.
- the bearing supporting housing member 101c is also formed of a metal material such as aluminum, like the output housing member 101a and the input housing member 101b.
- this conventional electric power steering apparatus has the following problems. That is, in the conventional electric power steering apparatus, all the plurality of housing members constituting the housing are formed of a metal material such as aluminum. In the example shown in the figure, the output side housing member 101a, the input side housing member 101b, and the bearing supporting housing member 101c are all made of a metal material. For this reason, there existed a problem that the weight of housing itself was heavy. Moreover, since the housing is formed of a metal material, finishing by cutting is necessary after forming by die casting or plastic working. As a result, the manufacturing process was complicated.
- the detection performance of the electromagnetic induction type sensor is affected by the metal disposed in the vicinity.
- the bearing supporting housing member that supports the rolling bearing closest to the torque sensor is also formed of a metal material, the electromagnetic induction sensor and the rolling bearing are closest to the electromagnetic induction sensor. It was necessary to provide a space between the metal bearing supporting housing member that supports the rolling bearing so as not to affect the detection performance of the sensor.
- the bearing supporting housing member 101c is formed of a metal material, the bearing supporting member that is the closest metal member in the axial direction to the electromagnetic induction sensor constituting the torque sensor 108 is used.
- the axial distance A between the housing member 101c and the electromagnetic induction sensor (torque sensor) 108 is a relatively long distance that does not affect the detection performance of the electromagnetic induction sensor.
- the axial distance B between the rolling bearing 105b and the electromagnetic induction sensor is a relatively long distance that does not affect the detection performance of the electromagnetic induction sensor.
- the layout around the torque sensor is limited. For this reason, there is a limit to the miniaturization of the input shaft and the output shaft in the axial direction, and it has been difficult to secure a predetermined collapse stroke in the steering column.
- an object of the present invention is to provide a bearing support housing in which the housing supports at least one rolling bearing that rotatably supports the output shaft with respect to the housing.
- Another object of the present invention is to provide an electric power steering apparatus that can reduce the weight of the housing itself and that can be easily processed in an electric power steering apparatus that includes at least one member and includes a plurality of housing members.
- Another object of the present invention is to provide an electric power steering apparatus that can secure a degree of freedom in layout and a sufficient collapse stroke even when an electromagnetic induction type sensor is used as a torque sensor.
- an electric power steering apparatus includes an input shaft, an output shaft connected to the input shaft via a torsion bar, and a steering force input to the input shaft.
- a torque sensor that detects the steering torque as a steering torque
- the housing includes at least one bearing support housing member that supports the at least one rolling bearing, and in the electric power steering apparatus that includes a plurality of housing members, the bearing support for supporting the at least one rolling bearing.
- the housing member is formed of resin. The resin can be used continuously in a temperature environment of ⁇ 40 ° C.
- the linear expansion coefficient is in the range of 1.2 ⁇ 10 ⁇ 5 to 5.5 ⁇ 10 ⁇ 5 (1 / ° C.) in both the fiber direction and the direction perpendicular to the fiber temperature range, and when left in water at 23 ° C. for 24 hours.
- the water absorption is preferably 4% or less, and particularly preferably the tensile strength retention after being left in an environment of 85 ° C. and 85% RH for 500 hours is 70% or more.
- the bearing supporting housing member for supporting the rolling bearing located closest to the torque sensor among the rolling bearings among the bearing supporting housing members for supporting the at least one rolling bearing.
- the torque sensor is an electromagnetic induction sensor.
- the bearing supporting housing member that supports the rolling bearing located closest to the torque sensor among the rolling bearings is press-fitted into an inner peripheral surface of another housing member.
- a second part that supports a rolling bearing that is closest to the torque sensor among the rolling bearings, and the first part and the second part are along an axial direction of the output shaft.
- the angle formed between each other is a bent portion bent at a predetermined acute angle or obtuse angle, or in a cross section along the axial direction of the output shaft, and is connected by a curved portion having a curve, and among the rolling bearings
- the rolling bearing located closest to the torque sensor is supported by being fitted and fixed to the bearing supporting housing member by press fitting. Door is preferable.
- the bearing supporting housing member that supports the rolling bearing located closest to the torque sensor among the rolling bearings may have a holding function for the torque sensor.
- the resin bearing support housing member in the electric power steering apparatus is affected by the time-dependent deformation (creep phenomenon) of the resin at the press-fitted portion of the rolling bearing and the press-fitted portion into the other housing member.
- a reinforcing ring metal collar
- it can be used for a long time in the passenger compartment.
- a reinforcement ring it can be used for a long time in the engine room, that is, in a more severe temperature range (up to 120 ° C). And can be used stably.
- the reinforcing ring is arranged by insert molding.
- the reinforcing ring may be coated with a thermosetting adhesive before being subjected to insert molding.
- a thermosetting adhesive is applied to the entire reinforcing ring in advance and heated and dried until it becomes a semi-cured state, and then the adhesive-coated reinforcing ring is set in a mold and resin insert molding is performed. You can go.
- the material of the reinforcing ring for example, carbon steel for mechanical structure such as S53C, so-called bearing steel SUJ2 or cold rolled steel plate, that is, SPCC, stainless steel such as SUS430 or SUS410, should be used.
- a light metal such as an aluminum alloy or a magnesium alloy is preferably selected.
- the surface of the reinforcing ring should be appropriately roughened by a technique such as shot blasting or chemical etching. Is preferred.
- an adhesive applied to the reinforcing ring as a primer, an undercoat adhesive containing a phenol resin and an epoxy resin, or a silane-based, chromium-based, titanium-based, or aluminate-based coupling agent system
- a phenol resin adhesive is suitably selected as the top coat adhesive.
- the undercoat adhesive containing the phenol resin and the epoxy resin is dissolved in a single solvent or a mixed solvent of isopropyl alcohol, methyl ethyl ketone, or methyl isobutyl ketone so as to have a component concentration of about 0.5 to 20% by mass.
- a component concentration of about 0.5 to 20% by mass Used as an organic solvent solution.
- the coupling agent used as a primer is used after diluting with water, alcohol, or water or an alcohol mixed solvent so that the component concentration thereof is 0.1 to 2.0% by mass.
- the above-mentioned undercoat adhesive and primer are applied to the reinforcing ring according to the present invention in a film thickness of about 0.5 to 5 ⁇ m by a method such as dip coating, spray coating, brush coating, etc. After being dried, it is baked under drying and curing conditions of about 150 to 250 ° C. for about 5 to 30 minutes.
- the above-mentioned top coat adhesive is prepared as an organic solvent solution in which an adhesive composition mainly composed of a resol type phenol resin is dissolved at a solid content concentration of about 5 to 40% by mass.
- the drying / curing conditions are, for example, 100 ° C. to 150 ° C. for several minutes to 30 minutes, and the reinforcing ring is in a semi-cured state so as not to be washed away by the high-temperature and high-pressure molten resin at the time of insert molding. It is baked. And it hardens
- secondary heating for example, 150 degreeC, about 2 hours
- the bearing supporting housing member that supports at least one rolling bearing is formed of resin
- the bearing supporting housing member is formed more than when the bearing supporting housing member is formed of a metal material.
- the housing member can be reduced in weight.
- the housing includes at least one bearing supporting housing member that supports at least one rolling bearing that rotatably supports the output shaft with respect to the housing, and an electric power steering constituted by a plurality of housing members.
- the weight of the housing itself can be reduced.
- the bearing supporting housing member is formed of resin, it is possible to process the bearing supporting housing member with high accuracy only by molding by injection molding or the like, and the processing of the bearing supporting housing member can be simplified.
- the resin can be continuously used in a temperature environment of ⁇ 40 ° C. to 85 ° C., is made of a resin composition containing 30 to 55% by mass of a fibrous filler, and has a fiber direction in a temperature range of 23 ° C. to 80 ° C.
- the linear expansion coefficient is in the range of 1.2 ⁇ 10 ⁇ 5 to 5.5 ⁇ 10 ⁇ 5 (1 / ° C.) both in the direction perpendicular to the fiber and the water absorption is 4% when left in water at 23 ° C. for 24 hours.
- the bearing support housing member formed of such a resin composition is used under a high temperature environment.
- the resin preferably has a tensile strength retention of 70% or more after being left in an environment of 85 ° C. and 85% RH for 500 hours.
- the resin portion can be prevented from being damaged due to a decrease in mechanical properties due to moisture absorption deterioration of the bearing supporting housing member formed of the resin.
- the bearing support housing that supports the rolling bearing that is closest to the torque sensor among the rolling bearings among the bearing supporting housing members that support the at least one rolling bearing When the member is formed of the resin and the torque sensor is an electromagnetic induction type sensor, the detection performance of the electromagnetic induction type sensor is not affected by the bearing supporting housing member. For this reason, the electromagnetic induction type sensor and the bearing supporting housing member can be arranged close to each other. As a result, when the space volume in the housing is the same, the degree of freedom inside the housing can be improved as compared with the case where the bearing supporting housing member is formed of a metal material.
- the electromagnetic induction sensor and the rolling bearing supported by the bearing supporting housing member can be arranged close to each other, the axial dimensions of the housing and the output shaft can be reduced, and the degree of freedom of layout outside the housing is also improved. For example, the collapse stroke of the steering column can be extended.
- the bearing supporting housing member that supports the rolling bearing located closest to the torque sensor among the rolling bearings is press-fitted into an inner peripheral surface of the other housing member.
- a second part that supports a rolling bearing that is closest to the torque sensor among the rolling bearings, and the first part and the second part are along an axial direction of the output shaft.
- the resin bearing support housing member in the electric power steering apparatus minimizes the influence of the time-dependent deformation of the resin in the press-fitted portion of the rolling bearing and the press-fitted portion into the other housing member. Therefore, a reinforcing ring may be arranged in each press-fitted part by an insert molding method. In this case, the temperature region is more severe than the case where there is no reinforcing ring (assumed to be used in the passenger compartment). Long-term use in the engine room (up to 120 ° C) is also possible.
- the electric power steering apparatus shown in FIG. 1 includes an input shaft 2, an output shaft 3, and a torque sensor 8 that detects a steering force input to the input shaft as a steering torque.
- the input shaft 2 is rotatably supported with respect to the housing 1 by a rolling bearing (not shown).
- the output shaft 3 is rotatably supported with respect to the housing 1 by two rolling bearings 5a and 5b.
- the input shaft 2 and the output shaft 3 are respectively formed with cylindrical holes 2a and 3a concentric with the shaft center, and the torsion bar 4 is inserted into the cylindrical holes 2a and 3a. It is connected via a torsion bar 4.
- One end portion of the torsion bar 4 and the input shaft 2 are provided with a communication hole 6 communicating in the radial direction at a fitting portion between the one end portion of the torsion bar 4 and the input shaft 2, and a pin 7 is inserted into the communication hole 6.
- the other end portion of the torsion bar 4 and the output shaft 3 are provided with a communication hole (not shown) communicating in the radial direction at the fitting portion between the other end portion of the torsion bar 4 and the output shaft 3.
- the holes are connected by inserting pins (not shown). It should be noted that serrations are formed at both ends of the torsion bar 4 and press-fitted into the cylindrical hole 2a of the input shaft 2 or the cylindrical hole 3a of the output shaft 3, respectively, so that the both ends of the torsion bar 4 are connected to the input shaft 2 It may be connected to the shaft 3. Further, one end of the torsion bar 4 may be coupled to the input shaft 2 or the output shaft 3 by a pin, and the other end of the torsion bar 4 may be coupled to the output shaft 3 or the input shaft 2 by serration press-fitting.
- a steering wheel is integrally attached to the right end (not shown) of the input shaft 2 in the rotational direction, and a known rack and pinion type steering device is connected to the left end of the output shaft 3 via a universal joint.
- the pinion shaft which comprises is connected. Therefore, the steering force generated when the steering wheel steers the steering wheel is transmitted to the steered wheels via the input shaft 2, the torsion bar 4, the output shaft 3, the universal joint, and the rack and pinion type steering device.
- the output shaft 3 is fitted with a worm wheel 9 that is coaxial with the output shaft 3 and rotates integrally therewith.
- a resin engagement portion 9a provided on the worm wheel 9 and a worm 10a formed on the outer peripheral surface of an output shaft (not shown) of the electric motor 10 are engaged with each other. Accordingly, the rotational force of the electric motor 10 is transmitted to the output shaft 3 via the output shaft, the worm 10a and the worm wheel 9, and the output shaft can be switched by appropriately switching the rotation direction of the electric motor 10. 3, a steering assist torque in an arbitrary direction is applied.
- This steering assist torque is calculated from a value detected by a torque sensor 8 that detects a steering force transmitted to the input shaft 2 via the steering wheel as a steering torque (and / or steering angle).
- the torque sensor 8 is an electromagnetic induction type sensor, and includes a first sensor member 8a including a magnetic member such as a permanent magnet, and a second sensor member 8b including a member forming a magnetic circuit.
- the first sensor member 8 a is fixed to the output shaft 3, while the second sensor member 8 b is fixed to the input shaft 2.
- the steering torque (and / or steering angle) is detected by the relative angular displacement between the first sensor member 8a and the second sensor member 8b that occurs when the steering force is transmitted to the input shaft 2.
- the steering assist mechanism for applying the steering assist torque includes such a torque sensor 8 and is included in the housing 1 together with the input shaft 2 and the output shaft 3.
- the housing 1 includes an output side housing member 1a, a bearing supporting housing member 1c, and an input side housing member 1b.
- the output-side housing member 1a includes the output shaft 3, the worm wheel 9, and the worm 10a, and supports the output shaft 3 through a rolling bearing 5a so as to be rotatable.
- a motor mounting portion (not shown) for mounting the electric motor 10 is provided in the output side housing member 1a.
- the output side housing member 1a is formed of a metal material such as aluminum.
- the input side housing member 1 b contains the input shaft 2 and the torque sensor 8.
- the input side housing member 1b is also formed of a metal material such as aluminum.
- the output-side housing member 1a and the input-side housing member 1b have the same outer peripheral surface shape at the coupling position, and are coupled to each other by a bolt or the like (not shown). Thereby, the inside of the housing 1 is sealed.
- the bearing supporting housing member 1c supports the rolling bearing 5b located closest to the torque sensor 8 among the rolling bearings 5a and 5b, and the output shaft 3 can be rotated via the rolling bearing 5b. I support it.
- the housing member 1c for bearing support includes a first portion 11 that is press-fitted into the inner peripheral surface of the output-side housing member 1a, and a second portion 12 that supports the rolling bearing 5b.
- the first portion 11 and the second portion 12 are connected to each other by a bent portion 13 that is bent at a predetermined obtuse angle or acute angle in the cross section along the axial direction of the output shaft 3.
- the first portion 11 and the second portion 12 may be connected not by the bent portion 13 but by a curved portion having a curve in a cross section along the axial direction of the output shaft 3.
- the first portion 11 of the bearing supporting housing member 1c there are a large diameter portion 11a fitted to the inner peripheral surface of the output side housing member 1a, and a small diameter portion 11b fitted to the input side housing member 1b. Is provided.
- the first portion 11 of the bearing supporting housing member 1c is fitted and fixed by press-fitting the large diameter portion 11a into the inner peripheral surface of the output side housing member 1a.
- the step part 11c is provided in the axial direction end surface with which the large diameter part 11a is fitted of the output side housing member 1a.
- the large-diameter portion 11a of the bearing supporting housing member 1c is sandwiched between the step portion 11c and the end surface of the input-side housing member 1b, and its axial position is restricted.
- a fitting portion 12a that fits to the outer peripheral surface of the rolling bearing 5b and a stepped surface that contacts one side surface in the axial direction of the rolling bearing 5b. 12b is formed.
- the rolling bearing 5b is supported by the bearing supporting housing member 1c by being press-fitted into the fitting portion 12a.
- the bearing supporting housing member 1c is made of resin.
- the bearing supporting housing member 1c is preferably made of a resin having the following characteristics. That is, this resin is made of a resin composition that can be used continuously even in a temperature environment of ⁇ 40 ° C. to 85 ° C., which is the operating environment temperature in the column portion of the electric power steering device, and can be used continuously.
- the dimensional stability is high.
- the linear expansion coefficient is 1.2 ⁇ 10 ⁇ 5 in both the fiber direction and the fiber perpendicular direction in the temperature range of 23 ° C. to 80 ° C. It is preferably in the range of 5.5 ⁇ 10 ⁇ 5 (1 / ° C.), and the water absorption when left in water at 23 ° C. for 24 hours is preferably 4% or less.
- the resin portion when exposed to a high temperature and high humidity environment for a long time during transportation, the resin portion may be damaged due to deterioration of mechanical properties due to moisture absorption deterioration of the bearing supporting housing member formed of resin. . Therefore, the resin preferably has a tensile strength retention of 70% or more after being left in an environment of 85 ° C. and 85% RH for 500 hours.
- the resin composition that can be continuously used in a temperature environment of ⁇ 40 ° C. to 85 ° C. is not particularly limited, but includes polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA) 6, polyamide 11, So-called engineering plastics such as polyamide 12, polyamide 66, polyamide 610, polyamide 612, polyamide 46, polyamide 410, modified polyamide 6T, polyamide 9T, fluororesin, polyphenylene sulfide (PPS), polyethersulfone (PES), polyetherimide (PEI), polyamideimide (PAI), thermoplastic polyimide, polyetheretherketone (PEEK), so-called super engineering plastics such as polyethernitrile (PEN) Can be exemplified fat, it may be used alone or in combination.
- PPS polyethersulfide
- PES polyethersulfone
- PAI polyetherimide
- PEEK polyetheretherketone
- super engineering plastics such as
- polyethylene terephthalate (PET), polyamide 66, polyamide 46, and polyphenylene sulfide have a good balance between cost and performance, and can be suitably used.
- thermosetting resins such as phenol resins, urea resins, unsaturated polyester resins, and polyurethane resins can be suitably used for applications requiring heat resistance and dimensional stability.
- the linear expansion coefficient is in the range of 1.2 ⁇ 10 ⁇ 5 to 5.5 ⁇ 10 ⁇ 5 (1 / ° C.) in the fiber direction and in the direction perpendicular to the fiber in the temperature range of 23 ° C. to 80 ° C. It is preferable to do this.
- the fibrous filler is not particularly limited.
- glass fiber, carbon fiber, metal fiber, aramid fiber, aromatic polyimide fiber, liquid crystal polyester fiber, silicon carbide fiber, alumina fiber, boron fiber. Etc. can be illustrated.
- glass fiber and carbon fiber are preferable because of their good reinforcement.
- As the glass fiber an insulating glass fiber that has little influence on the electromagnetic induction of the torque sensor 8 is more preferable.
- the content of the fibrous filler in the total composition is 30 to 55% by mass, preferably 35 to 55% by mass. Even if the fibrous filler exceeds 55% by mass, not only the melt fluidity of the resin composition is remarkably lowered and the moldability is deteriorated, but further improvement in mechanical properties and dimensional stability is expected. On the other hand, since the deformability of the material becomes extremely small, the bearing supporting housing member 1c may be damaged during molding or assembly of the bearing supporting housing member 1c. Conversely, if the content of the fibrous filler in the entire composition is less than 30% by mass, the reinforcing effect of mechanical properties is small, and the dimensional stability is insufficient.
- the dimensional stability means that the linear expansion coefficient is 1.2 ⁇ 10 ⁇ 5 to 5.5 ⁇ 10 ⁇ 5 (1/2 in both the fiber direction and the fiber perpendicular direction in a temperature range of 23 ° C. to 80 ° C. ° C), which means that the water absorption when left in water at 23 ° C for 24 hours is in the range of 4% or less.
- the resin constituting the bearing supporting housing member 1c is a fibrous filler in order to improve the adhesion and dispersibility between the resin and the fibrous filler by giving affinity between the resin and the fibrous filler.
- a coupling agent such as a silane coupling agent or a titanate coupling agent, or a surface treatment agent according to other purposes, but is not limited thereto.
- additives may be added within the range not impairing the object of the present invention, such as graphite, hexagonal boron nitride, fluorine mica, tetrafluoroethylene resin powder, tungsten disulfide, molybdenum disulfide, etc.
- a polyester-based resin such as PET or PBT
- moisture absorption deterioration specifically, hydrolysis deterioration
- an agent to increase its resistance there is no particular limitation on the hydrolysis inhibitor added to the polyester base resin applied to the bearing supporting housing member according to the present invention, for example, a carbodiimide compound having one or more carbodiimide groups in the molecule or a higher class.
- Hydrophobic agents such as fatty acids, higher fatty acid water-insoluble salts, higher aliphatic alcohols, and hydrophobic silica, aromatic monofunctional epoxy compounds containing one glycidyl group in the molecule, and diglycidyl groups in the molecule
- aromatic polyfunctional epoxy compounds such as piperidine derivatives, piperazinone derivatives and the like
- the above hydrolysis inhibitor may be added in an amount of 0.01 to 5% by weight, preferably 0.05 to 2% by weight, based on the polyester resin.
- a continuous fiber bundle of the fibrous filler is mixed with a molten resin containing various additives other than the fibrous filler.
- a method of cooling and pelletizing after impregnation is mentioned.
- the temperature at the time of melt impregnation is not particularly limited, but may be appropriately selected within a temperature range in which the melting of the resin as the base material sufficiently proceeds and does not deteriorate.
- the manufacturing method of the bearing supporting housing member 1c is not particularly limited.
- the bearing supporting housing member 1c can be formed by a normal method such as injection molding, compression molding, transfer molding, or the like.
- the injection molding method is preferable because it is excellent in productivity and can provide an inexpensive bearing supporting housing member 1c.
- the resin bearing support housing member in the electric power steering apparatus is a measure for reducing the time-dependent deformation (creep phenomenon) of the resin at the press-fitted portion of the rolling bearing and the press-fitted portion into the other housing member.
- a reinforcing ring metal collar
- the surface of the reinforcing ring is appropriately roughened by a technique such as a shot blasting method or a chemical etching method.
- the bearing supporting housing member 1c By forming the bearing supporting housing member 1c with a resin as exemplified above, the bearing supporting housing member 1c can be made lighter than when the bearing supporting housing member 1c is formed with a metal material. As a result, in the electric power steering apparatus, the weight of the housing 1 itself can be reduced. Further, when the bearing supporting housing member 1c is formed of a metal material, finishing by cutting is necessary after forming by die casting, plastic working, etc., and the processing process becomes complicated. On the other hand, since the bearing supporting housing member 1c according to the present embodiment is formed of a resin having excellent dimensional stability, it can be manufactured with high accuracy only by molding by injection molding or the like. For this reason, finishing by cutting after the molding of the bearing supporting housing member 1c can be made unnecessary. That is, the production of the bearing supporting housing member 1c can be simplified. As a result, the manufacturing process can be reduced and the yield can be improved, so that the manufacturing cost can be reduced.
- the bearing supporting housing member 1c for supporting the rolling bearing 5b closest to the torque sensor 8 is made of the resin.
- the torque sensor 8 is comprised with an electromagnetic induction type sensor.
- the electromagnetic induction type sensor constituting the torque sensor 8 and the bearing supporting housing member 1c can be arranged close to each other. That is, when the bearing supporting housing member 1c is formed of a metal material as in the prior art shown in FIG. 2, the axial distance A between the bearing supporting housing member 1c and the electromagnetic induction sensor is set to the electromagnetic induction type.
- the bearing supporting housing member 1c is formed of the above resin, the rolling bearing 5b, which is the closest metal member in the axial direction, to the electromagnetic induction sensor constituting the torque sensor 8 and the electromagnetic induction sensor.
- the axial distance B between them may be a distance that does not affect the detection performance of the electromagnetic induction sensor.
- the degree of freedom inside the housing can be improved as compared with the case where the bearing supporting housing member 1c is formed of a metal material.
- the electromagnetic induction sensor and the rolling bearing 5b can be arranged close to each other by the difference between the distances A and B. Therefore, the axial dimensions of the housing 1 and the output shaft 3 Can be reduced.
- the degree of freedom in layout outside the housing can be improved, and for example, the collapse stroke of the steering column can be extended.
- the bearing supporting housing member 1c is formed of the above resin, the bearing supporting housing member 1c and the electromagnetic induction sensor constituting the torque sensor 8 can be brought into contact with each other. That is, when the bearing supporting housing member 1c is formed of a metal material as in the prior art, the distance A between the bearing supporting housing member 1c and the electromagnetic induction sensor affects the detection performance of the electromagnetic induction sensor. It was necessary to make the distance not to give. Therefore, it is necessary to use a non-metallic member, mainly a resin member, between the sensor body and the bearing supporting housing member 1c (metal) in order to hold the sensor detection unit itself, and as a result, the layout around the sensor is limited. It had been.
- the bearing supporting housing member 1c is formed of the resin, the bearing supporting housing member 1c can directly hold the sensor itself or reduce the non-metallic member. As a result, the degree of freedom of layout around the sensor can be secured.
- the electromagnetic induction type sensor is provided with a convex portion, and the bearing supporting housing member 1c is engaged with the convex portion. You may provide the recessed part to do. By engaging the convex portion and the concave portion, the electromagnetic induction sensor can be prevented from rotating.
- the bearing supporting housing member 1c that supports the rolling bearing 5b that is closest to the torque sensor 8 includes a first portion 11 that is press-fitted into the inner peripheral surface of the other housing member 1a, A second portion 12 that supports the rolling bearing 5b that is closest to the torque sensor 8, and the first portion 11 and the second portion 12 are at an angle between each other in a cross section along the axial direction of the output shaft 3.
- the first part 111 and the second part 112 in the bearing supporting housing member 101c shown in FIG. 2 are connected by a linear part 113 extending obliquely in a straight line in a cross section along the axial direction of the output shaft 3.
- a linear part 113 extending obliquely in a straight line in a cross section along the axial direction of the output shaft 3.
- the bearing supporting housing member 1c that supports the rolling bearing 5b that is closest to the torque sensor 8 among the rolling bearings 5a and 5b among the housing members 1a and 1c that support at least one rolling bearing 5a and 5b, the bearing supporting housing member 1c that supports the rolling bearing 5b that is closest to the torque sensor 8 among the rolling bearings 5a and 5b.
- the output side housing member 1a for supporting the rolling bearing 5a may be formed of the above resin, or only the output side housing member 1a may be formed of the above resin. .
- the torque sensor 8 is not necessarily configured by an electromagnetic induction type sensor. However, when the torque sensor 8 is configured by an electromagnetic induction type sensor, the bearing support for supporting the rolling bearing 5b located closest to the torque sensor 8 is provided. The housing member 1c needs to be formed of the resin. On the other hand, when the torque sensor 8 is not composed of an electromagnetic induction type sensor, only the output side housing member 1a, only the bearing supporting housing member 1c, or the housing among the housing members 1a and 1c that support the rolling bearings 5a and 5b. Both members 1a and 1c may be formed of the resin.
- the bearing supporting housing member 1c that supports the rolling bearing 5b located closest to the torque sensor 8 among the rolling bearings 5a and 5b is press-fitted into the inner peripheral surface of the other housing member (output-side housing member 1a). It is preferable that the fitting is fixed.
- the rolling bearing 5b located closest to the torque sensor 8 among the rolling bearings 5a and 5b is not supported by being fitted and fixed to the bearing supporting housing member 1c that supports the rolling bearing 5b by press fitting. May be.
- Example 1 Glass fiber 50% by mass reinforced PET resin (manufactured by DSM Engineering Plastics: Arnite (registered trademark) AV2 370 XT)
- Example 2 Glass fiber 50 mass% reinforced PET resin; Hydrolysis inhibition specification (DSM Engineering Plastics: Arnite (registered trademark) A-X07455)
- Example 3 50% by mass glass fiber reinforced polyamide 66 resin (manufactured by BASF: Ultramid (registered trademark) A3EG10)
- Example 4 30% by mass of glass fiber reinforced PPS resin (manufactured by Polyplastics: Fortron 1130A1)
- Example 5 Carbon fiber 30% by mass reinforced PPS resin (manufactured by Polyplastics: Fortron 2130A1)
- Example 6 55% by mass of glass fiber reinforced phenol resin (manufactured by Sumitomo Bakelite:
- Comparative Example 1 PET resin (DSM Engineering Plastics: Arnite (registered trademark) A04 900), no filled fiber Comparative Example 2: Polyamide 66 resin (BASF: Ultramid (registered trademark) A3W), no filled fiber Comparative Example 3: Glass fiber 25% by mass reinforced polyamide 66 resin (manufactured by BASF: Ultramid (registered trademark) A3HG5) Comparative Example 4: PPS resin (manufactured by Polyplastics: Fortron 0220A9), no filled fiber Comparative Example 5: Glass fiber + inorganic filler 65 mass% reinforced PPS resin (Polyplastics: Fortron 6165A4) Table 1 shows various blending ratios (mass%), linear expansion coefficients (1 / ° C.), and water absorption ratios (%) of the resin materials of Examples 1 to 6 and Comparative Examples 1 to 5.
- Comparative Example 1 PET resin, no filled fiber
- Comparative Example 2 polyamide 66 resin, no filled fiber
- Comparative Example 2 polyamide 66 resin, no filled fiber
- the ring-out on the inner diameter side and the outer diameter side was confirmed in the low temperature test, and cracks were confirmed in the resin in the water absorption test.
- a clear decrease in strength was observed in the high temperature and high humidity test.
- Comparative Example 3 polyamide 66 resin, glass fiber 25% by mass reinforcement
- Comparative Example 4 PPS resin, no filled fiber
- damage to the resin part due to impact was confirmed, and cracks were confirmed in the resin in the high temperature test.
- Comparative Example 5 PPS resin, glass fiber + inorganic filler 65 mass% reinforced
- the resin was damaged at the time of ring press fitting, and the test could not be performed. From these results, although the linear expansion coefficient and the water absorption rate differ depending on the resin composition as a base, sufficient dimensional stability can be obtained by filling the fibrous filler in the range of 30 to 55% by mass. .
- the housing is made of a resin composition having a specific strength, is lightweight and easy to process, and even when an electromagnetic induction type torque sensor is used, the degree of freedom in layout can be ensured. A collapse stroke can be secured.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Power Steering Mechanism (AREA)
- Mounting Of Bearings Or Others (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
この電動パワーステアリング装置においては、車両の操舵系の一部に捩れ方向に弾性変形可能なトーションバーを設け、このトーションバーを介して連結される入力軸と出力軸との間に操舵トルクに比例した相対回転を発生させている。そして、その相対回転を測定することにより操舵トルクを検出し、その検出された操舵トルクに応じた操舵補助トルクを発生させることにより運転者の負担を軽減するようにしている。
図2に示す電動パワーステアリング装置は、ハウジング101内に、入力軸102、出力軸103、及び入力軸102に入力された操舵力を操舵トルクとして検出するトルクセンサ108を内包している。入力軸102は、図示しない転がり軸受によってハウジング101に対して回転可能に支持されている。出力軸103は、2つの転がり軸受105a,105bによってハウジング101に対して回転可能に支持されている。
ここで、出力側ハウジング部材101aは、出力軸103、ウォームホイール109、ウォーム110aを内包すると共に、出力軸103を転がり軸受105aを介して回転可能に支持している。また、出力側ハウジング部材101a内には、電動モータ110を取り付けるためのモータ取付部(図示せず)が設けられている。出力側ハウジング部材101aは、アルミニウム等の金属材料で形成される。
この軸受支持用ハウジング部材101cは、出力側ハウジング部材101aの内周面に圧入される第1部分111と、転がり軸受105bを支持する第2部分112とを具備している。そして、第1部分111及び第2部分112は、出力軸3の軸方向に沿った断面において、斜めに直線状に延びる直線状部113で連結されている。
ここで、軸受支持用ハウジング部材101cも、出力側ハウジング部材101a及び入力側ハウジング部材101bと同様に、アルミニウム等の金属材料で形成されている。
即ち、従来の電動パワーステリング装置にあっては、ハウジングを構成する複数のハウジング部材全てがアルミニウム等の金属材料で形成されている。図に示す例においては、出力側ハウジング部材101a、入力側ハウジング部材101b、及び軸受支持用ハウジング部材101cの全てが金属材料で形成されていた。このため、ハウジング自体の重量が重いという問題があった。また、金属材料でハウジングを形成しているので、ダイキャストや塑性加工等による成形の後に切削加工による仕上げが必要となる。この結果、製造工程が複雑であった。
また、本発明の他の目的は、トルクセンサとして電磁誘導式センサを用いた場合にも、レイアウトの自由度を確保でき、十分なコラプスストロークを確保できる電動パワーステアリング装置を提供することにある。
尚、この樹脂は、-40℃~85℃の温度環境で連続使用可能であり、繊維状充填材を30~55質量%含有する樹脂組成物かならなることが好ましく、更に23℃~80℃の温度範囲で繊維方向及び繊維直角方向ともに線膨張係数が1.2×10-5~5.5×10-5(1/℃)の範囲であり、23℃の水中に24時間放置したときの吸水率が4%以下であることが好ましく、特に85℃、85%RHの環境下に500時間放置した後の引張強度保持率が70%以上であることが好ましい。
この結果、ハウジングが、該ハウジングに対して出力軸を回転可能に支持する少なくとも一つの転がり軸受を支持する軸受支持用ハウジング部材を少なくとも一つ備える他、複数のハウジング部材で構成された電動パワーステアリング装置において、ハウジング自体の軽量化を図ることができる。また、当該軸受支持用ハウジング部材を樹脂で形成すると、射出成形等による成形のみで高精度に加工することが可能となり、該軸受支持用ハウジング部材の加工を簡単なものとすることができる。
図1に示す電動パワーステアリング装置は、ハウジング1内に、入力軸2、出力軸3、及び入力軸に入力された操舵力を操舵トルクとして検出するトルクセンサ8を内包している。入力軸2は、図示しない転がり軸受によってハウジング1に対して回転可能に支持されている。出力軸3は、2つの転がり軸受5a,5bによってハウジング1に対して回転可能に支持されている。
ここで、出力側ハウジング部材1aは、出力軸3、ウォームホイール9、ウォーム10aを内包すると共に、出力軸3を転がり軸受5aを介して回転可能に支持している。また、出力側ハウジング部材1a内には、電動モータ10を取り付けるためのモータ取付部(図示せず)が設けられている。出力側ハウジング部材1aは、アルミニウム等の金属材料で形成される。
また、軸受支持用ハウジング部材1cは、転がり軸受5a,5bのうちトルクセンサ8に最も近い位置にある転がり軸受5bを支持するものであり、この転がり軸受5bを介して出力軸3を回転可能に支持している。
また、出力側ハウジング部材1aの、大径部11aが嵌合される軸方向端面には、段差部11cが設けられている。軸受支持用ハウジング部材1cの大径部11aは、段差部11cと入力側ハウジング部材1bの端面とにより挟まれて、その軸方向位置が規制される。
ここで、軸受支持用ハウジング部材1cは、樹脂で形成されている。
軸受支持用ハウジング部材1cを従来の金属材料から樹脂材料に変更することにより、樹脂材料特有の問題が発生することが考えられる。
即ち、この樹脂としては、電動パワーステアリング装置のコラム部分での使用環境温度である-40℃~85℃の温度環境でも機械的物性の低下が少なく連続使用可能な樹脂組成物からなり、かつ部材間の隙間、膨張による圧迫を抑えるため、寸法安定性の高い、具体的には、23℃~80℃の温度範囲で繊維方向及び繊維直角方向ともに線膨張係数が1.2×10-5~5.5×10-5(1/℃)の範囲であり、23℃の水中に24時間放置したときの吸水率が4%以下であることが好ましい。
そこで、樹脂は、85℃、85%RHの環境下に500時間放置した後の引張強度保持率が70%以上であることが好ましい。
特に、本発明にかかる軸受支持用ハウジング部材のベース樹脂として、PETやPBTといったポリエステル系樹脂を適用した場合には、吸湿劣化、具体的には、加水分解劣化の懸念があるため、加水分解抑制剤を添加し、その耐性を高めておくことが好ましい。
本発明にかかる軸受支持用ハウジング部材に適用されるポリエステル系のベース樹脂に添加される加水分解抑制剤には特に制限はなく、例えば、分子中に1個以上のカルボジイミド基を有するカルボジイミド化合物や高級脂肪酸、高級脂肪酸非水溶性塩、高級脂肪族アルコール、及び疎水性シリカといった疎水剤、または、分子内にグリシジル基を一つ含有した芳香族単官能エポキシ化合物、並びに、分子内にグリシジル基を二つ以上含有した芳香族多官能エポキシ化合物、あるいは、ピペリジン誘導体、ピペラジノン誘導体等が好適に使用可能である。
尚、上記の加水分解抑制剤は、ポリエステル系樹脂に対して0.01~5質量%、好ましくは、0.05~2質量%添加すればよい。
本発明にかかるベース樹脂と上記の繊維状充填材、及び上記添加剤との混合方法としては、繊維状充填材の連続繊維束を繊維状充填材以外の各種添加剤が配合された溶融樹脂に含浸した後、冷却・ペレット化する方法が挙げられる。溶融含浸する際の温度は特に限定されないが、母材となる樹脂の溶融が十分進行し、かつ劣化しない温度の範囲内で適宜選定すればよい。
この結果、電動パワーステアリング装置において、ハウジング1自体の軽量化を図ることができる。また、当該軸受支持用ハウジング部材1cを金属材料で形成する場合には、ダイキャストや塑性加工等による成形の後に切削加工による仕上げが必要となり、加工工程が煩雑になる。これに対し、本実施形態に係る軸受支持用ハウジング部材1cは寸法安定性に優れる樹脂で形成されるため、射出成形等による成形のみで高精度に製造することが可能となる。このため、該軸受支持用ハウジング部材1cの成形の後に切削加工による仕上げを不要とすることができる。即ち、軸受支持用ハウジング部材1cの製造を簡単にできる。この結果、製造工程を少なくでき、歩留まりもよくなるため、製造コストを低減することができる。
例えば、少なくとも一つの転がり軸受5a,5bを支持するハウジング部材1a,1cのうち、転がり軸受5a,5bのうちトルクセンサ8に最も近い位置にある転がり軸受5bを支持する軸受支持用ハウジング部材1cを、上記樹脂で形成してあるが、これに加えて、転がり軸受5aを支持する出力側ハウジング部材1aを上記樹脂で形成したり、あるいは出力側ハウジング部材1aのみを上記樹脂で形成してもよい。
また、転がり軸受5a,5bのうちトルクセンサ8に最も近い位置にある転がり軸受5bは、当該転がり軸受5bを支持する軸受支持用ハウジング部材1cに圧入により嵌合固定されることにより支持されていなくても良い。
(1)試験片の製作
実施例及び比較例に使用した試験片の原材料を一括して示すと以下の通りである。
[実施例]
実施例1:ガラス繊維50質量%強化PET樹脂(DSM Engineering Plastics製:Arnite(登録商標)AV2 370 XT)
実施例2:ガラス繊維50質量%強化PET樹脂;加水分解抑制仕様(DSM Engineering Plastics製:Arnite(登録商標)A-X07455)
実施例3:ガラス繊維50質量%強化ポリアミド66樹脂(BASF製:Ultramid(登録商標)A3EG10)
実施例4:ガラス繊維30質量%強化PPS樹脂(ポリプラスチック社製:フォートロン 1130A1)
実施例5:炭素繊維30質量%強化PPS樹脂(ポリプラスチック社製:フォートロン 2130A1)
実施例6:ガラス繊維55質量%強化フェノール樹脂(住友ベークライト製:RF-GF55)
比較例1:PET樹脂(DSM Engineering Plastics製:Arnite(登録商標)A04 900)、充填繊維なし
比較例2:ポリアミド66樹脂(BASF製:Ultramid(登録商標)A3W)、充填繊維なし
比較例3:ガラス繊維25質量%強化ポリアミド66樹脂(BASF製:Ultramid(登録商標)A3HG5)
比較例4:PPS樹脂(ポリプラスチック社製:フォートロン 0220A9)、充填繊維なし
比較例5:ガラス繊維+無機フィラー65質量%強化PPS樹脂(ポリプラスチック社製:フォートロン 6165A4)
この実施例1~6及び比較例1~5の樹脂材料の各種配合割合(質量%)、線膨張係数(1/℃)、及び吸水率(%)を表1に示す。
前記実施例1~6及び比較例1~5の樹脂材料を、内径30mm、外径100mm、厚さ3mmのドーナツ型円盤試験片に成形した。この時、内径及び外径は、前記寸法となるよう切削加工を行い、後述するアルミニウム製リングとの締め代が23℃において0.05mmになるように調節した。この試験片の内径部分に、内径が20mm、外径が30.05mm、厚さ3mmのアルミニウム製のリングを圧入し、試験片の外径部分に、内径が99.95mm、外径が110mm、厚さが3mmのアルミニウム製のリングを圧入した。このように、試験片の内径及び外径にアルミニウム製のリングを圧入した状態で、低温放置試験、高温放置試験、及び吸水試験を行い、その後、リングの抜け具合及び試験片(樹脂の部分)が破損していないかを確認した。リングの抜けが無かった試験片のみ以後の試験を行った。また、低温試験後の評価品のみ、衝撃試験を行った。
(a)低温放置試験:恒温槽内を-40℃に設定し、試験片を槽内に入れてから24時間放置した。
(b)高温放置試験:恒温槽内を85℃に設定し、試験片を恒温槽内に入れてから1000時間放置した。
(c)吸水試験:水温23℃の水中に、試験片を入れてから72時間放置した。
(d)高温高湿試験:85℃、85%RHの環境下に500時間放置した後の引張強度保持率を評価した。
(f)衝撃試験:低温試験終了後の評価品のみ、リング抜けの確認を行った後、リング抜けの無かった試験片について再度、低温試験を行い1mの高さから落下させ、衝撃による樹脂部分の破損を確認した。
これらの結果を表2に示す。
また、比較例2(ポリアミド66樹脂、充填繊維なし)では、低温試験において内径側及び外径側のリング抜けが確認されるとともに、吸水試験において樹脂にクラックが確認された。更に、高温高湿試験において明確な強度低下が認められた。
また、比較例4(PPS樹脂、充填繊維なし)では、衝撃による樹脂部分の破損が確認されるとともに、高温試験において樹脂にクラックが確認された。
これらの結果から、ベースになる樹脂組成物によって線膨張係数及び吸水率は異なるが、繊維状充填材を30~55質量%の範囲で充填することで、十分な寸法安定性を得ることができる。
本出願は、2012年11月15日出願の日本特許出願(特願2012-251328)に基づくものであり、その内容はここに参照として取り込まれる。
1a 出力側ハウジング部材
1b 入力側ハウジング部材
1c 軸受支持用ハウジング部材
2 入力軸
2a 筒状孔
3 出力軸
3a 筒状孔
4 トーションバー
5a,5b 転がり軸受
6 連通孔
7 ピン
8 トルクセンサ
8a 第1センサ部材
8b 第2センサ部材
9 ウォームホイール
9a 噛合部
10 電動モータ
10a ウォーム
11 第1部分
11a 大径部
11b 小径部
11c 段差部
12 第2部分
12a 嵌合部
12b 段差面
13 屈曲部
Claims (10)
- 入力軸と、トーションバーを介して前記入力軸に連結された出力軸と、前記入力軸に入力された操舵力を操舵トルクとして検出するトルクセンサと、前記入力軸、出力軸、及びトルクセンサを内包するハウジングと、該ハウジングに対して前記出力軸を回転可能に支持する少なくとも一つの転がり軸受とを備え、前記ハウジングが、前記少なくとも一つの転がり軸受を支持する軸受支持用ハウジング部材を少なくとも一つ備える他、複数のハウジング部材で構成された電動パワーステアリング装置において、
前記少なくとも一つの転がり軸受を支持する軸受支持用ハウジング部材を樹脂で形成したことを特徴とする電動パワーステアリング装置。 - 前記少なくとも一つの転がり軸受を支持する軸受支持用ハウジング部材のうち、前記転がり軸受のうち前記トルクセンサに最も近い位置にある転がり軸受を支持する前記軸受支持用ハウジング部材を、前記樹脂で形成するとともに、前記トルクセンサが電磁誘導式センサであることを特徴とする請求項1記載の電動パワーステアリング装置。
- 前記転がり軸受のうち前記トルクセンサに最も近い位置にある転がり軸受を支持する前記軸受支持用ハウジング部材は、他のハウジング部材の内周面に圧入される第1部分と、前記転がり軸受のうち前記トルクセンサに最も近い位置にある転がり軸受を支持する第2部分とを具備し、前記第1部分及び前記第2部分は、前記出力軸の軸方向に沿った断面において、互いになす角度が所定の鋭角あるいは鈍角で屈曲した屈曲部、又は、前記出力軸の軸方向に沿った断面において、曲線を有する湾曲部で連結されており、かつ、
前記転がり軸受のうち前記トルクセンサに最も近い位置にある転がり軸受は、前記軸受支持用ハウジング部材に圧入により嵌合固定されることにより支持されていることを特徴とする請求項2記載の電動パワーステアリング装置。 - 前記転がり軸受のうち前記トルクセンサに最も近い位置にある転がり軸受を支持する前記軸受支持用ハウジング部材は、前記トルクセンサに対する保持機能を有することを特徴とする請求項2または3に記載の電動パワーステアリング装置。
- 前記樹脂は、繊維状充填材を30~55質量%含有する樹脂組成物からなることを特徴とする請求項1記載の電動パワーステアリング装置。
- 前記樹脂は、繊維状充填材を30~55質量%含有する樹脂組成物からなることを特徴とする請求項2乃至4の何れか1項に記載の電動パワーステアリング装置。
- 前記樹脂は、-40℃~85℃の温度環境で連続使用可能であり、23℃~80℃の温度範囲で繊維方向及び繊維直角方向ともに線膨張係数が1.2×10-5~5.5×10-5(1/℃)の範囲であり、23℃の水中に24時間放置したときの吸水率が4%以下であることを特徴とする請求項5記載の電動パワーステアリング装置。
- 前記樹脂は、-40℃~85℃の温度環境で連続使用可能であり、23℃~80℃の温度範囲で繊維方向及び繊維直角方向ともに線膨張係数が1.2×10-5~5.5×10-5(1/℃)の範囲であり、23℃の水中に24時間放置したときの吸水率が4%以下であることを特徴とする請求項6記載の電動パワーステアリング装置。
- 前記樹脂は、85℃、85%RHの環境下に500時間放置した後の引張強度保持率が70%以上であることを特徴とする請求項7記載の電動パワーステアリング装置。
- 前記樹脂は、85℃、85%RHの環境下に500時間放置した後の引張強度保持率が70%以上であることを特徴とする請求項8記載の電動パワーステアリング装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13855855.6A EP2921372A4 (en) | 2012-11-15 | 2013-07-26 | ELECTRIC POWER STEERING SYSTEM |
JP2014546892A JPWO2014077006A1 (ja) | 2012-11-15 | 2013-07-26 | 電動パワーステアリング装置 |
US14/442,780 US20150298725A1 (en) | 2012-11-15 | 2013-07-26 | Electric power steering system |
CN201380059646.0A CN104955712A (zh) | 2012-11-15 | 2013-07-26 | 电动助力转向装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-251328 | 2012-11-15 | ||
JP2012251328 | 2012-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014077006A1 true WO2014077006A1 (ja) | 2014-05-22 |
Family
ID=50730931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/070394 WO2014077006A1 (ja) | 2012-11-15 | 2013-07-26 | 電動パワーステアリング装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150298725A1 (ja) |
EP (1) | EP2921372A4 (ja) |
JP (1) | JPWO2014077006A1 (ja) |
CN (1) | CN104955712A (ja) |
WO (1) | WO2014077006A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017124784A (ja) * | 2016-01-15 | 2017-07-20 | Kyb株式会社 | 電動パワーステアリング装置 |
WO2018155376A1 (ja) * | 2017-02-24 | 2018-08-30 | Thk株式会社 | 軸受部材の取付構造及び減速装置 |
US10858036B2 (en) * | 2017-12-15 | 2020-12-08 | Jtekt Corporation | Steering system |
DE102023107628A1 (de) | 2023-03-27 | 2024-10-02 | Schaeffler Technologies AG & Co. KG | Käfig für Wälzlager und Wälzlager mit Käfig |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7050671B2 (ja) * | 2015-11-03 | 2022-04-08 | ビーエーエスエフ ソシエタス・ヨーロピア | トルク、ねじり固有振動および/またはねじり振動を非接触で検出する装置および方法 |
US11047466B1 (en) * | 2016-02-02 | 2021-06-29 | Nsk Ltd. | Worm wheel, worm decelerator, and method for producing worm wheel |
JP6864885B2 (ja) * | 2016-09-20 | 2021-04-28 | 日立Astemo株式会社 | ステアリング装置 |
KR102668785B1 (ko) * | 2017-01-10 | 2024-05-24 | 에이치엘만도 주식회사 | 자동차의 조향컬럼 |
WO2022269899A1 (ja) * | 2021-06-25 | 2022-12-29 | 株式会社ジェイテクト | ステアリング装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08159888A (ja) * | 1994-12-05 | 1996-06-21 | Koyo Seiko Co Ltd | トルクセンサ |
JP2005306050A (ja) | 2002-10-31 | 2005-11-04 | Nsk Ltd | 電動パワーステアリング装置 |
JP2007290550A (ja) * | 2006-04-25 | 2007-11-08 | Nsk Ltd | 電動パワーステアリング装置 |
JP2010137817A (ja) * | 2008-12-15 | 2010-06-24 | Jtekt Corp | 電動パワーステアリング装置 |
JP2012020647A (ja) * | 2010-07-14 | 2012-02-02 | Jtekt Corp | 電動パワーステアリング装置 |
JP2012251328A (ja) | 2011-06-01 | 2012-12-20 | Takano Co Ltd | 自立型オーニング |
-
2013
- 2013-07-26 US US14/442,780 patent/US20150298725A1/en not_active Abandoned
- 2013-07-26 CN CN201380059646.0A patent/CN104955712A/zh active Pending
- 2013-07-26 EP EP13855855.6A patent/EP2921372A4/en not_active Withdrawn
- 2013-07-26 WO PCT/JP2013/070394 patent/WO2014077006A1/ja active Application Filing
- 2013-07-26 JP JP2014546892A patent/JPWO2014077006A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08159888A (ja) * | 1994-12-05 | 1996-06-21 | Koyo Seiko Co Ltd | トルクセンサ |
JP2005306050A (ja) | 2002-10-31 | 2005-11-04 | Nsk Ltd | 電動パワーステアリング装置 |
JP2007290550A (ja) * | 2006-04-25 | 2007-11-08 | Nsk Ltd | 電動パワーステアリング装置 |
JP2010137817A (ja) * | 2008-12-15 | 2010-06-24 | Jtekt Corp | 電動パワーステアリング装置 |
JP2012020647A (ja) * | 2010-07-14 | 2012-02-02 | Jtekt Corp | 電動パワーステアリング装置 |
JP2012251328A (ja) | 2011-06-01 | 2012-12-20 | Takano Co Ltd | 自立型オーニング |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017124784A (ja) * | 2016-01-15 | 2017-07-20 | Kyb株式会社 | 電動パワーステアリング装置 |
WO2018155376A1 (ja) * | 2017-02-24 | 2018-08-30 | Thk株式会社 | 軸受部材の取付構造及び減速装置 |
JP2018138787A (ja) * | 2017-02-24 | 2018-09-06 | Thk株式会社 | 軸受部材の取付構造及び減速装置 |
US11009067B2 (en) | 2017-02-24 | 2021-05-18 | Thk Co., Ltd. | Mounting structure of bearing member and speed reducing apparatus |
US10858036B2 (en) * | 2017-12-15 | 2020-12-08 | Jtekt Corporation | Steering system |
DE102023107628A1 (de) | 2023-03-27 | 2024-10-02 | Schaeffler Technologies AG & Co. KG | Käfig für Wälzlager und Wälzlager mit Käfig |
WO2024199565A1 (de) * | 2023-03-27 | 2024-10-03 | Schaeffler Technologies AG & Co. KG | Käfig für wälzlager und wälzlager mit käfig |
Also Published As
Publication number | Publication date |
---|---|
CN104955712A (zh) | 2015-09-30 |
US20150298725A1 (en) | 2015-10-22 |
EP2921372A1 (en) | 2015-09-23 |
EP2921372A4 (en) | 2016-11-02 |
JPWO2014077006A1 (ja) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014077006A1 (ja) | 電動パワーステアリング装置 | |
EP2913246B1 (en) | Electric power-steering device | |
EP2913245B1 (en) | Electric power-steering device | |
US8388000B2 (en) | Control arm, and method of producing a control arm | |
US20120067151A1 (en) | Worm drive | |
US20190315391A1 (en) | Ball screw drive of an electromechanical servo-assisted power steering system having integrated angular ball bearing and compensation for differing thermal expansion | |
JP2001047883A (ja) | 動力伝達シャフト | |
CN103429921A (zh) | 动力传递轴的制造方法以及车辆用转向操纵装置 | |
US20160281767A1 (en) | Vehicle propeller shaft | |
US20190263443A1 (en) | Ball screw of an electromechanical power steering system having an integrated angular-contact ball bearing | |
JP5098377B2 (ja) | 車両ステアリング用伸縮軸 | |
EP2998190B1 (en) | Intermediate shaft | |
US8777266B2 (en) | Steering device | |
JP2013067362A (ja) | 電動パワーステアリング装置 | |
US10882549B2 (en) | Gear housing for electric power steering device | |
JP2008168890A (ja) | 車両ステアリング用伸縮軸 | |
JP2014162414A (ja) | 電動パワーステアリング装置用ギヤボックス及びそのカバー、並びに電動パワーステアリング装置 | |
JP2010127295A (ja) | 伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸 | |
JP2013112312A (ja) | 電動パワーステアリング装置 | |
JP2010095159A (ja) | 車両ステアリング用伸縮軸の製造方法 | |
JP2013112052A (ja) | 電動パワーステアリング装置 | |
CN105705811A (zh) | 用于制造伸缩轴的方法 | |
JP6531882B1 (ja) | 電動式パワーステアリング装置用ギヤハウジング | |
KR20240095774A (ko) | 동력 보조 조향장치 | |
JP2023055545A (ja) | ハブユニット軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13855855 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14442780 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014546892 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013855855 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013855855 Country of ref document: EP |