WO2014073599A1 - レーザ加工装置及びレーザ照射方法 - Google Patents

レーザ加工装置及びレーザ照射方法 Download PDF

Info

Publication number
WO2014073599A1
WO2014073599A1 PCT/JP2013/080092 JP2013080092W WO2014073599A1 WO 2014073599 A1 WO2014073599 A1 WO 2014073599A1 JP 2013080092 W JP2013080092 W JP 2013080092W WO 2014073599 A1 WO2014073599 A1 WO 2014073599A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
laser
intensity distribution
laser beam
center
Prior art date
Application number
PCT/JP2013/080092
Other languages
English (en)
French (fr)
Inventor
弘二 平野
今井 浩文
濱村 秀行
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to PL13852814T priority Critical patent/PL2918689T3/pl
Priority to KR1020157011833A priority patent/KR101641032B1/ko
Priority to EP13852814.6A priority patent/EP2918689B1/en
Priority to US14/439,996 priority patent/US9607744B2/en
Priority to CN201380057184.9A priority patent/CN104755637B/zh
Priority to BR112015009485A priority patent/BR112015009485B1/pt
Priority to JP2014545746A priority patent/JP6044642B2/ja
Priority to IN3147DEN2015 priority patent/IN2015DN03147A/en
Priority to RU2015116262A priority patent/RU2621092C2/ru
Publication of WO2014073599A1 publication Critical patent/WO2014073599A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Definitions

  • the present invention relates to a laser processing apparatus and a laser irradiation method for controlling a magnetic domain by irradiating a directional electromagnetic steel sheet used for an iron core or the like of a transformer with a laser beam.
  • the grain-oriented electrical steel sheet has a feature that it is easy to transmit magnetic lines of force with respect to the rolling direction at the time of manufacturing the steel sheet (the easy magnetization direction is aligned with the rolling direction) (hence, it is also called a unidirectional electrical steel sheet).
  • the easy magnetization direction is aligned with the rolling direction
  • the grain-oriented electrical steel sheet Used as a material constituting the iron core of electrical equipment such as transformers and rotating machines.
  • it is required to reduce energy loss (iron loss) when magnetized.
  • energy loss iron loss
  • iron loss is classified into eddy current loss and hysteresis loss.
  • eddy current loss is classified into classical eddy current loss and abnormal eddy current loss.
  • a thin directional electrical steel sheet having an insulating film formed on the plate surface is provided.
  • a grain-oriented electrical steel sheet on which an insulating film is formed for example, as shown in Patent Document 1, a glass film is formed on the surface of a steel plate (metal part), and an insulating film is further formed on the glass film.
  • Patent Document 1 a glass film is formed on the surface of a steel plate (metal part), and an insulating film is further formed on the glass film. A two-layer structure has been proposed and put into practical use.
  • a laser beam is condensed and irradiated from above the insulating film, and is approximately in the width direction of the electromagnetic steel sheet (that is, roughly in the rolling direction).
  • a laser magnetic domain control method has been proposed in which a magnetic domain is subdivided by scanning a laser beam in the vertical direction) to provide a region having a residual strain periodically in the rolling direction.
  • a circulating flow formed due to surface distortion caused by a laser beam scanning irradiation giving a temperature history with a strong temperature gradient in the plate thickness direction to the steel plate outermost layer region.
  • the 180 ° domain wall interval is subdivided, and in particular, abnormal eddy current loss is reduced.
  • Patent Document 3 discloses that a TEM 00 mode laser beam having excellent micro-condensing characteristics is used to form a strong distortion in a narrow region and have a narrow and sufficient strength. A method for obtaining a free flowing magnetic domain is disclosed.
  • wrinkles may occur in the insulating film and the glass film due to the temperature rise caused by the laser beam irradiation.
  • wrinkles refers to film damage such as defect peeling, lifting, alteration, and discoloration of the insulating film and the glass film.
  • the interface structure and thickness of the glass film or insulating film may vary in the rolling direction and width direction of the steel sheet metal part. Therefore, even if the laser conditions are adjusted, it may be difficult to suppress the generation of wrinkles in the glass film throughout the steel sheet.
  • a narrow circulating magnetic domain having sufficient strength is provided in the metal part of the steel sheet. It is required to form.
  • the suppression of soot generation and the formation of the reflux magnetic domain are mutually competing events. That is, in order to form a narrow and deep circulating magnetic domain, it is effective to increase the gradient of the temperature distribution with respect to the thickness direction formed near the outermost layer of the steel plate during laser scanning irradiation.
  • the temperature gradient is large, the temperature at the laser beam irradiation part on the steel sheet surface increases, so that the risk of wrinkles occurring in the glass film increases.
  • Patent Document 4 discloses a method in which the beam shape is an elliptical shape that is long in the scanning direction of the laser beam.
  • the beam shape is an elliptical shape that is long in the scanning direction of the laser beam.
  • the present invention has been made in view of the above problems.
  • the objective of this invention is providing the laser processing apparatus and laser irradiation method which can suppress generation
  • a laser processing apparatus for concentrating a laser beam on a directional electromagnetic steel sheet and scanning in a scanning direction to subdivide the magnetic domains of the directional electromagnetic steel sheet.
  • a laser processing apparatus comprising: a laser oscillation apparatus that emits the laser beam; and a laser irradiation apparatus that irradiates the directional electromagnetic steel sheet with the laser beam transmitted from the laser oscillation apparatus.
  • the scanning direction is centered on the gravity center of the intensity distribution.
  • the distance from the intensity distribution of the center of gravity of the position at which 43% of the integrated value Ra 1 is a position where the 43% of the total intensity integral value
  • the distance from the center of gravity of the intensity distribution is Ra 2
  • the intensity of the laser beam corresponding to the Ra 1 is beam intensity Ia 1
  • the intensity of the laser beam corresponding to the Ra 2 is beam intensity Ia 2
  • the Ia When the average value of 1 and Ia 2 is Ia, and the intensity of the laser beam at the center of gravity of the intensity distribution is the beam intensity Ib, Ib / Ia is configured to be 2.0 or less.
  • the laser irradiation apparatus is a cross section in the scanning direction on the direction electromagnetic steel sheet surface of the laser beam focused on the directional electromagnetic steel sheet.
  • the C direction intensity distribution which is an intensity distribution of the C direction
  • the distance from the center of gravity of the C direction intensity distribution at a position where the intensity integrated value from the center of gravity of the C direction intensity distribution in the third direction is 43% of the total integrated value of C direction intensity is Rc 1 , the fourth direction.
  • the distance from the center of gravity of the C direction intensity distribution at the position where the intensity integrated value from the center of gravity of the C direction intensity distribution at 43% of the total integrated intensity value of C direction is Rc 2 , and the Rc 1 corresponds to the Rc 1 Laser Bee Beam intensity Ic 1 the intensity of the beam, in the Rc 2 the intensity of the laser beam corresponding to the beam intensity Ic 2, wherein the Ic average value Ic 1 and the Ic 2, the center of gravity of the C-direction intensity distribution It may be configured such that Id / Ic is 1.5 to 10 when the intensity of the laser beam is a beam intensity Id.
  • the Ib / Ia may be 1.0 to 2.0.
  • Ra is an average value of Ra 1 and Ra 2 , Ra is 5 to 100 ⁇ m. May be.
  • the Ra may be 5 to 60 ⁇ m.
  • the beam parameter product of the laser beam focused on the grain-oriented electrical steel sheet is a unit of the wavelength of the laser beam.
  • ⁇ m is ⁇ , it may be ⁇ / ⁇ ⁇ 10 mm ⁇ mrad.
  • the laser oscillation apparatus may be a fiber laser or a disk laser.
  • the condensing shape of the laser beam condensed on the directional electromagnetic steel sheet is an ellipse,
  • the minor axis direction may be perpendicular to the scanning direction.
  • a laser irradiation step for condensing a magnetic domain of the directional electromagnetic steel sheet by condensing a laser beam on the directional electromagnetic steel sheet and scanning in the scanning direction In the intensity distribution in a cross section perpendicular to the scanning direction on the directional electromagnetic steel sheet surface of the laser beam focused on the directional electromagnetic steel sheet, the scanning centering on the center of gravity of the intensity distribution. The intensity integrated value from the center of gravity of the intensity distribution in the first direction when the intensity distribution is integrated in the first direction and the second direction along the direction perpendicular to the direction is the total intensity integrated value.
  • Ra 1 is the distance from the center of gravity of the intensity distribution at a position that is 43%, and the intensity distribution at a position where the intensity integrated value from the center of the intensity distribution in the second direction is 43% of the total intensity integrated value.
  • Distance from the center of gravity was a Ra 2, wherein Ra beam intensity Ia 1 an intensity of the laser beam corresponding to 1, the intensity of the laser beam corresponding to the Ra 2 and beam intensity Ia 2, the average of the Ia 1 and the Ia 2
  • the value is Ia and the intensity of the laser beam at the center of gravity of the intensity distribution is the beam intensity Ib, Ib / Ia is 2.0 or less.
  • C is an intensity distribution in a section in the scanning direction on the surface of the directional electromagnetic steel plate of the laser beam focused on the directional electromagnetic steel plate.
  • the distance from the center of gravity of the C-direction intensity distribution at the position where the intensity integrated value from the center of intensity distribution is 43% of the total C-direction intensity integrated value is Rc 1 , and the center of gravity of the C-direction intensity distribution in the fourth direction.
  • Rc 2 is a distance from the center of gravity of the C direction intensity distribution at a position where the intensity integrated value from the position becomes 43% of the total integrated intensity value in the C direction
  • the intensity of the laser beam corresponding to Rc 1 is the beam intensity Ic. 1
  • an intensity of the laser beam corresponding to Rc 2 and beam intensity Ic 2 the average value of the Ic 1 and the Ic 2 and Ic, the intensity of the laser beam in the C direction intensity distribution of the center of gravity beam
  • Id / Ic may be 1.5 to 10.
  • a grain-oriented electrical steel sheet is an electrical steel sheet in which the axis of easy magnetization of the crystal grains of the steel sheet (the ⁇ 100> direction of the body-centered cubic crystal) is substantially aligned with the rolling direction in the manufacturing process.
  • the grain-oriented electrical steel sheet has a structure in which a plurality of magnetic domains whose magnetization is oriented in the rolling direction are arranged with a domain wall interposed therebetween.
  • Such grain-oriented electrical steel sheets are easily magnetized in the rolling direction, and are therefore suitable as an iron core material for transformers in which the direction of the lines of magnetic force flows almost constant.
  • FIG. 1 is a cross-sectional view of a grain-oriented electrical steel sheet 10 according to this embodiment.
  • the grain-oriented electrical steel sheet 10 includes a steel sheet body (metal part) 12, a glass film 14 formed on both surfaces of the steel sheet body 12, an insulating film 16 formed on the glass film 14, Have
  • the transformer is roughly classified into a loading transformer and a winding transformer.
  • the wound transformer is assembled in the shape of a transformer while applying a winding deformation to a steel plate, and then annealed (a strain relief annealing process) in order to remove the strain introduced by the mechanical deformation.
  • annealing process a strain relief annealing process
  • the strain introduced by the laser irradiation as described above is released, and the magnetic domain fragmentation effect disappears.
  • the grain-oriented electrical steel sheet 10 according to this embodiment is particularly suitable for a material for a stacking transformer.
  • the steel plate body 12 is made of an iron alloy containing Si.
  • the chemical composition of the steel sheet body 12 is, for example, Si: 2.5 to 4.0% by mass, C: 0.02 to 0.10% by mass, Mn: 0.05 to 0.20% by mass, acid-soluble Al. : 0.020 to 0.040 mass%, N: 0.002 to 0.012 mass%, S: 0.001 to 0.010 mass%, P: 0.01 to 0.04 mass%, the balance being Fe And impurities.
  • the thickness of the steel plate body 12 is, for example, 0.2 to 0.3 mm.
  • the glass film 14 is made of, for example, a composite oxide such as forsterite (Mg 2 SiO 4 ), spinel (MgAl 2 O 4 ), and cordierite (Mg 2 Al 4 Si 5 O 16 ).
  • the thickness of the glass film 14 is, for example, 1 ⁇ m.
  • the insulating film 16 is formed, for example, by baking a coating liquid mainly composed of colloidal silica and phosphate (magnesium phosphate, aluminum phosphate, etc.) or a coating liquid in which alumina sol and boric acid are mixed. ing.
  • the thickness of the insulating film 16 is, for example, 2 to 3 ⁇ m.
  • a laser beam is condensed, irradiated from above the insulating coating 16, and conveyed in the rolling direction (conveying direction) in the substantially width direction (substantially in the rolling direction).
  • the laser beam is scanned in a direction orthogonal to the above. Residual strain is imparted to a linear region that is substantially orthogonal to the rolling direction due to the temperature gradient in the plate thickness and plate width directions caused by irradiation with the laser beam.
  • a linear region to which residual strain is applied is formed in a predetermined period in the rolling direction, and a domain width in a direction substantially perpendicular to the rolling direction in a region sandwiched between two linear regions and oriented in the rolling direction. Subdivide.
  • the grain-oriented electrical steel sheet as described above may be referred to as the grain-oriented electrical steel sheet according to the present embodiment.
  • FIG. 2 is a flowchart showing an example of a manufacturing process of the grain-oriented electrical steel sheet 10 according to this embodiment.
  • the manufacturing process of the grain-oriented electrical steel sheet 10 includes a casting process S2, a hot rolling process S4, an annealing process S6, a cold rolling process S8, a decarburizing annealing process S10, and an annealing separation.
  • An agent coating step S12, a final finish annealing step S14, an insulating film forming step S16, and a laser irradiation step S18 are included.
  • molten steel adjusted to a predetermined composition is supplied to a continuous casting machine to continuously form an ingot.
  • the ingot is heated to a predetermined temperature (for example, 1150 to 1400 ° C.) to perform hot rolling. Thereby, a hot rolled material having a predetermined thickness (for example, 1.8 to 3.5 mm) is obtained.
  • annealing step S6 heat treatment (annealing) is performed on the hot-rolled material, for example, under conditions of a heating temperature of 750 to 1200 ° C. and a heating time of 30 seconds to 10 minutes.
  • cold rolling step S8 the surface of the hot rolled material is pickled and then cold rolled. Thereby, a cold-rolled material having a predetermined thickness (for example, 0.15 to 0.35 mm) is obtained.
  • the cold-rolled material is subjected to heat treatment (decarburization annealing) under conditions of a heating temperature of 700 to 900 ° C. and a heating time of 1 to 3 minutes, so that the steel plate body 12 is obtained.
  • a heating temperature 700 to 900 ° C.
  • a heating time 1 to 3 minutes
  • an oxide layer mainly composed of silica (SiO 2 ) is formed on the surface of the steel plate body 12.
  • an annealing separator mainly composed of magnesia (MgO) is applied on the oxide layer formed on the surface of the steel plate body 12.
  • the steel sheet body 12 coated with the annealing separator is wound into a coil shape and inserted into a batch furnace to perform heat treatment (finish annealing).
  • the heat treatment conditions are, for example, a heating temperature of 1100 to 1300 ° C. and a heating time of 20 to 24 hours.
  • goth grains in which the conveying direction (rolling direction) of the steel plate body 12 and the easy axis of magnetization coincide with each other preferentially grow.
  • a grain-oriented electrical steel sheet having high crystal orientation (crystal orientation) after finish annealing is obtained.
  • the glass layer 14 made of forsterite (Mg 2 SiO 4 ) is formed on the surface of the steel plate body 12 by the reaction between the oxide layer and the annealing separator in the final finish annealing step S14.
  • the steel sheet body 12 wound in a coil shape is unwound and stretched into a plate shape and conveyed.
  • the insulating film 16 is formed by apply
  • the steel plate body 12 on which the insulating film 16 is formed is wound in a coil shape.
  • the steel sheet body 12 wound in a coil shape is unwound and stretched into a plate shape and conveyed.
  • a laser beam is condensed and irradiated toward the single side
  • the laser beam is scanned in a direction substantially perpendicular to the rolling direction. Thereby, linear distortion substantially orthogonal to the rolling direction is formed on the surface of the steel plate body 12 at predetermined intervals in the rolling direction.
  • the condensing and scanning of the laser beam may be performed only on the front surface or the back surface of the steel plate body 12, or may be performed on both the front surface and the back surface.
  • the steel sheet body 12 on which the insulating film 16 is formed is wound into a coil shape and then sent to the laser irradiation step S18.
  • the laser irradiation is performed immediately after the insulating film is formed, and then the coil body is wound into a coil shape. May be.
  • the glass coating 14 and the insulating coating 16 are formed on the surface of the steel plate body 12, and the grain-oriented electrical steel plate 10 whose magnetic domain is controlled by laser irradiation is manufactured.
  • FIGS. 3 and 4 a laser processing apparatus 100 (hereinafter referred to as a laser processing apparatus according to this embodiment) that applies residual laser beam to the grain-oriented electrical steel sheet 10 according to this embodiment by applying a laser beam. Will be described.
  • the laser processing apparatus 100 according to the present embodiment is used to irradiate the grain-oriented electrical steel sheet 10 with a laser beam in the laser irradiation step S18 described above.
  • FIG. 3 is a schematic diagram illustrating a configuration example of the laser processing apparatus 100 according to the present embodiment.
  • the laser processing apparatus 100 irradiates a laser beam from above the insulating film 16 of the grain-oriented electrical steel sheet 10 that is conveyed at a constant speed in the rolling direction, and imparts linear distortion substantially orthogonal to the rolling direction.
  • the laser processing apparatus 100 includes a plurality of laser oscillators 102, transmission fibers 104, and laser irradiation apparatuses 106.
  • the configurations are the same. In the present embodiment, a case in which three apparatuses are provided will be described. However, the number of apparatuses is not limited as long as scanning can be performed over the entire plate width.
  • FIG. 4 is a schematic diagram illustrating a configuration example of one laser irradiation device 106.
  • the laser oscillator 102 emits a high-power laser beam, for example.
  • the transmission fiber 104 is an optical fiber that transmits the laser beam emitted from the laser oscillator 102 to the laser irradiation device 106.
  • a fiber laser or a disk laser is preferable from the viewpoint of excellent minute focusing characteristics and the ability to form a narrow circulating magnetic domain. Since the fiber laser or the disk laser has a wavelength in the near ultraviolet region to the near infrared region (for example, 1 ⁇ m band), the laser beam can be transmitted through the optical fiber.
  • a relatively compact laser processing apparatus 100 can be realized by transmitting the laser beam through an optical fiber. Also, by transmitting a laser beam from a fiber laser or a disk laser through an optical fiber, the beam intensity distribution at the condensing point as described later can be controlled as compared with a CO 2 laser or a YAG laser not transmitted through an optical fiber. Since it becomes easy, it is preferable.
  • the laser oscillator 102 may be a continuous wave laser or a pulsed laser.
  • the beam quality parameter product of the laser beam is preferably 10 (mm ⁇ mrad) or less. If a fiber laser or a disk laser is used as the laser oscillator 102, the beam quality parameter product can be set within the above-described range.
  • Beam quality is typically quantified using a beam parameter product (BPP).
  • BPP beam parameter product
  • FIG. 5 is a schematic diagram for explaining the beam parameter product (BPP).
  • the laser beam that has passed through the lens is focused to a beam diameter of radius r and then spread again.
  • the laser beam is focused at an angle ⁇ .
  • the beam parameter product (BPP) has a unit of mm ⁇ mrad and is expressed as the following equation (1).
  • BPP r ⁇ ⁇ (1)
  • the depth of focus (DOF) is expressed by the following equation (2) in units of mm using BPP.
  • DOF 2000 ⁇ r 2 / BPP (2)
  • BPP 10 (mm ⁇ mrad) or less
  • DOF can be secured to 0.7 mm or more even when r is 0.06 mm in order to obtain a narrow circulating magnetic domain width. If DOF of 0.7 mm or more is ensured, it is effective to appropriately subdivide the magnetic domains even when vibration in a direction perpendicular to the steel plate surface of the grain-oriented electrical steel plate 10 occurs.
  • the lower limit of BPP is given by ⁇ / ⁇ (mm ⁇ mrad), where the wavelength of the laser beam is ⁇ ( ⁇ m).
  • the laser irradiation device 106 causes the directional electromagnetic steel sheet 10 to focus and scan the laser beam transmitted from the laser oscillator 102 through the transmission fiber 104.
  • the width with which one laser irradiation device 106 can scan the laser beam may be smaller than the plate width of the grain-oriented electrical steel sheet 10. As shown in FIG. 3, by arranging a plurality of laser irradiation devices 106 in the plate width direction, the laser beam can be scanned over the entire plate width of the directional electromagnetic steel sheet 10.
  • the laser irradiation device 106 includes a laser head 122, a collimator lens 124, a metal mirror 126, a polygon mirror 128, and a parabolic mirror 130.
  • the laser head 122 emits the laser beam transmitted by the transmission fiber 104 at a predetermined divergence angle.
  • the collimator lens 124 converts the laser beam emitted from the laser head 122 into parallel light.
  • the metal mirror 126 is a mirror for restricting and adjusting the beam diameter of the incident laser beam in the plate width direction of the directional electromagnetic steel sheet 10 (see FIG. 3).
  • a cylindrical mirror having a curvature in one axial direction or a parabolic mirror can be used as the metal mirror 126.
  • the laser beam reflected by the metal mirror 126 is incident on the polygon mirror 128 that rotates at a predetermined rotation speed.
  • the polygon mirror 128 is a rotatable polyhedron, and scans the laser beam in the plate width direction of the directional electromagnetic steel sheet 10 by rotating. While the laser beam is incident on one surface of the polyhedron of the polygon mirror 128, the laser beam is scanned in a linear region on the directional electromagnetic steel plate 10 along the substantially plate width direction as the surface rotates. As a result, residual strain is applied to the linear region. As the polygon mirror 128 rotates, the laser beam scan is repeated, and at the same time, the grain-oriented electrical steel sheet 10 is conveyed in the rolling direction. As a result, regions having linear residual strain on the grain-oriented electrical steel sheet 10 are periodically formed in the rolling direction. Note that the cycle in the rolling direction of the linear region is adjusted by the conveyance speed of the directional electromagnetic steel sheet 10 and the rotation speed of the polygon mirror 128.
  • the parabolic mirror 130 is a mirror for narrowing and adjusting the beam diameter in the rolling direction of the laser beam reflected by the polygon mirror 128.
  • the laser beam reflected by the parabolic mirror 130 is focused on the surface of the grain-oriented electrical steel sheet 10.
  • FIG. 6 is a diagram showing a condensing shape of the laser beam on the grain-oriented electrical steel sheet 10.
  • the condensing shape of the laser beam is an elliptical shape as shown in FIG. 6, and the major axis is along the scanning direction of the laser beam LB (the major axis and the scanning direction of the laser beam LB are substantially the same). Parallel) and the minor axis is substantially perpendicular to the scanning direction (ie, including approximately 90 ° and not exactly 90 °).
  • the temperature can be raised to a deep position inside the grain-oriented electrical steel sheet 10, which is effective in reducing iron loss.
  • the beam diameter along the scanning direction of the laser beam LB is reduced by the metal mirror 126 described above, and the direction perpendicular to the scanning direction by the parabolic mirror 130 is used. The beam diameter should be reduced.
  • the condensing shape of the laser beam on the grain-oriented electrical steel sheet 10 is an elliptical shape, but is not limited thereto.
  • the condensing shape of the laser beam may be a perfect circle.
  • the laser oscillator 102 is a fiber laser or a disk laser.
  • the present invention is not limited to this.
  • the laser oscillator 102 may be a CO 2 laser.
  • transmission of the laser beam from the laser oscillator 102 to the laser irradiation device 106 is performed using a mirror or the like instead of an optical fiber.
  • the grain-oriented electrical steel sheet 10 applied with a magnetic field in the rolling direction has a structure in which a plurality of magnetic domains whose magnetization is oriented in the rolling direction are arranged.
  • a narrow and sufficient strength can be obtained by giving a large temperature gradient to the thickness direction in a very narrow region seen along the rolling direction in the vicinity of the outermost surface layer of the grain-oriented electrical steel sheet 10. It is particularly effective to form a reflux magnetic domain having
  • the intensity distribution of the laser beam on the surface of the steel plate 10 is set so as to satisfy a predetermined condition.
  • FIG. 7 is a diagram showing the intensity distribution of the laser beam according to the present embodiment.
  • FIG. 8 is a diagram showing the intensity distribution of the laser beam according to the comparative example. Both FIG. 7 and FIG. 8 are distributions of the beam intensity I (output per unit area of the laser beam) as seen in a cross section passing through the center of gravity of the laser beam with respect to the scanning direction and perpendicular to the scanning direction of the laser beam. 7 and 8 is the distance x from the center of gravity of the intensity distribution (the definition of the x-axis is shown in FIG. 6).
  • the center of gravity of the laser beam with respect to the scanning direction refers to the intensity distribution of the laser beam as a function of x and y along the x axis when y is defined as the scanning direction of the laser beam. It is defined as the center-of-gravity position y of the intensity integral amount obtained by integration (this integral amount is a function of y).
  • the comparative example shown in FIG. 8 is an intensity distribution when a so-called TEM 00 mode laser beam is focused on the grain-oriented electrical steel sheet 10. As shown in FIG. 8, the TEM 00 mode is a mode showing a Gaussian distribution having the maximum beam intensity at the center of the intensity distribution.
  • the beam intensity is distributed over a wide range in the direction orthogonal to the scanning direction (x-axis direction), and the skirt regions A exist on both sides of the intensity distribution (that is, Both sides of the intensity distribution extend gently).
  • the skirt region A exists in this way, heat conduction is likely to occur from the skirt region A in a direction orthogonal to the scanning direction of the laser beam.
  • FIG. 9 is a schematic diagram for explaining the heat conduction generated from the base region A in the direction orthogonal to the scanning direction in the intensity distribution of the laser beam according to the comparative example.
  • FIG. 9 when the laser beam LB is scanned in the scanning direction, heat conduction from the base region A in a direction orthogonal to the scanning direction occurs.
  • the region where the temperature rises spreads over a wide range in the direction orthogonal to the scanning direction, and the width of the reflux magnetic domain tends to be widened.
  • reduction of the iron loss of the grain-oriented electrical steel sheet 10 is hindered.
  • the width of the bottom area of the intensity distribution is narrow, and the beam intensity is in a narrow range in the direction orthogonal to the scanning direction. Distributed. For this reason, generation of heat conduction in the direction orthogonal to the scanning direction from the base region is suppressed, and the width of the reflux magnetic domain is narrowed. As a result, the iron loss of the grain-oriented electrical steel sheet 10 can be further reduced as compared with the comparative example.
  • the distances Ra 1 , Ra 2 , beam intensity Ia 1 , beam intensity Ia 2 , and beam intensity Ib are defined as follows.
  • the intensity integrated value when the intensity distribution is integrated from the gravity center of the intensity distribution in the ⁇ x direction is 43% of the total intensity integrated value. This is the distance from the center of gravity of the intensity distribution at the position on the x-axis.
  • the distance Ra 2 is on the x-axis where the intensity integrated value is 43% of the total intensity integrated value when integrated from the gravity center of the intensity distribution toward the + x direction (second direction, right direction in FIG. 7).
  • the beam intensity Ia 1 is the beam intensity at the position of the distance Ra 1
  • the beam intensity Ia 2 is the beam intensity at the position of the distance Ra 2
  • the average of Ia 1 and Ia 2 is Ia.
  • Ra 1 and Ra 2 and Ia 1 and Ia 2 are equal.
  • the beam intensity Ib is the beam intensity at the center of gravity of the intensity distribution.
  • Ib / Ia In the intensity distribution of the laser beam according to the comparative example shown in FIG. 8, Ib / Ia is 2.8.
  • Ib / Ia is 2.0 in order to suppress the intensity peak and to suppress the heat conduction in the direction orthogonal to the scanning direction. In the following, it is preferably set to 1.0 to 2.0.
  • Ib / Ia By setting the intensity distribution of the laser beam on the surface of the grain-oriented electrical steel sheet 10 so that Ib / Ia is 1.0 to 2.0, generation of heat conduction can be suppressed and iron loss can be greatly reduced. It becomes possible.
  • Ib / Ia can be appropriately adjusted in the laser processing apparatus by, for example, changing the type of laser beam and / or selecting the metal mirror 126 or the parabolic mirror 130 having an appropriate curvature (focal length). .
  • the intensity distribution of the laser beam is set so that Ra is 100 ⁇ m (0.1 mm) or less, where Ra is the average value of Ra 1 and Ra 2 .
  • Ra is the average value of Ra 1 and Ra 2 .
  • the laser beam has the intensity distribution of the laser beam according to the present embodiment, generation of wrinkles on the glass coating 14 can be suppressed.
  • the intensity distribution of the laser beam is a Gaussian distribution as shown in FIG. 8, the beam intensity is large (beam intensity Ib shown in FIG. 8) at the center of the intensity distribution.
  • the temperature locally increases on the surface of the grain-oriented electrical steel sheet 10, and the glass film 14 is wrinkled. There is a fear.
  • the beam intensity distribution of the laser beam has an intensity distribution as shown in FIG. 7, the beam intensity distribution has a substantially rectangular shape. Therefore, compared with the comparative example, the beam intensity ( The beam intensity Ib) shown in FIG. 7 is not excessive. Thereby, since the local temperature rise in the surface of the grain-oriented electrical steel sheet 10 can be suppressed, generation
  • FIG. 10 is a diagram showing a modification of the intensity distribution of the laser beam according to the present embodiment.
  • the beam intensity at both ends of the distribution is slightly larger than the beam intensity at the center. Therefore, Ib / Ia becomes smaller than 1 and is naturally 2.0 or less. Even in such an intensity distribution, the fact that there is no bottom region on both sides of the intensity distribution is common to the intensity distribution shown in FIG. Therefore, similarly to the intensity distribution shown in FIG.
  • the spread of heat conduction in the direction orthogonal to the scanning direction can be suppressed, and the iron loss can be greatly reduced. That is, if Ib / Ia is 2.0 or less, the spread of heat conduction in the direction orthogonal to the scanning direction can be suppressed, and the reduction in iron loss can be increased.
  • Ib / Ia is desirably 1.0 or more.
  • the focused and scanned laser beam passes through the center of gravity of the laser beam with respect to the direction orthogonal to the scanning direction, and is viewed in a cross section in the scanning direction of the laser beam (intensity in the C direction).
  • (Distribution) shows a shape as shown in FIG.
  • FIG. 11 is a diagram in which the beam intensity I is on the vertical axis and the distance y from the center of gravity of the intensity distribution is on the horizontal axis when the scanning direction of the laser beam is the y-axis.
  • the center of gravity of the laser beam with respect to the direction orthogonal to the scanning direction is an intensity integration amount obtained by integrating the intensity distribution of the laser beam, which is a function of x and y, with respect to each x along the y axis (this The amount of integration is defined as the centroid position x).
  • the intensity integrated value when the intensity distribution is integrated from the gravity center of the intensity distribution in the ⁇ y direction is the total intensity integrated value.
  • the distance from the centroid of the intensity distribution of the position on the y-axis that becomes 43% is Rc 1, and the integration is performed from the centroid of the intensity distribution toward the + y direction (fourth direction, right side in FIG. 11).
  • the distance from the gravity center of the intensity distribution at the position on the y-axis where the intensity integrated value is 43% of the total intensity integrated value is Rc 2 (that is, in FIG. 11, the area of the hatched area is the intensity distribution in FIG. 11).
  • the beam intensity at the position of distance Rc 1 Ic 1 the beam intensity at the position of distance Rc 2 the average value of the Ic 2, Ic 1 and Ic 2 Ic, the intensity distribution At the center of gravity
  • Id / Ic ⁇ 1.5 The comparative example shown in FIG. 12 is an intensity distribution when the beam intensity distribution is close to a so-called top flat. In such a case, Id / Ic is less than 1.5. In such a top-flat type strength distribution, a rapid temperature rise occurs on the surface of the grain-oriented electrical steel sheet in response to a sudden rise in the spatial strength distribution, and the film is easily wrinkled by the thermal shock effect. .
  • Id / Ic is 1.5 or more, the rise of the intensity distribution is gradual and the rapid temperature rise on the surface of the grain-oriented electrical steel sheet is suppressed. If Id / Ic becomes too large, the strength at the center of gravity becomes too high, so Id / Ic is preferably 10 or less.
  • FIG. 13 shows the distribution of the beam intensity I seen in the cross section perpendicular to the scanning direction of the laser beam as shown in FIG. 7, and the distribution of the beam intensity I seen in the cross section of the laser beam in the scanning direction is as shown in FIG. It is a schematic diagram which shows the beam intensity of the laser beam which is.
  • the chemical composition is Si: 3.0 mass%, C: 0.05 mass%, Mn: 0.1 mass%, acid-soluble Al: 0.02 mass%, N: 0.01 mass%, S: A slab (steel piece) having 0.01% by mass, P: 0.02% by mass, and the balance being Fe and impurities was prepared.
  • This slab was hot-rolled at 1280 ° C. to obtain a hot-rolled material having a thickness of 2.3 mm.
  • the obtained hot-rolled material was heat-treated under the conditions of 1000 ° C. ⁇ 1 minute (heating temperature: 1000 ° C., holding time: 1 minute).
  • the hot-rolled material was subjected to pickling treatment and then cold-rolled to obtain a cold-rolled material having a thickness of 0.23 mm.
  • the cold-rolled material was decarburized and annealed under conditions of 800 ° C. ⁇ 2 minutes.
  • the annealing separation material which has a magnesia as a main component was apply
  • coated was charged in the batch type furnace in the state wound up by the coil shape, and the final annealing was implemented on the conditions of 1200 degreeC * 20 hours.
  • the steel plate (steel plate main body 12) in which the glass film was formed on the surface was produced.
  • an insulating material made of aluminum phosphate was applied onto the glass film 14 and then baked (850 ° C. ⁇ 1 minute) to form the insulating film 16.
  • the steel plate body 12 on which the insulating coating 16 and the glass coating 14 were formed was irradiated with a laser beam to impart strain to the surface of the steel plate body 12.
  • the laser irradiation apparatus 106 shown in FIG. 1 was used, the intensity distribution of the laser beam on the steel plate surface was elliptical, and the major axis of the ellipse was aligned with the scanning direction of the laser beam on the steel plate surface.
  • the type of fiber laser used as the laser oscillator 102, the core diameter of the optical fiber, the focal length of the collimator lens, the focal length of the metal mirror 126 and the parabolic mirror 130 In addition, by changing various conditions such as the distance from these optical elements to the steel plate surface, Ib defined as described above with respect to the beam intensity distribution in the scanning direction of the laser beam and the cross section perpendicular to the scanning direction.
  • the test was conducted under various conditions with different / Ia, Ra, and Id / Ic. As irradiation conditions, the scanning speed Vc was 160 m / s, the irradiation pitch PL was 5 mm, and the wavelength ⁇ of the laser beam was 1.08 ⁇ m.
  • Ib / Ia was experimentally determined as follows. First, the beam intensity distribution at the steel sheet surface position was measured with a commercially available focused laser beam evaluation apparatus. Next, a beam intensity distribution was obtained on a short axis of the measured elliptical laser beam spot, that is, in a cross section passing through the center of gravity of the laser beam with respect to the scanning direction of the laser beam and perpendicular to the scanning direction of the laser beam. Finally, Ra 1 and Ra 2 and their average values Ra and Ia were obtained, and Ib / Ia was calculated.
  • the beam intensity distribution in the scanning direction cross section of the laser beam is obtained by passing through the center of gravity of the laser beam with respect to the major axis of the measured elliptical laser beam spot, that is, in the direction perpendicular to the scanning direction of the laser beam.
  • Rc 1 and Rc 2 and their average values Rc and Ic were obtained, and Id / Ic was calculated.
  • a part of the laser-treated steel sheet and a part of the same-coil steel sheet that was not laser-treated were each subjected to an SST (Single Sheet Tester) test, and the iron loss of W 17/50 (W / kg) was evaluated.
  • W 17/50 is the iron loss at a frequency of 50 Hz and a maximum magnetic flux density of 1.7 T.
  • As a test piece for SST measurement a square piece cut out in a size of a steel plate width direction length of 100 mm and a steel plate rolling direction length of 500 mm was used.
  • the iron loss improvement rate (%) for the laser-treated steel sheet was defined on the basis of the iron loss of the part not subjected to laser treatment in the same coil steel sheet.
  • the determination of the occurrence of rust due to the generation of wrinkles on the glass film 14 was performed by a wet test.
  • the wet test was conducted according to JIS K2246-5.34, and the test conditions were a temperature of 50 ° C., a humidity of 98%, and a test time of 72 hours. Then, the presence or absence of rust generation
  • 10 square pieces each having a length of 100 mm in the width direction of the steel plate and a length of 500 mm in the rolling direction length of the steel plate were cut out and evaluated by the number of sheets in which rust was generated.
  • the test results are shown in Table 1.
  • Ib / Ia is 2.0 or less
  • a sufficient iron loss improvement rate of 12% or more was obtained.
  • the sixth embodiment is an example in which the steel plate surface is aligned with the focal position of the metal mirror 126. In this case, the C direction intensity distribution was close to the top flat, and Id / Ic was 1.3.
  • Examples 3 and 4 having the same Ib / Ia although two iron loss improvements of the same degree were obtained, there were two samples in which rust was generated.
  • Comparative Example 1 is an example in which a TEM 00 mode laser (laser beam) is irradiated.
  • Ib / Ia was 2.8, and the iron loss improvement rate was 10.2%.
  • the target product grade is required to improve iron loss by 12% or more, but in Comparative Example 1, the iron loss improvement rate did not reach the target.
  • Comparative example 2 is also an example in which a TEM 00 mode laser is irradiated. If Ra (Ra 1 and Ra 2 ) is made small by taking advantage of the TEM 00 mode fine light condensing characteristic as in Comparative Example 2, an iron loss improvement of 12% or more can be obtained. However, it was found that when Ra was reduced and TEM 00 mode laser was irradiated, rust was generated on all 10 samples, and the generation of wrinkles on the glass film 14 due to laser irradiation became significant. When laser irradiation is performed under the conditions of Comparative Example 2, re-application of the insulating film 16 is necessary, so that the manufacturing cost is remarkably increased.
  • the intensity integrated value from the gravity center of the intensity distribution in the intensity distribution in the cross section perpendicular to the laser beam scanning direction is 43% of the total intensity integrated value.
  • Ra 1 and Ra 2 are the distances from the center of gravity of the intensity distribution at the position where the positions are, and the laser beam intensities corresponding to these Ra 1 and Ra 2 are Ia 1 and Ia 2 , respectively, and the average values of Ia 1 and Ia 2 Is Ia, and the intensity of the laser beam at the center of gravity of the intensity distribution is Ib, Ib / Ia is configured to be 2.0 or less.
  • the intensity distribution of the laser beam according to the present embodiment it is possible to suppress the beam intensity Ib at the center of gravity of the intensity distribution from becoming excessive, and thus it is possible to suppress a local temperature increase on the surface of the grain-oriented electrical steel sheet 10, As a result, generation of wrinkles on the glass coating 14 can be suppressed.
  • the directional electrical steel sheet 10 having a low iron loss can be stably manufactured with a good yield by reducing the iron loss and suppressing the wrinkles of the glass film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Laser Beam Processing (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 このレーザ加工装置は、レーザ照射装置を備え、前記レーザ照射装置は、前記方向性電磁鋼板に集光された前記レーザビームの前記方向性電磁鋼板面上における前記走査方向と垂直な方向の断面での強度分布において、前記強度分布の重心からの強度積分値が全強度積分値の43%となる位置の前記強度分布の重心からの距離をRa、Raとし、前記Ra、前記Raに対応した前記レーザビームの強度をビーム強度Ia、ビーム強度Iaとし、前記Iaと前記Iaとの平均値をIaとし、前記強度分布の重心における前記レーザビームの強度をビーム強度Ibとしたときに、Ib/Iaが2.0以下となるように構成される。

Description

レーザ加工装置及びレーザ照射方法
 本発明は、トランスの鉄芯等に用いられる方向性電磁鋼板に対してレーザビームを照射して磁区制御するレーザ加工装置及びレーザ照射方法に関する。
 本願は、2012年11月08日に、日本に出願された特願2012-246305号に基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板は、鋼板製造時の圧延方向に対して磁力線を透しやすい(磁化容易方向が圧延方向に揃っている)という特徴を有しており(それゆえ、一方向性電磁鋼板とも呼ばれる)、トランス、回転機等の電気機器の鉄芯を構成する素材として用いられる。このような鉄芯に用いられる方向性電磁鋼板においては、磁化する際のエネルギー損失(鉄損)を低減することが求められる。特に、近年は地球温暖化の進行に伴い、電気機器の省エネルギー化が世界的に求められている。従って、鉄損が極力低減された方向性電磁鋼板を安定して生産することが希求されている。
 ところで、鉄損は、渦電流損とヒステリシス損とに分類される。さらに、渦電流損は、古典的渦電流損と異常渦電流損とに分類される。ここで、古典的渦電流損を低減するために、板表面に絶縁皮膜を形成した板厚の薄い方向性電磁鋼板が提供されている。絶縁皮膜を形成した方向性電磁鋼板としては、例えば特許文献1に示すように、鋼板地鉄(金属部)の表面に、グラス皮膜が形成され、グラス皮膜の上にさらに絶縁皮膜が形成された2層構造のものが提案され、実用化されている。
 また、異常渦電流損を抑制するために、例えば特許文献2、3に示すように、絶縁皮膜の上からレーザビームを集光・照射し、電磁鋼板の略幅方向(すなわち、圧延方向に概略垂直な方向)に、レーザビームを走査することにより、圧延方向に周期的に残留歪を有する領域を設けることによって、磁区を細分化するレーザ磁区制御法が提案されている。このレーザ磁区制御法によれば、レーザビームの走査照射により、鋼板最表層領域に板厚方向に対し強い温度勾配を持った温度履歴が与えられることで発生する表面歪みを起因として形成される環流磁区により、180°磁壁間隔が細分化され、特に異常渦電流損が低減される。
 レーザ磁区制御により付与された環流磁区は、180°磁壁間隔を細分化して異常渦電流損を低減させるが、一方でヒステリシス損を増加させる要因となる。従って、トータルとしての鉄損低減の観点からは、環流磁区幅を狭くすることが有効である。この技術思想に沿った発明として、例えば特許文献3には、微小集光特性に優れたTEM00モードのレーザビームを使用して、狭い領域に強い歪みを形成し、狭く且つ十分な強度を持った環流磁区を得る方法が開示されている。
 ところで、レーザ磁区制御法におけるレーザ照射工程においては、グラス皮膜の上に絶縁皮膜を形成し、この絶縁皮膜の上からレーザビームを照射することで、磁区制御を行っている。しかし、このような方法では、レーザビームの照射による温度上昇を起因として、絶縁皮膜およびグラス皮膜に疵が生じることがあった。ここで、疵とは、絶縁皮膜およびグラス皮膜の欠損剥離、浮き上がり、変質、変色等の皮膜損傷である。グラス皮膜に疵が発生した場合には、皮膜下の金属部が外部に露出し、錆が発生する恐れがある。このため、グラス皮膜に疵が生じた場合には、再度、絶縁皮膜を塗布する必要がある。このような場合、工程の追加による製造コスト増加の原因となる。
 方向性電磁鋼板の製造においては、多くの熱処理が実施されるため、鋼板金属部の圧延方向及び幅方向において、グラス皮膜や絶縁皮膜の界面構造や厚みにばらつきが生じることがある。よって、レーザ条件を調整しても、鋼板全体でグラス皮膜における疵の発生を抑制することが困難なことがあった。
日本国特開2007-119821号公報 日本国特開昭59-33802号公報 国際公開2004/083465号パンフレット 日本国特公平1-51527号公報
 以上述べてきたように、低鉄損の方向性電磁鋼板を効率良く製造するためには、グラス皮膜における疵の発生を抑制しつつ、鋼板の金属部に十分な強度を持った狭い環流磁区を形成することが求められる。しかしながら、疵発生の抑制と環流磁区の形成とは、お互いに競合する事象である。すなわち、狭く深い環流磁区を形成するためには、レーザの走査照射中に鋼板最表層近傍に形成される板厚方向に対する温度分布の勾配を大きくすることが有効である。しかしながら、温度勾配が大きいと、鋼板表面のレーザビーム照射部における温度が高くなるので、グラス皮膜に疵が発生するリスクが高まる。これらの競合関係を踏まえたレーザ照射条件の最適化が求められているが、十分に両立できる技術は未だ確立されていない。
 例えば、特許文献3に開示されたTEM00モードのレーザビームを使用して磁区制御を行うことで、TEM00モードの特徴である微小集光性と中心部が高くなる強度分布とにより、十分な強度を持った狭い環流磁区を形成できる。一方で、この方法では、中心付近のビーム強度が高いためにTEM00モードでない場合と比べて疵が発生しやすくなるという課題があった。こうした疵発生を抑制する方法として、例えば、特許文献4には、ビーム形状をレーザビームの走査方向に長い楕円形状とする方法が開示されている。しかし、こうした楕円形状のレーザビームを用いる方法によると、疵の発生は抑制されるものの、加熱時間が長くなる。そのため、レーザビームの走査方向に垂直な方向への熱伝導の影響により環流磁区幅が拡大する傾向にあり、鉄損の低減が難しいという問題があった。
 本発明は、上記問題に鑑みてなされた。本発明の目的は、方向性電磁鋼板の鉄損を低減しつつ、グラス皮膜における疵の発生を抑制することが可能なレーザ加工装置及びレーザ照射方法を提供することである。
 (1)すなわち、本発明の一態様に係るレーザ加工装置は、方向性電磁鋼板にレーザビームの集光及び走査方向への走査を行って、前記方向性電磁鋼板の磁区を細分化するためのレーザ加工装置であって、前記レーザビームを出射するレーザ発振装置と;前記レーザ発振装置から伝送された前記レーザビームを前記方向性電磁鋼板に照射するレーザ照射装置と;を備え、前記レーザ照射装置は、前記方向性電磁鋼板に集光された前記レーザビームの前記方向性電磁鋼板面上における前記走査方向と垂直な方向の断面での強度分布において、前記強度分布の重心を中心に前記走査方向と垂直な方向に沿った第1の方向及び第2の方向に向かって前記強度分布を積分したときの前記第1の方向における前記強度分布の重心からの強度積分値が全強度積分値の43%となる位置の前記強度分布の重心からの距離をRa、前記第2の方向における前記強度分布の重心からの強度積分値が前記全強度積分値の43%となる位置の前記強度分布の重心からの距離をRaとし、前記Raに対応した前記レーザビームの強度をビーム強度Ia、前記Raに対応した前記レーザビームの強度をビーム強度Iaとし、前記Iaと前記Iaとの平均値をIaとし、前記強度分布の重心における前記レーザビームの強度をビーム強度Ibとしたときに、Ib/Iaが2.0以下となるように構成される。
 (2)上記(1)に記載のレーザ加工装置では、さらに、前記レーザ照射装置が、前記方向性電磁鋼板に集光された前記レーザビームの前記方向電磁鋼板面上における前記走査方向の断面での強度分布であるC方向強度分布において、前記C方向強度分布の重心を中心に前記走査方向に沿った第3の方向及び第4の方向に向かって前記C方向強度分布を積分したときの前記第3の方向における前記C方向強度分布の重心からの強度積分値が全C方向強度積分値の43%となる位置の前記C方向強度分布の重心からの距離をRc、前記第4の方向における前記C方向強度分布の重心からの強度積分値が前記全C方向強度積分値の43%となる位置の前記C方向強度分布の重心からの距離をRcとし、前記Rcに対応した前記レーザビームの強度をビーム強度Ic、前記Rcに対応した前記レーザビームの強度をビーム強度Icとし、前記Icと前記Icとの平均値をIcとし、前記C方向強度分布の重心における前記レーザビームの強度をビーム強度Idとしたときに、Id/Icが1.5~10となるように構成されてもよい。
 (3)上記(1)または(2)に記載のレーザ加工装置は、前記Ib/Iaが、1.0~2.0であってもよい。
 (4)上記(1)~(3)のいずれか一項に記載のレーザ加工装置は、前記Raと前記Raとの平均値をRaとしたとき、前記Raが、5~100μmであってもよい。
 (5)上記(4)に記載のレーザ加工装置は、前記Raが、5~60μmであってもよい。
 (6)上記(1)~(5)のいずれか一項に記載のレーザ加工装置では、前記方向性電磁鋼板に集光される前記レーザビームのビームパラメータ積が、前記レーザビームの波長を単位μmでλとしたとき、λ/π~10mm・mradであってもよい。
 (7)上記(1)~(6)のいずれか一項に記載のレーザ加工装置では、前記レーザ発振装置が、ファイバレーザ又はディスクレーザであってもよい。
 (8)上記(1)~(7)のいずれか一項に記載のレーザ加工装置では、前記方向性電磁鋼板に集光される前記レーザビームの集光形状が、楕円であり、前記楕円の短軸方向が前記走査方向と垂直であってもよい。
 (9)本発明の一態様に係るレーザ照射方法は、方向性電磁鋼板にレーザビームを集光して走査方向に走査して、前記方向性電磁鋼板の磁区を細分化するためのレーザ照射工程を備え、前記方向性電磁鋼板に集光された前記レーザビームの前記方向性電磁鋼板面上における前記走査方向と垂直な方向の断面での強度分布において、前記強度分布の重心を中心に前記走査方向と垂直な方向に沿った第1の方向及び第2の方向に向かって前記強度分布を積分したときの前記第1の方向における前記強度分布の重心からの強度積分値が全強度積分値の43%となる位置の前記強度分布の重心からの距離をRa、前記第2の方向における前記強度分布の重心からの強度積分値が前記全強度積分値の43%となる位置の前記強度分布の重心からの距離をRaとし、前記Raに対応した前記レーザビームの強度をビーム強度Ia、前記Raに対応した前記レーザビームの強度をビーム強度Iaとし、前記Iaと前記Iaとの平均値をIaとし、前記強度分布の重心における前記レーザビームの強度をビーム強度Ibとしたときに、Ib/Iaが2.0以下である。
 (10)上記(9)に記載のレーザ照射方法では、さらに、前記方向性電磁鋼板に集光された前記レーザビームの前記方向電磁鋼板面上における前記走査方向の断面での強度分布であるC方向強度分布において、前記C方向強度分布の重心から前記走査方向に沿った第3の方向及び第4の方向に向かって前記C方向強度分布を積分したときの前記第3の方向における前記C方向強度分布の重心からの強度積分値が全C方向強度積分値の43%となる位置の前記C方向強度分布の重心からの距離をRc、前記第4の方向における前記C方向強度分布の重心からの強度積分値が前記全C方向強度積分値の43%となる位置の前記C方向強度分布の重心からの距離をRcとし、前記Rcに対応した前記レーザビームの強度をビーム強度Ic、前記Rcに対応した前記レーザビームの強度をビーム強度Icとし、前記Icと前記Icとの平均値をIcとし、前記C方向強度分布の重心における前記レーザビームの強度をビーム強度Idとしたときに、Id/Icが1.5~10であってもよい。
 本発明の上記態様によれば、方向性電磁鋼板の鉄損を低減しつつ、グラス皮膜における疵の発生を抑制することが可能となる。
本実施形態に係る方向性電磁鋼板10の断面図である。 本実施形態に係る方向性電磁鋼板10の製造工程の一例を示すフローチャートである。 本実施形態に係るレーザ加工装置100の構成例を示す模式図である。 本実施形態に係るレーザ照射装置106の構成例を示す模式図である。 ビームパラメータ積(BPP)を説明するための模式図である。 方向性電磁鋼板10上のレーザビームの集光形状を示す図である。 レーザビーム走査方向に垂直な断面で見た場合の本実施形態に係るレーザビームの強度分布を示す図である。 レーザビーム走査方向に垂直な断面で見た場合の比較例に係るレーザビームの強度分布を示す図である。 比較例に係る裾野領域Aから走査方向に直交する方向へ発生する熱伝導を説明するための模式図である。 本実施形態に係るレーザビームの強度分布の変形例を示す図である。 レーザビーム走査方向の断面で見た場合の本実施形態に係るレーザビームの強度分布を示す図である。 レーザビーム走査方向の断面で見た場合の比較例に係るレーザビームの強度分布を示す図である。 本実施形態に係るレーザビームの強度分布を示す模式図である。
 以下に、図面を参照しながら、本発明の実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 <方向性電磁鋼板の概要>
 方向性電磁鋼板は、鋼板の結晶粒の磁化容易軸(体心立方晶の<100>方向)が製造工程における圧延方向に略揃っている電磁鋼板である。方向性電磁鋼板は、圧延方向に磁化が向いた磁区を、磁壁を挟んで複数配列した構造を有する。このような方向性電磁鋼板は圧延方向に磁化しやすいため、磁力線の方向がほぼ一定に流れるトランスの鉄芯材料として適している。
 図1は、本実施形態に係る方向性電磁鋼板10の断面図である。図1に示すように、方向性電磁鋼板10は、鋼板本体(金属部)12と、鋼板本体12の両面に形成されたグラス皮膜14と、グラス皮膜14上に形成された絶縁皮膜16と、を有する。ところで、トランスは、積みトランスと巻きトランスとに大別される。巻きトランスは、鋼板に巻き変形を加えながらトランスの形状に組み上げた後に、その機械的な変形で導入された歪を除去するために焼鈍(歪取り焼鈍工程)が行われる。この焼鈍工程においては、上述のようにレーザ照射により導入された歪までが解放され、磁区の細分化効果が消失してしまう。一方、積みトランスの製造では、そのような歪取り焼鈍工程は必要ない。従って、この本実施形態に係る方向性電磁鋼板10は、特に積みトランスの材料に適している。
 鋼板本体12は、Siを含有する鉄合金で構成されている。鋼板本体12の化学組成は、一例として、Si:2.5~4.0質量%、C:0.02~0.10質量%、Mn:0.05~0.20質量%、酸可溶性Al:0.020~0.040質量%、N:0.002~0.012質量%、S:0.001~0.010質量%、P:0.01~0.04質量%、残部がFe及び不純物である。鋼板本体12の厚さは、例えば0.2~0.3mmである。
 グラス皮膜14は、例えば、フォルステライト(MgSiO)、スピネル(MgAl)及びコージライト(MgAlSi16)、といった複合酸化物によって構成されている。グラス皮膜14の厚さは、例えば1μmである。
 絶縁皮膜16は、例えば、コロイド状シリカとリン酸塩(リン酸マグネシウム、リン酸アルミニウムなど)とを主体とするコーティング液や、アルミナゾルとホウ酸とを混合したコーティング液が焼き付けられることによって形成されている。絶縁皮膜16の厚さは、例えば2~3μmである。
 上述した構成の方向性電磁鋼板10においては、レーザビームを集光、絶縁皮膜16の上から照射し、圧延方向(搬送方向)に搬送される方向性電磁鋼板の略幅方向(圧延方向に略直交する方向)にレーザビームを走査する。レーザビームが照射されることによって生じる板厚・板幅方向での温度勾配に起因して、圧延方向にほぼ直交する線状の領域に残留歪が付与される。残留歪が付与された線状領域は、圧延方向に所定の周期で形成され、二つの線状領域に挟まれて圧延方向に磁化が向いた領域において、圧延方向と略直交する方向の磁区幅を細分化する。
 以下において、上述のような方向性電磁鋼板を、本実施形態に係る方向性電磁鋼板と言う場合がある。
 <方向性電磁鋼板の製造方法>
 図2を参照しながら、本実施形態に係る方向性電磁鋼板10の製造方法について説明する。図2は、本実施形態に係る方向性電磁鋼板10の製造工程の一例を示すフローチャートである。
 方向性電磁鋼板10の製造工程は、図2に示すように、鋳造工程S2と、熱間圧延工程S4と、焼鈍工程S6と、冷間圧延工程S8と、脱炭焼鈍工程S10と、焼鈍分離剤塗布工程S12と、最終仕上げ焼鈍工程S14と、絶縁皮膜形成工程S16と、レーザ照射工程S18と、を含む。
 鋳造工程S2では、所定の組成に調整された溶鋼を連続鋳造機に供給して、鋳塊を連続的に形成する。熱間圧延工程S4では、鋳塊を所定温度(例えば1150~1400℃)に加熱して熱間圧延を行う。これにより、所定厚さ(例えば1.8~3.5mm)の熱間圧延材が得られる。
 焼鈍工程S6では、熱間圧延材に対して、例えば、加熱温度750~1200℃、加熱時間30秒~10分の条件で熱処理(焼鈍)を行う。冷間圧延工程S8では、熱間圧延材の表面を酸洗した後に、冷間圧延を行う。これにより、所定厚さ(例えば、0.15~0.35mm)の冷間圧延材が得られる。
 脱炭焼鈍工程S10では、冷間圧延材に対して、例えば、加熱温度700~900℃、加熱時間1~3分の条件で熱処理(脱炭焼鈍)を行い、鋼板本体12を得る。この脱炭焼鈍工程によれば、鋼板本体12の表面に、シリカ(SiO)を主体とする酸化物層が形成される。焼鈍分離剤塗布工程S12では、鋼板本体12の表面に形成された酸化物層の上に、マグネシア(MgO)を主体とする焼鈍分離剤を塗布する。
 最終仕上げ焼鈍工程S14では、焼鈍分離剤が塗布された鋼板本体12をコイル状に巻き取った状態で、バッチ式炉内に挿入して熱処理(仕上げ焼鈍)を行う。熱処理条件は、例えば、加熱温度1100~1300℃、加熱時間20~24時間である。この際、鋼板本体12の搬送方向(圧延方向)と磁化容易軸とが一致した、いわゆるゴス粒が優先的に結晶成長する。この結果、仕上げ焼鈍の後に結晶方位性(結晶配向性)が高い方向性電磁鋼板が得られることとなる。また、最終仕上げ焼鈍工程S14により、酸化物層と焼鈍分離剤とが反応し、鋼板本体12の表面にフォルステライト(MgSiO)からなるグラス皮膜14が形成される。
 絶縁皮膜形成工程S16では、コイル状に巻き取られた鋼板本体12を巻き解して板状に伸ばして搬送する。そして、鋼板本体12の両面に形成されたグラス皮膜14の上に絶縁剤を塗布し、焼付けを行うことで、絶縁皮膜16を形成する。絶縁皮膜16が形成された鋼板本体12は、コイル状に巻き取られる。
 レーザ照射工程S18では、コイル状に巻き取られた鋼板本体12を巻き解して板状に伸ばして搬送する。そして、後述する本実施形態に係るレーザ照射装置によって、鋼板本体12の片面に向けてレーザビームを集光、照射し、圧延方向(搬送方向)に搬送される方向性電磁鋼板の略幅方向(圧延方向に略直交する方向)にレーザビームを走査する。これにより、鋼板本体12の表面に、圧延方向にほぼ直交する線状の歪が、圧延方向において所定間隔で形成される。なお、このレーザビームの集光、走査は、鋼板本体12の表面のみ、または裏面のみに行ってもよく、表面及び裏面の両方に行ってもよい。また、上記では、絶縁皮膜16が形成された鋼板本体12をコイル状に巻き取ってからレーザ照射工程S18に送ると説明したが、絶縁皮膜形成直後にレーザ照射を行い、その後コイル状に巻き取ってもよい。
 このようにして、鋼板本体12の表面にグラス皮膜14及び絶縁皮膜16が形成され、レーザ照射によって磁区制御された方向性電磁鋼板10が製造される。
 <レーザ加工装置の構成>
 図3及び図4を参照しながら、本実施形態に係る方向性電磁鋼板10にレーザビームを照射して残留歪を付与するレーザ加工装置100(以下、本実施形態に係るレーザ加工装置と言う場合がある)の構成例について説明する。本実施形態に係るレーザ加工装置100は、上述のレーザ照射工程S18において、方向性電磁鋼板10にレーザビームを照射するために用いられる。図3は、本実施形態に係るレーザ加工装置100の構成例を示す模式図である。
 レーザ加工装置100は、圧延方向に一定速度で搬送される方向性電磁鋼板10の絶縁皮膜16の上からレーザビームを照射して、圧延方向にほぼ直交する線状の歪を付与する。レーザ加工装置100は、図3に示すように、レーザ発振器102と、伝送ファイバ104と、レーザ照射装置106とを、それぞれ複数有する。図3では、3つの、レーザ発振器102、伝送ファイバ104、及びレーザ照射装置106が示されているが、それぞれの構成は同様である。なお、本実施形態ではそれぞれ3つの装置を有する場合について説明するが、板幅全体に亘って走査できれば、装置の数については限定されない。
 図4は、一つのレーザ照射装置106の構成例を示す模式図である。
 レーザ発振器102は、例えば高出力のレーザビームを出射する。伝送ファイバ104は、レーザ発振器102から出射されたレーザビームをレーザ照射装置106まで伝送する光ファイバである。
 レーザ発振器102の種類としては、微小集光特性に優れ、狭い環流磁区を形成できる観点等から、ファイバレーザ又はディスクレーザが好ましい。ファイバレーザ又はディスクレーザは、波長が近紫外域から近赤外域(例えば1μm帯)にあるためレーザビームを光ファイバによる伝送が可能である。レーザビームを光ファイバで伝送することで比較的コンパクトなレーザ加工装置100を実現できる。また、ファイバレーザまたはディスクレーザからのレーザビームを光ファイバで伝送することで、COレーザや光ファイバで伝送されないYAGレーザと比較して、後述するような集光点におけるビーム強度分布の制御が容易になるため好ましい。また、レーザ発振器102は連続波レーザでもパルスレーザでも良い。
 方向性電磁鋼板10の、レーザビームが照射される部位において、鋼板面に垂直な方向への鋼板面の振動等が生じた場合に磁区を適切に形成するためには、焦点深度の確保が必要である。このためには、以下で述べるように、レーザビームのビーム品質パラメータ積が10(mm・mrad)以下であることが好ましい。レーザ発振器102としてファイバレーザ又はディスクレーザを用いれば、ビーム品質パラメータ積を上述した範囲内とすることができる。
 ビーム品質の定量評価方法について説明する。レーザビームの集光半径と、レーザビームの焦点深度とは、ビーム品質に依存する。ビーム品質は、一般にビームパラメータ積(BPP)を使って定量化される。
 図5は、ビームパラメータ積(BPP)を説明するための模式図である。図5では、レンズを通過したレーザビームが半径rのビーム径に集光され、その後再度広がっている。また、レーザビームは、角度θで集光されている。この場合、ビームパラメータ積(BPP)は、単位が、mm・mradで、下記の式(1)のように表される。
       BPP=r×θ…(1)
 また、この場合、焦点深度(DOF)は、BPPを用いて、単位mmで、下記の式(2)のように表される。
       DOF=2000×r/BPP…(2)
 ここで、BPPを10(mm・mrad)以下とすることにより、狭い環流磁区幅を得るためにrを0.06mmとした場合にもDOFを0.7mm以上確保できることが判る。0.7mm以上のDOFが確保されていれば、方向性電磁鋼板10の鋼板面に垂直な方向の振動が生じるような場合にも、磁区を適切に細分化するのに有効である。なお、BPPの下限値は、レーザビームの波長をλ(μm)としたとき、λ/π(mm・mrad)で与えられる。
 図3に戻って説明を続ける。レーザ照射装置106は、レーザ発振器102から伝送ファイバ104により伝送されたレーザビームを、方向性電磁鋼板10に集光・走査させる。一つのレーザ照射装置106がレーザビームを走査できる幅は、方向性電磁鋼板10の板幅よりも小さくてもよい。図3に示すようにレーザ照射装置106を板幅方向に複数配列させることにより、方向性電磁鋼板10の板幅全域に亘ってレーザビームを走査できる。
 レーザ照射装置106は、図4に示すように、レーザヘッド122と、コリメータレンズ124と、金属ミラー126と、ポリゴンミラー128と、放物面ミラー130と、を有する。
 レーザヘッド122は、伝送ファイバ104によって伝送されたレーザビームを、所定の発散角で出射する。コリメータレンズ124は、レーザヘッド122から出射されるレーザビームを平行光とする。
 金属ミラー126は、入射したレーザビームの、方向性電磁鋼板10の板幅方向(図3参照)のビーム径を絞り、調整するためのミラーである。金属ミラー126としては、例えば1軸方向に曲率を持った円柱ミラーや放物面ミラーを用いることができる。金属ミラー126で反射したレーザビームは、所定の回転速度で回転するポリゴンミラー128に入射する。
 ポリゴンミラー128は、回転可能な多面体であり、回転することによりレーザビームを方向性電磁鋼板10の板幅方向に走査する。レーザビームがポリゴンミラー128の多面体のある一面に入射する間、その面の回転に伴って、レーザビームが方向性電磁鋼板10上の略板幅方向に沿った線状の領域に走査される。その結果、その線状の領域に残留歪が付与される。ポリゴンミラー128の回転に伴い、レーザビームの走査が繰り返され、同時に、方向性電磁鋼板10は圧延方向に搬送される。その結果、方向性電磁鋼板10上に線状の残留歪を持った領域が、圧延方向に周期的に形成される。なお、線状の領域の圧延方向の周期は、方向性電磁鋼板10の搬送速度と、ポリゴンミラー128の回転速度とによって調整される。
 放物面ミラー130は、ポリゴンミラー128で反射したレーザビームの圧延方向のビーム径を絞り、調整するためのミラーである。放物面ミラー130により反射されたレーザビームは、方向性電磁鋼板10の表面に集光される。
 図6は、方向性電磁鋼板10上のレーザビームの集光形状を示す図である。本実施形態において、レーザビームの集光形状は、図6に示すように楕円形状であって、長軸がレーザビームLBの走査方向に沿っており(長軸とレーザビームLBの走査方向はほぼ平行)、短軸が走査方向に対して略直交している(すなわち、ほぼ90°であって、厳密に90°でない場合も含む)。このように集光形状を楕円化することにより、鋼板のある一点で見た時のレーザビームの照射による加熱時間が長くなる。その結果、方向性電磁鋼板10の内部の深い位置まで温度を上昇させることができるので、鉄損の低減に有効である。なお、レーザビームにおいて、集光形状を楕円形状とするには、前述した金属ミラー126でレーザビームLBの走査方向に沿ったビーム径を絞ると共に、放物面ミラー130で走査方向に直交する方向のビーム径を絞ればよい。方向性電磁鋼板を圧延方向に搬送しながら、レーザビームLBを方向性電磁鋼板10の幅方向に走査した場合、レーザ照射装置106から見たときの走査方向と、方向性電磁鋼板10から見たときの走査方向とは異なる。本実施形態におけるレーザビームLBの走査方向とは、方向性電磁鋼板10から見たときの走査方向を示している。
 上記では、方向性電磁鋼板10上のレーザビームの集光形状が楕円形状であることとしたが、これに限定されない。例えば、レーザビームの集光形状が、真円形状であっても良い。
 また、上記では、レーザ発振器102がファイバレーザ又はディスクレーザであることとしたが、これに限定されない。例えば、レーザ発振器102が、COレーザであっても良い。その場合は、レーザ発振器102からレーザ照射装置106までのレーザビームの伝送は、光ファイバではなく、ミラー等を用いて行う。
 <磁区の細分化及びグラス皮膜の疵について>
 ところで、圧延方向に磁界をかけられた方向性電磁鋼板10は、前述したように、圧延方向に磁化が向いた磁区を複数配列した構造を有する。ここで、方向性電磁鋼板10の鉄損の更なる低減を図るためには、レーザビームの照射により磁区を細分化する(磁区を狭くする)ことが有効である。磁区を細分化するには、方向性電磁鋼板10の最表層近傍の圧延方向に沿って見たごく狭い幅の領域に板厚方向に対して大きな温度勾配を与えることで、狭く且つ十分な強度を持った環流磁区を形成することが、特に有効である。
 一方で、温度勾配を大きくするには、方向性電磁鋼板10の表面の温度を上昇させる必要がある。しかしながら、表面の温度を上昇させると、温度上昇に起因して、絶縁皮膜16やグラス皮膜14において、皮膜の欠損剥離等の疵が生じる場合がある。特にグラス皮膜14に疵が発生した場合には、鋼板本体12が外部に露出し、錆が発生する恐れがあるため望ましくない。
 そこで、本実施形態では、方向性電磁鋼板10の鉄損を低減する点と、グラス皮膜14における疵の発生を防止する点とを共に実現するために、下記に説明するように、方向性電磁鋼板10の表面におけるレーザビームの強度分布が所定の条件を満たすように設定している。
 <方向性電磁鋼板の表面におけるレーザビームの強度分布>
 本実施形態の方向性電磁鋼板10の表面におけるレーザビームの強度分布の設定について、比較例と対比しながら説明する。
 図7は、本実施形態に係るレーザビームの強度分布を示す図である。図8は、比較例に係るレーザビームの強度分布を示す図である。図7及び図8ともに、走査方向に対するレーザビームの重心を通りレーザビームの走査方向に垂直な断面で見たビーム強度I(レーザビームの単位面積あたりの出力)の分布である。図7及び図8の横軸は、その強度分布の重心からの距離xである(x軸の定義を図6に示す)。ここで、走査方向に対するレーザビームの重心とは、レーザビームの走査方向をy軸として定義した際に、xとyの関数となるレーザビームの強度分布を各yに対してx軸に沿って積分して得られる強度積分量(この積分量はyの関数となる)の重心位置yとして定義される。なお、図8に示す比較例は、いわゆるTEM00モードのレーザビームを方向性電磁鋼板10に集光した場合の強度分布である。TEM00モードは、図8に示すように、強度分布の中心部で最大ビーム強度を有するガウス分布を示すモードである。
 比較例の場合には、図8に示すように、ビーム強度が走査方向に直交する方向(x軸方向)の広範囲に分布しており、強度分布の両側に裾野領域Aが存在する(すなわち、強度分布の両側が緩やかに延びている)。このように裾野領域Aが存在する場合には、レーザビームの走査方向と直交する方向へ裾野領域Aから熱伝導が発生しやすい。
 図9は、比較例に係るレーザビームの強度分布において、裾野領域Aから走査方向に直交する方向へ発生する熱伝導を説明するための模式図である。図9に示すようにレーザビームLBを走査方向に走査する際に、裾野領域Aから走査方向に直交する方向への熱伝導が発生する。これにより、温度が上昇する領域が走査方向に直交する方向の広範囲に広がってしまい、環流磁区幅が広くなりやすい。この結果、方向性電磁鋼板10の鉄損の低減が妨げられる。
 これに対して、本実施形態に係るレーザビームの強度分布の場合には、図7に示すように、強度分布の裾野領域の幅が狭く、走査方向に直交する方向の狭範囲にビーム強度が分布している。このため、裾野領域からの走査方向に直交する方向への熱伝導の発生が抑制され、環流磁区幅が狭くなる。この結果、比較例に比べて方向性電磁鋼板10の鉄損の更なる低減が可能となる。
 図7及び図8に示すレーザビームの強度分布において、距離Ra、Ra、ビーム強度Ia、ビーム強度Ia、及びビーム強度Ibは、以下のように定義される。距離Raは、強度分布を、強度分布の重心から-x方向(第1の方向、図7における紙面左方向)に向かって積分したときの強度積分値が全強度積分値の43%になるx軸上の位置の、強度分布の重心からの距離である。また、距離Raは、強度分布の重心から+x方向(第2の方向、図7における紙面右方向)に向かって積分したときの強度積分値が全強度積分値の43%になるx軸上の位置の、強度分布の重心からの距離である。すなわち、図7において、Ra、Raで規定される斜線領域の面積は、図7における強度分布全体の積分値の86%(43%+43%)となっている(この定義は図8においても同様である)。また、ビーム強度Iaは、距離Raの位置におけるビーム強度であり、ビーム強度Iaは、距離Raの位置におけるビーム強度である。IaとIaとの平均をIaとする。なお、レーザビームが左右対称である場合、RaとRa、IaとIaとは等しくなる。ビーム強度Ibは、強度分布の重心におけるビーム強度である。
 図8に示す比較例に係るレーザビームの強度分布において、Ib/Iaは、2.8である。これに対して、図7に示す本実施形態に係るレーザビームの強度分布では、強度のピークを抑えると共に、走査方向に直交する方向への熱伝導を抑えるために、Ib/Iaが2.0以下、好ましくは1.0~2.0となるように設定されている。Ib/Iaが1.0~2.0となるように方向性電磁鋼板10の表面におけるレーザビームの強度分布を設定することにより、熱伝導の発生を抑制し、鉄損を大きく低減することが可能となる。
 なお、Ib/Iaは、レーザ加工装置において、例えばレーザビームの種類の変更、及び/または適切な曲率(焦点距離)を有する金属ミラー126や放物面ミラー130の選択により適宜調整することができる。
 また、本実施形態においては、RaとRaとの平均値をRaとしたとき、Raが100μm(0.1mm)以下となるように、レーザビームの強度分布が設定されている。これにより、走査方向に直交する方向への熱伝導の広がりをより抑制しながら狭い環流磁区を形成することで、鉄損をより大きく低減することができる。鉄損を確実に低減するには、Raを60μm以下とする方がさらに一層望ましい。なお、Raが5μm未満になると、焦点深度が小さくなりすぎるため、望ましくない。
 また、本実施形態に係るレーザビームの強度分布を有するレーザビームであれば、グラス皮膜14の疵の発生も抑制することができる。レーザビームの強度分布が図8に示すようなガウス分布である場合、強度分布の中心部で大きいビーム強度(図8に示すビーム強度Ib)となる。このような場合には、強度分布の中心部のビーム強度が過大になることに起因して、方向性電磁鋼板10の表面において局所的に温度が高くなってしまい、グラス皮膜14の疵が発生する恐れがある。
 これに対して、レーザビームの強度分布が図7に示すような強度分布を有する場合には、ビーム強度分布が略矩形状を示しているので、比較例に比べて中心部でのビーム強度(図7に示すビーム強度Ib)が過大にならない。これにより、方向性電磁鋼板10の表面における局所的な温度上昇を抑制できるので、グラス皮膜14の疵の発生を抑制できる。
 上記では、本実施形態に係るレーザビームの強度分布は図7に示すような分布であるとして説明したが、レーザビームの強度分布はこれに限定されない。例えば、図10は、本実施形態に係るレーザビームの強度分布の変形例を示す図である。図10に示すような強度分布では、分布の両端部のビーム強度が、中央部のビーム強度よりもやや大きくなっている。そのため、Ib/Iaは、1よりも小さくなり、当然2.0以下である。このような強度分布でも強度分布の両側に裾野領域を持たないことは図7に示す強度分布と共通である。従って、図7に示す強度分布と同様に、走査方向に直交する方向への熱伝導の広がりを抑制し、鉄損を大きく低減できる。すなわち、Ib/Iaが2.0以下であれば、走査方向に直交する方向への熱伝導の広がりを抑制し、鉄損の低減を大きくできる。なお、強度分布の中心が周縁部よりも低くIb/Iaが1.0未満になる場合、周縁部の温度が上がりやすいがゆえに走査方向に直交する方向への熱伝導の広がりが大きくなる傾向がある。この観点からは、Ib/Iaは、1.0以上であることが望ましい。
 また、上述した図7~図9では、レーザビームの集光形状が楕円形状である場合が示されているが、これに限定されない。例えば、レーザビームの集光形状が真円形状である場合にも、Ib/Iaを2.0以下となるように設定することにより、鉄損を低減するとともに、グラス皮膜14の疵の発生を抑制することができる。
 また、本実施形態において集光・走査されるレーザビームは、走査方向に直交する方向に対するレーザビームの重心を通りレーザビームの走査方向の断面で見た場合に、レーザビーム強度分布(C方向強度分布)が図11に示すような形状を示す。図11は、レーザビームの走査方向をy軸とした場合に、ビーム強度Iを縦軸に、その強度分布の重心からの距離yを横軸にとった図である。ここで、走査方向に直交する方向に対するレーザビームの重心とは、xとyの関数となるレーザビームの強度分布を各xに対してy軸に沿って積分して得られる強度積分量(この積分量はxの関数となる)の重心位置xとして定義される。
 図11におけるレーザビームの強度分布において、強度分布を、強度分布の重心から-y方向(第3の方向、図11における紙面左側)に向かって積分したときの強度積分値が全強度積分値の43%になるy軸上の位置の、強度分布の重心からの距離を、Rcとし、強度分布の重心から+y方向(第4の方向、図11における紙面右側)に向かって積分したときの強度積分値が全強度積分値の43%になるy軸上の位置の、強度分布の重心からの距離を、Rcとし(すなわち、図11において、斜線領域の面積は、図11における強度分布全体の積分値の86%となる)、距離Rcの位置におけるビーム強度をIc、距離Rcの位置におけるビーム強度をIc、IcとIcとの平均値をIc、強度分布の重心におけるビーム強度をIdとしたとき、Id/Ic≧1.5である。
 図12に示す比較例は、ビーム強度分布がいわゆるトップフラットに近い場合の強度分布である。このような場合、Id/Icが1.5未満になる。このようなトップフラット型の強度分布では、空間的な強度分布の急激な立ち上がりに呼応して、方向性電磁鋼板表面に急激な温度上昇が発生し、熱衝撃作用により皮膜に疵がつきやすくなる。
 Id/Icが1.5以上であれば、強度分布の立ち上がりが緩やかであり、方向性電磁鋼板表面の急激な温度上昇が抑えられるため、皮膜に疵がつきにくくなり、好ましい。
 Id/Icが大きくなりすぎると重心部での強度が高くなりすぎるため、Id/Icは10以下とすることが望ましい。
 図13は、レーザビームの走査方向に垂直な断面で見たビーム強度Iの分布が図7のようであり、かつレーザビームの走査方向の断面で見たビーム強度Iの分布が図11のようであるレーザビームの、ビーム強度を示す模式図である。
 <実施例>
 上述した本実施形態に係る実施例の有効性を確認するために、本実施例及び比較例について説明する。
 まず、化学組成が、Si:3.0質量%、C:0.05質量%、Mn:0.1質量%、酸可溶性Al:0.02質量%、N:0.01質量%、S:0.01質量%、P:0.02質量%、残部がFe及び不純物であるスラブ(鋼片)を準備した。このスラブに対して、1280℃で熱間圧延を実施して、厚さ2.3mmの熱間圧延材を得た。次に、得られた熱間圧延材に対して、1000℃×1分(加熱温度1000℃で、保持時間1分)の条件で熱処理を行った。熱処理後に、熱間圧延材に対して酸洗処理を施した上で冷間圧延を実施して、厚さ0.23mmの冷間圧延材を得た。この冷間圧延材に対して、800℃×2分の条件で脱炭焼鈍を実施した。次に、脱炭焼鈍後の冷間圧延材の両面に、マグネシアを主成分とする焼鈍分離材を塗布した。そして、焼鈍分離材が塗布された冷間圧延材を、コイル状に巻き取った状態で、バッチ式炉に装入し、1200℃×20時間の条件で仕上げ焼鈍を実施した。これにより、表面にグラス皮膜が形成された鋼板(鋼板本体12)を製出した。次に、グラス皮膜14の上に、リン酸アルミニウムからなる絶縁材を塗布した後、焼き付け(850℃×1分)を行い、絶縁皮膜16を形成した。
 そして、絶縁皮膜16及びグラス皮膜14が形成された鋼板本体12に対して、レーザビームを照射し、鋼板本体12の表面に歪を付与した。
 用いたレーザ照射装置としては、図1に示すレーザ照射装置106を用い、鋼板表面におけるレーザビームの強度分布を楕円形状とし、楕円の長軸を鋼板面上におけるレーザビームの走査方向に揃えた。また、本実施例と比較例とを比較するために、レーザ発振器102として用いるファイバレーザの種類、光ファイバのコア径、コリメータレンズの焦点距離、金属ミラー126及び放物面ミラー130の焦点距離、並びにこれらの光学素子から鋼板面までの距離等種々の条件を変えることによって、レーザビームの走査方向及びその走査方向に垂直な方向の断面におけるビームの強度分布に対して上述の通り定義されるIb/Ia、Ra、Id/Ic、が異なる種々の条件で試験を行った。照射条件として、走査速度Vcを160m/s、照射ピッチPLを5mm、レーザビームの波長λを1.08μmとした。
 Ib/Iaは、以下のように実験的に求めた。まず、市販の集光レーザビーム評価装置にて鋼板表面位置におけるビーム強度分布を測定した。次に、測定された楕円形状のレーザビームスポットの楕円の短軸上、すなわち、レーザビームの走査方向に対するレーザビームの重心を通りレーザビームの走査方向に垂直な断面におけるビーム強度分布を得た。最後に、RaとRa及びその平均値であるRa、Iaを求めるとともに、Ib/Iaを計算した。
 また、同時に、測定された楕円形状のレーザビームスポットの楕円の長軸上、すなわち、レーザビームの走査方向に直交する方向に対するレーザビームの重心を通りレーザビームの走査方向断面におけるビーム強度分布を得て、RcとRc及びその平均値であるRc、Icを求めるとともに、Id/Icを計算した。
 なお、本実施例で用いたレーザビームにおいて、Ra=Ra、Rc=Rcであった。
 レーザ処理した鋼板の一部と同一コイルの鋼板の中でレーザ処理しなかった部分とをそれぞれ、SST(Single sheet tester)試験にかけ、W17/50(W/kg)の鉄損を評価した。W17/50は、周波数50Hz、最大磁束密度1.7Tのときの鉄損である。SST測定の試験片としては、鋼板幅方向長さ100mm、鋼板圧延方向長さ500mmのサイズで切り出した四角片を用いた。レーザ処理した鋼板に対する鉄損改善率(%)は、同一コイルの鋼板の中でレーザ処理が施されていない部分の鉄損を基準として定義した。
 また、グラス皮膜14に対する疵の発生に起因する錆の発生の判定を、湿潤試験により行った。湿潤試験は、JIS K2246-5.34に準じて行い、試験条件は、温度50℃、湿度98%、試験時間72時間とした。その後、レーザ照射部の錆発生の有無を目視で確認した。各条件について、鋼板の幅方向長さ100mm、鋼板の圧延方向長さ500mmのサイズの四角片を10枚切り出し、錆の発生があった枚数にて評価を行った。
 試験結果を表1に示す。Ib/Iaが2.0以下となる本実施例1~5では、12%以上の十分な鉄損改善率が得られた。また、錆の発生枚数も無く、レーザ照射によるグラス皮膜14に対する疵の発生も抑えられていた。
 なお、本実施例6は、金属ミラー126の焦点位置に鋼板面を合わせた例である。この場合、C方向強度分布はトップフラットに近くなり、Id/Icは1.3であった。Ib/Iaが同じ本実施例3及び4と比較すると、同程度の鉄損改善が得られるものの、錆が発生するサンプルが2枚存在した。以上の結果から、Id/Icを1.5以上にすることで、皮膜に疵がつきにくくなるため望ましいことが分かる。
 また、本実施例1と本実施例2~6とを比較すると、Id/IcをIb/Iaよりも大きくすることで、より大きな鉄損改善が得られ、望ましいことが分かる。
 比較例1は、TEM00モードのレーザ(レーザビーム)を照射した例である。この比較例1では、Ib/Iaが2.8であり、鉄損改善率が10.2%であった。目標とした製品等級には12%以上の鉄損改善が求められるが、この比較例1は、鉄損改善率が目標に達していなかった。さらに比較例1では、グラス皮膜14に対し錆の発生があるサンプルが10枚中2枚存在した。
 比較例2もまた、TEM00モードのレーザを照射した例である。比較例2のようにTEM00モードの微小集光特性を活かしRa(Ra及びRa)を小さくすれば、12%以上の鉄損改善が得られる。しかしながら、Raを小さくしてTEM00モードのレーザを照射した場合、サンプル10枚全てに錆が発生しており、レーザ照射によるグラス皮膜14の疵の発生が顕著になることが分かった。比較例2の条件でレーザを照射した場合、絶縁皮膜16の再塗布が必要になるため、製造コストが著しく増加する。
Figure JPOXMLDOC01-appb-T000001
 以上の試験結果より、本実施例のようにIb/Iaを2.0以下とすることにより、十分な鉄損の改善効果とともにグラス皮膜14に対する疵の発生を抑制する効果が得られることが分かる。また、Id/Icを1.5以上とすることにより、疵の発生をさらに抑制できることが分かる。
 上述したように、本実施形態に係るレーザ加工装置100は、レーザビームの走査方向と垂直な方向の断面での強度分布において、強度分布の重心からの強度積分値が全強度積分値の43%となる位置の強度分布の重心からの距離をRa、Raとし、これらRa、Raに対応したレーザビームの強度をそれぞれIa、Iaとし、IaとIaとの平均値をIaとし、さらに強度分布の重心におけるレーザビームの強度をIbとしたときに、Ib/Iaが2.0以下となるように構成される。これにより、方向性電磁鋼板10の表面におけるレーザビームの強度分布を最適な形状に設定できる。その結果、レーザビームを走査方向に走査する際の走査方向に直交する方向への熱伝導を抑制できる。このため、十分な強度の環流磁区を形成するために集光形状を楕円化し、それに伴って方向性電磁鋼板10のある一点に対するレーザビームの照射時間が長くなるような場合にも、熱伝導による環流磁区幅の広がりを抑制することが可能となる。この結果として、方向性電磁鋼板10の鉄損の更なる低減が可能となる。
 また、本実施形態に係るレーザビームの強度分布では、強度分布の重心でのビーム強度Ibが過大になることを抑制できるので、方向性電磁鋼板10の表面における局所的な温度上昇を抑制でき、この結果グラス皮膜14の疵の発生を抑制できる。
 本実施形態に係るレーザ加工装置100によれば、上記の鉄損低下とグラス皮膜の疵抑制によって、低鉄損の方向性電磁鋼板10を良好な歩留まりで安定的に製造できる。その結果、低鉄損の方向性電磁鋼板10をより安価に供給することが可能となるだけでなく、低鉄損の方向性電磁鋼板10を世の中に広く普及させることでエネルギー消費量の削減を実現できるという観点からも、多大なる経済的効果が奏される。
 以上、図面を参照しながら本発明の好適な実施形態及び実施例について詳細に説明したが、本発明はこれらに限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、方向性電磁鋼板の鉄損を低減しつつ、グラス皮膜における疵の発生を抑制することが可能となる。
 10   方向性電磁鋼板
 12   鋼板本体
 14   グラス皮膜
 16   絶縁皮膜
 100  レーザ加工装置
 102  レーザ発振器
 104  伝送ファイバ
 106  レーザ照射装置
 122  レーザヘッド
 124  コリメータレンズ
 126  金属ミラー
 128  ポリゴンミラー
 130  放物面ミラー

Claims (10)

  1.  方向性電磁鋼板にレーザビームの集光及び走査方向への走査を行って、前記方向性電磁鋼板の磁区を細分化するためのレーザ加工装置であって、
     前記レーザビームを出射するレーザ発振装置と;
     前記レーザ発振装置から伝送された前記レーザビームを前記方向性電磁鋼板に照射するレーザ照射装置と;
    を備え、
     前記レーザ照射装置は、前記方向性電磁鋼板に集光された前記レーザビームの前記方向性電磁鋼板面上における前記走査方向と垂直な方向の断面での強度分布において、前記強度分布の重心を中心に前記走査方向と垂直な方向に沿った第1の方向及び第2の方向に向かって前記強度分布を積分したときの前記第1の方向における前記強度分布の重心からの強度積分値が全強度積分値の43%となる位置の前記強度分布の重心からの距離をRa、前記第2の方向における前記強度分布の重心からの強度積分値が前記全強度積分値の43%となる位置の前記強度分布の重心からの距離をRaとし、前記Raに対応した前記レーザビームの強度をビーム強度Ia、前記Raに対応した前記レーザビームの強度をビーム強度Iaとし、前記Iaと前記Iaとの平均値をIaとし、前記強度分布の重心における前記レーザビームの強度をビーム強度Ibとしたときに、Ib/Iaが2.0以下となるように構成される
    ことを特徴とするレーザ加工装置。
  2.  さらに、前記レーザ照射装置が、
     前記方向性電磁鋼板に集光された前記レーザビームの前記方向電磁鋼板面上における前記走査方向の断面での強度分布であるC方向強度分布において、前記C方向強度分布の重心を中心に前記走査方向に沿った第3の方向及び第4の方向に向かって前記C方向強度分布を積分したときの前記第3の方向における前記C方向強度分布の重心からの強度積分値が全C方向強度積分値の43%となる位置の前記C方向強度分布の重心からの距離をRc、前記第4の方向における前記C方向強度分布の重心からの強度積分値が前記全C方向強度積分値の43%となる位置の前記C方向強度分布の重心からの距離をRcとし、前記Rcに対応した前記レーザビームの強度をビーム強度Ic、前記Rcに対応した前記レーザビームの強度をビーム強度Icとし、前記Icと前記Icとの平均値をIcとし、前記C方向強度分布の重心における前記レーザビームの強度をビーム強度Idとしたときに、Id/Icが1.5~10となるように構成される
    ことを特徴とする請求項1に記載のレーザ加工装置。
  3.  前記Ib/Iaが、1.0~2.0であることを特徴とする請求項1または2に記載のレーザ加工装置。
  4.  前記Raと前記Raとの平均値をRaとしたとき、前記Raが、5~100μmであることを特徴とする請求項1~3のいずれか一項に記載のレーザ加工装置。
  5.  前記Raが、5~60μmであることを特徴とする請求項4に記載のレーザ加工装置。
  6.  前記方向性電磁鋼板に集光される前記レーザビームのビームパラメータ積が、前記レーザビームの波長を単位μmでλとしたとき、λ/π~10mm・mradであることを特徴とする請求項1~5のいずれか一項に記載のレーザ加工装置。
  7.  前記レーザ発振装置が、ファイバレーザ又はディスクレーザであることを特徴とする請求項1~6のいずれか一項に記載のレーザ加工装置。
  8.  前記方向性電磁鋼板に集光される前記レーザビームの集光形状が、楕円であり、
     前記楕円の短軸方向が前記走査方向と垂直であることを特徴とする請求項1~7のいずれか一項に記載のレーザ加工装置。
  9.  方向性電磁鋼板にレーザビームを集光して走査方向に走査して、前記方向性電磁鋼板の磁区を細分化するためのレーザ照射工程を備え、
     前記方向性電磁鋼板に集光された前記レーザビームの前記方向性電磁鋼板面上における前記走査方向と垂直な方向の断面での強度分布において、前記強度分布の重心を中心に前記走査方向と垂直な方向に沿った第1の方向及び第2の方向に向かって前記強度分布を積分したときの前記第1の方向における前記強度分布の重心からの強度積分値が全強度積分値の43%となる位置の前記強度分布の重心からの距離をRa、前記第2の方向における前記強度分布の重心からの強度積分値が前記全強度積分値の43%となる位置の前記強度分布の重心からの距離をRaとし、前記Raに対応した前記レーザビームの強度をビーム強度Ia、前記Raに対応した前記レーザビームの強度をビーム強度Iaとし、前記Iaと前記Iaとの平均値をIaとし、前記強度分布の重心における前記レーザビームの強度をビーム強度Ibとしたときに、Ib/Iaが2.0以下である
    ことを特徴とするレーザ照射方法。
  10.  さらに、前記方向性電磁鋼板に集光された前記レーザビームの前記方向電磁鋼板面上における前記走査方向の断面での強度分布であるC方向強度分布において、前記C方向強度分布の重心から前記走査方向に沿った第3の方向及び第4の方向に向かって前記C方向強度分布を積分したときの前記第3の方向における前記C方向強度分布の重心からの強度積分値が全C方向強度積分値の43%となる位置の前記C方向強度分布の重心からの距離をRc、前記第4の方向における前記C方向強度分布の重心からの強度積分値が前記全C方向強度積分値の43%となる位置の前記C方向強度分布の重心からの距離をRcとし、前記Rcに対応した前記レーザビームの強度をビーム強度Ic、前記Rcに対応した前記レーザビームの強度をビーム強度Icとし、前記Icと前記Icとの平均値をIcとし、前記C方向強度分布の重心における前記レーザビームの強度をビーム強度Idとしたときに、Id/Icが1.5~10である
    ことを特徴とする請求項9に記載のレーザ照射方法。
PCT/JP2013/080092 2012-11-08 2013-11-07 レーザ加工装置及びレーザ照射方法 WO2014073599A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL13852814T PL2918689T3 (pl) 2012-11-08 2013-11-07 Urządzenie dla procesów obróbki laserowej oraz sposób napromieniowywania laserowego
KR1020157011833A KR101641032B1 (ko) 2012-11-08 2013-11-07 레이저 가공 장치 및 레이저 조사 방법
EP13852814.6A EP2918689B1 (en) 2012-11-08 2013-11-07 Laser processing apparatus and laser irradiation method
US14/439,996 US9607744B2 (en) 2012-11-08 2013-11-07 Laser processing apparatus and laser irradiation method
CN201380057184.9A CN104755637B (zh) 2012-11-08 2013-11-07 激光加工装置以及激光照射方法
BR112015009485A BR112015009485B1 (pt) 2012-11-08 2013-11-07 aparelho de processamento a laser e método de irradiação de laser
JP2014545746A JP6044642B2 (ja) 2012-11-08 2013-11-07 レーザ加工装置及びレーザ照射方法
IN3147DEN2015 IN2015DN03147A (ja) 2012-11-08 2013-11-07
RU2015116262A RU2621092C2 (ru) 2012-11-08 2013-11-07 Устройство для лазерной обработки и способ лазерного облучения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-246305 2012-11-08
JP2012246305 2012-11-08

Publications (1)

Publication Number Publication Date
WO2014073599A1 true WO2014073599A1 (ja) 2014-05-15

Family

ID=50684699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080092 WO2014073599A1 (ja) 2012-11-08 2013-11-07 レーザ加工装置及びレーザ照射方法

Country Status (10)

Country Link
US (1) US9607744B2 (ja)
EP (1) EP2918689B1 (ja)
JP (1) JP6044642B2 (ja)
KR (1) KR101641032B1 (ja)
CN (1) CN104755637B (ja)
BR (1) BR112015009485B1 (ja)
IN (1) IN2015DN03147A (ja)
PL (1) PL2918689T3 (ja)
RU (1) RU2621092C2 (ja)
WO (1) WO2014073599A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015455A (ko) * 2014-07-03 2017-02-08 신닛테츠스미킨 카부시키카이샤 레이저 가공 장치
EP3165614A4 (en) * 2014-07-03 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Laser machining device
JP2018035412A (ja) * 2016-09-01 2018-03-08 新日鐵住金株式会社 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
WO2022045264A1 (ja) * 2020-08-27 2022-03-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP7420326B1 (ja) 2022-09-28 2024-01-23 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法並びに変圧器用鉄心
WO2024070074A1 (ja) * 2022-09-28 2024-04-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法並びに変圧器用鉄心

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803183A (zh) * 2016-03-30 2016-07-27 李宏江 金属钢板表面激光照射处理系统装置和型材、板材的用途
KR101944899B1 (ko) * 2016-12-22 2019-02-01 주식회사 포스코 방향성 전기강판의 자구미세화 방법
RU2685297C2 (ru) * 2017-09-12 2019-04-17 Общество с ограниченной ответственностью "Новые технологии лазерного термоупрочнения" (ООО "НТЛТ") Способ обработки кромок многоканальным лазером

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933802A (ja) 1982-07-30 1984-02-23 アームコ、アドバンスト、マテリアルズ、コーポレーション 磁性材料の鉄損の改善方法
JPS6383227A (ja) * 1986-09-26 1988-04-13 Nippon Steel Corp 電磁鋼板の鉄損値改善方法
JPS64230A (en) * 1987-02-10 1989-01-05 Kawasaki Steel Corp Continuous treatment equipment for decreasing iron loss of grain oriented silicon steel sheet
JPH0151527B2 (ja) 1982-07-30 1989-11-06 Aamuko Adobansuto Materiaruzu Corp
WO1997024466A1 (fr) * 1995-12-27 1997-07-10 Nippon Steel Corporation Tole d'acier magnetique ayant d'excellentes proprietes magnetiques, et son procede de fabrication
JPH10204533A (ja) * 1997-01-24 1998-08-04 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造方法
WO2004083465A1 (ja) 2003-03-19 2004-09-30 Nippon Steel Corporation 磁気特性の優れた方向性電磁鋼板とその製造方法
JP2007119821A (ja) 2005-10-26 2007-05-17 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板およびその製造方法
JP2010105037A (ja) * 2008-10-31 2010-05-13 Neturen Co Ltd 中空接合体及びその製造方法並びに接合装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645547A (en) * 1982-10-20 1987-02-24 Westinghouse Electric Corp. Loss ferromagnetic materials and methods of improvement
US4554029A (en) * 1982-11-08 1985-11-19 Armco Inc. Local heat treatment of electrical steel
US4909864A (en) 1986-09-16 1990-03-20 Kawasaki Steel Corp. Method of producing extra-low iron loss grain oriented silicon steel sheets
JP2742054B2 (ja) * 1987-02-20 1998-04-22 北里研究所(社団法人) 動物の生長促進剤
JPS6451527A (en) 1987-08-21 1989-02-27 Nec Corp System for data security
RU2044066C1 (ru) 1993-03-01 1995-09-20 Ковровский технологический институт Лазерное устройство одномодового модулированного излучения для термической обработки материалов
EP0897016B8 (en) * 1997-01-24 2007-04-25 Nippon Steel Corporation Grain-oriented electrical steel sheet having excellent magnetic characteristics, its manufacturing method and its manufacturing device
RU2243072C2 (ru) 2002-04-08 2004-12-27 Открытое акционерное общество АК "Туламашзавод" Твердотельный лазер (варианты)
RU2276191C1 (ru) 2004-10-05 2006-05-10 Государственное образовательное учреждение Высшего профессионального образования Брянская Государственная инженерно-Технологическая академия Способ поверхностного упрочнения металлов
JP5000182B2 (ja) 2006-04-07 2012-08-15 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
RU2405841C1 (ru) 2009-08-03 2010-12-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства листовой анизотропной электротехнической стали
KR101389647B1 (ko) 2010-04-01 2014-04-30 신닛테츠스미킨 카부시키카이샤 방향성 전자기 강판 및 그 제조 방법
JP5696380B2 (ja) * 2010-06-30 2015-04-08 Jfeスチール株式会社 方向性電磁鋼板の鉄損改善装置および鉄損改善方法
JP5565307B2 (ja) 2010-12-28 2014-08-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933802A (ja) 1982-07-30 1984-02-23 アームコ、アドバンスト、マテリアルズ、コーポレーション 磁性材料の鉄損の改善方法
JPH0151527B2 (ja) 1982-07-30 1989-11-06 Aamuko Adobansuto Materiaruzu Corp
JPS6383227A (ja) * 1986-09-26 1988-04-13 Nippon Steel Corp 電磁鋼板の鉄損値改善方法
JPS64230A (en) * 1987-02-10 1989-01-05 Kawasaki Steel Corp Continuous treatment equipment for decreasing iron loss of grain oriented silicon steel sheet
WO1997024466A1 (fr) * 1995-12-27 1997-07-10 Nippon Steel Corporation Tole d'acier magnetique ayant d'excellentes proprietes magnetiques, et son procede de fabrication
JPH10204533A (ja) * 1997-01-24 1998-08-04 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造方法
WO2004083465A1 (ja) 2003-03-19 2004-09-30 Nippon Steel Corporation 磁気特性の優れた方向性電磁鋼板とその製造方法
JP2007119821A (ja) 2005-10-26 2007-05-17 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板およびその製造方法
JP2010105037A (ja) * 2008-10-31 2010-05-13 Neturen Co Ltd 中空接合体及びその製造方法並びに接合装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2918689A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015455A (ko) * 2014-07-03 2017-02-08 신닛테츠스미킨 카부시키카이샤 레이저 가공 장치
EP3165615A4 (en) * 2014-07-03 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Laser machining device
EP3165614A4 (en) * 2014-07-03 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Laser machining device
KR101881708B1 (ko) 2014-07-03 2018-07-24 신닛테츠스미킨 카부시키카이샤 레이저 가공 장치
US10773338B2 (en) 2014-07-03 2020-09-15 Nippon Steel Corporation Laser processing apparatus
US11498156B2 (en) 2014-07-03 2022-11-15 Nippon Steel Corporation Laser processing apparatus
JP2018035412A (ja) * 2016-09-01 2018-03-08 新日鐵住金株式会社 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
WO2022045264A1 (ja) * 2020-08-27 2022-03-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JPWO2022045264A1 (ja) * 2020-08-27 2022-03-03
JP7367779B2 (ja) 2020-08-27 2023-10-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP7420326B1 (ja) 2022-09-28 2024-01-23 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法並びに変圧器用鉄心
WO2024070074A1 (ja) * 2022-09-28 2024-04-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法並びに変圧器用鉄心

Also Published As

Publication number Publication date
CN104755637A (zh) 2015-07-01
JP6044642B2 (ja) 2016-12-14
CN104755637B (zh) 2017-03-15
KR20150065860A (ko) 2015-06-15
BR112015009485B1 (pt) 2020-01-14
EP2918689A4 (en) 2016-07-13
IN2015DN03147A (ja) 2015-10-02
US20150318091A1 (en) 2015-11-05
EP2918689B1 (en) 2020-01-01
BR112015009485A2 (pt) 2017-07-04
EP2918689A1 (en) 2015-09-16
JPWO2014073599A1 (ja) 2016-09-08
US9607744B2 (en) 2017-03-28
KR101641032B1 (ko) 2016-07-19
PL2918689T3 (pl) 2020-07-27
RU2015116262A (ru) 2016-12-27
RU2621092C2 (ru) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6044642B2 (ja) レーザ加工装置及びレーザ照射方法
JP4782248B1 (ja) 方向性電磁鋼板及びその製造方法
RU2682364C1 (ru) Электротехнический стальной лист с ориентированной зеренной структурой
RU2605725C2 (ru) Электротехническая листовая сталь с ориентированной зеренной структурой и способ ее изготовления
JP7010311B2 (ja) 方向性電磁鋼板
JP2018037572A (ja) 巻鉄芯、及び巻鉄芯の製造方法
JP6341280B2 (ja) レーザ加工装置
WO2012172624A1 (ja) 一方向性電磁鋼板の製造方法
JP6838321B2 (ja) 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
WO2023195466A1 (ja) 方向性電磁鋼板及びその製造方法
JP6341279B2 (ja) レーザ加工装置
JPWO2019164012A1 (ja) 方向性電磁鋼板
CA3012101C (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP7027923B2 (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法
WO2022045264A1 (ja) 方向性電磁鋼板の製造方法
JP7406064B2 (ja) 方向性電磁鋼板の製造方法及び巻鉄芯の製造方法
JP7277755B2 (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法
JP2021025073A (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法
JPWO2012172624A1 (ja) 一方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545746

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013852814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14439996

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157011833

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015009485

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015116262

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015009485

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150428