RU2685297C2 - Способ обработки кромок многоканальным лазером - Google Patents

Способ обработки кромок многоканальным лазером Download PDF

Info

Publication number
RU2685297C2
RU2685297C2 RU2017131836A RU2017131836A RU2685297C2 RU 2685297 C2 RU2685297 C2 RU 2685297C2 RU 2017131836 A RU2017131836 A RU 2017131836A RU 2017131836 A RU2017131836 A RU 2017131836A RU 2685297 C2 RU2685297 C2 RU 2685297C2
Authority
RU
Russia
Prior art keywords
laser
spot
processing
power density
radiation
Prior art date
Application number
RU2017131836A
Other languages
English (en)
Other versions
RU2017131836A3 (ru
RU2017131836A (ru
Inventor
Григорий Анатольевич Евстюнин
Original Assignee
Общество с ограниченной ответственностью "Новые технологии лазерного термоупрочнения" (ООО "НТЛТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Новые технологии лазерного термоупрочнения" (ООО "НТЛТ") filed Critical Общество с ограниченной ответственностью "Новые технологии лазерного термоупрочнения" (ООО "НТЛТ")
Priority to RU2017131836A priority Critical patent/RU2685297C2/ru
Publication of RU2017131836A3 publication Critical patent/RU2017131836A3/ru
Publication of RU2017131836A publication Critical patent/RU2017131836A/ru
Application granted granted Critical
Publication of RU2685297C2 publication Critical patent/RU2685297C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals

Abstract

Изобретение относится к технологии лазерной обработки материала, преимущественно к обработке поверхностного слоя металлического изделия сложной формы. Задачей изобретения является формирование максимально равномерного упрочненного слоя без оплавления поверхности при обработке по любым траекториям. Данные условия обеспечивают высокие скорости нагрева и охлаждения обрабатываемых поверхностных участков. Задача решается следующим образом. В способе обработки кромок металлических изделий диодным лазером с многолучевой оптической системой, заключающемся в воздействии непрерывным лазерным лучом, сфокусированным в световое пятно, на поверхность обрабатываемого объекта, воздействие осуществляют многоканальным лазером, выполненным с возможностью регулирования мощности каждого блока, причем в одном пятне излучения на разных его участках выставляют разную плотность мощности, при этом во время поворота пятна на малом радиусе плотность мощности уменьшают в соответствии с пропорцией: время экспозиции - плотность мощности. Основным преимуществом является повышение износостойкости поверхности за счет необходимых структурно-фазовых изменений поверхностного слоя без его оплавления, без необходимости специальных подготовительных и заключительных доводочных операций. 2 ил.

Description

Изобретение относится к технологии лазерной обработки материала, преимущественно, к обработке поверхностного слоя металлического изделия сложной формы.
Термическое упрочнение кромок металлических изделий многоканальным лазерным излучением основано на локальном нагреве участка поверхности под воздействием излучения и последующем охлаждении этого поверхностного участка со сверхкритической скоростью в результате теплоотвода во внутренние слои металла и в воздушное пространство. При этом время нагрева и время охлаждения незначительны, практически отсутствует выдержка при температуре нагрева.
Известен способ лазерной термообработки металлов и устройство для его осуществления [1] при котором осуществляют однократное взаимное перемещение луча и обрабатываемого изделия вдоль заданного контура и нагревают изделие до температуры обработки, отличающийся тем, что, с целью улучшения эксплуатационных характеристик металла путем осуществления закалки и последующего высокотемпературного отпуска одним лучом, последний разделяют на две части, закалку осуществляют первой из них, а высокотемпературный отпуск - второй, при этом площадь пятна нагрева от первой части луча не менее чем в 50 раз меньше, чем от второй части луча, а расстояние между ними и скорость их перемещения соответствует остыванию зоны обработки до температуры конца мартенситного превращения за время между воздействием частей луча.
Суть способа в том, что в пятне нагрева второй части луча излучение концентрируют на начальном участке, длиной, по меньшей мере, в 50 раз меньшей длины всего пятна нагрева, а на остальном участке пятна нагрева создают интенсивность излучения, уменьшающуюся к концу пятна нагрева.
Известен способ и устройство для термообработки сварных швов [2], осуществляющий индукционную термическую обработку сварных швов в сварочной машине с лазерной сварочной головкой с целью соединения стальных полос, причем, процесс нагрева сварного шва и примыкающих к сварному шву областей перед и позади него осуществляют посредством линейных индукторов. Нагрев области сварного шва осуществляют посредством определенно настраиваемого, многоступенчатого линейного индуктора с зонами различной плотности мощности, который выполнен с многократным распределением своих длин проводящих петель, и/или с различным выполнением металлических панелей у петель проводника, и/или многочисленными различными ступенями расстояний относительно стальной полосы.
Известен способ упрочнения разделительного штампа [3], включающий лазерную закалку боковых рабочих поверхностей путем оплавления припусков за один проход при перемещении луча лазера по стыку припусков и последующий лазерный отпуск. После лазерной закалки выполняют обработку холодом до температуры окончания мартенситного превращения, а лазерный отпуск выполняют с помощью непрерывного излучения многоканального СО2 лазера на режимах, обеспечивающих нагрев стали в зоне закалки в интервале температур Ас1÷560°С, где Ас1 - критическая температура, при которой в стали начинает формироваться аустенит: мощность лазерного излучения Р при выполнении лазерного отпуска в 4÷5 раз меньше, чем при выполнении лазерной закалки, скорость сканирования луча ν и диаметр пятна излучения d на обрабатываемой поверхности для выполнения лазерной закалки и лазерного отпуска одинаковы.
Недостатками представленных способов является то, что используемые приемы по упрочнению прямоугольными или квадратными пятнами излучения подходят для упрочнения только прямыми дорожками, но совершенно не приемлемы для обработки по криволинейным траекториям ввиду того, что скорости и, следовательно, термические циклы в противоположных сторонах дорожки будут отличаться, соответственно, будут отличаться структуры и твердость сторон.
Известен способ лазерной обработки сложных пространственных поверхностей крупногабаритных деталей [4]. Изобретение относится к способу термообработки поверхности материалов концентрированными источниками энергии. Способ включает воздействие непрерывным лазерным лучом на поверхность детали. Луч сфокусирован в световое пятно. На вертикальные или наклонные поверхности наносят параллельные дорожки упрочнения с перекрытием. Нанесение дорожек упрочнения осуществляют лучом, направленным на обрабатываемую поверхность под углом, и при увеличенном расходе технологического газа через сопло. Лазерный луч повернут от перпендикуляра к поверхности вверх, в плоскости обработки детали на угол, равный 0,5-5°. Лазерная установка снабжена 5-координатной лазерной головкой. Дорожки наносят попеременно в различных полосах упрочнения, отстоящих друг от друга на расстоянии.
За прототип взят способ упрочнения поверхности детали и устройство для его осуществления [5]. Изобретение относится к области металлургии и машиностроения, в частности к термической обработке концентрированным источником энергии деталей различного назначения из железоуглеродистых сплавов. Техническим результатом изобретения является повышение производительности и долговечности быстроизнашиваемых дорогостоящих деталей, а также уменьшение энергетических затрат. При упрочнении деталей из ферритно-перлитного чугуна СЧ20 с исходной твердостью, равной 174 НВ, сначала на поверхность наносят светопоглощающее покрытие, затем обрабатывают лазером мощностью Р=730 Вт, при скорости перемещения пятна излучения относительно обрабатываемой поверхности детали 6 мм/с и диаметре пятна 3,5 мм, при этом используют лазерный излучатель, излучающие трубки которого размещены в виде пакета из нескольких рядов, первый и второй наружные ряды излучающих трубок которого размещены в виде неравносторонних восьмигранников, третий и четвертый - в виде равносторонних четырехгранников. В результате получают глубину упрочненного слоя 0,5-0,6 мм. Средняя твердость после лазерной обработки 435 НВ. В результате обработки повышаются износостойкость и ресурс в 2-4 раза.
Недостатками прототипа, в отличии от заявляемого изобретения являются: малая мощность излучения, отсюда малая скорость обработки и диаметр пятна, монолитный корпус излучателя, в виду чего, при выходе из строя любого элемента, на его ремонт потребуется много времени, когда в заявляемом изобретении необходимо просто заменить вышедший из строя узел не разбирая единой конструкции. Так же, при обработке способом [5], необходимо наносить светопоглощающее покрытие и после обработки его счищать, чего не требуется в случае с заявляемым изобретением. В дополнение к вышеперечисленному, КПД источника излучения, используемого в заявляемом изобретении гораздо (~ в 3 раза) выше чем у источника излучения прототипа и не требует регулярной замены газовой смеси. Еще одной особенностью заявляемого изобретения является возможность компоновки пятна любой формы, благодаря свободе манипуляции с волоконной оплеткой, которую возможно зафиксировать практически любой формой, соответственно воспроизвести пятно любой формы.
Техническим результатом заявляемого изобретения является повышение износостойкости упрочняемых поверхностей и срока службы изделий путем критического воздействии лазерного излучения на обрабатываемую поверхность.
Задачей изобретения является формирование максимально равномерного и качественного упрочненного слоя без оплавления поверхности не зависимо от сложности траектории прохода лазерного излучения.
Задача решается следующим образом.
Обработка кромок металлических изделий многоканальным диодным лазером с многолучевой оптической системой, заключающемся в воздействии непрерывным лазерным лучом, сфокусированным в световое пятно, на поверхность обрабатываемого объекта. Воздействие осуществляют лазером с многоволоконной оптической системой, выполненным с возможностью регулирования мощности излучения каждого волокна/излучающего модуля, благодаря чему возможно контролировать мощность излучения на любом участке светового пятна в реальном масштабе времени.
Использование диодных лазеров с многолучевой оптической системой, в которых один большой луч с Гауссовым распределением заменяется большим количеством малых лучей, позволяет оптимизировать распределение плотности мощности (см. фиг. 2).
Благодаря регулировке мощности каждого излучающего модуля (блока), во время поворота пятна на малом радиусе, где, как правило, образовывалось оплавление поверхности из-за большего термовлияния, мощность на этом участке будет уменьшаться в соответствии с пропорцией: время экспозиции - плотность мощности (см. фиг. 1). Если кромка имеет широкую зону обработки и не имеет сложной формы, то пятно излучения возможно сформировать в любую форму (квадрат, прямоугольник, овал и т.д.) благодаря свободе манипуляции с волоконной оплеткой, которую возможно зафиксировать практически любой формы.
Основным преимуществом является повышение износостойкости поверхности за счет необходимых структурно-фазовых изменений поверхностного слоя без его оплавления, без необходимости специальных подготовительных и заключительных доводочных операций.
В результате обеспечивается формирование упрочненного слоя глубиной до 2 мм лазерным излучением.
Изобретение поясняется следующими иллюстрациями. Фиг. 1 - Интерфейс управления каждым лазерным модулем Фиг. 2 - Диаграммы распределения энергии источника излучения Способ осуществляется следующим образом.
Обрабатываемое изделие устанавливается в специальное крепежное приспособление, которое ориентирует его в определенном положении. С пульта управления включается диодный лазер с многолучевой оптической системой излучение которого транспортируется по оптическому волокну в лазерную головку и фокусируется на поверхности обрабатываемого изделия. Таким образом, происходит воздействие непрерывным лазерным лучом, сфокусированным в световое пятно, на поверхность обрабатываемого объекта. Система управления позволяет в одном пятне излучения на разных его участках выставлять разную плотность мощности. Кроме того, если кромка имеет широкую зону обработки и не имеет сложной формы то пятно излучения возможно сформировать в любую форму (квадрат, прямоугольник, овал и т.д.) благодаря свободе манипуляции с волоконной оплеткой, которую возможно зафиксировать практически любой формы.
В результате реализации изобретения решаются все поставленные автором задачи.
Источники информации:
1. SU, 1 107 428, В23К 26/02;
2. RU, Заявка на изобретение №2009 123 499 МПК C21D 1/42;
3. RU, 2 566 224, C21D 9/22, C21D 1/09, В23К 26/00, C21D 6/04;
4. RU, 2 425 894, C21D 1/09, В23К 26/14.
5. RU, 2 305 136, C21D 1/09

Claims (1)

  1. Способ обработки кромок многоканальным диодным лазером с многолучевой оптической системой, включающий воздействие непрерывным многолучевым лазерным излучением, сфокусированным в световое пятно, на поверхность обрабатываемых кромок, отличающийся тем, что осуществляют регулировку мощности каждого лазерного модуля в реальном масштабе времени с обеспечением равномерного тепловвода в обрабатываемую поверхность при любой траектории движения пятна.
RU2017131836A 2017-09-12 2017-09-12 Способ обработки кромок многоканальным лазером RU2685297C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017131836A RU2685297C2 (ru) 2017-09-12 2017-09-12 Способ обработки кромок многоканальным лазером

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017131836A RU2685297C2 (ru) 2017-09-12 2017-09-12 Способ обработки кромок многоканальным лазером

Publications (3)

Publication Number Publication Date
RU2017131836A3 RU2017131836A3 (ru) 2019-03-14
RU2017131836A RU2017131836A (ru) 2019-03-14
RU2685297C2 true RU2685297C2 (ru) 2019-04-17

Family

ID=65759338

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017131836A RU2685297C2 (ru) 2017-09-12 2017-09-12 Способ обработки кромок многоканальным лазером

Country Status (1)

Country Link
RU (1) RU2685297C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2751404C1 (ru) * 2020-10-22 2021-07-13 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Лазерный аппарат для термической обработки нераспыляемых геттеров

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930607B (zh) * 2021-09-07 2023-01-31 中国科学院宁波材料技术与工程研究所 一种自适应的分布式激光冲击强化加工系统与方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048911A (en) * 1988-11-15 1991-09-17 Universiti Malaya Coupling of multiple laser beams to a single optical fiber
US6229940B1 (en) * 1998-11-30 2001-05-08 Mcdonnell Douglas Corporation Incoherent fiber optic laser system
US20040081396A1 (en) * 2002-10-23 2004-04-29 Hiroshi Komine Optical fiber array collimator
RU2305136C1 (ru) * 2006-06-19 2007-08-27 Закрытое акционерное общество "ЭНТЭК" (ЗАО "ЭНТЭК") Способ упрочнения поверхности детали и устройство для его осуществления
RU2383416C1 (ru) * 2008-12-16 2010-03-10 Закрытое акционерное общество Научно-исследовательский институт Электронного специального технологического оборудования Устройство для лазерной обработки материалов
WO2014037281A2 (en) * 2012-09-06 2014-03-13 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workpiece
RU2563908C1 (ru) * 2014-07-21 2015-09-27 Общество с ограниченной ответственностью "НАУЧНО-ТЕХНИЧЕСКИЕ ОБЪЕДИНЕНИЕ "ИРЭ-Полюс" (ООО НТО "ИРЭ-Полюс") Способ распределения лазерного излучения и многолучевая лазерная система для его осуществления
WO2016200621A2 (en) * 2015-05-26 2016-12-15 Ipg Photonics Corporation Multibeam laser system and methods for welding
RU2621092C2 (ru) * 2012-11-08 2017-05-31 Ниппон Стил Энд Сумитомо Метал Корпорейшн Устройство для лазерной обработки и способ лазерного облучения

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048911A (en) * 1988-11-15 1991-09-17 Universiti Malaya Coupling of multiple laser beams to a single optical fiber
US6229940B1 (en) * 1998-11-30 2001-05-08 Mcdonnell Douglas Corporation Incoherent fiber optic laser system
US20040081396A1 (en) * 2002-10-23 2004-04-29 Hiroshi Komine Optical fiber array collimator
RU2305136C1 (ru) * 2006-06-19 2007-08-27 Закрытое акционерное общество "ЭНТЭК" (ЗАО "ЭНТЭК") Способ упрочнения поверхности детали и устройство для его осуществления
RU2383416C1 (ru) * 2008-12-16 2010-03-10 Закрытое акционерное общество Научно-исследовательский институт Электронного специального технологического оборудования Устройство для лазерной обработки материалов
WO2014037281A2 (en) * 2012-09-06 2014-03-13 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workpiece
RU2621092C2 (ru) * 2012-11-08 2017-05-31 Ниппон Стил Энд Сумитомо Метал Корпорейшн Устройство для лазерной обработки и способ лазерного облучения
RU2563908C1 (ru) * 2014-07-21 2015-09-27 Общество с ограниченной ответственностью "НАУЧНО-ТЕХНИЧЕСКИЕ ОБЪЕДИНЕНИЕ "ИРЭ-Полюс" (ООО НТО "ИРЭ-Полюс") Способ распределения лазерного излучения и многолучевая лазерная система для его осуществления
WO2016200621A2 (en) * 2015-05-26 2016-12-15 Ipg Photonics Corporation Multibeam laser system and methods for welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2751404C1 (ru) * 2020-10-22 2021-07-13 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Лазерный аппарат для термической обработки нераспыляемых геттеров

Also Published As

Publication number Publication date
RU2017131836A3 (ru) 2019-03-14
RU2017131836A (ru) 2019-03-14

Similar Documents

Publication Publication Date Title
USRE29815E (en) Cladding
CN108367386B (zh) 用于结合两个坯件的方法及获得的坯件和产品
US10106864B2 (en) Method and apparatus for laser quenching
Lee Effects of the cladding parameters on the deposition efficiency in pulsed Nd: YAG laser cladding
EP3117014B1 (en) Method and system for laser hardening of a surface of a workpiece
US9187794B2 (en) Process and apparatus for hardening the surface layer of components having a complicated shape
JP2017514694A (ja) 溶接され、次いでプレス硬化されるアルミニウムめっき鋼板の製造方法
JP2019507013A (ja) 補強構造構成要素
CA2979927C (en) Method and system for heat treatment of sheet metal
RU2685297C2 (ru) Способ обработки кромок многоканальным лазером
Muthukumaran et al. Laser transformation hardening of various steel grades using different laser types
CA2983078C (en) Laser sintered die surface for a tool
US20150122783A1 (en) Laser cladding with a laser scanning head
Moskvitin et al. Application of laser welding methods in industrial production
KR102193008B1 (ko) 레이저 빔을 사용하여 고체 금속 쉬트에 샌드위치 금속 쉬트를 납땜하는 방법
Vogt et al. Local laser softening of high-strength steel with an adapted intensity
RU2492035C1 (ru) Способ многолучевой лазерной сварки
JP2024038423A (ja) 溶接方法および溶接装置
Dewi et al. Impact of laser beam oscillation strategies on surface treatment of microalloyed steel
Zenker et al. Electron beam surface hardening
Sisakyan et al. Technological capabilities of focusators in laser-induced material processing
JP2012161808A (ja) 溶接方法及び溶接装置
RU2580350C1 (ru) Устройство для упрочнения поверхности детали
US20100320249A1 (en) Method for producing a component using asymmetrical energy input along the parting or predetermined breaking line
RU2425894C1 (ru) Способ лазерной термообработки сложных пространственных поверхностей крупногабаритных деталей