WO2014073547A1 - 発電システム及び発電システムにおける燃料電池排気の冷却方法 - Google Patents

発電システム及び発電システムにおける燃料電池排気の冷却方法 Download PDF

Info

Publication number
WO2014073547A1
WO2014073547A1 PCT/JP2013/079945 JP2013079945W WO2014073547A1 WO 2014073547 A1 WO2014073547 A1 WO 2014073547A1 JP 2013079945 W JP2013079945 W JP 2013079945W WO 2014073547 A1 WO2014073547 A1 WO 2014073547A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
line
coolant
temperature
power generation
Prior art date
Application number
PCT/JP2013/079945
Other languages
English (en)
French (fr)
Inventor
行政 中本
和徳 藤田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/440,452 priority Critical patent/US9831505B2/en
Priority to DE112013005350.0T priority patent/DE112013005350T5/de
Priority to CN201380058074.4A priority patent/CN104781969B/zh
Priority to KR1020157011990A priority patent/KR101766559B1/ko
Publication of WO2014073547A1 publication Critical patent/WO2014073547A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04343Temperature; Ambient temperature of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/0435Temperature; Ambient temperature of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04716Temperature of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation system that combines a fuel cell, a gas turbine, and a steam turbine, and a method for cooling the fuel cell exhaust in the power generation system.
  • SOFC Solid Oxide Fuel Cell
  • Patent Document 1 various types of power generation systems that can achieve high-efficiency power generation have been proposed in which SOFCs, gas turbines, and steam turbines are combined.
  • the combined system described in Patent Document 1 includes an SOFC, a gas turbine combustor that burns exhaust fuel gas and exhaust air discharged from the SOFC, and a compressor that compresses air and supplies the compressed fuel to the SOFC.
  • a gas turbine is provided.
  • exhaust exhaust air or exhaust fuel gas
  • exhaust fuel gas reaches 450 ° C. during rated operation.
  • exhaust air line (pipe) for sending exhaust air to the gas turbine combustor and the exhaust fuel line (pipe) for sending exhaust fuel gas to the gas turbine combustor are assumed to exceed the temperature during rated operation. It is necessary to design pipe materials and pipe thickness that can withstand temperature.
  • the present invention solves the above-described problem, and protects an exhaust line (pipe) for sending exhaust gas even when the temperature of exhaust gas discharged from the fuel cell exceeds the temperature during rated operation. It is an object of the present invention to provide a power generation system capable of cooling the fuel cell exhaust in the power generation system.
  • a power generation system includes a fuel cell, an exhaust line that sends exhaust gas discharged from the fuel cell, a temperature of exhaust gas discharged from the fuel cell, or a temperature of the exhaust line.
  • the exhaust cooling device is started to cool the exhaust and The exhaust temperature can be lowered.
  • the assumed temperature for designing the exhaust line can be determined and the assumed temperature can be set to a temperature close to the rated operation of the fuel cell, a safe design that does not increase the manufacturing cost can be performed.
  • the exhaust cooling unit is provided in the coolant storage unit that stores the coolant, the coolant supply line that connects the exhaust line and the coolant storage unit, and the coolant supply line.
  • a coolant pump that is provided in the coolant supply line and sends the coolant from the coolant storage unit to the exhaust line, and the control unit is controlled by the temperature detector. When the detected temperature exceeds a predetermined temperature, the coolant on-off valve is controlled to open and the coolant pump is driven.
  • the coolant on-off valve is opened and the coolant pump is driven. By doing so, the exhaust can be cooled and the exhaust temperature of the exhaust can be lowered.
  • water is stored as a coolant in the coolant storage unit.
  • the power generation system of the present invention includes a water recovery unit that extracts and recovers water precipitated in the system, and the water recovered by the water recovery unit is stored as a coolant in the coolant storage unit. To do.
  • the water precipitated in the system can be effectively used as a coolant.
  • a pressure detector for detecting the pressure of the exhaust line is provided, and the control unit is configured such that the pressure for sending the coolant of the coolant pump is based on the pressure detected by the pressure detector.
  • the coolant pump is controlled to be higher than the pressure in the exhaust line.
  • the exhaust line is an exhaust air line for sending exhaust air exhausted from the fuel cell.
  • the exhaust air when the exhaust temperature of the exhaust air discharged from the fuel cell exceeds the temperature during rated operation, the exhaust air can be cooled and the exhaust air exhaust temperature can be lowered. As a result, it is possible to prevent the exhaust air line for sending exhaust air from being damaged by high temperatures.
  • the assumed temperature for designing the exhaust air line can be determined and this constant temperature can be set to a temperature close to the rated operation of the fuel cell, a safe design that does not increase the manufacturing cost can be performed. .
  • the exhaust line is an exhaust fuel line for sending exhaust fuel gas discharged from the fuel cell.
  • the exhaust fuel gas discharged from the fuel cell exceeds the temperature during rated operation, the exhaust fuel gas can be cooled and the exhaust temperature of the exhaust fuel gas can be lowered. As a result, it is possible to prevent the exhaust fuel line for sending the exhaust fuel gas from being damaged due to high temperature.
  • the assumed temperature for designing the exhaust fuel line can be determined and the assumed temperature can be set to a temperature close to the rated operation of the fuel cell, it is possible to design safely and without increasing the manufacturing cost. .
  • the cooling method of the fuel cell exhaust in the power generation system of the present invention includes a step of sending exhaust discharged from the fuel cell through an exhaust line, and when the temperature of the exhaust discharged from the fuel cell exceeds a predetermined temperature, And a step of cooling the exhaust of the exhaust line.
  • FIG. 1 is a schematic diagram illustrating a cooling device in a power generation system according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating a part of the coolant supply unit of the cooling device in the power generation system according to the present embodiment.
  • FIG. 3 is a configuration diagram illustrating a part of the coolant supply unit of the cooling device in the power generation system according to the present embodiment.
  • FIG. 4 is a configuration diagram illustrating a part of the coolant supply unit of the cooling device in the power generation system according to the present embodiment.
  • FIG. 5 is a flowchart of cooling of the solid oxide fuel cell exhaust in the power generation system of the present embodiment.
  • FIG. 6 is a flowchart of coolant replenishment in the power generation system of the present embodiment.
  • FIG. 7 is a flowchart when the coolant is supplied in the power generation system of the present embodiment.
  • FIG. 8 is a schematic configuration diagram illustrating the power generation system of the present embodiment.
  • the power generation system of this embodiment is a triple combined cycle (registered trademark) in which a solid oxide fuel cell (hereinafter referred to as SOFC), a gas turbine, and a steam turbine are combined.
  • SOFC solid oxide fuel cell
  • gas turbine gas turbine
  • steam turbine steam turbine
  • This triple combined cycle realizes extremely high power generation efficiency because it can generate power in three stages: SOFC, gas turbine, and steam turbine by installing SOFC upstream of gas turbine combined cycle power generation (GTCC). be able to.
  • GTCC gas turbine combined cycle power generation
  • a solid oxide fuel cell is applied as the fuel cell of the present invention, but the present invention is not limited to this type of fuel cell.
  • FIG. 1 is a schematic diagram illustrating a cooling device in a power generation system according to an embodiment of the present invention
  • FIGS. 2 to 4 are configurations illustrating a part of a coolant supply unit of the cooling device in the power generation system according to the present embodiment.
  • FIGS. 5 and 5 are flowcharts of cooling of SOFC exhaust in the power generation system of the present embodiment
  • FIG. 6 is a flowchart of replenishing coolant in the power generation system of the present embodiment
  • FIG. 7 is cooling in the power generation system of the present embodiment.
  • FIG. 8 is a schematic configuration diagram showing a power generation system according to the present embodiment.
  • the power generation system 10 includes a gas turbine 11 and a generator 12, a SOFC 13, a steam turbine 14 and a generator 15.
  • the power generation system 10 is configured to obtain high power generation efficiency by combining power generation by the gas turbine 11, power generation by the SOFC 13, and power generation by the steam turbine 14.
  • the gas turbine 11 includes a compressor 21, a combustor 22, and a turbine 23, and the compressor 21 and the turbine 23 are coupled to each other by a rotary shaft 24 so as to be integrally rotatable.
  • the compressor 21 compresses the air A taken in from the air intake line 25.
  • the combustor 22 mixes and combusts the compressed air A ⁇ b> 1 supplied from the compressor 21 through the first compressed air supply line 26 and the fuel gas L ⁇ b> 1 supplied from the first fuel gas supply line 27.
  • the turbine 23 is rotated by exhaust gas (combustion gas) G supplied from the combustor 22 through the exhaust gas supply line 28. Although not shown, the turbine 23 is compressed by the compressor 21 and supplied with compressed air A1 through the passenger compartment.
  • the blades and the like are cooled by using the compressed air A1 as cooling air.
  • the generator 12 is provided on the same axis as the turbine 23 and can generate electric power when the turbine 23 rotates.
  • liquefied natural gas LNG is used as the fuel gas L1 supplied to the combustor 22.
  • the SOFC 13 generates power by reacting at a predetermined operating temperature by being supplied with high-temperature fuel gas as a reducing agent and high-temperature air (oxidizing gas) as an oxidant.
  • the SOFC 13 is configured by accommodating an air electrode, a solid electrolyte, and a fuel electrode in a pressure vessel. Compressed air is supplied to the air electrode, and fuel gas is supplied to the fuel electrode to generate power.
  • the fuel gas L2 supplied to the SOFC 13 for example, liquefied natural gas (LNG), hydrogen (H 2 ), carbon monoxide (CO), hydrocarbon gas such as methane (CH 4 ), carbon such as coal, etc. Gas produced by gasification equipment for quality raw materials is used.
  • the compressed air supplied to the SOFC 13 is an oxidizing gas containing approximately 15% to 30% oxygen.
  • air is suitable, but in addition to air, a mixed gas of combustion exhaust gas and air.
  • a mixed gas of oxygen and air can be used (hereinafter, the oxidizing gas supplied to the SOFC 13 is referred to as air).
  • the SOFC 13 is connected to a second compressed air supply line (compressed air supply line) 31 branched from the first compressed air supply line 26, and a part of the compressed air A2 compressed by the compressor 21 is used as an introduction portion of the air electrode. Can be supplied.
  • a control valve 32 capable of adjusting the amount of air to be supplied and a blower 33 capable of increasing the pressure of the compressed air A2 are provided along the air flow direction.
  • the control valve 32 is provided on the upstream side of the second compressed air supply line 31 in the air flow direction, and the blower 33 is provided on the downstream side of the control valve 32.
  • the SOFC 13 is connected to an exhaust air line 34 that exhausts exhaust air A3 used at the air electrode.
  • the exhaust air line 34 is branched into an exhaust line 35 for exhausting the exhaust air A3 used at the air electrode to the outside, and a compressed air circulation line 36 connected to the combustor 22.
  • the exhaust line 35 and the compressed air circulation line 36 are also referred to as an exhaust air line 34.
  • the discharge line 35 is provided with a control valve 37 capable of adjusting the amount of air discharged, and the compressed air circulation line 36 is provided with a control valve 38 capable of adjusting the amount of air circulated.
  • the SOFC 13 is provided with a second fuel gas supply line 41 for supplying the fuel gas L2 to the introduction portion of the fuel electrode.
  • the second fuel gas supply line 41 is provided with a control valve 42 that can adjust the amount of fuel gas to be supplied.
  • the SOFC 13 is connected to an exhaust fuel line 43 that exhausts the exhaust fuel gas L3 used at the fuel electrode.
  • the exhaust fuel line 43 is branched into an exhaust line 44 that discharges to the outside and an exhaust fuel gas supply line 45 that is connected to the combustor 22. These exhaust line 44 and exhaust fuel gas supply line 45 are also referred to as exhaust fuel line 43.
  • the discharge line 44 is provided with a control valve 46 capable of adjusting the amount of fuel gas to be discharged.
  • the exhaust fuel gas supply line 45 is provided with a control valve 47 capable of adjusting the amount of fuel gas to be supplied, and a blower 48 capable of boosting fuel. Are provided along the fuel flow direction.
  • the control valve 47 is provided upstream of the exhaust fuel gas supply line 45 in the flow direction of the exhaust fuel gas L3, and the blower 48 is provided downstream of the control valve 47 in the flow direction of the exhaust fuel gas L3.
  • the SOFC 13 is provided with a fuel gas recirculation line 49 that connects the exhaust fuel line 43 and the second fuel gas supply line 41.
  • the fuel gas recirculation line 49 is provided with a recirculation blower 50 that recirculates the exhaust fuel gas L3 of the exhaust fuel line 43 to the second fuel gas supply line 41.
  • the steam turbine 14 rotates the turbine 52 with the steam generated by the exhaust heat recovery boiler (HRSG) 51.
  • the exhaust heat recovery boiler 51 is connected to an exhaust gas line 53 from the gas turbine 11 (the turbine 23), and generates steam S by exchanging heat between the air and the high temperature exhaust gas G.
  • the steam turbine 14 (turbine 52) is provided with a steam supply line 54 and a water supply line 55 between the exhaust heat recovery boiler 51.
  • the water supply line 55 is provided with a condenser 56 and a water supply pump 57.
  • the generator 15 is provided coaxially with the turbine 52 and can generate electric power when the turbine 52 rotates.
  • the exhaust gas G from which heat has been recovered by the exhaust heat recovery boiler 51 is released to the atmosphere after removing harmful substances.
  • the operation of the power generation system 10 of the present embodiment will be described.
  • the electric power generation system 10 starts in order of the gas turbine 11, the steam turbine 14, and SOFC13.
  • the compressor 21 compresses the air A
  • the combustor 22 mixes and burns the compressed air A1 and the fuel gas L1
  • the turbine 23 is rotated by the exhaust gas G. 12 starts power generation.
  • the turbine 52 is rotated by the steam S generated by the exhaust heat recovery boiler 51, whereby the generator 15 starts power generation.
  • the compressed air A ⁇ b> 2 is supplied to start pressure increase and heating is started.
  • the control valve 37 of the discharge line 35 and the control valve 38 of the compressed air circulation line 36 closed and the blower 33 of the second compressed air supply line 31 stopped, the control valve 32 is opened by a predetermined opening.
  • a part of the compressed air A2 compressed by the compressor 21 is supplied from the second compressed air supply line 31 to the SOFC 13 side.
  • the pressure on the SOFC 13 side increases as the compressed air A2 is supplied.
  • the fuel gas L2 is supplied and pressure increase is started.
  • the control valve 46 of the exhaust line 44 and the control valve 47 of the exhaust fuel gas supply line 45 closed and the blower 48 stopped, the control valve 42 of the second fuel gas supply line 41 is opened and the fuel gas is recirculated.
  • the recirculation blower 50 of the line 49 is driven.
  • the fuel gas L2 is supplied from the second fuel gas supply line 41 to the SOFC 13 side, and the exhaust fuel gas L3 is recirculated by the fuel gas recirculation line 49.
  • the pressure on the SOFC 13 side is increased by supplying the fuel gas L2.
  • the control valve 32 When the pressure on the air electrode side of the SOFC 13 becomes the outlet pressure of the compressor 21, the control valve 32 is fully opened and the blower 33 is driven. At the same time, the control valve 37 is opened and the exhaust air A3 from the SOFC 13 is exhausted from the exhaust line 35. Then, the compressed air A2 is pressurized by the blower 33 and then supplied to the SOFC 13 side. At the same time, the control valve 46 is opened, and the exhaust fuel gas L3 from the SOFC 13 is discharged from the discharge line 44. When the pressure on the air electrode side and the pressure on the fuel electrode side in the SOFC 13 reach the target pressure, the pressure increase of the SOFC 13 is completed.
  • the control valve 37 is closed and the control valve 38 is opened.
  • the exhaust air A3 from the SOFC 13 is supplied to the combustor 22 from the compressed air circulation line 36.
  • the control valve 46 is closed, while the control valve 47 is opened to drive the blower 48.
  • the exhaust fuel gas L3 from the SOFC 13 is supplied from the exhaust fuel gas supply line 45 to the combustor 22.
  • the fuel gas L1 supplied from the first fuel gas supply line 27 to the combustor 22 is reduced.
  • the power generation by the generator 12 by driving the gas turbine 11, the power generation by the SOFC 13, and the power generation by the generator 15 are all performed by driving the steam turbine 14, and the power generation system 10 becomes a steady operation.
  • the exhaust (exhaust air A3 or exhaust fuel gas L3) exhausted from the SOFC 13 is at a high temperature.
  • the exhaust air A3 reaches 600 ° C.
  • the exhaust fuel gas L3 reaches 450 ° C.
  • the SOFC 13 is used to lower the exhaust temperature of the exhaust air A3 and the exhaust fuel gas L3 (generally referred to as exhaust gas, the exhaust air A3 and the exhaust fuel gas L3).
  • Exhaust gas line 34 for sending exhaust air exhausted from the exhaust gas and exhaust fuel line 43 for sending exhaust fuel gas L3 exhausted from the SOFC 13 (the exhaust air line 34 and the exhaust fuel line 43 are collectively referred to as exhaust lines)
  • a cooling device (exhaust cooling unit) 61 is provided, and the control device (control unit) 62 drives the exhaust cooling device 61 when the temperature of the exhaust gas discharged from the SOFC 13 exceeds a predetermined temperature.
  • the exhaust cooling device 61 provided in the exhaust air line 34 is provided in the immediate vicinity of the SOFC 13 of the exhaust air line 34, and includes a coolant storage unit 63, a coolant supply line 64, a coolant on / off valve 65, and coolant pressure feed. Machine 66 and a temperature detector 67 (67a).
  • the exhaust cooling device 61 provided in the exhaust fuel line 43 is provided in the immediate vicinity of the SOFC 13 of the exhaust fuel line 43, and includes a coolant storage unit 63, a coolant supply line 64, a coolant on / off valve 65, It has a coolant pump 66 and a temperature detector 67 (67b). Since the exhaust cooling device 61 provided in the exhaust air line 34 and the exhaust cooling device 61 provided in the exhaust fuel line 43 have the same configuration, the exhaust cooling device 61 provided in the exhaust air line 34 will be mainly described below. explain.
  • the coolant storage unit 63 is a container for storing the coolant C.
  • the coolant storage unit 63 may be shared by the exhaust cooling device 61 provided in the exhaust air line 34 and the exhaust cooling device 61 provided in the exhaust fuel line 43. Note that water is applied to the coolant C here, and this water is stored in the coolant storage unit 63.
  • the coolant supply line 64 connects the exhaust line and the coolant storage unit 63. Specifically, the coolant supply line 64 connects the exhaust air line 34 and the coolant storage unit 63 in the exhaust cooling device 61 provided in the exhaust air line 34. On the other hand, the coolant supply line 64 connects the exhaust fuel line 43 and the coolant storage unit 63 in the exhaust cooling device 61 provided in the exhaust fuel line 43. As shown in FIG. 2, the coolant supply line 64 is provided with a coolant injection nozzle 64 a inside the exhaust air line 34 and the exhaust fuel line 43.
  • the coolant injection nozzle 64a shown in FIG. 2 is shown as a single unit, but is not limited thereto. For example, as shown in FIG.
  • a coolant supply line 64 is connected to an annular line 64b surrounding the exhaust air line 34 and the exhaust fuel line 43, and connected to the exhaust air line 34 and the exhaust fuel line 43 from the annular line 64b.
  • a plurality of coolant injection nozzles 64 a provided inside the exhaust air line 34 and the exhaust fuel line 43 may be connected to the plurality of branch lines 64 c.
  • the coolant opening / closing valve 65 is provided in the coolant supply line 64 and opens and closes the coolant supply line 64.
  • the coolant pump 66 is provided between the coolant storage unit 63 and the coolant on / off valve 65 on the coolant supply line 64, and sends the coolant C from the coolant storage unit 63 to the exhaust air line 34.
  • the temperature detector 67 detects the temperature of the exhaust discharged from the SOFC 13. Specifically, the temperature detector 67a detects the temperature of the exhaust air A3 of the air electrode in the SOFC 13 in the exhaust cooling device 61 provided in the exhaust air line 34. The temperature detector 67a may be provided in the immediate vicinity of the SOFC 13 of the exhaust air line 34 to detect the temperature of the exhaust air A3 sent to the exhaust air line 34. Further, the temperature detector 67 a may be provided in the immediate vicinity of the SOFC 13 of the exhaust air line 34 to detect the temperature of the exhaust air line 34. On the other hand, the temperature detector 67 b detects the temperature of the exhaust fuel gas L 3 at the fuel electrode in the SOFC 13 in the exhaust cooling device 61 provided in the exhaust fuel line 43.
  • the temperature detector 67 b may be provided in the vicinity of the SOFC 13 of the exhaust fuel line 43 and detect the temperature of the exhaust fuel gas L ⁇ b> 3 sent to the exhaust fuel line 43. Further, the temperature detector 67 b may be provided in the immediate vicinity of the SOFC 13 of the exhaust fuel line 43 to detect the temperature of the exhaust fuel line 43.
  • the control device 62 stores in advance an upper limit temperature of the exhaust temperature of the exhaust air A3 and the exhaust fuel gas L3 (for example, a predetermined temperature at which the SOFC 13 exceeds the temperature during rated operation). When the exhaust temperature detected by the temperature detector 67 exceeds the upper limit temperature, the control device 62 activates the exhaust cooling device 61.
  • step S1: Yes when the exhaust gas temperature rises during the rated operation of the SOFC 13 and the exhaust gas temperature detected by the temperature detector 67 exceeds the upper limit temperature (step S1: Yes), the control device 62 The coolant on / off valve 65 is opened and the coolant pump 66 is driven (step S2). Then, the coolant C is sent out to the exhaust air line 34 from the coolant storage part 63, and is injected into the exhaust air line 34 and the exhaust fuel line 43 from the coolant injection nozzle 64a. On the other hand, if the exhaust temperature does not exceed the upper limit temperature (step S1: No), the control device 62 inputs the exhaust temperature detected by the temperature detector 67 again and performs monitoring.
  • step S3: Yes When the exhaust temperature detected by the temperature detector 67 falls below the upper limit temperature (step S3: Yes), the control device 62 closes the coolant opening / closing valve 65 and stops the coolant pump 66 (step). S4), this control is terminated, the process returns to step S1, and the exhaust gas temperature detected by the temperature detector 67 is input again for monitoring.
  • step S3: No the control device 62 returns to step S2 and continues the opening of the coolant opening / closing valve 65 and the driving of the coolant pump 66.
  • the coolant C is injected from the coolant injection nozzle 64a provided in the exhaust line 34. Thereafter, when the exhaust gas temperature detected by the temperature detector 67a falls below the upper limit temperature, the injection of the coolant C from the coolant injection nozzle 64a stops.
  • a temperature detector 67 for detecting the temperature of the air A3 or the exhaust fuel gas L3, or the temperature of the exhaust air line 34 or the exhaust fuel line 43, and the exhaust air A3 or the exhaust fuel gas L3 of the exhaust air line 34 or the exhaust fuel line 43 are used.
  • the exhaust cooling device 61 is activated, The exhaust air A3 or the exhaust fuel gas L3 can be cooled, and the exhaust temperature of the exhaust air A3 or the exhaust fuel gas L3 can be lowered. As a result, it is possible to prevent the exhaust air line 34 or the exhaust fuel line 43 for sending the exhaust air A3 or the exhaust fuel gas L3 from being damaged due to high temperature.
  • the assumed temperature for designing the exhaust air line 34 or the exhaust fuel line 43 can be determined and the assumed temperature can be set to a temperature close to the rated operation of the SOFC 13, the design is safe and does not increase the manufacturing cost. It can be performed.
  • the exhaust air A3 or the exhaust fuel gas L3 is cooled.
  • the exhaust temperature of the exhaust air A3 or the exhaust fuel gas L3 can be lowered.
  • the exhaust air line 34 or the exhaust fuel line 43 for sending the exhaust air A3 or the exhaust fuel gas L3 from being damaged due to high temperature.
  • the assumed temperature for designing the exhaust air line 34 or the exhaust fuel line 43 can be determined and the assumed temperature can be set to a temperature close to the rated operation of the SOFC 13, the design is safe and does not increase the manufacturing cost. It can be performed.
  • the exhaust cooling device 61 is a cooling unit that connects the coolant storage unit 63 that stores the coolant C, and the exhaust air line 34 or the exhaust fuel line 43 and the coolant storage unit 63.
  • the control device 62 controls the opening of the coolant on-off valve 65 and controls the coolant pressurizer 66 when the temperature detected by the temperature detector 67 exceeds a predetermined temperature. To drive.
  • the coolant on / off valve 65 is opened, By driving the coolant pump 66, the exhaust air A3 or the exhaust fuel gas L3 can be cooled, and the exhaust temperature of the exhaust air A3 or the exhaust fuel gas L3 can be lowered.
  • water is stored as the coolant C in the coolant storage unit 63.
  • water is used as the coolant C to the exhaust air line 34.
  • it is supplied to the exhaust fuel line 43. For this reason, water can be vaporized by touching the high temperature exhaust air A3 or the exhaust fuel gas L3, thereby reducing the temperature of the exhaust air A3 or the exhaust fuel gas L3.
  • ethyl alcohol or methyl alcohol may be stored in the coolant storage unit 63 in addition to water as the coolant C.
  • the temperature of the exhaust fuel gas L3 can be lowered.
  • the vaporized ethyl alcohol or methyl alcohol is burned in the combustor 22.
  • the power generation system 10 of the present embodiment is provided with a water recovery device (water recovery unit) 71 as shown in FIG.
  • the water recovery device 71 extracts and recovers water precipitated in the system.
  • the water recovery device 71 can be provided in each line 34, 35, 36, 43, 44, 45, 49 in the power generation system 10, for example.
  • FIG. 5 shows a form in which the water recovery device 71 is provided in the exhaust air line 34 or the exhaust fuel line 43 as representative of these lines.
  • the exhaust air line 34 or the exhaust fuel line 43 is supplied with the high-temperature exhaust air A3 or the exhaust fuel gas L3 discharged from the SOFC 13 as described above. For this reason, the moisture contained in the exhausted air A3 or the exhausted fuel gas L3 becomes water droplets and deposits inside the exhausted air line 34 or the exhausted fuel line 43.
  • the water droplets flow into the combustor 22, there is a possibility that a malfunction occurs in the combustion of the combustor 22. Therefore, this water is extracted by the water recovery device 71 and recovered.
  • the water recovery device 71 includes a water recovery mechanism 72, a water recovery container 73, a water recovery line 74, a storage amount detector 75, and a water recovery on / off valve 76.
  • the water recovery mechanism 72 is provided, for example, at a low position inside the exhaust air line 34 or the exhaust fuel line 43, and has a water recovery machine 72a and a storage part 72b.
  • the water recovery machine 72a separates and recovers moisture contained in the exhaust air A3 or the exhaust fuel gas L3.
  • the water recovery machine 72a is, for example, a device in which a mesh is disposed in the exhaust air line 34 or the exhaust fuel line 43 and moisture is attached to the mesh to separate the mesh, or in the exhaust air line 34 or the exhaust fuel line 43.
  • a plurality of corrugated plates are arranged with a gap between them, and water is attached to the corrugated plates to separate them, or a swirl flow is formed inside the exhausted air line 34 or the exhausted fuel line 43 to thereby provide moisture by centrifugal force.
  • There are various forms such as one that separates and one that circulates the exhaust air A3 or the exhaust fuel gas L3 upward and accumulates moisture downward.
  • the reservoir 72b is a recess formed by being recessed downward at a low position inside the exhaust air line 34 or the exhaust fuel line 43. In the reservoir 72b, the water separated by the water recovery machine 72a drops and accumulates.
  • the water recovery container 73 is a container for storing the water collected in the storage part 72b.
  • the water recovery container 73 is provided outside the exhaust air line 34 or the exhaust fuel line 43 and at a position lower than the storage portion 72b.
  • the water recovery line 74 sends water collected in the storage part 72 b to the water recovery container 73, and connects the storage part 72 b and the water recovery container 73.
  • the storage amount detector 75 is provided in the storage part 72b, and detects the amount of water stored in the storage part 72b.
  • the storage amount detected by the storage amount detector 75 is input to the control device 62.
  • the water recovery on / off valve 76 is provided in the water recovery line 74 and opens and closes the water recovery line 74. Opening and closing of the water recovery on-off valve 76 is controlled by the control device 62.
  • the water recovery device 71 accumulates in the storage unit 72b, and when the storage amount detected by the storage amount detector 75 exceeds a predetermined upper limit amount, the control device 62 controls to open the water recovery on-off valve 76. Then, the water in the reservoir 72 b is sent to the water recovery container 73 via the water recovery line 74. On the other hand, when the water in the storage unit 72b decreases and the storage amount detected by the storage amount detector 75 falls below (or disappears) the predetermined lower limit amount, the control device 62 controls the water recovery on-off valve 76 to close. To do.
  • the space above the water in the water recovery container 73 is connected to the combustion facility 78 via the gas discharge line 77.
  • the exhaust fuel gas L3 of the exhaust fuel line 43 is sent to the water recovery container 73 together with water, the exhaust fuel gas L3 is sent to the combustion facility 78 through the gas discharge line 77 and burned.
  • the water recovery device 71 is connected to the coolant storage unit 63 via a water supply device (water supply unit) 81.
  • the water supply device 81 has a water supply line 82 that connects between the water recovery container 73 and the coolant storage unit 63.
  • the water supply line 82 is provided with a water supply opening / closing valve 83 and a water supply pumping machine 84.
  • the water supply on / off valve 83 opens and closes the water supply line 82. Opening and closing of the water supply on / off valve 83 is controlled by the control device 62.
  • the water supply pump 84 sends water from the water recovery container 73 to the water supply line 82.
  • the drive of the water supply pump 84 is controlled by the controller 62.
  • the coolant storage unit 63 is provided with a storage amount detector 85 that detects the storage amount of the stored water. The storage amount detected by the storage amount detector 85 is input to the control device 62.
  • the control device 62 stores a lower limit amount of water stored in the coolant storage unit 63 in advance. Then, when the storage amount detected by the storage amount detector 85 falls below the lower limit amount, the control device 62 activates the water supply device 81.
  • step S21: Yes the control device 62 opens the water supply opening / closing valve 83 and drives the water supply pump 84.
  • Step S22 the water in the water recovery container 73 in the water recovery device 71 is sent to the coolant storage unit 63 via the water supply line 82.
  • step S21: No the control device 62 inputs the storage amount detected by the storage amount detector 85 again and performs monitoring. .
  • step S23: Yes the control device 62 closes the water supply opening / closing valve 83 and stops the water supply pump 84 (step S24), ends this control, returns to step S21, and stores the storage amount detected by the storage amount detector 85. Re-enter to monitor.
  • step S23: No the control device 62 returns to step S2, and continues to open the water supply on / off valve 83 and drive the water supply pumping machine 84.
  • the power generation system 10 includes the water recovery device 71 that extracts and recovers the water precipitated in the system, and the water recovered by the water recovery device 71 is supplied to the coolant storage unit 63. Stored as coolant C.
  • a water recovery device 71 that extracts and recovers water precipitated in the system
  • a water supply line 82 that connects the water recovery device 71 and the coolant storage unit 63
  • a water supply opening / closing valve 83 provided in the water supply line 82
  • a water supply pump 84 provided in the water supply line 82 for sending water from the water recovery device 71 to the coolant storage unit 63, and the coolant storage unit 63.
  • a storage amount detector 85 for detecting the amount of water stored in the storage device, and the controller 62 controls the water supply opening / closing valve 83 when the amount of water detected by the storage amount detector 85 falls below a lower limit amount.
  • the water supply pressure feeder 84 is driven while opening control is performed.
  • the water recovered by the water recovery device 71 and stored in the storage unit 72b can be used as cooling water for the combustor 22 of the turbine 11 in the power generation system 10 in addition to the coolant C.
  • a pressure detector 68 (68a) is provided in the exhaust air line 34 as an exhaust line, and a pressure detector 68 (68b) is provided in the exhaust fuel line 43. ing. These pressure detectors 68 detect the pressure of the exhaust air line 34 and the exhaust fuel line 43. The pressure detected by the pressure detector 68 is input to the control device 62.
  • the control device 62 controls the coolant pump 66 based on the pressure detected by the pressure detector 68.
  • step S31 the controller 62 controls the coolant pump 66 to increase the number of revolutions of the coolant pump 66, for example.
  • the pressure to be pumped is increased (step S32).
  • step S31: No the control device 62 inputs the pressure detected by the pressure detector 68 again. Monitor.
  • step S33: Yes if the line pressure detected by the pressure detector 68 is lower than the pump pressure in the coolant pump 66 ( In step S33: Yes), the control device 62 ends this control, returns to step S31, and inputs the pressure detected by the pressure detector 68 again for monitoring.
  • step S33: No if the line pressure detected by the pressure detector 68 is not lower than the pressure of the pump in the coolant pump 66 (step S33: No), the control device 62 returns to step S32 and returns to the coolant pump 66. Is controlled, the coolant pump 66 is controlled, and the pressure for pumping the coolant C is increased.
  • the power generation system 10 of the present embodiment includes the pressure detector 68 that detects the pressure of the exhaust air line 34 and the exhaust fuel line 43, and the control device 62 adjusts the pressure detected by the pressure detector 68. Based on this, the coolant pump 66 is controlled so that the pressure at which the coolant C from the coolant pump 66 is sent out is higher than the pressure in the exhaust air line 34 and the exhaust fuel line 43.
  • the pressure increases as the temperature of the exhaust air A3 exhausted from the SOFC 13 increases, or when the pressure increases as the temperature of the exhaust fuel gas L3 exhausted from the SOFC 13, the pressure is reduced. Detected by the detector 68, the pressure at which the coolant pump 66 pumps the coolant C is increased. For this reason, the coolant C can be reliably sent to the exhaust air line 34 and the exhaust fuel line 43, and the temperature of the exhaust air A3 or the exhaust fuel gas L3 can be reliably lowered.
  • the exhaust line is the exhaust air line 34 for sending the exhaust air A3 exhausted from the SOFC 13.
  • the exhaust air A3 discharged from the SOFC 13 exceeds the temperature during the rated operation, the exhaust air A3 can be cooled and the exhaust temperature of the exhaust air A3 can be lowered. As a result, it is possible to prevent the exhaust air line 34 for sending the exhaust air A3 from being damaged due to high temperature. Moreover, since the assumed temperature which designs the exhaust air line 34 can be determined and this assumed temperature can be set to the temperature close
  • the exhaust line is the exhaust fuel line 43 for sending the exhaust fuel gas L3 exhausted from the SOFC 13.
  • the exhaust fuel gas L3 discharged from the SOFC 13 exceeds the temperature during rated operation, the exhaust fuel gas L3 can be cooled and the exhaust temperature of the exhaust fuel gas L3 can be lowered. As a result, it is possible to prevent the exhaust fuel line 43 for sending the exhaust fuel gas L3 from being damaged due to high temperature.
  • the assumed temperature for designing the exhaust fuel line 43 can be determined and the assumed temperature can be set to a temperature close to the rated operation of the SOFC 13, it is possible to perform a design that is safe and does not increase the manufacturing cost. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池から排出される排気の温度が定格運転時の温度を超える事象があっても、排気を送る排気ラインでの排気温度を保護する。SOFC(13)と、SOFC(13)から排出される排空気(A3)または排燃料ガス(L3)を送る排空気ライン(34)または排燃料ライン(43)と、SOFC(13)から排出される排空気(A3)または排燃料ガス(L3)の温度、あるいは排空気ライン(34)または排燃料ライン(43)の温度を検出する温度検出器(67)と、排空気ライン(34)または排燃料ライン(43)の排空気(A3)または排燃料ガス(L3)を冷却する排気冷却装置(61)と、温度検出器(67)により検出された温度が所定温度を超えた場合、排気冷却装置(61)を起動する制御装置(62)と、を有する。

Description

発電システム及び発電システムにおける燃料電池排気の冷却方法
 本発明は、燃料電池とガスタービンと蒸気タービンを組み合わせた発電システム及び発電システムにおける燃料電池排気の冷却方法に関するものである。
 燃料電池としての固体酸化物形燃料電池(Solid Oxide Fuel Cell:以下SOFC)は、用途の広い高効率な燃料電池として知られている。このSOFCは、イオン導電率を高めるために作動温度が高くされているので、ガスタービンの圧縮機から吐出された空気を空気極側に供給する空気(酸化剤)として使用することができる。また、SOFCは、利用できなかった高温の燃料をガスタービンの燃焼器に燃料として使用することができる。
 このため、例えば、下記特許文献1に記載されるように、高効率発電を達成することができる発電システムとして、SOFCとガスタービンと蒸気タービンを組み合わせたものが各種提案されている。この特許文献1に記載されたコンバインドシステムは、SOFCと、このSOFCから排出された排燃料ガスと排出空気とを燃焼するガスタービン燃焼器と、空気を圧縮してSOFCに供給する圧縮機を有するガスタービンとを設けたものである。
特開2009-205930号公報
 上述した従来の発電システムにおいて、SOFCから排出される排気(排空気または排燃料ガス)は高温であり、定格運転時では、例えば排空気は600℃、排燃料ガスは450℃に達する。また、SOFCの運転状態に変化がある場合、排気温度が定格運転時の温度を超える事象も想定される。このため、排空気をガスタービン燃焼器に送るための排空気ライン(配管)や、排燃料ガスをガスタービン燃焼器に送るための排燃料ライン(配管)は、定格運転時の温度を超える想定温度に耐え得る配管材料や配管厚さに設計することが必要となる。しかし、この想定温度は、どの程度になるかを見極めることは難しく、設計が定められない問題がある。しかも、想定温度を見極めることができたとしても、想定温度に耐え得る配管材料が非常に高価であったり、この配管材料で非常に厚い配管厚さにしたりすることになり、製造コストが嵩む問題がある。
 本発明は、上述した課題を解決するものであり、燃料電池から排出される排気の温度が定格運転時の温度を超える事象があっても、排気を送る排気ライン(配管)を保護することのできる発電システム及び発電システムにおける燃料電池排気の冷却方法を提供することを目的とする。
 上記の目的を達成するための本発明の発電システムは、燃料電池と、前記燃料電池から排出される排気を送る排気ラインと、前記燃料電池から排出される排気の温度または前記排気ラインの温度を検出する温度検出器と、前記排気ラインの排気を冷却する排気冷却部と、前記温度検出器により検出された温度が所定温度を超えた場合、前記排気冷却部を起動する制御部と、を有することを特徴とする。
 従って、燃料電池の運転状態に変化があり、そのときに燃料電池から排出される排気の排気温度が定格運転時の温度を超える場合、排気冷却装置を起動することで、排気を冷却し、排気の排気温度を下げることができる。その結果、排気を送るための排気ラインが高温により破損する事態を防ぐことができる。また、排気ラインを設計する想定温度が見極められ、かつこの想定温度を燃料電池の定格運転時に近い温度に設定することができるため、安全で製造コストが嵩むことのない設計を行うことができる。
 本発明の発電システムでは、前記排気冷却部が、冷却材を貯蔵する冷却材貯蔵部と、前記排気ラインと前記冷却材貯蔵部とを接続する冷却材供給ラインと、前記冷却材供給ラインに設けられた冷却材開閉弁と、前記冷却材供給ラインに設けられて前記冷却材貯蔵部から前記排気ラインに冷却材を送り出す冷却材圧送機と、を備え、前記制御部は、前記温度検出器により検出された温度が所定温度を超えた場合、前記冷却材開閉弁を開放制御すると共に前記冷却材圧送機を駆動することを特徴とする。
 従って、燃料電池の運転状態に変化があり、そのときに燃料電池から排出される排気の排気温度が定格運転時の温度を超える場合、冷却材開閉弁を開放すると共に、冷却材圧送機を駆動することで、排気を冷却し、排気の排気温度を下げることができる。
 本発明の発電システムでは、前記冷却材貯蔵部に冷却材として水が貯蔵されることを特徴とする。
 従って、燃料電池の運転状態に変化があり、そのときに燃料電池から排出される排気の排気温度が定格運転時の温度を超える場合、冷却材として水を排気ラインに供給する。このため、水は高温の排気により気化するため、排気温度を下げることができる。
 本発明の発電システムでは、システム内に析出する水を抜き出して回収する水回収部を備え、当該水回収部で回収される水が前記冷却材貯蔵部に冷却材として貯蔵されることを特徴とする。
 従って、システム内に析出する水を抜き出し、この水を冷却材貯蔵部に貯蔵することで、システム内で析出する水を冷却材として有効利用することができる。
 本発明の発電システムでは、前記排気ラインの圧力を検出する圧力検出器を備え、前記制御部は、前記圧力検出器で検出した圧力に基づき、前記冷却材圧送機の冷却材を送り出す圧力が前記排気ラインの圧力よりも高くなるように前記冷却材圧送機を制御することを特徴とする。
 従って、燃料電池から排出される排気の温度上昇に伴って圧力が上昇した場合、この圧力を圧力検出器で検出し、冷却材圧送機が冷却材を圧送する圧力を上昇させる。このため、冷却材を圧力排気ラインに確実に送ることができ、排気温度を確実に下げることができる。
 本発明の発電システムでは、前記排気ラインが、前記燃料電池から排出される排空気を送る排空気ラインであることを特徴とする。
 従って、燃料電池から排出される排空気の排気温度が定格運転時の温度を超える場合、排空気を冷却し、排空気の排気温度を下げることができる。その結果、排空気を送るための排空気ラインが高温により破損する事態を防ぐことができる。また、排空気ラインを設計する想定温度が見極められ、かつこの定温度を燃料電池の定格運転時に近い温度に設定することができるため、安全で製造コストが嵩むことのない設計を行うことができる。
 本発明の発電システムでは、前記排気ラインが、前記燃料電池から排出される排燃料ガスを送る排燃料ラインであることを特徴とする。
 従って、燃料電池から排出される排燃料ガスの排気温度が定格運転時の温度を超える場合、排燃料ガスを冷却し、排燃料ガスの排気温度を下げることができる。その結果、排燃料ガスを送るための排燃料ラインが高温により破損する事態を防ぐことができる。また、排燃料ラインを設計する想定温度が見極められ、かつこの想定温度を燃料電池の定格運転時に近い温度に設定することができるため、安全で製造コストが嵩むことのない設計を行うことができる。
 また、本発明の発電システムにおける燃料電池排気の冷却方法は、燃料電池から排出される排気を排気ラインで送る工程と、前記燃料電池から排出される排気の温度が所定温度を超えた場合、前記排気ラインの排気を冷却する工程と、を有することを特徴とする。
 従って、燃料電池の運転状態に変化があり、そのときに燃料電池から排出される排気の排気温度が定格運転時の温度を超える場合、排気を冷却し、排気の排気温度を下げる。その結果、排気を送るための排気ラインが高温により破損する事態を防ぐことができる。また、排気ラインを設計する想定温度が見極められ、かつこの想定温度を燃料電池の定格運転時に近い温度に設定することができるため、安全で製造コストが嵩むことのない設計を行うことができる。
 本発明の発電システム及び発電システムにおける燃料電池排気の冷却方法によれば、燃料電池から排出される排気の温度が定格運転時の温度を超える事象があっても、排気を冷却することにより、排気を送る排気ラインを保護することができる。
図1は、本発明の一実施例に係る発電システムにおける冷却装置を表す概略図である。 図2は、本実施例の係る発電システムにおける冷却装置の冷却材供給部の一部を表す構成図である。 図3は、本実施例の係る発電システムにおける冷却装置の冷却材供給部の一部を表す構成図である。 図4は、本実施例の係る発電システムにおける冷却装置の冷却材供給部の一部を表す構成図である。 図5は、本実施例の発電システムにおける固体酸化物形燃料電池排気の冷却のフローチャートである。 図6は、本実施例の発電システムにおける冷却材の補充のフローチャートである。 図7は、本実施例の発電システムにおける冷却材の供給時のフローチャートである。 図8は、本実施例の発電システムを表す概略構成図である。
 以下に添付図面を参照して、本発明に係る発電システム及び発電システムにおける燃料電池排気の冷却方法の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 本実施例の発電システムは、固体酸化物形燃料電池(以下、SOFCと称する。)とガスタービンと蒸気タービンを組み合わせたトリプルコンバインドサイクル(Triple Combined Cycle:登録商標)である。このトリプルコンバインドサイクルは、ガスタービンコンバインドサイクル発電(GTCC)の上流側にSOFCを設置することにより、SOFC、ガスタービン、蒸気タービンの3段階で発電することができるため、極めて高い発電効率を実現することができる。なお、以下の説明では、本発明の燃料電池として固体酸化物形燃料電池を適用して説明するが、この形式の燃料電池に限定されるものではない。
 図1は、本発明の一実施例に係る発電システムにおける冷却装置を表す概略図、図2~図4は、本実施例の係る発電システムにおける冷却装置の冷却材供給部の一部を表す構成図、図5は、本実施例の発電システムにおけるSOFC排気の冷却のフローチャート、図6は、本実施例の発電システムにおける冷却材の補充のフローチャート、図7は、本実施例の発電システムにおける冷却材の供給時のフローチャート、図8は、本実施例の発電システムを表す概略構成図である。
 本実施例において、図8に示すように、発電システム10は、ガスタービン11及び発電機12と、SOFC13と、蒸気タービン14及び発電機15とを有している。この発電システム10は、ガスタービン11による発電と、SOFC13による発電と、蒸気タービン14による発電とを組み合わせることで、高い発電効率を得るように構成したものである。
 ガスタービン11は、圧縮機21、燃焼器22、タービン23を有しており、圧縮機21とタービン23は、回転軸24により一体回転可能に連結されている。圧縮機21は、空気取り込みライン25から取り込んだ空気Aを圧縮する。燃焼器22は、圧縮機21から第1圧縮空気供給ライン26を通して供給された圧縮空気A1と、第1燃料ガス供給ライン27から供給された燃料ガスL1とを混合して燃焼する。タービン23は、燃焼器22から排ガス供給ライン28を通して供給された排ガス(燃焼ガス)Gにより回転する。なお、図示しないが、タービン23は、圧縮機21で圧縮され圧縮空気A1が車室を通して供給され、この圧縮空気A1を冷却空気として翼などを冷却する。発電機12は、タービン23と同軸上に設けられており、タービン23が回転することで発電することができる。なお、ここでは、燃焼器22に供給する燃料ガスL1として、例えば、液化天然ガス(LNG)を用いている。
 SOFC13は、還元剤としての高温の燃料ガスと酸化剤としての高温の空気(酸化性ガス)が供給されることで、所定の作動温度にて反応して発電を行うものである。このSOFC13は、圧力容器内に空気極と固体電解質と燃料極が収容されて構成される。空気極に圧縮空気が供給され、燃料極に燃料ガスが供給されることで発電を行う。なお、ここでは、SOFC13に供給する燃料ガスL2として、例えば、液化天然ガス(LNG)、水素(H)及び一酸化炭素(CO)、メタン(CH)などの炭化水素ガス、石炭など炭素質原料のガス化設備により製造したガスを用いている。また、SOFC13に供給される圧縮空気の空気は、酸素を略15%~30%含む酸化性ガスであり、代表的には空気が好適であるが、空気以外にも燃焼排ガスと空気の混合ガスや、酸素と空気の混合ガスなどが使用可能である(以下、SOFC13に供給される酸化性ガスを空気という)。
 このSOFC13は、第1圧縮空気供給ライン26から分岐した第2圧縮空気供給ライン(圧縮空気供給ライン)31が連結され、圧縮機21が圧縮した一部の圧縮空気A2を空気極の導入部に供給することができる。この第2圧縮空気供給ライン31は、供給する空気量を調整可能な制御弁32と、圧縮空気A2を昇圧可能なブロワ33とが空気の流れ方向に沿って設けられている。制御弁32は、第2圧縮空気供給ライン31における空気の流れ方向の上流側に設けられ、ブロワ33は、制御弁32の下流側に設けられている。SOFC13は、空気極で用いられた排空気A3を排出する排空気ライン34が連結されている。この排空気ライン34は、空気極で用いられた排空気A3を外部に排出する排出ライン35と、燃焼器22に連結される圧縮空気循環ライン36とに分岐される。これら排出ライン35と圧縮空気循環ライン36とを含め排空気ライン34ともいう。排出ライン35は、排出する空気量を調整可能な制御弁37が設けられ、圧縮空気循環ライン36は、循環する空気量を調整可能な制御弁38が設けられている。
 また、SOFC13は、燃料ガスL2を燃料極の導入部に供給する第2燃料ガス供給ライン41が設けられている。第2燃料ガス供給ライン41は、供給する燃料ガス量を調整可能な制御弁42が設けられている。SOFC13は、燃料極で用いられた排燃料ガスL3を排出する排燃料ライン43が連結されている。この排燃料ライン43は、外部に排出する排出ライン44と、燃焼器22に連結される排燃料ガス供給ライン45とに分岐される。これら排出ライン44と排燃料ガス供給ライン45とを含め排燃料ライン43ともいう。排出ライン44は、排出する燃料ガス量を調整可能な制御弁46が設けられ、排燃料ガス供給ライン45は、供給する燃料ガス量を調整可能な制御弁47と、燃料を昇圧可能なブロワ48が燃料の流れ方向に沿って設けられている。制御弁47は、排燃料ガス供給ライン45における排燃料ガスL3の流れ方向の上流側に設けられ、ブロワ48は、制御弁47の排燃料ガスL3の流れ方向の下流側に設けられている。
 また、SOFC13は、排燃料ライン43と第2燃料ガス供給ライン41とを連結する燃料ガス再循環ライン49が設けられている。燃料ガス再循環ライン49は、排燃料ライン43の排燃料ガスL3を第2燃料ガス供給ライン41に再循環する再循環ブロワ50が設けられている。
 蒸気タービン14は、排熱回収ボイラ(HRSG)51で生成された蒸気によりタービン52を回転するものである。この排熱回収ボイラ51は、ガスタービン11(タービン23)からの排ガスライン53が連結されており、空気と高温の排ガスGとの間で熱交換を行うことで、蒸気Sを生成する。蒸気タービン14(タービン52)は、排熱回収ボイラ51との間に蒸気供給ライン54と給水ライン55が設けられている。そして、給水ライン55は、復水器56と給水ポンプ57が設けられている。発電機15は、タービン52と同軸上に設けられており、タービン52が回転することで発電することができる。なお、排熱回収ボイラ51で熱が回収された排ガスGは、有害物質を除去されてから大気へ放出される。
 ここで、本実施例の発電システム10の作動について説明する。発電システム10を起動する場合、ガスタービン11、蒸気タービン14、SOFC13の順に起動する。
 まず、ガスタービン11にて、圧縮機21が空気Aを圧縮し、燃焼器22が圧縮空気A1と燃料ガスL1とを混合して燃焼し、タービン23が排ガスGにより回転することで、発電機12が発電を開始する。次に、蒸気タービン14にて、排熱回収ボイラ51により生成された蒸気Sによりタービン52が回転し、これにより発電機15が発電を開始する。
 続いて、SOFC13では、まず、圧縮空気A2を供給して昇圧を開始すると共に加熱を開始する。排出ライン35の制御弁37と圧縮空気循環ライン36の制御弁38を閉止し、第2圧縮空気供給ライン31のブロワ33を停止した状態で、制御弁32を所定開度だけ開放する。すると、圧縮機21で圧縮した一部の圧縮空気A2が第2圧縮空気供給ライン31からSOFC13側へ供給される。これにより、SOFC13側は、圧縮空気A2が供給されることで圧力が上昇する。
 一方、SOFC13では、燃料ガスL2を供給して昇圧を開始する。排出ライン44の制御弁46と排燃料ガス供給ライン45の制御弁47を閉止し、ブロワ48を停止した状態で、第2燃料ガス供給ライン41の制御弁42を開放すると共に、燃料ガス再循環ライン49の再循環ブロワ50を駆動する。すると、燃料ガスL2が第2燃料ガス供給ライン41からSOFC13側へ供給されると共に、排燃料ガスL3が燃料ガス再循環ライン49により再循環する。これにより、SOFC13側は、燃料ガスL2が供給されることで圧力が上昇する。
 そして、SOFC13の空気極側の圧力が圧縮機21の出口圧力になると、制御弁32を全開にすると共に、ブロワ33を駆動する。それと同時に制御弁37を開放してSOFC13からの排空気A3を排出ライン35から排出する。すると、圧縮空気A2がブロワ33により昇圧されてからSOFC13側へ供給される。それと同時に制御弁46を開放してSOFC13からの排燃料ガスL3を排出ライン44から排出する。そして、SOFC13における空気極側の圧力と燃料極側の圧力が目標圧力に到達すると、SOFC13の昇圧が完了する。
 その後、SOFC13の反応(発電)が安定し、排空気A3と排燃料ガスL3の成分が安定したら、制御弁37を閉止する一方、制御弁38を開放する。すると、SOFC13からの排空気A3が圧縮空気循環ライン36から燃焼器22に供給される。また、制御弁46を閉止する一方、制御弁47を開放してブロワ48を駆動する。すると、SOFC13からの排燃料ガスL3が排燃料ガス供給ライン45から燃焼器22に供給される。このとき、第1燃料ガス供給ライン27から燃焼器22に供給される燃料ガスL1を減量する。
 ここで、ガスタービン11の駆動による発電機12での発電、SOFC13での発電、蒸気タービン14の駆動により発電機15での発電が全て行われることとなり、発電システム10が定常運転となる。
 ところで、SOFC13から排出される排気(排空気A3または排燃料ガスL3)は高温であり、定格運転時では、例えば排空気A3は600℃、排燃料ガスL3は450℃に達する。そして、SOFC13の運転状態に変化がある場合、そのときの排気温度が定格運転時の温度を超える事象も想定される。
 そこで、本実施例の発電システム10では、図1に示すように、排空気A3や排燃料ガスL3(排空気A3や排燃料ガスL3を総称して排気という)の排気温度を下げるため、SOFC13から排出される排空気を送る排空気ライン34や、SOFC13から排出される排燃料ガスL3を送る排燃料ライン43に(排空気ライン34や排燃料ライン43を総称して排気ラインという)、排気冷却装置(排気冷却部)61を設け、制御装置(制御部)62は、SOFC13から排出される排気の温度が所定温度を超えた場合に排気冷却装置61を駆動するようにしている。
 排空気ライン34に設けられる排気冷却装置61は、排空気ライン34のSOFC13直近に設けられており、冷却材貯蔵部63と、冷却材供給ライン64と、冷却材開閉弁65と、冷却材圧送機66と、温度検出器67(67a)とを有している。同様に、排燃料ライン43に設けられる排気冷却装置61は、排燃料ライン43のSOFC13直近に設けられており、冷却材貯蔵部63と、冷却材供給ライン64と、冷却材開閉弁65と、冷却材圧送機66と、温度検出器67(67b)とを有している。排空気ライン34に設けられる排気冷却装置61と、排燃料ライン43に設けられる排気冷却装置61とは、同様の構成であるため、以下では、排空気ライン34に設けられる排気冷却装置61を主として説明する。
 冷却材貯蔵部63は、冷却材Cを貯蔵する容器である。この冷却材貯蔵部63は、排空気ライン34に設けられる排気冷却装置61と、排燃料ライン43に設けられる排気冷却装置61とで共有されてもよい。なお、ここでの冷却材Cは、水が適用され、この水が冷却材貯蔵部63に貯蔵される。
 冷却材供給ライン64は、排気ラインと冷却材貯蔵部63とを接続する。具体的に、冷却材供給ライン64は、排空気ライン34に設けられる排気冷却装置61では、排空気ライン34と冷却材貯蔵部63とを接続する。一方、冷却材供給ライン64は、排燃料ライン43に設けられる排気冷却装置61では、排燃料ライン43と冷却材貯蔵部63とを接続する。この冷却材供給ライン64は、図2に示すように、排空気ライン34や排燃料ライン43の内部に冷却材噴射ノズル64aが設けられている。図2に示す冷却材噴射ノズル64aは、単一で示されているが、これに限らない。例えば、図3に示すように、排空気ライン34や排燃料ライン43の外側を囲む環状ライン64bに冷却材供給ライン64が接続され、環状ライン64bから排空気ライン34や排燃料ライン43に接続された複数の枝ライン64cに、排空気ライン34や排燃料ライン43の内部に設けられた複数の冷却材噴射ノズル64aが接続されていてもよい。
 冷却材開閉弁65は、冷却材供給ライン64に設けられ、冷却材供給ライン64を開閉する。
 冷却材圧送機66は、冷却材供給ライン64上の冷却材貯蔵部63と冷却材開閉弁65の間に設けられ、冷却材貯蔵部63から排空気ライン34に冷却材Cを送り出す。
 温度検出器67は、SOFC13から排出される排気の温度を検出する。具体的に、温度検出器67aは、排空気ライン34に設けられる排気冷却装置61では、SOFC13における空気極の排空気A3の温度を検出する。この温度検出器67aは、排空気ライン34のSOFC13直近に設けられて、排空気ライン34に送られる排空気A3の温度を検出してもよい。また、温度検出器67aは、排空気ライン34のSOFC13直近に設けられて、排空気ライン34の温度を検出してもよい。一方、温度検出器67bは、排燃料ライン43に設けられる排気冷却装置61では、SOFC13における燃料極の排燃料ガスL3の温度を検出する。この温度検出器67bは、排燃料ライン43のSOFC13直近に設けられて、排燃料ライン43に送られる排燃料ガスL3の温度を検出してもよい。また、温度検出器67bは、排燃料ライン43のSOFC13直近に設けられて、排燃料ライン43の温度を検出してもよい。
 制御装置62は、排空気A3や排燃料ガスL3の排気温度の上限温度(例えば、SOFC13が定格運転時の温度を超える所定温度)が予め記憶されている。そして、制御装置62は、温度検出器67で検出した排気温度が上限温度を超えた場合、排気冷却装置61を起動する。
 即ち、図4に示すように、SOFC13の定格運転時において、排気温度が上昇し、温度検出器67で検出した排気温度が上限温度を超えた場合(ステップS1:Yes)、制御装置62は、冷却材開閉弁65を開放すると共に、冷却材圧送機66を駆動する(ステップS2)。すると、冷却材Cが、冷却材貯蔵部63から排空気ライン34に送り出され、冷却材噴射ノズル64aから排空気ライン34や排燃料ライン43の内部に噴射される。一方、排気温度が上限温度を超えていなければ(ステップS1:No)、制御装置62は、温度検出器67で検出した排気温度を再び入力して監視を行う。
 そして、温度検出器67で検出した排気温度が上限温度を下回った場合(ステップS3:Yes)、制御装置62は、冷却材開閉弁65を閉止すると共に、冷却材圧送機66を停止し(ステップS4)、本制御を終了し、ステップS1に戻って温度検出器67で検出した排気温度を再び入力して監視を行う。一方、排気温度が低下しなければ(ステップS3:No)、制御装置62は、ステップS2に戻って、冷却材開閉弁65の開放及び冷却材圧送機66の駆動を続ける。例えば、温度検出器67aで検出した排気温度が上限温度を超えると、排気ライン34に設けられた冷却材噴射ノズル64aから冷却材Cが噴射される。その後、温度検出器67aで検出した排気温度が上限温度を下回ると、冷却材噴射ノズル64aから冷却材Cの噴射が停止する。
 このように本実施例の発電システム10にあっては、SOFC13と、SOFC13から排出される排空気A3または排燃料ガスL3を送る排空気ライン34または排燃料ライン43と、SOFC13から排出される排空気A3または排燃料ガスL3の温度、あるいは排空気ライン34または排燃料ライン43の温度を検出する温度検出器67と、排空気ライン34または排燃料ライン43の排空気A3または排燃料ガスL3を冷却する排気冷却装置61と、温度検出器67により検出された温度が所定温度を超えた場合、排気冷却装置61を起動する制御装置62と、を有する。
 従って、SOFC13の運転状態に変化があり、そのときにSOFC13から排出される排空気A3または排燃料ガスL3の排気温度が定格運転時の温度を超える場合、排気冷却装置61を起動することで、排空気A3または排燃料ガスL3を冷却し、排空気A3または排燃料ガスL3の排気温度を下げることができる。その結果、排空気A3または排燃料ガスL3を送るための排空気ライン34または排燃料ライン43が高温により破損する事態を防ぐことができる。また、排空気ライン34または排燃料ライン43を設計する想定温度が見極められ、かつこの想定温度をSOFC13の定格運転時に近い温度に設定することができるため、安全で製造コストが嵩むことのない設計を行うことができる。
 また、本実施例の発電システム10における燃料電池排気の冷却方法にあっては、SOFC13から排出される排空気A3または排燃料ガスL3を排空気ライン34または排燃料ライン43で送る工程と、SOFC13から排出される排空気A3または排燃料ガスL3の温度が所定温度を超えた場合、排空気ライン34または排燃料ライン43の排空気A3または排燃料ガスL3を冷却する工程と、を有する。
 従って、SOFC13の運転状態に変化があり、そのときにSOFC13から排出される排空気A3または排燃料ガスL3の排気温度が定格運転時の温度を超える場合、排空気A3または排燃料ガスL3を冷却し、排空気A3または排燃料ガスL3の排気温度を下げることができる。その結果、排空気A3または排燃料ガスL3を送るための排空気ライン34または排燃料ライン43が高温により破損する事態を防ぐことができる。また、排空気ライン34または排燃料ライン43を設計する想定温度が見極められ、かつこの想定温度をSOFC13の定格運転時に近い温度に設定することができるため、安全で製造コストが嵩むことのない設計を行うことができる。
 また、本実施例の発電システム10は、排気冷却装置61が、冷却材Cを貯蔵する冷却材貯蔵部63と、排空気ライン34または排燃料ライン43と冷却材貯蔵部63とを接続する冷却材供給ライン64と、冷却材供給ライン64に設けられた冷却材開閉弁65と、冷却材供給ライン64に設けられて冷却材貯蔵部63から排空気ライン34または排燃料ライン43に冷却材Cを送り出す冷却材圧送機66と、を備え、制御装置62は、温度検出器67により検出された温度が所定温度を超えた場合、冷却材開閉弁65を開放制御すると共に冷却材圧送機66を駆動する。
 従って、SOFC13の運転状態に変化があり、そのときにSOFC13から排出される排空気A3または排燃料ガスL3の排気温度が定格運転時の温度を超える場合、冷却材開閉弁65を開放すると共に、冷却材圧送機66を駆動することで、排空気A3または排燃料ガスL3を冷却し、排空気A3または排燃料ガスL3の排気温度を下げることができる。
 また、本実施例の発電システム10は、冷却材貯蔵部63に冷却材Cとして水が貯蔵されることが好ましい。
 従って、SOFC13の運転状態に変化があり、そのときにSOFC13から排出される排空気A3または排燃料ガスL3の排気温度が定格運転時の温度を超える場合、冷却材Cとして水を排空気ライン34または排燃料ライン43に供給する。このため、水は高温の排空気A3または排燃料ガスL3に触れて気化し、これにより排空気A3または排燃料ガスL3の温度を下げることができる。
 なお、排燃料ライン43に設けられる排気冷却装置61では、冷却材Cとして水の他、エチルアルコールまたはメチルアルコールが冷却材貯蔵部63に貯蔵されてもよい。この場合、エチルアルコールまたはメチルアルコールが高温の排燃料ガスL3により気化されるため、排燃料ガスL3の温度を下げることができる。気化されたエチルアルコールまたはメチルアルコールは、燃焼器22で燃焼される。
 ところで、本実施例の発電システム10は、図5に示すように、水回収装置(水回収部)71が設けられている。水回収装置71は、システム内に析出する水を抜き出して回収する。
 この水回収装置71は、例えば、発電システム10における各ライン34,35,36,43,44,45,49に設けることができる。図5では、これらのラインを代表して、水回収装置71を排空気ライン34または排燃料ライン43に設けた形態を示す。排空気ライン34または排燃料ライン43は、上述したように、SOFC13から排出される高温の排空気A3または排燃料ガスL3が送られる。このため、排空気A3または排燃料ガスL3に含まれる水分が水滴となって排空気ライン34または排燃料ライン43の内部に析出する。そして、この水滴が燃焼器22に流入すると、燃焼器22の燃焼に不具合が発生するおそれがある。そこで、水回収装置71によりこの水を抜き出して回収する。
 水回収装置71は、図5に示すように、水回収機構72と、水回収容器73と、水回収ライン74と、貯留量検出器75と、水回収開閉弁76とを有している。
 水回収機構72は、例えば、排空気ライン34または排燃料ライン43の内部の低い位置に設けられ、水回収機72aと貯留部72bとを有する。水回収機72aは、排空気A3または排燃料ガスL3に含まれる水分を分離して回収するものである。水回収機72aは、例えば、排空気ライン34または排燃料ライン43の内部にメッシュを配置してこのメッシュに水分を付着させて分離するものや、排空気ライン34または排燃料ライン43の内部に複数の波板を隙間を空けて配置してこの波板に水分を付着させて分離するものや、排空気ライン34または排燃料ライン43の内部において旋回流を形成することで遠心力により水分を分離するものや、排空気A3または排燃料ガスL3を上方に流通させて下方に水分を溜めるものなど様々な形態がある。貯留部72bは、排空気ライン34または排燃料ライン43の内部の低い位置で下方に凹んで形成された凹部である。貯留部72bは、水回収機72aで分離された水分が滴下して溜まる。
 水回収容器73は、貯留部72bに溜まった水を貯蔵する容器である。この水回収容器73は、排空気ライン34または排燃料ライン43の外部であって貯留部72bよりも低い位置に設けられている。
 水回収ライン74は、貯留部72bに溜まった水を水回収容器73に送るもので、貯留部72bと水回収容器73との間を接続する。
 貯留量検出器75は、貯留部72bに設けられており、貯留部72bに溜まる水の貯留量を検出する。貯留量検出器75で検出された貯留量は、制御装置62に入力される。
 水回収開閉弁76は、水回収ライン74に設けられ、水回収ライン74を開閉する。水回収開閉弁76の開閉は制御装置62により制御される。
 この水回収装置71は、貯留部72bに溜まり、貯留量検出器75で検出された貯留量が所定の上限量を超えた場合、制御装置62は、水回収開閉弁76を開放制御する。すると、水回収ライン74を介して貯留部72bの水が水回収容器73に送られる。一方、貯留部72bの水が減り、貯留量検出器75で検出された貯留量が所定の下限量を下回った場合(または無くなった場合)、制御装置62は、水回収開閉弁76を閉止制御する。
 なお、水回収装置71は、水回収容器73における水より上の空間が、ガス排出ライン77を介して燃焼設備78に接続されている。そして、水回収容器73に水と共に排燃料ライン43の排燃料ガスL3が送られた場合、この排燃料ガスL3がガス排出ライン77を介して燃焼設備78に送られ燃焼される。
 この水回収装置71は、水供給装置(水供給部)81を介して冷却材貯蔵部63に接続されている。水供給装置81は、水回収容器73と冷却材貯蔵部63との間を接続する水供給ライン82を有している。そして、水供給ライン82に、水供給開閉弁83および水供給圧送機84が設けられている。水供給開閉弁83は、水供給ライン82を開閉する。水供給開閉弁83の開閉は制御装置62により制御される。水供給圧送機84は、水回収容器73から水供給ライン82に水を送り出す。水供給圧送機84の駆動は制御装置62により制御される。また、冷却材貯蔵部63は、貯蔵される水の貯蔵量を検出する貯蔵量検出器85が設けられている。貯蔵量検出器85で検出された貯蔵量は、制御装置62に入力される。
 制御装置62は、冷却材貯蔵部63に貯蔵される水の貯蔵量における下限量が予め記憶されている。そして、制御装置62は、貯蔵量検出器85で検出した貯蔵量が下限量を下回った場合、水供給装置81を起動する。
 即ち、図6に示すように、例えば、冷却材貯蔵部63から排空気ライン34や排燃料ライン43の内部に冷却材Cとしての水が供給されて、冷却材貯蔵部63における水の貯蔵量が減少し、貯蔵量検出器85で検出した貯蔵量が下限量を下回った場合(ステップS21:Yes)、制御装置62は、水供給開閉弁83を開放すると共に、水供給圧送機84を駆動する(ステップS22)。すると、水回収装置71における水回収容器73の水が、水供給ライン82を介して冷却材貯蔵部63に送られる。一方、貯蔵量検出器85で検出した貯蔵量が下限量を下回っていなければ(ステップS21:No)、制御装置62は、貯蔵量検出器85で検出した貯蔵量を再び入力して監視を行う。
 そして、水供給開閉弁83を開放すると共に、水供給圧送機84を駆動した結果、貯蔵量が増加し、貯蔵量検出器85で検出した貯蔵量が満水となった場合(ステップS23:Yes)、制御装置62は、水供給開閉弁83を閉止すると共に、水供給圧送機84を停止(ステップS24)、本制御を終了し、ステップS21に戻って貯蔵量検出器85で検出した貯蔵量を再び入力して監視を行う。一方、貯蔵量が増加しなければ(ステップS23:No)、制御装置62は、ステップS2に戻って、水供給開閉弁83の開放及び水供給圧送機84の駆動を続ける。
 このように本実施例の発電システム10にあっては、システム内に析出する水を抜き出して回収する水回収装置71を備え、この水回収装置71で回収される水が冷却材貯蔵部63に冷却材Cとして貯蔵される。
 従って、システム内に析出する水を抜き出し、この水を冷却材貯蔵部63に貯蔵することで、システム内で析出する水を冷却材Cとして有効利用することができる。
 また、本実施例の発電システム10にあっては、システム内に析出する水を抜き出して回収する水回収装置71と、水回収装置71と冷却材貯蔵部63とを接続する水供給ライン82と、水供給ライン82に設けられた水供給開閉弁83と、水供給ライン82に設けられて水回収装置71から冷却材貯蔵部63に水を送り出す水供給圧送機84と、冷却材貯蔵部63における水の貯蔵量を検出する貯蔵量検出器85と、を備え、制御装置62は、貯蔵量検出器85により検出された水の貯蔵量が下限量を下回った場合、水供給開閉弁83を開放制御すると共に水供給圧送機84を駆動する。
 従って、冷却材貯蔵部63に貯蔵される水の貯蔵量が減った場合、システム内に析出する水を抜き出して回収する水回収装置71から冷却材貯蔵部63に水を供給する。このため、システム内に析出する水を用いて、排空気A3または排燃料ガスL3を冷却することができる。しかも、冷却材貯蔵部63における水の貯蔵量が減った場合に、水を補充することができる。この結果、冷却用の水の不足をなくし、排空気A3または排燃料ガスL3の温度を確実に下げることができる。
 なお、水回収装置71に回収され貯留部72bに貯留された水は、冷却材Cとして用いる以外に、発電システム10におけるタービン11の燃焼器22の冷却水として用いることができる。
 ところで、本実施例の発電システム10は、図1に示すように、排気ラインとしての排空気ライン34に圧力検出器68(68a)、排燃料ライン43に圧力検出器68(68b)が設けられている。これら圧力検出器68は、排空気ライン34や排燃料ライン43の圧力を検出する。圧力検出器68で検出された圧力は、制御装置62に入力される。
 制御装置62は、圧力検出器68で検出した圧力に基づき、冷却材圧送機66を制御する。
 即ち、図8に示すように、図4に示す制御において、ステップS2で冷却材圧送機を駆動する場合、圧力検出器68で検出したライン圧力(排空気ライン34や排燃料ライン43の圧力)が冷却材圧送機66における圧送の圧力を超える場合(ステップS31)、制御装置62は、例えば、冷却材圧送機66の回転数を上げるなど、冷却材圧送機66を制御し、冷却材Cを圧送する圧力を上昇させる(ステップS32)。一方、圧力検出器68で検出した圧力が冷却材圧送機66における圧送の圧力を超えていなければ(ステップS31:No)、制御装置62は、圧力検出器68で検出した圧力を再び入力して監視を行う。
 そして、冷却材圧送機66を制御し、冷却材Cを圧送する圧力を上昇させた結果、圧力検出器68で検出したライン圧力が冷却材圧送機66における圧送の圧力よりも下回っていれば(ステップS33:Yes)、制御装置62は、本制御を終了し、ステップS31に戻って圧力検出器68で検出した圧力を再び入力して監視を行う。一方、圧力検出器68で検出したライン圧力が冷却材圧送機66における圧送の圧力よりも下回っていなければ(ステップS33:No)、制御装置62は、ステップS32に戻って、冷却材圧送機66を制御し、冷却材圧送機66を制御し、冷却材Cを圧送する圧力を上昇させる。
 このように本実施例の発電システム10にあっては、排空気ライン34や排燃料ライン43の圧力を検出する圧力検出器68を備え、制御装置62は、圧力検出器68で検出した圧力に基づき、冷却材圧送機66の冷却材Cを送り出す圧力が排空気ライン34や排燃料ライン43の圧力よりも高くなるように冷却材圧送機66を制御する。
 従って、例えば、SOFC13から排出される排空気A3の温度上昇に伴って圧力が上昇した場合、またはSOFC13から排出される排燃料ガスL3の温度上昇に伴って圧力が上昇した場合、この圧力を圧力検出器68で検出し、冷却材圧送機66が冷却材Cを圧送する圧力を上昇させる。このため、冷却材Cを排空気ライン34や排燃料ライン43に確実に送ることができ、排空気A3または排燃料ガスL3の温度を確実に下げることができる。
 ところで、上述したように、本実施例の発電システム10にあっては、排気ラインが、SOFC13から排出される排空気A3を送る排空気ライン34である。
 従って、SOFC13から排出される排空気A3の排気温度が定格運転時の温度を超える場合、排空気A3を冷却し、排空気A3の排気温度を下げることができる。その結果、排空気A3を送るための排空気ライン34が高温により破損する事態を防ぐことができる。また、排空気ライン34を設計する想定温度が見極められ、かつこの想定温度をSOFC13の定格運転時に近い温度に設定することができるため、安全で製造コストが嵩むことのない設計を行うことができる。
 ところで、上述したように、本実施例の発電システム10にあっては、排気ラインが、SOFC13から排出される排燃料ガスL3を送る排燃料ライン43である。
 従って、SOFC13から排出される排燃料ガスL3の排気温度が定格運転時の温度を超える場合、排燃料ガスL3を冷却し、排燃料ガスL3の排気温度を下げることができる。その結果、排燃料ガスL3を送るための排燃料ライン43が高温により破損する事態を防ぐことができる。また、排燃料ライン43を設計する想定温度が見極められ、かつこの想定温度をSOFC13の定格運転時に近い温度に設定することができるため、安全で製造コストが嵩むことのない設計を行うことができる。
 10 発電システム
 13 SOFC(固体酸化物形燃料電池:燃料電池)
 34 排空気ライン(排気ライン)
 43 排燃料ライン(排気ライン)
 61 排気冷却装置(排気冷却部)
 62 制御装置(制御部)
 63 冷却材貯蔵部
 64 冷却材供給ライン
 65 冷却材開閉弁
 66 冷却材圧送機
 67 温度検出器
 68 圧力検出器
 71 水回収装置(水回収部)
 81 水供給装置(水供給部)
 82 水供給ライン
 83 水供給開閉弁
 84 水供給圧送機
 85 貯蔵量検出器

Claims (8)

  1.  燃料電池と、
     前記燃料電池から排出される排気を送る排気ラインと、
     前記燃料電池から排出される排気の温度または前記排気ラインの温度を検出する温度検出器と、
     前記排気ラインの排気を冷却する排気冷却部と、
     前記温度検出器により検出された温度が所定温度を超えた場合、前記排気冷却部を起動する制御部と、
     を有することを特徴とする発電システム。
  2.  前記排気冷却部が、
     冷却材を貯蔵する冷却材貯蔵部と、
     前記排気ラインと前記冷却材貯蔵部とを接続する冷却材供給ラインと、
     前記冷却材供給ラインに設けられた冷却材開閉弁と、
     前記冷却材供給ラインに設けられて前記冷却材貯蔵部から前記排気ラインに冷却材を送り出す冷却材圧送機と、
     を備え、
     前記制御部は、前記温度検出器により検出された温度が所定温度を超えた場合、前記冷却材開閉弁を開放制御すると共に前記冷却材圧送機を駆動することを特徴とする請求項1に記載の発電システム。
  3.  前記冷却材貯蔵部に冷却材として水が貯蔵されることを特徴とする請求項2に記載の発電システム。
  4.  システム内に析出する水を抜き出して回収する水回収部を備え、当該水回収部で回収される水が前記冷却材貯蔵部に冷却材として水が貯蔵されることを特徴とする請求項2に記載の発電システム。
  5.  前記排気ラインの圧力を検出する圧力検出器を備え、
     前記制御部は、前記圧力検出器で検出した圧力に基づき、前記冷却材圧送機の冷却材を送り出す圧力が前記排気ラインの圧力よりも高くなるように前記冷却材圧送機を制御することを特徴とする請求項2~4のいずれか一つに記載の発電システム。
  6.  前記排気ラインが、前記燃料電池から排出される排空気を送る排空気ラインであることを特徴とする請求項1~5のいずれか一つに記載の発電システム。
  7.  前記排気ラインが、前記燃料電池から排出される排燃料ガスを送る排燃料ラインであることを特徴とする請求項1~5のいずれか一つに記載の発電システム。
  8.  燃料電池から排出される排気を排気ラインで送る工程と、
     前記燃料電池から排出される排気の温度が所定温度を超えた場合、前記排気ラインの排気を冷却する工程と、
     を有することを特徴とする発電システムにおける燃料電池排気の冷却方法。
PCT/JP2013/079945 2012-11-09 2013-11-05 発電システム及び発電システムにおける燃料電池排気の冷却方法 WO2014073547A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/440,452 US9831505B2 (en) 2012-11-09 2013-11-05 Power generation system and method for cooling fuel cell exhaust in power generation system
DE112013005350.0T DE112013005350T5 (de) 2012-11-09 2013-11-05 Energieerzeugungssystem und Verfahren zum Kühlen von Brennstoffzellenabgas in Einem Energieerzeugungssystem
CN201380058074.4A CN104781969B (zh) 2012-11-09 2013-11-05 发电系统及发电系统中的燃料电池排气的冷却方法
KR1020157011990A KR101766559B1 (ko) 2012-11-09 2013-11-05 발전 시스템 및 발전 시스템에 따른 연료 전지 배기의 냉각 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012247119A JP6081149B2 (ja) 2012-11-09 2012-11-09 発電システム及び発電システムにおける燃料電池排気の冷却方法
JP2012-247119 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014073547A1 true WO2014073547A1 (ja) 2014-05-15

Family

ID=50684649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079945 WO2014073547A1 (ja) 2012-11-09 2013-11-05 発電システム及び発電システムにおける燃料電池排気の冷却方法

Country Status (6)

Country Link
US (1) US9831505B2 (ja)
JP (1) JP6081149B2 (ja)
KR (1) KR101766559B1 (ja)
CN (1) CN104781969B (ja)
DE (1) DE112013005350T5 (ja)
WO (1) WO2014073547A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107190B2 (en) * 2012-11-21 2018-10-23 Mitsubishi Hitachi Power Systems, Ltd. Power generation system, driving method for power generation system, and combustor
KR101815006B1 (ko) * 2013-05-13 2018-01-09 삼성전자주식회사 광 도파로를 이용한 벤딩 및 접촉 측정 장치 및 방법
JP6620890B2 (ja) * 2016-08-10 2019-12-18 日産自動車株式会社 燃料電池システム、及び、燃料電池システムの制御方法
JP7340753B2 (ja) * 2017-12-21 2023-09-08 パナソニックIpマネジメント株式会社 燃料電池システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582150A (ja) * 1991-09-20 1993-04-02 Nippon Telegr & Teleph Corp <Ntt> 燃料電池用凝縮器
JPH0955220A (ja) * 1995-08-15 1997-02-25 Mitsubishi Electric Corp 燃料電池のリン酸腐食防止方法およびリン酸腐食防止装置
JP2001023679A (ja) * 1999-07-13 2001-01-26 Chubu Electric Power Co Inc 二重排気ガス管構造
JP2001351656A (ja) * 2000-06-08 2001-12-21 Honda Motor Co Ltd 燃料電池用のガス供給装置
JP2007027055A (ja) * 2005-07-21 2007-02-01 Equos Research Co Ltd 燃料電池及び燃料電池システム
JP2009238391A (ja) * 2008-03-25 2009-10-15 Equos Research Co Ltd 燃料電池システム
JP2011049131A (ja) * 2009-08-26 2011-03-10 Hyundai Motor Co Ltd 燃料電池システム
JP2012038688A (ja) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd 燃料電池発電装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241418B2 (ja) * 1972-06-05 1977-10-18
JP5185657B2 (ja) 2008-02-27 2013-04-17 三菱重工業株式会社 コンバインドシステム
JP2010272342A (ja) * 2009-05-21 2010-12-02 Aisin Seiki Co Ltd 固体酸化物形燃料電池システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582150A (ja) * 1991-09-20 1993-04-02 Nippon Telegr & Teleph Corp <Ntt> 燃料電池用凝縮器
JPH0955220A (ja) * 1995-08-15 1997-02-25 Mitsubishi Electric Corp 燃料電池のリン酸腐食防止方法およびリン酸腐食防止装置
JP2001023679A (ja) * 1999-07-13 2001-01-26 Chubu Electric Power Co Inc 二重排気ガス管構造
JP2001351656A (ja) * 2000-06-08 2001-12-21 Honda Motor Co Ltd 燃料電池用のガス供給装置
JP2007027055A (ja) * 2005-07-21 2007-02-01 Equos Research Co Ltd 燃料電池及び燃料電池システム
JP2009238391A (ja) * 2008-03-25 2009-10-15 Equos Research Co Ltd 燃料電池システム
JP2011049131A (ja) * 2009-08-26 2011-03-10 Hyundai Motor Co Ltd 燃料電池システム
JP2012038688A (ja) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd 燃料電池発電装置

Also Published As

Publication number Publication date
JP2014096278A (ja) 2014-05-22
US20150303496A1 (en) 2015-10-22
JP6081149B2 (ja) 2017-02-15
DE112013005350T5 (de) 2015-07-16
CN104781969A (zh) 2015-07-15
KR20150067328A (ko) 2015-06-17
CN104781969B (zh) 2017-11-03
KR101766559B1 (ko) 2017-08-08
US9831505B2 (en) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6228752B2 (ja) 発電システム及び発電システムの起動方法
KR101688376B1 (ko) 발전 시스템
KR101766555B1 (ko) 발전 시스템 및 발전 시스템에 있어서의 연료 전지의 기동 방법
JP5769695B2 (ja) 発電システム及び発電システムの停止方法
US9806358B2 (en) Power generation system, and methods for starting and operating fuel cell in power generation system
WO2014073547A1 (ja) 発電システム及び発電システムにおける燃料電池排気の冷却方法
JP6071428B2 (ja) 発電システム及び発電システムにおける燃料電池の起動方法
JP6125224B2 (ja) 発電システム及び発電システムの運転方法
WO2014069414A1 (ja) 発電システム及び発電システムの運転方法
WO2014112210A1 (ja) 発電システム
JP6049421B2 (ja) 発電システム及び発電システムの運転方法
JP6081167B2 (ja) 発電システム及び発電システムの運転方法
JP2013182720A (ja) Sofc複合発電装置およびその運転方法
JP6087591B2 (ja) 発電システム及び発電システムにおける燃料電池の起動方法
JP2014160631A (ja) 発電システム及び発電システムの運転方法
JP6087585B2 (ja) 発電システム及び発電システムにおける燃料電池の起動方法
JP6057670B2 (ja) 発電システム及び発電システムにおける燃料電池の運転方法
JP6290558B2 (ja) 制御装置及び方法、それを備えた複合発電システム
JP5984709B2 (ja) 発電システム及び発電システムの駆動方法
JP2014123473A (ja) 発電システム及び発電システムの運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440452

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157011990

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013005350

Country of ref document: DE

Ref document number: 1120130053500

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853502

Country of ref document: EP

Kind code of ref document: A1