WO2014112210A1 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
WO2014112210A1
WO2014112210A1 PCT/JP2013/081813 JP2013081813W WO2014112210A1 WO 2014112210 A1 WO2014112210 A1 WO 2014112210A1 JP 2013081813 W JP2013081813 W JP 2013081813W WO 2014112210 A1 WO2014112210 A1 WO 2014112210A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
supply line
exhaust
combustor
compressed air
Prior art date
Application number
PCT/JP2013/081813
Other languages
English (en)
French (fr)
Inventor
壮 眞鍋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/439,361 priority Critical patent/US20150300262A1/en
Priority to KR1020157011254A priority patent/KR101678325B1/ko
Priority to CN201380056891.6A priority patent/CN104755724A/zh
Priority to DE112013006467.7T priority patent/DE112013006467T5/de
Publication of WO2014112210A1 publication Critical patent/WO2014112210A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation system that combines a fuel cell, a gas turbine, and a steam turbine, and a method for starting a fuel cell in the power generation system.
  • Solid oxide fuel cells Solid Oxide Fuel Cells: hereinafter referred to as SOFC
  • SOFC Solid Oxide Fuel Cells
  • the operating temperature of this SOFC is increased in order to increase the ionic conductivity, compressed air discharged from the compressor of the gas turbine can be used as the air (oxidant) supplied to the air electrode side.
  • the SOFC can use the exhausted high-temperature exhaust fuel gas as fuel for the combustor of the gas turbine.
  • Patent Document 1 various types of power generation systems that can achieve high-efficiency power generation have been proposed in which SOFCs, gas turbines, and steam turbines are combined.
  • the gas turbine includes a compressor that compresses air and supplies the compressed fuel to the SOFC, and a combustor that generates combustion gas from the exhaust fuel gas exhausted from the SOFC and the compressed air. I have it.
  • the combustor generates combustion gas from the exhaust fuel gas exhausted from the SOFC and the fuel gas supplied separately.
  • the exhaust fuel gas exhausted from the SOFC is about 400 ° C.
  • the separately supplied fuel gas is at room temperature (for example, about 15 ° C.), so that a large temperature difference occurs between them.
  • room temperature for example, about 15 ° C.
  • a mixer may be provided in piping upstream of a combustor. By providing this mixer, the low-calorie exhaust gas and the high-calorie fuel gas can be mixed uniformly.
  • the piping for supplying the exhaust fuel gas and the fuel gas to the mixer since there is a large temperature difference between the exhaust fuel gas and the fuel gas, it is necessary to take measures against thermal expansion in the mixer and the surrounding piping, for example, the piping for supplying the exhaust fuel gas and the fuel gas to the mixer. .
  • the present invention solves the above-described problems, and provides a power generation system that can eliminate the need for countermeasures for thermal expansion of a mixer and surrounding piping even if there is a large temperature difference between the exhaust fuel gas and the fuel gas.
  • the purpose is to provide.
  • a power generation system of the present invention includes a fuel cell, a gas turbine having a compressor and a combustor, and a first compressed air supply line for supplying compressed air from the compressor to the combustor.
  • a second compressed air supply line for supplying compressed air from the compressor to the fuel cell, an exhaust air supply line for supplying exhaust air discharged from the fuel cell to the combustor, and a first fuel gas.
  • a heating device for heating the first fuel gas supplied to the combustor through the first fuel gas supply line.
  • the gas turbine combustor can efficiently combust the exhaust fuel gas and the first fuel gas at the same time, and generates an optimal combustion gas.
  • the heating device is a heat exchanger.
  • the heating device as a heat exchanger, heat can be used efficiently, and a separate combustor or the like is not required, and cost increases can be suppressed.
  • the heat exchanger performs heat exchange between exhaust air flowing through the exhaust air supply line and first fuel gas flowing through the first fuel gas supply line. .
  • the first fuel gas is heated by exchanging heat between the exhaust air and the first fuel gas, the first fuel gas can be heated efficiently, and the temperature of the high-temperature exhaust air is lowered.
  • the exhaust air supply equipment can be simplified and the manufacturing cost can be reduced.
  • the heat exchanger performs heat exchange between the exhaust fuel gas flowing through the exhaust fuel gas supply line and the first fuel gas flowing through the first fuel gas supply line. It is said.
  • the first fuel gas is heated by exchanging heat between the exhaust fuel gas and the first fuel gas, the first fuel gas can be efficiently heated, and the temperature of the exhaust fuel gas is reduced. By doing so, the temperature difference between the exhaust fuel gas and the first fuel gas can be reduced as much as possible.
  • the heating device includes a first heat exchanger that performs heat exchange between the exhaust air flowing through the exhaust air supply line and the heat exchange medium, and heat that is heat-exchanged by the first heat exchanger. And a second heat exchanger for exchanging heat between the exchange medium and the first fuel gas flowing through the first fuel gas supply line.
  • the first fuel gas is heated by receiving heat from the heat exchange medium heated by the exhaust air, and heat exchange between the fuel gases can be prevented to ensure safety.
  • the power generation system of the present invention is characterized in that a mixer for mixing the exhaust fuel gas flowing through the exhaust fuel gas supply line and the first fuel gas heated by the heating device is provided.
  • the exhaust fuel gas and the heated first fuel gas are mixed in the mixer and then supplied to the combustor.
  • the temperature difference between the exhaust fuel gas and the first fuel gas Proper mixing is possible, and combustion efficiency in the combustor can be improved.
  • the heating device for heating the first fuel gas supplied to the combustor through the first fuel gas supply line is provided, the exhaust fuel gas and the first fuel gas can be burned efficiently. It is possible to generate optimal combustion gas, secure stable combustion in the gas turbine combustor, and improve power generation efficiency.
  • FIG. 1 is a schematic diagram illustrating a fuel gas supply line in a power generation system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating a power generation system according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a fuel gas supply line in the power generation system according to the second embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating a fuel gas supply line in a power generation system according to Embodiment 3 of the present invention.
  • the power generation system of Example 1 is a triple combined cycle (registered trademark) that combines a solid oxide fuel cell (hereinafter referred to as SOFC), a gas turbine, and a steam turbine.
  • SOFC solid oxide fuel cell
  • gas turbine gas turbine
  • steam turbine a steam turbine.
  • SOFC solid oxide fuel cell
  • GTCC gas turbine combined cycle power generation
  • FIG. 1 is a schematic diagram illustrating a fuel gas supply line in a power generation system according to a first embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram illustrating the power generation system according to the first embodiment.
  • the power generation system 10 includes a gas turbine 11 and a generator 12, a SOFC 13, a steam turbine 14 and a generator 15.
  • the power generation system 10 is configured to obtain high power generation efficiency by combining power generation by the gas turbine 11, power generation by the SOFC 13, and power generation by the steam turbine 14.
  • the gas turbine 11 includes a compressor 21, a combustor 22, and a turbine 23, and the compressor 21 and the turbine 23 are coupled to each other by a rotary shaft 24 so as to be integrally rotatable.
  • the compressor 21 compresses the air A taken in from the air intake line 25.
  • the combustor 22 mixes and combusts the compressed air A ⁇ b> 1 supplied from the compressor 21 through the first compressed air supply line 26 and the fuel gas L ⁇ b> 1 supplied from the first fuel gas supply line 27.
  • the turbine 23 is rotated by the combustion gas G ⁇ b> 1 supplied from the combustor 22 through the exhaust gas supply line 28.
  • the turbine 23 is supplied with compressed air A1 compressed by the compressor 21 through the passenger compartment, and cools the blades and the like using the compressed air A1 as cooling air.
  • the generator 12 is provided on the same axis as the turbine 23 and can generate electric power when the turbine 23 rotates.
  • liquefied natural gas LNG is used as the fuel gas L1 supplied to the combustor 22.
  • the SOFC 13 generates power by reacting at a predetermined operating temperature by being supplied with high-temperature fuel gas as a reducing agent and high-temperature air (oxidizing gas) as an oxidant.
  • the SOFC 13 is configured by accommodating an air electrode, a solid electrolyte, and a fuel electrode in a pressure vessel. A part of the compressed air A2 compressed by the compressor 21 is supplied to the air electrode, and the fuel gas L2 is supplied to the fuel electrode to generate power.
  • the fuel gas L2 supplied to the SOFC 13 for example, liquefied natural gas (LNG), hydrogen (H 2 ), carbon monoxide (CO), hydrocarbon gas such as methane (CH 4 ), carbon such as coal, etc. Gas produced by gasification equipment for quality raw materials is used.
  • the oxidizing gas supplied to the SOFC 13 is a gas containing approximately 15% to 30% oxygen, and typically air is preferable. However, in addition to air, a mixed gas of combustion exhaust gas and air, oxygen And the like can be used (hereinafter, the oxidizing gas supplied to the SOFC 13 is referred to as air).
  • the SOFC 13 is connected to the second compressed air supply line 31 branched from the first compressed air supply line 26, and can supply a part of the compressed air A2 compressed by the compressor 21 to the introduction portion of the air electrode.
  • a control valve 32 capable of adjusting the amount of air to be supplied and a blower (a booster) 33 capable of increasing the pressure of the compressed air A2 are provided along the flow direction of the compressed air A2.
  • the control valve 32 is provided on the upstream side in the flow direction of the compressed air A ⁇ b> 2 in the second compressed air supply line 31, and the blower 33 is provided on the downstream side of the control valve 32.
  • the SOFC 13 is connected to an exhaust air line 34 that exhausts compressed air A3 (exhaust air) used at the air electrode.
  • the exhaust air line 34 is branched into a discharge line 35 that discharges compressed air A3 used in the air electrode to the outside, and a compressed air circulation line 36 that is connected to the combustor 22.
  • the discharge line 35 is provided with a control valve 37 capable of adjusting the amount of air discharged
  • the compressed air circulation line 36 is provided with a control valve 38 capable of adjusting the amount of air circulated.
  • the SOFC 13 is provided with a second fuel gas supply line 41 for supplying the fuel gas L2 to the introduction portion of the fuel electrode.
  • the second fuel gas supply line 41 is provided with a control valve 42 that can adjust the amount of fuel gas to be supplied.
  • the SOFC 13 is connected to an exhaust fuel line 43 that exhausts the exhaust fuel gas L3 used at the fuel electrode.
  • the exhaust fuel line 43 is branched into an exhaust line 44 that discharges to the outside and an exhaust fuel gas supply line 45 that is connected to the combustor 22.
  • the discharge line 44 is provided with a control valve 46 capable of adjusting the amount of fuel gas to be discharged, and the exhaust fuel gas supply line 45 is capable of boosting the exhaust fuel gas L3 and a control valve 47 capable of adjusting the amount of fuel gas to be supplied.
  • a blower 48 is provided along the flow direction of the exhaust fuel gas L3.
  • the control valve 47 is provided on the upstream side in the flow direction of the exhaust fuel gas L 3 in the exhaust fuel gas supply line 45, and the blower 48 is provided on the downstream side of the control valve 47.
  • the SOFC 13 is provided with a fuel gas recirculation line 49 that connects the exhaust fuel line 43 and the second fuel gas supply line 41.
  • the fuel gas recirculation line 49 is provided with a recirculation blower 50 that recirculates the exhaust fuel gas L3 of the exhaust fuel line 43 to the second fuel gas supply line 41.
  • the steam turbine 14 rotates the turbine 52 with the steam generated by the exhaust heat recovery boiler (HRSG) 51.
  • the steam turbine 14 (turbine 52) is provided with a steam supply line 54 and a water supply line 55 between the exhaust heat recovery boiler 51.
  • the water supply line 55 is provided with a condenser 56 and a water supply pump 57.
  • the exhaust heat recovery boiler 51 is connected to an exhaust gas line 53 from the gas turbine 11 (the turbine 23), and heats between the high temperature exhaust gas G ⁇ b> 2 supplied from the exhaust gas line 53 and the water supplied from the water supply line 55. Steam S is produced
  • the generator 15 is provided coaxially with the turbine 52 and can generate electric power when the turbine 52 rotates.
  • the exhaust gas G2 from which heat has been recovered by the exhaust heat recovery boiler 51 is released to the atmosphere after removing harmful substances.
  • the operation of the power generation system 10 of the first embodiment will be described.
  • the electric power generation system 10 starts in order of the gas turbine 11, the steam turbine 14, and SOFC13.
  • the compressor 21 compresses the air A
  • the combustor 22 mixes and combusts the compressed air A1 and the fuel gas L1
  • the turbine 23 rotates by the combustion gas G1, thereby generating power.
  • the machine 12 starts power generation.
  • the turbine 52 is rotated by the steam S generated by the exhaust heat recovery boiler 51, whereby the generator 15 starts power generation.
  • the compressed air A2 is supplied from the compressor 21 to start pressurization of the SOFC 13 and to start heating.
  • the control valve 37 of the discharge line 35 and the control valve 38 of the compressed air circulation line 36 closed and the blower 33 of the second compressed air supply line 31 stopped the control valve 32 is opened by a predetermined opening.
  • a part of the compressed air A2 compressed by the compressor 21 is supplied from the second compressed air supply line 31 to the SOFC 13 side.
  • the pressure on the air electrode side of the SOFC 13 rises when the compressed air A2 is supplied.
  • the fuel gas L2 is supplied and pressurization is started.
  • the control valve 46 of the exhaust line 44 and the control valve 47 of the exhaust fuel gas supply line 45 closed and the blower 48 stopped, the control valve 42 of the second fuel gas supply line 41 is opened and the fuel gas is recirculated.
  • the recirculation blower 50 of the line 49 is driven.
  • the fuel gas L 2 is supplied from the second fuel gas supply line 41 to the SOFC 13, and the exhaust fuel gas L 3 is recirculated by the fuel gas recirculation line 49.
  • the pressure on the fuel electrode side of the SOFC 13 is increased by supplying the fuel gas L2.
  • the control valve 32 When the pressure on the air electrode side of the SOFC 13 becomes the outlet pressure of the compressor 21, the control valve 32 is fully opened and the blower 33 is driven. At the same time, the control valve 37 is opened and the compressed air A3 from the SOFC 13 is discharged from the discharge line 35. Then, the compressed air A2 is supplied to the SOFC 13 side by the blower 33. At the same time, the control valve 46 is opened, and the exhaust fuel gas L3 from the SOFC 13 is discharged from the discharge line 44. When the pressure on the air electrode side and the pressure on the fuel electrode side in the SOFC 13 reach the target pressure, pressurization of the SOFC 13 is completed.
  • the control valve 37 is closed and the control valve 38 is opened.
  • compressed air A3 from the SOFC 13 is supplied from the compressed air circulation line 36 to the combustor 22.
  • the control valve 46 is closed, while the control valve 47 is opened to drive the blower 48.
  • the exhaust fuel gas L3 from the SOFC 13 is supplied from the exhaust fuel gas supply line 45 to the combustor 22.
  • the fuel gas L1 supplied from the first fuel gas supply line 27 to the combustor 22 is reduced.
  • the power generation by the generator 12 by driving the gas turbine 11, the power generation by the SOFC 13, and the power generation by the generator 15 are all performed by driving the steam turbine 14, and the power generation system 10 becomes a steady operation.
  • the combustor 22 burns a mixed gas of the exhaust fuel gas L 3 discharged from the SOFC 13 and the separately supplied fuel gas L 1, generates combustion gas, and sends it to the turbine 23.
  • the exhaust fuel gas L3 discharged from the SOFC 13 is about 400 ° C.
  • the fuel gas L1 is at room temperature (eg, about 15 ° C.), so there is a large temperature difference between the two. Therefore, it becomes difficult to sufficiently mix the high temperature exhaust fuel gas L3 and the low temperature fuel gas L1 in the combustor 22.
  • heat exchange is performed as a heating device that heats the fuel gas (first fuel gas) L1 supplied to the combustor 22 through the first fuel gas supply line 27.
  • a container 61 is provided.
  • the heat exchanger 61 performs heat exchange between the exhaust air A3 flowing through the exhaust air supply line 36 and the fuel gas L1 flowing through the first fuel gas supply line 27.
  • the compressed air A 1 compressed by the compressor 21 is supplied from the first air supply line 26, and the compressed air A 3 exhausted from the SOFC 13 exchanges heat from the compressed air circulation line 36. It is supplied via the device 61. Since this compressed air A3 becomes a high temperature of about 600 ° C., the heat exchanger 61 exchanges heat between the high-temperature compressed air A3 and the normal temperature fuel gas L1, and supplies the heated fuel gas L1 to the combustor 22. Supply.
  • the fuel gas L1 is heated by the compressed air A3 to reach a temperature close to the exhaust fuel gas L3, and the fuel gas L1 and the exhaust fuel gas L3 are appropriately mixed by the combustor 22. Further, the temperature of the compressed air A3 is lowered by heating the fuel gas L1, and the compressed air A1 and the compressed air A3 are appropriately mixed by the combustor 22. As a result, the combustor 22 can efficiently mix and burn the fuel gas L1, the exhaust fuel gas L3, the compressed air A1, and the compressed air A3.
  • the gas turbine 11 including the compressor 21 and the combustor 22, the SOFC 13, and the first compression that supplies the compressed air A ⁇ b> 1 compressed by the compressor 21 to the combustor 22.
  • the exhaust gas supply line 45 supplied to the combustor 22 and the fuel gas L1 supplied to the combustor 22 through the first fuel gas supply line 27 are heated. It is provided a heat exchanger 61 as a heat device.
  • the fuel gas L1 is heated by the heat exchanger 61 when passing through the first fuel gas supply line 27, the temperature difference between the exhaust fuel gas L3 and the fuel gas L1 decreases, and the periphery of the combustor 22 This eliminates the need for measures against heat expansion in the piping. Further, since the combustor 22 is supplied with the fuel gas L1 and the exhaust fuel gas L3 whose temperatures are close to each other, the fuel gas L1 and the exhaust fuel gas L3 can be mixed and combusted to generate the combustion gas G1. Stable combustion can be ensured.
  • the fuel gas L1 is heated by the heat exchanger 61, so that the heat is used efficiently, and a separate combustor or the like is not required, and the cost increase can be suppressed.
  • the heat exchanger 61 performs heat exchange between the compressed air A3 flowing through the exhaust air supply line 36 and the fuel gas L1 flowing through the first fuel gas supply line 27. Therefore, the fuel gas L1 is heated by the compressed air A3, and the fuel gas 11 can be efficiently heated. Further, the temperature of the high-temperature compressed air A3 can be lowered, and it is not necessary to use a special material for the supply equipment such as the piping used for the exhaust air supply line 36, thereby simplifying the structure and reducing the manufacturing cost. Can be reduced. Furthermore, the fuel temperature at the inlet portion in the combustor 22 is increased, so that the combustion efficiency can be improved and the performance of the gas turbine 11 can be improved.
  • the heat exchanger 61 is described as performing heat exchange between the compressed air A3 and the fuel gas L1, but the exhaust fuel gas L3 and the fuel gas L1 flowing through the exhaust fuel gas supply line 45 are described.
  • the structure which performs heat exchange between these may be sufficient.
  • FIG. 3 is a schematic diagram showing a fuel gas supply line in the power generation system according to Embodiment 2 of the present invention.
  • symbol is attached
  • a heat exchanger 61 is provided as a device.
  • the heat exchanger 61 performs heat exchange between the compressed air A3 flowing through the exhaust air supply line 36 and the fuel gas L1 flowing through the first fuel gas supply line 27.
  • a mixer 62 is provided for mixing the exhaust fuel gas L3 flowing through the exhaust fuel gas supply line 45 and the fuel gas L1 heated by the heat exchanger 61.
  • the compressed air A 1 compressed by the compressor 21 is supplied from the first air supply line 26, and the compressed air A 3 exhausted from the SOFC 13 exchanges heat from the compressed air circulation line 36. It is supplied via the device 61. Since this compressed air A3 becomes a high temperature of about 600 ° C., the heat exchanger 61 exchanges heat between the high-temperature compressed air A3 and the fuel gas L1 at normal temperature and supplies the heated fuel gas L1 to the mixer 62. Supply. The mixer 62 mixes the heated fuel gas L1 and the exhaust fuel gas L3 from the exhaust fuel gas supply line 45, and then supplies the mixed fuel gas from the mixed fuel gas supply line 63 to the combustor 22.
  • the fuel gas L1 is heated by the compressed air A3 to be close to the exhaust fuel gas L3, and the fuel gas L1 and the exhaust fuel gas L3 are appropriately mixed by the mixer 62 and then supplied to the combustor 22. Is done. Further, the temperature of the compressed air A3 is lowered by heating the fuel gas L1, and the compressed air A1 and the compressed air A3 are appropriately mixed by the combustor 22. As a result, the combustor 22 can efficiently mix and burn the fuel gas L1, the exhaust fuel gas L3, the compressed air A1, and the compressed air A3.
  • the heat exchanger 61 is provided as a heating device for heating the fuel gas L1 supplied to the combustor 22 through the first fuel gas supply line 27, and the exhaust fuel gas supply line.
  • a mixer 62 for mixing the exhaust fuel gas L3 flowing through 45 and the fuel gas L1 heated by the heat exchanger 61 is provided.
  • the fuel gas L1 is heated by the heat exchanger 61 when passing through the first fuel gas supply line 27, the temperature difference between the exhaust fuel gas L3 and the first fuel gas L1 is reduced, and the temperature is increased.
  • the approximate fuel gas L 1 and exhaust fuel gas L 3 are supplied to the mixer 62.
  • the countermeasure against the heat elongation of the mixer 62 and the countermeasure against the heat elongation of the piping around the mixer 62 become unnecessary.
  • the mixer 62 the heated fuel gas L1 and the high-temperature exhaust fuel gas L3 are mixed and then supplied to the combustor 22, and the temperature difference between the exhaust fuel gas L3 and the fuel gas L1 is reduced. Can be mixed properly.
  • the mixed fuel gas of the fuel gas L1 and the exhaust fuel gas L3 can be burned to generate the combustion gas G1, and stable combustion in the combustor 22 can be ensured to improve the combustion efficiency.
  • the temperature of the high-temperature compressed air A3 can be lowered, and there is no need to use a special material for the supply equipment such as piping used in the exhaust air supply line, thus simplifying the structure and reducing manufacturing costs. can do.
  • the fuel temperature at the inlet portion in the combustor 22 is increased, so that the combustion efficiency can be improved and the performance of the gas turbine 11 can be improved.
  • the heat exchanger 61 is described as performing heat exchange between the compressed air A3 and the fuel gas L1, but the exhaust fuel gas L3 and the fuel gas L1 flowing through the exhaust fuel gas supply line 45 are described.
  • the structure which performs heat exchange between these may be sufficient.
  • FIG. 4 is a schematic diagram showing a fuel gas supply line in a power generation system according to Embodiment 3 of the present invention.
  • symbol is attached
  • an exhaust air supply line is used as a heating device that heats the fuel gas (first fuel gas) L ⁇ b> 1 supplied to the combustor 22 through the first fuel gas supply line 27.
  • a heat exchanger that performs heat exchange between the compressed air A ⁇ b> 3 flowing through 36 and the fuel gas L ⁇ b> 1 flowing through the first fuel gas supply line 27 is provided.
  • the heat exchanger includes a first heat exchanger 72 that exchanges heat between the compressed air A3 flowing through the exhaust air supply line 36 and the steam (heat exchange medium) flowing through the steam transport line 71, and the first heat exchanger.
  • a second heat exchanger 73 that performs heat exchange between the steam heat-exchanged at 72 and the fuel gas L ⁇ b> 1 flowing through the first fuel gas supply line 27.
  • generated by the exhaust heat recovery boiler 51 for example as the vapor
  • the combustor 22 is supplied with compressed air A1 compressed by the compressor 21 from the first air supply line 26.
  • the compressed air A3 exhausted from the SOFC 13 has a high temperature of about 600 ° C., and is supplied from the compressed air circulation line 36 to the heat exchanger 72.
  • the exhaust fuel gas L3 exhausted from the SOFC 13 is about 400 ° C., and is supplied from the exhaust fuel gas supply line 45 to the combustor 22.
  • the first heat exchanger 72 heats the steam by exchanging heat between the compressed air A3 flowing through the exhaust air supply line 36 and the steam flowing through the steam transport line 71.
  • the second heat exchanger 73 heats the fuel gas L ⁇ b> 1 by performing heat exchange between the heated steam and the fuel gas L ⁇ b> 1 flowing through the first fuel gas supply line 27. Then, the compressed air A ⁇ b> 3 whose temperature has been reduced by heating is supplied to the combustor 22, and the fuel gas L ⁇ b> 1 whose temperature has been increased by heating is supplied to the combustor 22.
  • the temperature of the fuel gas L1 rises by being heated by the compressed air A3 via the steam. Therefore, the fuel gas L1 and the exhaust fuel gas L3 are approximated in temperature and are appropriately mixed in the combustor 22. As a result, the combustor 22 can efficiently mix and burn the fuel gas L1, the exhaust fuel gas L3, the compressed air A1, and the compressed air A3.
  • the first heat for exchanging heat between the exhaust fuel gas L3 flowing through the exhaust fuel gas supply line 45 and the fuel gas L1 flowing through the first fuel gas supply line 27 is obtained.
  • An exchanger 72 and a second heat exchanger 73 are provided.
  • the fuel gas L1 is heated by the second heat exchanger 73 when passing through the first fuel gas supply line 27, the temperature difference between the exhaust fuel gas L3 and the first fuel gas L1 is reduced. It is not necessary to take measures against thermal expansion of the piping around the combustor 22. Further, since the combustor 22 is supplied with the fuel gas L1 and the exhaust fuel gas L3 whose temperatures are approximated, the fuel gas L1 and the exhaust fuel gas L3 can be efficiently combusted simultaneously to generate the combustion gas G1, and the combustor 22 It is possible to ensure stable combustion at.
  • the fuel gas L1 can be efficiently heated, and the temperature difference between the exhaust fuel gas L3 and the fuel gas L1 can be reduced as much as possible.
  • the temperature of the compressed air A3 is lowered by heat exchange, it is not necessary to use a special material for the supply equipment such as piping used for the exhaust air supply line 36, simplifying the structure and reducing the manufacturing cost. can do.
  • the fuel temperature at the inlet portion in the combustor 22 is increased, so that the combustion efficiency can be improved and the performance of the gas turbine 11 can be improved.
  • the first heat exchanger 72 that performs heat exchange between the exhaust fuel gas L3 flowing in the exhaust fuel gas supply line 45 and the steam, and the steam that exchanges heat with the first heat exchanger 72
  • a second heat exchanger 73 that performs heat exchange with the fuel gas L ⁇ b> 1 flowing through the first fuel gas supply line 27 is provided. Therefore, the fuel gas L1 is heated by receiving heat from the steam heated by the exhaust fuel gas L3, and heat exchange between the fuel gases L1 and L3 can be prevented to ensure safety.
  • the heat exchanger 72 is described as performing heat exchange between the compressed air A3 and the steam. However, heat is exchanged between the exhaust fuel gas L3 flowing through the exhaust fuel gas supply line 45 and the steam. It may be configured to perform exchange.
  • a mixer for mixing the exhaust fuel gas L3 flowing through the exhaust fuel gas supply line 45 and the fuel gas L1 heated by the heat exchanger 61 may be provided. .
  • the heating device of the present invention is a heat exchanger, but a heating device such as a combustor may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Fuel Cell (AREA)

Abstract

 発電システムにおいて、圧縮機(21)と燃焼器(22)を有するガスタービン(11)と、SOFC(13)と、圧縮機(21)で圧縮した圧縮空気(A1)を燃焼器(22)に供給する第1圧縮空気供給ライン(26)と、圧縮機(22)で圧縮した一部の圧縮空気(A2)をSOFC(13)に供給する第2圧縮空気供給ライン(31)と、SOFC(13)から排出される排空気(A3)を燃焼器(22)に供給する排空気供給ライン(36)と、燃料ガス(L1)を燃焼器(22)に供給する第1燃料ガス供給ライン(27)と、燃料ガス(L2)をSOFC(13)に供給する第2燃料ガス供給ライン(41)と、SOFC(13)から排出される排燃料ガス(L3)を燃焼器(22)に供給する排燃料ガス供給ライン(45)と、第1燃料ガス供給ライン(27)を通して燃焼器(22)に供給する燃料ガス(L1)を加熱する加熱装置としての熱交換器(61)を設ける。

Description

発電システム
 本発明は、燃料電池とガスタービンと蒸気タービンを組み合わせた発電システム及び発電システムにおける燃料電池の起動方法に関するものである。
 固体酸化物形燃料電池(Solid Oxide Fuel Cell:以下SOFC)は、用途の広い高効率な燃料電池として知られている。このSOFCは、イオン伝導率を高めるために作動温度が高くされているので、空気極側に供給する空気(酸化剤)として、ガスタービンの圧縮機から吐出された圧縮空気を使用することができる。また、SOFCは、排気された高温の排燃料ガスをガスタービンの燃焼器の燃料として使用することができる。
 このため、例えば、下記特許文献1に記載されるように、高効率発電を達成することができる発電システムとして、SOFCとガスタービンと蒸気タービンを組み合わせたものが各種提案されている。この特許文献1に記載されたコンバインドシステムにおいて、ガスタービンは、空気を圧縮してSOFCに供給する圧縮機と、このSOFCから排気された排燃料ガスと圧縮空気から燃焼ガスを生成する燃焼器を有したものである。
特開2009-205930号公報
 上述したように、従来の発電システムでは、燃焼器は、SOFCから排気された排燃料ガスと別途供給された燃料ガスから燃焼ガスを生成している。この場合、SOFCから排気された排燃料ガスは約400℃であり、別途供給された燃料ガスは常温(例えば、約15℃)であることから、両者の間にある大きな温度差が発生する。このため、排燃料ガスや燃料ガスを供給する配管等に熱伸び対策を施す必要がある。また、排燃料ガスと燃料ガスが均一に混ぜるために、燃焼器の上流の配管に混合器を設ける場合がある。この混合器を設けることによって、低カロリーの排燃料ガスと高カロリーの燃料ガスが均一に混ぜることができる。しかしながら、排燃料ガスと燃料ガスには大きな温度差があるため、混合器やその周辺の配管、例えば、排燃料ガスや燃料ガスを混合器に供給する配管等に熱伸び対策を施す必要がある。
 本発明は、上述した課題を解決するものであり、排燃料ガスと燃料ガスに大きな温度差があっても、混合器やその周辺の配管の熱伸び対策が不要とすることができる発電システムを提供することを目的とする。
 上記の目的を達成するための本発明の発電システムは、燃料電池と、圧縮機と燃焼器を有するガスタービンと、前記圧縮機から前記燃焼器に圧縮空気を供給する第1圧縮空気供給ラインと、前記圧縮機から前記燃料電池に圧縮空気を供給する第2圧縮空気供給ラインと、前記燃料電池から排出される排空気を前記燃焼器に供給する排空気供給ラインと、第1の燃料ガスを前記燃焼器に供給する第1燃料ガス供給ラインと、第2の燃料ガスを前記燃料電池に供給する第2燃料ガス供給ラインと、前記燃料電池から排出される排燃料ガスを前記燃焼器に供給する排燃料ガス供給ラインと、前記第1燃料ガス供給ラインを通して前記燃焼器に供給する第1の燃料ガスを加熱する加熱装置と、を有することを特徴とするものである。
 従って、第1の燃料ガスは、第1燃料ガス供給ラインを通るときに加熱装置により加熱されることから、排燃料ガスと第1燃料ガスの温度差が減少することとなり、温度が近似した第1の燃料ガスと排燃料ガスが燃焼器に供給されることとなり、ガスタービン燃焼器は、排燃料ガスと第1の燃料ガスを同時に効率良く燃焼することができ、最適な燃焼ガスを生成し、ガスタービン燃焼器での安定燃焼を確保して発電効率を向上することができる。
 本発明の発電システムでは、前記加熱装置は、熱交換器であることを特徴としている。
 従って、加熱装置を熱交換器とすることで、熱を効率的に使用することとなり、別の燃焼器などを不要として高コスト化を抑制することができる。
 本発明の発電システムでは、前記熱交換器は、前記排空気供給ラインを流れる排空気と前記第1燃料ガス供給ラインを流れる第1の燃料ガスとの間で熱交換を行うことを特徴としている。
 従って、排空気と第1の燃料ガスとを熱交換して第1の燃料ガスを加熱することとなり、第1燃料ガスを効率良く加熱することができ、また、高温の排空気の温度を低下させることができ、この排空気の供給設備を簡素化して製造コストを低減することができる。
 本発明の発電システムでは、前記熱交換器は、前記排燃料ガス供給ラインを流れる排燃料ガスと前記第1燃料ガス供給ラインを流れる第1の燃料ガスとの間で熱交換を行うことを特徴としている。
 従って、排燃料ガスと第1の燃料ガスとを熱交換して第1の燃料ガスを加熱することとなり、第1燃料ガスを効率良く加熱することができ、また、排燃料ガスの温度を低下させることで、この排燃料ガスと第1の燃料ガスの温度差を極力減少することができる。
 本発明の発電システムでは、前記加熱装置は、排空気供給ラインを流れる排空気と熱交換媒体との間で熱交換を行う第1熱交換器と、前記第1熱交換器で熱交換した熱交換媒体と前記第1燃料ガス供給ラインを流れる第1の燃料ガスとの間で熱交換を行う第2熱交換器とを有することを特徴としている。
 従って、第1燃料ガスは、排空気により加熱された熱交換媒体から熱をもらって加熱されることとなり、燃料ガス同士の熱交換を防止して安全性を確保することができる。
 本発明の発電システムでは、前記排燃料ガス供給ラインを流れる排燃料ガスと前記加熱装置により加熱された第1の燃料ガスを混合する混合器が設けられることを特徴としている。
 従って、排燃料ガスと加熱された第1の燃料ガスを混合器で混合してから燃焼器に供給することとなり、排燃料ガスと第1の燃料ガスの温度差が減少することで、両者を適正に混合することができ、燃焼器での燃焼効率を向上することができる。
 本発明の発電システムによれば、第1燃料ガス供給ラインを通して燃焼器に供給する第1の燃料ガスを加熱する加熱装置を設けるので、排燃料ガスと第1の燃料ガスを効率良く燃焼することができ、最適な燃焼ガスを生成し、ガスタービン燃焼器での安定燃焼を確保して発電効率を向上することができる。
図1は、本発明の実施例1に係る発電システムにおける燃料ガスの供給ラインを表す概略図である。 図2は、実施例1の発電システムを表す概略構成図である。 図3は、本発明の実施例2に係る発電システムにおける燃料ガスの供給ラインを表す概略図である。 図4は、本発明の実施例3に係る発電システムにおける燃料ガスの供給ラインを表す概略図である。
 以下に添付図面を参照して、本発明に係る発電システムの好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 実施例1の発電システムは、固体酸化物形燃料電池(以下、SOFCと称する。)とガスタービンと蒸気タービンを組み合わせたトリプルコンバインドサイクル(Triple Combined Cycle:登録商標)である。このトリプルコンバインドサイクルは、ガスタービンコンバインドサイクル発電(GTCC)の上流側にSOFCを設置することにより、SOFC、ガスタービン、蒸気タービンの3段階で発電することができるため、極めて高い発電効率を実現することができる。なお、以下の説明では、本発明の燃料電池として固体酸化物形燃料電池を適用して説明するが、この形式の燃料電池に限定されるものではない。
 図1は、本発明の実施例1に係る発電システムにおける燃料ガスの供給ラインを表す概略図、図2は、実施例1の発電システムを表す概略構成図である。
 実施例1において、図2に示すように、発電システム10は、ガスタービン11及び発電機12と、SOFC13と、蒸気タービン14及び発電機15とを有している。この発電システム10は、ガスタービン11による発電と、SOFC13による発電と、蒸気タービン14による発電とを組み合わせることで、高い発電効率を得るように構成したものである。
 ガスタービン11は、圧縮機21、燃焼器22、タービン23を有しており、圧縮機21とタービン23は、回転軸24により一体回転可能に連結されている。圧縮機21は、空気取り込みライン25から取り込んだ空気Aを圧縮する。燃焼器22は、圧縮機21から第1圧縮空気供給ライン26を通して供給された圧縮空気A1と、第1燃料ガス供給ライン27から供給された燃料ガスL1とを混合して燃焼する。タービン23は、燃焼器22から排ガス供給ライン28を通して供給された燃焼ガスG1により回転する。なお、図示しないが、タービン23は、圧縮機21で圧縮された圧縮空気A1が車室を通して供給され、この圧縮空気A1を冷却空気として翼などを冷却する。発電機12は、タービン23と同軸上に設けられており、タービン23が回転することで発電することができる。なお、ここでは、燃焼器22に供給する燃料ガスL1として、例えば、液化天然ガス(LNG)を用いている。
 SOFC13は、還元剤としての高温の燃料ガスと酸化剤としての高温の空気(酸化性ガス)が供給されることで、所定の作動温度にて反応して発電を行うものである。このSOFC13は、圧力容器内に空気極と固体電解質と燃料極が収容されて構成される。空気極に圧縮機21で圧縮された一部の圧縮空気A2が供給され、燃料極に燃料ガスL2が供給されることで発電を行う。なお、ここでは、SOFC13に供給する燃料ガスL2として、例えば、液化天然ガス(LNG)、水素(H)および一酸化炭素(CO)、メタン(CH)などの炭化水素ガス、石炭など炭素質原料のガス化設備により製造したガスを用いている。また、SOFC13に供給される酸化性ガスは、酸素を略15%~30%含むガスであり、代表的には空気が好適であるが、空気以外にも燃焼排ガスと空気の混合ガスや、酸素と空気の混合ガスなどが使用可能である(以下、SOFC13に供給される酸化性ガスを空気という)。
 このSOFC13は、第1圧縮空気供給ライン26から分岐した第2圧縮空気供給ライン31が連結され、圧縮機21が圧縮した一部の圧縮空気A2を空気極の導入部に供給することができる。この第2圧縮空気供給ライン31は、供給する空気量を調整可能な制御弁32と、圧縮空気A2を昇圧可能なブロワ(昇圧機)33が圧縮空気A2の流れ方向に沿って設けられている。制御弁32は、第2圧縮空気供給ライン31における圧縮空気A2の流れ方向の上流側に設けられ、ブロワ33は、制御弁32の下流側に設けられている。SOFC13は、空気極で用いられた圧縮空気A3(排空気)を排出する排空気ライン34が連結されている。この排空気ライン34は、空気極で用いられた圧縮空気A3を外部に排出する排出ライン35と、燃焼器22に連結される圧縮空気循環ライン36とに分岐される。排出ライン35は、排出する空気量を調整可能な制御弁37が設けられ、圧縮空気循環ライン36は、循環する空気量を調整可能な制御弁38が設けられている。
 また、SOFC13は、燃料ガスL2を燃料極の導入部に供給する第2燃料ガス供給ライン41が設けられている。第2燃料ガス供給ライン41は、供給する燃料ガス量を調整可能な制御弁42が設けられている。SOFC13は、燃料極で用いられた排燃料ガスL3を排出する排燃料ライン43が連結されている。この排燃料ライン43は、外部に排出する排出ライン44と、燃焼器22に連結される排燃料ガス供給ライン45とに分岐される。排出ライン44は、排出する燃料ガス量を調整可能な制御弁46が設けられ、排燃料ガス供給ライン45は、供給する燃料ガス量を調整可能な制御弁47と、排燃料ガスL3を昇圧可能なブロワ48が排燃料ガスL3の流れ方向に沿って設けられている。制御弁47は、排燃料ガス供給ライン45における排燃料ガスL3の流れ方向の上流側に設けられ、ブロワ48は、制御弁47の下流側に設けられている。
 また、SOFC13は、排燃料ライン43と第2燃料ガス供給ライン41とを連結する燃料ガス再循環ライン49が設けられている。燃料ガス再循環ライン49は、排燃料ライン43の排燃料ガスL3を第2燃料ガス供給ライン41に再循環する再循環ブロワ50が設けられている。
 蒸気タービン14は、排熱回収ボイラ(HRSG)51で生成された蒸気によりタービン52を回転するものである。蒸気タービン14(タービン52)は、排熱回収ボイラ51との間に蒸気供給ライン54と給水ライン55が設けられている。そして、給水ライン55は、復水器56と給水ポンプ57が設けられている。排熱回収ボイラ51は、ガスタービン11(タービン23)からの排ガスライン53が連結されており、排ガスライン53から供給される高温の排ガスG2と給水ライン55から供給される水との間で熱交換を行うことで、蒸気Sを生成する。発電機15は、タービン52と同軸上に設けられており、タービン52が回転することで発電することができる。なお、排熱回収ボイラ51で熱が回収された排ガスG2は、有害物質を除去されてから大気へ放出される。
 ここで、実施例1の発電システム10の作動について説明する。発電システム10を起動する場合、ガスタービン11、蒸気タービン14、SOFC13の順に起動する。
 まず、ガスタービン11にて、圧縮機21が空気Aを圧縮し、燃焼器22が圧縮空気A1と燃料ガスL1とを混合して燃焼し、タービン23が燃焼ガスG1により回転することで、発電機12が発電を開始する。次に、蒸気タービン14にて、排熱回収ボイラ51により生成された蒸気Sによりタービン52が回転し、これにより発電機15が発電を開始する。
 続いて、SOFC13を起動させるために、圧縮機21から圧縮空気A2を供給してSOFC13の加圧を開始すると共に加熱を開始する。排出ライン35の制御弁37と圧縮空気循環ライン36の制御弁38を閉止し、第2圧縮空気供給ライン31のブロワ33を停止した状態で、制御弁32を所定開度だけ開放する。すると、圧縮機21で圧縮した一部の圧縮空気A2が第2圧縮空気供給ライン31からSOFC13側へ供給される。これにより、SOFC13の空気極側は、圧縮空気A2が供給されることで圧力が上昇する。
 一方、SOFC13の燃料極側では、燃料ガスL2を供給して加圧を開始する。排出ライン44の制御弁46と排燃料ガス供給ライン45の制御弁47を閉止し、ブロワ48を停止した状態で、第2燃料ガス供給ライン41の制御弁42を開放すると共に、燃料ガス再循環ライン49の再循環ブロワ50を駆動する。すると、燃料ガスL2が第2燃料ガス供給ライン41からSOFC13へ供給されると共に、排燃料ガスL3が燃料ガス再循環ライン49により再循環する。これにより、SOFC13の燃料極側は、燃料ガスL2が供給されることで圧力が上昇する。
 そして、SOFC13の空気極側の圧力が圧縮機21の出口圧力になると、制御弁32を全開にすると共に、ブロワ33を駆動する。それと同時に制御弁37を開放してSOFC13からの圧縮空気A3を排出ライン35から排出する。すると、圧縮空気A2がブロワ33によりSOFC13側へ供給される。それと同時に制御弁46を開放してSOFC13からの排燃料ガスL3を排出ライン44から排出する。そして、SOFC13における空気極側の圧力と燃料極側の圧力が目標圧力に到達すると、SOFC13の加圧が完了する。
 その後、SOFC13の反応(発電)が安定し、圧縮空気A3と排燃料ガスL3の成分が安定したら、制御弁37を閉止する一方、制御弁38を開放する。すると、SOFC13からの圧縮空気A3が圧縮空気循環ライン36から燃焼器22に供給される。また、制御弁46を閉止する一方、制御弁47を開放してブロワ48を駆動する。すると、SOFC13からの排燃料ガスL3が排燃料ガス供給ライン45から燃焼器22に供給される。このとき、第1燃料ガス供給ライン27から燃焼器22に供給される燃料ガスL1を減量する。
 ここで、ガスタービン11の駆動による発電機12での発電、SOFC13での発電、蒸気タービン14の駆動により発電機15での発電が全て行われることとなり、発電システム10が定常運転となる。
 ところで、ガスタービン11にて、燃焼器22は、SOFC13から排出された排燃料ガスL3と別途供給された燃料ガスL1との混合ガスを燃焼し、燃焼ガスを生成してタービン23に送っている。この場合、SOFC13から排出された排燃料ガスL3は約400℃であり、燃料ガスL1は常温(例えば、約15℃)であることから、両者の間には大きな温度差がある。そのため、燃焼器22内で高温の排燃料ガスL3と低温の燃料ガスL1を十分に混合することが困難となる。
 そこで、実施例1の発電システム10では、図1に示すように、第1燃料ガス供給ライン27を通して燃焼器22に供給する燃料ガス(第1の燃料ガス)L1を加熱する加熱装置として熱交換器61を設けている。この熱交換器61は、排空気供給ライン36を流れる排空気A3と第1燃料ガス供給ライン27を流れる燃料ガスL1との間で熱交換を行うものである。
 詳細に説明すると、燃焼器22は、圧縮機21により圧縮された圧縮空気A1が第1空気供給ライン26から供給されると共に、SOFC13から排気された圧縮空気A3が圧縮空気循環ライン36から熱交換器61を介して供給される。この圧縮空気A3は約600℃の高温になるため、熱交換器61は、高温の圧縮空気A3と常温の燃料ガスL1との間で熱交換を行い、加熱した燃料ガスL1を燃焼器22に供給する。
 そのため、燃料ガスL1は、圧縮空気A3により加熱されることで排燃料ガスL3に近い温度となり、燃料ガスL1と排燃料ガスL3は、燃焼器22で適正に混合される。また、圧縮空気A3は、燃料ガスL1を加熱することで温度が低下し、圧縮空気A1と圧縮空気A3は、燃焼器22で適正に混合される。その結果、燃焼器22は、燃料ガスL1、排燃料ガスL3、圧縮空気A1、圧縮空気A3を効率良く混合して燃焼することができる。
 このように実施例1の発電システムにあっては、圧縮機21と燃焼器22を有するガスタービン11と、SOFC13と、圧縮機21で圧縮した圧縮空気A1を燃焼器22に供給する第1圧縮空気供給ライン26と、圧縮機22で圧縮した一部の圧縮空気A2をSOFC13に供給する第2圧縮空気供給ライン31と、SOFC13から排出される排空気A3を燃焼器22に供給する排空気供給ライン36と、燃料ガスL1を燃焼器22に供給する第1燃料ガス供給ライン27と、燃料ガスL2をSOFC13に供給する第2燃料ガス供給ライン41と、SOFC13から排出される排燃料ガスL3を燃焼器22に供給する排燃料ガス供給ライン45と、第1燃料ガス供給ライン27を通して燃焼器22に供給する燃料ガスL1を加熱する加熱装置としての熱交換器61を設けている。
 従って、燃料ガスL1は、第1燃料ガス供給ライン27を通るときに熱交換器61により加熱されることから、排燃料ガスL3と燃料ガスL1の温度差が減少することとなり、燃焼器22周辺の配管の熱伸び対策が不要となる。また、燃焼器22は、温度が近似した燃料ガスL1と排燃料ガスL3が供給されるため、燃料ガスL1と排燃料ガスL3を混合し燃焼して燃焼ガスG1を生成でき、燃焼器22での安定燃焼を確保することができる。
 この場合、燃料ガスL1を熱交換器61により加熱することで、熱を効率的に使用することとなり、別の燃焼器などを不要として高コスト化を抑制することができる。
 実施例1の発電システムでは、熱交換器61は、排空気供給ライン36を流れる圧縮空気A3と第1燃料ガス供給ライン27を流れる燃料ガスL1との間で熱交換を行う。従って、圧縮空気A3により燃料ガスL1を加熱することとなり、燃料ガス11を効率良く加熱することができる。また、高温の圧縮空気A3の温度を低下させることができ、この排空気供給ライン36に使用する配管などの供給設備の材料を特別な材料にする必要がなくなり、構造を簡素化して製造コストを低減することができる。更に、燃焼器22における入口部分の燃料温度が高くなり、燃焼効率を向上してガスタービン11の性能を向上することができる。
 上述した実施例1において、熱交換器61は、圧縮空気A3と燃料ガスL1との間で熱交換を行う説明をしたが、排燃料ガス供給ライン45を流れる排燃料ガスL3と燃料ガスL1との間で熱交換を行う構成であってもよい。
 図3は、本発明の実施例2に係る発電システムにおける燃料ガスの供給ラインを表す概略図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例2の発電システムでは、図3に示すように、実施例1と同様に、第1燃料ガス供給ライン27を通して燃焼器22に供給する燃料ガス(第1の燃料ガス)L1を加熱する加熱装置として熱交換器61を設けている。この熱交換器61は、排空気供給ライン36を流れる圧縮空気A3と第1燃料ガス供給ライン27を流れる燃料ガスL1との間で熱交換を行うものである。また、実施例2の発電システムでは、排燃料ガス供給ライン45を流れる排燃料ガスL3と熱交換器61により加熱された燃料ガスL1を混合する混合器62を設けている。
 詳細に説明すると、燃焼器22は、圧縮機21により圧縮された圧縮空気A1が第1空気供給ライン26から供給されると共に、SOFC13から排気された圧縮空気A3が圧縮空気循環ライン36から熱交換器61を介して供給される。この圧縮空気A3は約600℃の高温になるため、熱交換器61は、高温の圧縮空気A3と常温の燃料ガスL1との間で熱交換を行い、加熱した燃料ガスL1を混合器62に供給する。そして、混合器62は、加熱された燃料ガスL1と排燃料ガス供給ライン45からの排燃料ガスL3を混合した後、混合燃料ガスを混合燃料ガス供給ライン63から燃焼器22に供給する。
 そのため、燃料ガスL1は、圧縮空気A3により加熱されることで排燃料ガスL3に近い温度となり、燃料ガスL1と排燃料ガスL3は、混合器62により適正に混合されてから燃焼器22に供給される。また、圧縮空気A3は、燃料ガスL1を加熱することで温度が低下し、圧縮空気A1と圧縮空気A3は、燃焼器22で適正に混合される。その結果、燃焼器22は、燃料ガスL1、排燃料ガスL3、圧縮空気A1、圧縮空気A3を効率良く混合して燃焼することができる。
 このように実施例2の発電システムにあっては、第1燃料ガス供給ライン27を通して燃焼器22に供給する燃料ガスL1を加熱する加熱装置として熱交換器61を設けると共に、排燃料ガス供給ライン45を流れる排燃料ガスL3と熱交換器61により加熱された燃料ガスL1を混合する混合器62を設けている。
 従って、燃料ガスL1は、第1燃料ガス供給ライン27を通るときに熱交換器61により加熱されることから、排燃料ガスL3と第1燃料ガスL1の温度差が減少することとなり、温度が近似した燃料ガスL1と排燃料ガスL3が混合器62に供給される。このため、混合器62の熱伸び対策や混合器62周辺の配管の熱伸び対策が不要となる。混合器62では、加熱された燃料ガスL1と高温の排燃料ガスL3を混合してから燃焼器22に供給することとなり、排燃料ガスL3と燃料ガスL1の温度差が減少することで、両者を適正に混合することができる。燃焼器22では、燃料ガスL1と排燃料ガスL3の混合燃料ガスを燃焼して燃焼ガスG1を生成でき、燃焼器22での安定燃焼を確保して燃焼効率を向上することができる。また、高温の圧縮空気A3の温度を低下させることができ、この排空気供給ラインに使用する配管などの供給設備の材料を特別な材料にする必要がなくなり、構造を簡素化して製造コストを低減することができる。更に、燃焼器22における入口部分の燃料温度が高くなり、燃焼効率を向上してガスタービン11の性能を向上することができる。
 上述した実施例2において、熱交換器61は、圧縮空気A3と燃料ガスL1との間で熱交換を行う説明をしたが、排燃料ガス供給ライン45を流れる排燃料ガスL3と燃料ガスL1との間で熱交換を行う構成であってもよい。
 図4は、本発明の実施例3に係る発電システムにおける燃料ガスの供給ラインを表す概略図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例3の発電システムでは、図4に示すように、第1燃料ガス供給ライン27を通して燃焼器22に供給する燃料ガス(第1の燃料ガス)L1を加熱する加熱装置として、排空気供給ライン36を流れる圧縮空気A3と第1燃料ガス供給ライン27を流れる燃料ガスL1との間で熱交換を行う熱交換器を設けている。この熱交換器は、排空気供給ライン36を流れる圧縮空気A3と蒸気輸送ライン71を流れる蒸気(熱交換媒体)との間で熱交換を行う第1熱交換器72と、第1熱交換器72で熱交換した蒸気と第1燃料ガス供給ライン27を流れる燃料ガスL1との間で熱交換を行う第2熱交換器73とを有している。なお、この熱交換媒体としての蒸気は、例えば、排熱回収ボイラ51で生成された蒸気を用いればよい。
 詳細に説明すると、燃焼器22は、圧縮機21により圧縮された圧縮空気A1が第1空気供給ライン26から供給される。SOFC13から排気された圧縮空気A3は約600℃の高温であり、圧縮空気循環ライン36から熱交換器72に供給される。また、SOFC13から排気された排燃料ガスL3は約400℃であり、排燃料ガス供給ライン45から燃焼器22に供給される。第1熱交換器72は、排空気供給ライン36を流れる圧縮空気A3と蒸気輸送ライン71を流れる蒸気との間で熱交換を行うことで、蒸気を加熱する。続いて、第2熱交換器73は、加熱された蒸気と第1燃料ガス供給ライン27を流れる燃料ガスL1との間で熱交換を行うことで、燃料ガスL1を加熱する。そして、加熱して温度低下した圧縮空気A3が燃焼器22に供給されると共に、加熱されて温度上昇した燃料ガスL1が燃焼器22に供給される。
 このようにして、燃料ガスL1は、蒸気を介して圧縮空気A3により加熱されることで温度が上昇する。そのため、燃料ガスL1と排燃料ガスL3は温度が近似して燃焼器22で適正に混合される。その結果、燃焼器22は、燃料ガスL1、排燃料ガスL3、圧縮空気A1、圧縮空気A3を効率良く混合して燃焼することができる。
 このように実施例3の発電システムにあっては、排燃料ガス供給ライン45を流れる排燃料ガスL3と第1燃料ガス供給ライン27を流れる燃料ガスL1との間で熱交換を行う第1熱交換器72及び第2熱交換器73を設けている。
 従って、燃料ガスL1は、第1燃料ガス供給ライン27を通るときに第2熱交換器73により加熱されることから、排燃料ガスL3と第1燃料ガスL1の温度差が減少することとなり、燃焼器22周辺の配管の熱伸び対策が不要となる。また、燃焼器22は、温度が近似した燃料ガスL1と排燃料ガスL3が供給されるため、燃料ガスL1と排燃料ガスL3を同時に効率良く燃焼して燃焼ガスG1を生成でき、燃焼器22での安定燃焼を確保することができる。
 この場合、圧縮空気A3により燃料ガスL1を加熱することで、燃料ガスL1を効率良く加熱することができ、排燃料ガスL3と燃料ガスL1の温度差を極力減少することができる。また、熱交換により圧縮空気A3の温度が低下することで、排空気供給ライン36に使用する配管などの供給設備の材料を特別な材料にする必要がなくなり、構造を簡素化して製造コストを低減することができる。更に、燃焼器22における入口部分の燃料温度が高くなり、燃焼効率を向上してガスタービン11の性能を向上することができる。
 実施例3の発電システムでは、排燃料ガス供給ライン45を流れる排燃料ガスL3と蒸気との間で熱交換を行う第1熱交換器72と、第1熱交換器72で熱交換した蒸気と第1燃料ガス供給ライン27を流れる燃料ガスL1との間で熱交換を行う第2熱交換器73を設けている。従って、燃料ガスL1は、排燃料ガスL3により加熱された蒸気から熱をもらって加熱されることとなり、燃料ガスL1,L3同士の熱交換を防止して安全性を確保することができる。
 上述した実施例3において、熱交換器72は、圧縮空気A3と蒸気との間で熱交換を行う説明をしたが、排燃料ガス供給ライン45を流れる排燃料ガスL3と蒸気との間で熱交換を行う構成であってもよい。なお、この実施例3にて、実施例2と同様に、排燃料ガス供給ライン45を流れる排燃料ガスL3と熱交換器61により加熱された燃料ガスL1を混合する混合器を設けてもよい。
 また、上述した実施例では、本発明の加熱装置を熱交換器としたが、燃焼器などの加熱装置を用いてもよい。
 10 発電システム
 11 ガスタービン
 12 発電機
 13 固体酸化物形燃料電池(SOFC)
 14 蒸気タービン
 15 発電機
 21 圧縮機
 22 燃焼器
 23 タービン
 26 第1圧縮空気供給ライン
 27 第1燃料ガス供給ライン
 31 第2圧縮空気供給ライン
 32 制御弁(開閉弁)
 33 ブロワ
 34 排空気ライン
 36 圧縮空気循環ライン(排空気供給ライン)
 41 第2燃料ガス供給ライン
 42 制御弁
 43 排燃料ライン
 45 排燃料ガス供給ライン
 49 燃料ガス再循環ライン
 61 熱交換器(加熱装置)
 62 混合器
 63 混合燃料ガス供給ライン
 71 蒸気輸送ライン
 72 第1熱交換器(加熱装置)
 73 第2熱交換器(加熱装置)

Claims (6)

  1.  燃料電池と、
     圧縮機と燃焼器を有するガスタービンと、
     前記圧縮機から前記燃焼器に圧縮空気を供給する第1圧縮空気供給ラインと、
     前記圧縮機から前記燃料電池に圧縮空気を供給する第2圧縮空気供給ラインと、
     前記燃料電池から排出される排空気を前記燃焼器に供給する排空気供給ラインと、
     第1の燃料ガスを前記燃焼器に供給する第1燃料ガス供給ラインと、
     第2の燃料ガスを前記燃料電池に供給する第2燃料ガス供給ラインと、
     前記燃料電池から排出される排燃料ガスを前記燃焼器に供給する排燃料ガス供給ラインと、
     前記第1燃料ガス供給ラインを通して前記燃焼器に供給する第1の燃料ガスを加熱する加熱装置と、
     を有することを特徴とする発電システム。
  2.  前記加熱装置は、熱交換器であることを特徴とする請求項1に記載の発電システム。
  3.  前記熱交換器は、前記排空気供給ラインを流れる排空気と前記第1燃料ガス供給ラインを流れる第1の燃料ガスとの間で熱交換を行うことを特徴とする請求項2に記載の発電システム。
  4.  前記熱交換器は、前記排燃料ガス供給ラインを流れる排燃料ガスと前記第1燃料ガス供給ラインを流れる第1の燃料ガスとの間で熱交換を行うことを特徴とする請求項2に記載の発電システム。
  5.  前記加熱装置は、排空気供給ラインを流れる排空気と熱交換媒体との間で熱交換を行う第1熱交換器と、前記第1熱交換器で熱交換した熱交換媒体と前記第1燃料ガス供給ラインを流れる第1の燃料ガスとの間で熱交換を行う第2熱交換器とを有することを特徴とする請求項1に記載の発電システム。
  6.  前記排燃料ガス供給ラインを流れる排燃料ガスと前記加熱装置により加熱された第1の燃料ガスを混合する混合器が設けられることを特徴とする請求項1から請求項5のいずれか一つに記載の発電システム。
PCT/JP2013/081813 2013-01-21 2013-11-26 発電システム WO2014112210A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/439,361 US20150300262A1 (en) 2013-01-21 2013-11-26 Power generation system
KR1020157011254A KR101678325B1 (ko) 2013-01-21 2013-11-26 발전 시스템
CN201380056891.6A CN104755724A (zh) 2013-01-21 2013-11-26 发电系统
DE112013006467.7T DE112013006467T5 (de) 2013-01-21 2013-11-26 Energieerzeugungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-008707 2013-01-21
JP2013008707A JP2014139424A (ja) 2013-01-21 2013-01-21 発電システム

Publications (1)

Publication Number Publication Date
WO2014112210A1 true WO2014112210A1 (ja) 2014-07-24

Family

ID=51209320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081813 WO2014112210A1 (ja) 2013-01-21 2013-11-26 発電システム

Country Status (6)

Country Link
US (1) US20150300262A1 (ja)
JP (1) JP2014139424A (ja)
KR (1) KR101678325B1 (ja)
CN (1) CN104755724A (ja)
DE (1) DE112013006467T5 (ja)
WO (1) WO2014112210A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099408B2 (ja) * 2013-01-18 2017-03-22 三菱日立パワーシステムズ株式会社 発電システム、及び発電システムの運転方法
JP6777441B2 (ja) * 2016-06-30 2020-10-28 三菱重工業株式会社 発電システム
DE102017221989A1 (de) * 2017-12-06 2019-06-06 Audi Ag Brennstoffzellenvorrichtung
CN113482736B (zh) * 2021-06-30 2022-04-22 山东大学 一种低能耗捕集二氧化碳的多联供系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217602A (ja) * 2002-01-24 2003-07-31 Mitsubishi Heavy Ind Ltd 高温型燃料電池を用いたコンバインド発電システム
JP2009205930A (ja) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd コンバインドシステム
JP2012195173A (ja) * 2011-03-16 2012-10-11 Mitsubishi Heavy Ind Ltd 燃料電池・ガスタービンコンバインド発電システム及びその燃料電池の起動方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761948A (en) * 1987-04-09 1988-08-09 Solar Turbines Incorporated Wide range gaseous fuel combustion system for gas turbine engines
JP3344439B2 (ja) * 1994-01-11 2002-11-11 石川島播磨重工業株式会社 タービンコンプレッサ用燃焼装置と燃焼方法
JP2002266702A (ja) * 2001-03-12 2002-09-18 Honda Motor Co Ltd 複合型エネルギー発生装置
JP2004169696A (ja) * 2002-11-01 2004-06-17 Mitsubishi Heavy Ind Ltd 複合発電設備
US7862938B2 (en) * 2007-02-05 2011-01-04 Fuelcell Energy, Inc. Integrated fuel cell and heat engine hybrid system for high efficiency power generation
DE102008006953B4 (de) * 2008-01-31 2010-09-02 Airbus Deutschland Gmbh System und Verfahren zur Reduktion von Schadstoffen in Triebwerksabgasen
JP5185658B2 (ja) * 2008-02-27 2013-04-17 三菱重工業株式会社 コンバインドシステム
GB2469043B (en) * 2009-03-30 2011-02-23 Lotus Car A reheated gas turbine system having a fuel cell
US9228494B2 (en) * 2009-07-03 2016-01-05 Ecole Polytechnique Federale De Lausanne (Epfl) Hybrid cycle SOFC-inverted gas turbine with CO2 separation
JP5794819B2 (ja) * 2011-04-21 2015-10-14 三菱日立パワーシステムズ株式会社 燃料電池・ガスタービンコンバインド発電システム及びその燃料電池の停止方法
US8505309B2 (en) * 2011-06-14 2013-08-13 General Electric Company Systems and methods for improving the efficiency of a combined cycle power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217602A (ja) * 2002-01-24 2003-07-31 Mitsubishi Heavy Ind Ltd 高温型燃料電池を用いたコンバインド発電システム
JP2009205930A (ja) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd コンバインドシステム
JP2012195173A (ja) * 2011-03-16 2012-10-11 Mitsubishi Heavy Ind Ltd 燃料電池・ガスタービンコンバインド発電システム及びその燃料電池の起動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHINORI KOBAYASHI ET AL.: "Current Status and Future Prospects for Large-Scale SOFC Combined Cycle System", JOURNAL OF HIGH TEMPERATURE SOCIETY, vol. 35, no. 5, September 2009 (2009-09-01), pages 256 - 262 *

Also Published As

Publication number Publication date
JP2014139424A (ja) 2014-07-31
DE112013006467T5 (de) 2015-10-01
KR101678325B1 (ko) 2016-11-21
US20150300262A1 (en) 2015-10-22
KR20150066553A (ko) 2015-06-16
CN104755724A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5185657B2 (ja) コンバインドシステム
JP6109529B2 (ja) 発電システム
JP5185659B2 (ja) コンバインドシステム
JP6228752B2 (ja) 発電システム及び発電システムの起動方法
WO2014077156A1 (ja) 発電システム及び発電システムの運転方法
WO2014069413A1 (ja) 発電システム及び発電システムにおける燃料電池の起動方法
JP5769695B2 (ja) 発電システム及び発電システムの停止方法
WO2014112210A1 (ja) 発電システム
WO2014069414A1 (ja) 発電システム及び発電システムの運転方法
JP6071428B2 (ja) 発電システム及び発電システムにおける燃料電池の起動方法
JP6049421B2 (ja) 発電システム及び発電システムの運転方法
JP6081167B2 (ja) 発電システム及び発電システムの運転方法
JP6004913B2 (ja) 発電システム、発電システムの駆動方法及び燃焼器
JP5984709B2 (ja) 発電システム及び発電システムの駆動方法
JP6087591B2 (ja) 発電システム及び発電システムにおける燃料電池の起動方法
JP6276880B2 (ja) 発電システム
JP6057670B2 (ja) 発電システム及び発電システムにおける燃料電池の運転方法
JP2004111129A (ja) 燃料電池とマイクロガスタービンのコンバインド発電設備とその起動方法
JP2006318938A (ja) 固体電解質型燃料電池システム
JP6087585B2 (ja) 発電システム及び発電システムにおける燃料電池の起動方法
JP6049439B2 (ja) 発電システム及び発電システムの運転方法
JPH1167239A (ja) 火力発電と組み合わせた燃料電池発電設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011254

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14439361

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130064677

Country of ref document: DE

Ref document number: 112013006467

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871681

Country of ref document: EP

Kind code of ref document: A1