WO2014073469A1 - 正極材料、全固体電池およびそれらの製造方法 - Google Patents

正極材料、全固体電池およびそれらの製造方法 Download PDF

Info

Publication number
WO2014073469A1
WO2014073469A1 PCT/JP2013/079673 JP2013079673W WO2014073469A1 WO 2014073469 A1 WO2014073469 A1 WO 2014073469A1 JP 2013079673 W JP2013079673 W JP 2013079673W WO 2014073469 A1 WO2014073469 A1 WO 2014073469A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
mixture
solid
Prior art date
Application number
PCT/JP2013/079673
Other languages
English (en)
French (fr)
Inventor
忠朗 松村
金高 祐仁
三花 福島
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2014545681A priority Critical patent/JP5796798B2/ja
Publication of WO2014073469A1 publication Critical patent/WO2014073469A1/ja
Priority to US14/699,170 priority patent/US20150249264A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material, an all-solid battery, and a manufacturing method thereof, and more particularly, to a positive electrode material including a sulfide solid electrolyte, an all-solid battery, and a manufacturing method thereof.
  • a metal oxide such as lithium cobaltate as a positive electrode active material, a carbon material such as graphite as a negative electrode active material, and a lithium hexafluorophosphate dissolved in an organic solvent as an electrolyte that is, Organic solvent electrolytes are generally used.
  • a metal oxide such as lithium cobaltate as a positive electrode active material
  • a carbon material such as graphite as a negative electrode active material
  • a lithium hexafluorophosphate dissolved in an organic solvent as an electrolyte that is, Organic solvent electrolytes
  • the organic solvent used for the electrolyte is a flammable substance, there is a risk that the battery may ignite. For this reason, it is required to further increase the safety of the battery.
  • solid electrolytes As solid electrolytes, it is considered to apply organic materials such as polymers and gels, and inorganic materials such as glass and ceramics. Among them, inorganic materials mainly composed of nonflammable glass or ceramics are used as solid electrolytes. All-solid secondary batteries are attracting attention.
  • Patent Document 1 JP 2011-28893 A (hereinafter referred to as Patent Document 1) describes the configuration of an all-solid battery using a sulfide solid electrolyte.
  • the conductivity of the positive electrode active material layer is improved by adding a conductive material (conductive aid) such as acetylene black, ketjen black, or carbon fiber to the positive electrode active material layer (positive electrode layer). It is described that it can.
  • a conductive material such as acetylene black, ketjen black, or carbon fiber
  • Patent Document 1 when a conductive assistant such as carbon fiber is added to and mixed with the solid electrolyte and the positive electrode active material, the conductive assistant is likely to aggregate.
  • the aggregate of the conductive auxiliary agent is formed without being dispersed within.
  • the function of the conductive auxiliary agent that supplies electrons to the positive electrode active material deteriorates. That is, there is a problem that good battery characteristics cannot be obtained because the electron supply path in the positive electrode layer is obstructed.
  • the mixture of the solid electrolyte, the positive electrode active material, and the conductive assistant is strongly ground by, for example, a ball mill, so that the conductive assistant can be dispersed in the positive electrode material.
  • the solid electrolyte is pulverized.
  • the positive electrode active material and the conductive auxiliary agent enter between the pulverized solid electrolyte particles, there is a problem that the lithium ion supply path is cut off and good battery characteristics cannot be obtained.
  • an object of the present invention is to provide a positive electrode material, an all-solid battery, and a manufacturing method thereof that can improve battery characteristics.
  • the present inventors have found that the fibrous carbon is added to the region around the positive electrode active material as compared with the region around the sulfide solid electrolyte.
  • a large amount is present, that is, when fibrous carbon is unevenly distributed in a region around the positive electrode active material, it is possible to secure a lithium ion supply path in the positive electrode layer and to supply electrons to the positive electrode active material satisfactorily. That is, it has been found that an electron supply path in the positive electrode layer can be secured.
  • the positive electrode material, the all-solid battery, and the manufacturing method thereof according to the present invention have the following characteristics.
  • the positive electrode material according to the present invention includes a positive electrode active material, a sulfide solid electrolyte, and fibrous carbon. Fibrous carbon is unevenly distributed around the positive electrode active material.
  • the lithium composite oxide is preferably a phosphoric acid compound.
  • the phosphoric acid compound is preferably lithium iron phosphate.
  • An all-solid battery according to the present invention includes a positive electrode layer made of the positive electrode material described above, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer.
  • the positive electrode material manufacturing method according to the present invention is the above-described positive electrode material manufacturing method, and includes the following steps.
  • (A) A step of producing a first mixture by mixing a positive electrode active material and fibrous carbon.
  • the method for producing a positive electrode material of the present invention preferably further includes the following steps.
  • the manufacturing method of an all-solid battery according to the present invention is the above-described manufacturing method of an all-solid battery, and includes the following steps.
  • (A) A step of producing a first mixture by mixing a positive electrode active material and fibrous carbon.
  • the method for manufacturing an all-solid battery according to the present invention further includes the following steps.
  • the fibrous carbon is unevenly distributed around the positive electrode active material, a lithium ion path in the positive electrode layer can be ensured. At the same time, electrons can be satisfactorily supplied to the positive electrode active material. Thereby, the charge / discharge characteristic of an all-solid-state battery can be improved.
  • the all solid state battery 10 of the present invention includes a positive electrode layer 11, a negative electrode layer 12, and a solid electrolyte layer 13 interposed between the positive electrode layer 11 and the negative electrode layer 12.
  • the all solid state battery 10 is formed in a rectangular parallelepiped shape, and is composed of a laminate including a plurality of flat layers having a rectangular plane.
  • the all solid state battery 10 is formed in a columnar shape and is formed of a laminated body including a plurality of disk-like layers.
  • Each of positive electrode layer 11 and negative electrode layer 12 includes a sulfide solid electrolyte and an electrode active material
  • solid electrolyte layer 13 includes a sulfide solid electrolyte.
  • the positive electrode material constituting the positive electrode layer 11 includes a positive electrode active material, a sulfide solid electrolyte, and fibrous carbon. Fibrous carbon is unevenly distributed around the positive electrode active material.
  • the fibrous carbon is unevenly distributed around the positive electrode active material, a lithium ion path in the positive electrode layer 11 can be secured and the positive electrode active material can be secured. Electrons can be supplied satisfactorily to the substance. Thereby, the charge / discharge characteristic of the all-solid-state battery 10 can be improved.
  • the positive electrode active material has a general formula Li a M m XO b F c (wherein M is one or more transition metals, X is B, Al, Si, P, Cl, Ti, V, Cr, Mo, and One or more elements selected from the group consisting of W, a is in the range of 0 ⁇ a ⁇ 3, m is in the range of 0 ⁇ m ⁇ 2, b is in the range of 2 ⁇ b ⁇ 4, and c is in the range of 0 ⁇ c ⁇ 1 It is preferable to include a lithium composite oxide having a polyanion structure represented by:
  • the lithium composite oxide is preferably a phosphate compound, and the phosphate compound is preferably lithium iron phosphate.
  • the electrolyte supplying lithium ions is solid, it is necessary to mix the positive electrode active material (solid) and the solid electrolyte to form an electron supply path and a lithium ion supply path.
  • the solid electrolyte is an electronic insulator, the solid electrolyte that has entered between the positive electrode active materials impedes electron conduction. For this reason, it is conceivable to improve the electronic conductivity of the positive electrode layer by adding a conductive material to the mixture of the solid electrolyte and the positive electrode active material.
  • simply adding a conductive material such as carbon separates the positive electrode active material from the conductive material, and an electron supply path for efficiently supplying electrons to the positive electrode active material cannot be formed.
  • the solid electrolyte enters between the conductive material and the positive electrode active material, and thus an electron supply path cannot be formed.
  • a positive electrode active material having a low electron conductivity such as a lithium phosphate compound having an olivine structure
  • the present inventors have more fibrous carbon in the region around the positive electrode active material than in the region around the sulfide solid electrolyte, that is, the fibrous carbon is added to the region around the positive electrode active material. It has been found that when unevenly distributed, a lithium ion supply path in the positive electrode layer can be secured, and electrons can be satisfactorily supplied to the positive electrode active material, that is, an electron supply path in the positive electrode layer can be secured.
  • the following effects can be obtained by making the fibrous carbon unevenly distributed in the region around the positive electrode active material. Even if the positive electrode active material, the sulfide solid electrolyte, and fibrous carbon are mixed, the fibrous carbon as the conductive material is easily combined with the positive electrode active material, so that an electron supply path between the positive electrode active materials can be secured. it can. Further, even if the positive electrode active material, the sulfide solid electrolyte, and the fibrous carbon are mixed, the positive electrode active material and the fibrous carbon are firmly bonded, so that the sulfide solid electrolyte is interposed between the positive electrode active material and the fibrous carbon. Even after mixing, the positive electrode active material and the fibrous carbon can be kept in a good electrical connection state.
  • the state in which the fibrous carbon is dispersed can be maintained and does not aggregate. Furthermore, by using composite particles in which the positive electrode active material and fibrous carbon are fused, electron transfer between the positive electrode active material and the fibrous carbon as the conductive material is improved, and The electron supply is good.
  • the positive electrode active material is partially aggregated in the positive electrode layer, and electrons are supplied to the positive electrode active material.
  • the battery characteristics can be further improved.
  • secondary particles made of composite granules of a sulfide solid electrolyte having an average particle size of 10 ⁇ m or more, a positive electrode active material, and fibrous carbon are used, both lithium ion supply and electron supply to the positive electrode active material are good.
  • the battery characteristics can be further enhanced.
  • the adhesion between the positive electrode active material and the sulfide solid electrolyte is improved. Further, the supply of lithium ions to the positive electrode active material is further improved.
  • both the electron supply path and the lithium ion supply path to the positive electrode active material are formed well.
  • most of the positive electrode active material contained in the positive electrode layer becomes active, and a battery in which the utilization rate of the positive electrode active material exceeds 90% can be obtained.
  • lithium composite oxide having the polyanion structure as the positive electrode active material constituting the positive electrode layer 11 in the all solid state battery 10 of the present invention
  • LiFePO 4 LiCoPO 4 , LiFe 0.5 Co 0.5 PO 4 , LiMnPO 4 , LiCrPO 4 , LiFeVO 4 , LiFeSiO 4 , LiTiPO 4 , LiFeBO 3 , Li 3 Fe 2 PO 4 , LiFe 0.9 Al 0.1 PO 4 , LiFePO 3.9 F 0.1 and the like.
  • the surface of the lithium composite oxide is coated with a conductive material such as carbon, Even if a conductive substance is encapsulated in the particles of the substance, it can be suitably used without impairing the effects of the present invention, and even when such a substance is used, it is within the scope of the present invention. It is.
  • the composition ratio of the elements constituting the positive electrode active material is not limited to the above-described ratio, and may deviate from the stoichiometry.
  • the negative electrode layer 12 includes a negative electrode active material and a sulfide solid electrolyte.
  • a negative electrode active material for example, carbon materials such as graphite and hard carbon, alloy materials, sulfur, metal sulfides and the like can be used.
  • the solid electrolyte layer 13 sandwiched between the positive electrode layer 11 and the negative electrode layer 12 contains a sulfide solid electrolyte.
  • the solid electrolyte contained in the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 should just contain an ion conductive compound, and if it contains at least lithium and sulfur as a structural element.
  • such compounds include a mixture of Li 2 S and P 2 S 5, a mixture of Li 2 S and B 2 S 3 , and the like.
  • the solid electrolyte preferably further contains phosphorus.
  • a mixture of Li 2 S and P 2 S 5 , Li 7 P 3 S 11 examples thereof include Li 3 PS 4 , and examples of these compounds include those in which a part of an anion is substituted with oxygen.
  • glass and glass ceramics such as 80Li 2 S-20P 2 S 5 and the like, which do not contain cross-linking S, and Thio-LISICON are preferable.
  • the composition ratio of the elements constituting the solid electrolyte is not limited to the above-described ratio.
  • the all-solid-state battery 10 of the present invention may be used in a form in which the battery element shown in FIGS. 1 to 3 is charged in a ceramic container, for example, as shown in FIGS. It may be used in a self-supporting form as it is.
  • the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.
  • a first mixture is prepared by mixing a positive electrode active material and fibrous carbon, the first mixture is heated, and the first mixture and sulfide solid electrolyte are prepared. To make a second mixture.
  • a molded body from the second mixture, heat the molded body, and pulverize the heated molded body.
  • a 1st mixture is produced by mixing a positive electrode active material and fibrous carbon, a 1st mixture is heated, a 1st mixture and sulfide A 2nd mixture is produced by mixing with a solid electrolyte, and a molded object is produced from a 2nd mixture.
  • the molded body is further heated, the heated molded body is pulverized to produce a pulverized product, and the molded product is manufactured from the pulverized product.
  • the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 can be produced by compression-molding a raw material.
  • the positive electrode layer 11 is produced by producing a molded body by compression molding the positive electrode material produced above.
  • the positive electrode layer 11 is produced by compressing and molding a pulverized product obtained by heating the above-described molded body and pulverizing the heated molded body.
  • the negative electrode layer 12 and the solid electrolyte layer 13 are produced by compression molding raw materials. Thereafter, the positive electrode layer 11 and the negative electrode layer 12 are laminated with the solid electrolyte layer 13 interposed therebetween, whereby a laminate can be produced.
  • each layer of the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 is also producible by producing solid-liquid mixtures, such as a slurry, a paste, and a colloid containing a raw material.
  • solid-liquid mixture preparation step each solid-liquid mixture including the raw materials of the positive electrode layer 11, the negative electrode layer 12, and the solid electrolyte layer 13 is prepared.
  • molded articles such as sheets, printed layers, and films are prepared.
  • a laminated body is produced by laminating
  • the sealing method is not particularly limited.
  • the laminate may be sealed with a resin.
  • an insulating paste having an insulating property such as Al 2 O 3 may be applied or dipped around the laminate, and the insulating paste may be heat-treated for sealing.
  • a current collector layer such as a carbon layer, a metal layer, or an oxide layer may be formed on the positive electrode layer 11 and the negative electrode layer 12.
  • Examples of the method for forming the current collector layer include a sputtering method.
  • the metal paste may be applied or dipped and heat-treated. Carbon sheets may be laminated.
  • a stacked body may be formed by stacking a plurality of stacked bodies having the above single cell structure with a current collector interposed therebetween.
  • a plurality of laminates having a single battery structure may be laminated electrically in series or in parallel.
  • the method for producing each layer is not particularly limited, but a doctor blade method, a die coater, a comma coater or the like for forming each layer in the form of a sheet, or a screen for forming each layer in the form of a printed layer or a film. Printing methods and the like can be used.
  • the method for laminating the layers is not particularly limited, but the layers can be laminated using a hot isostatic press, a cold isostatic press, an isostatic press, or the like.
  • the slurry can be prepared by wet-mixing an organic vehicle in which an organic material is dissolved in a solvent and (a positive electrode active material and a solid electrolyte, a negative electrode active material and a solid electrolyte, or a solid electrolyte).
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used.
  • a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the organic material contained in the slurry is not particularly limited, and an acrylic resin that does not react with sulfide can be used.
  • the slurry may contain a plasticizer.
  • Example shown below is an example and this invention is not limited to the following Example.
  • Example 1 Preparation of solid electrolyte> A solid electrolyte was prepared by mechanically milling Li 2 S powder and P 2 S 5 powder, which are sulfides.
  • Li 2 S powder and P 2 S 5 powder were weighed so as to have a molar ratio of 80:20 and placed in an alumina container.
  • An alumina ball having a diameter of 10 mm was put and the container was sealed.
  • the container was set in a mechanical milling device (Planet Ball Mill, model No. P-7, manufactured by Fritsch) and subjected to mechanical milling at a rotation speed of 370 rpm for 20 hours. Thereafter, the container was opened in an argon gas atmosphere, and 2 ml of toluene was placed in the container to seal the container. Furthermore, the mechanical milling process was performed at 200 rpm for 2 hours.
  • the slurry-like material thus obtained was filtered in an argon gas atmosphere and then vacuum-dried.
  • the obtained powder was used as a glass powder for a positive electrode mixture.
  • the obtained powder was heated at a temperature of 200 ° C. to 300 ° C. in a vacuum atmosphere to obtain a glass ceramic powder.
  • This glass ceramic powder was used for the solid electrolyte layer.
  • a buffer solution was prepared by adding pure water to acetic acid and dissolving ammonium acetate in this aqueous solution.
  • the molar ratio of acetic acid to ammonium acetate was 1: 1, and the concentrations of acetic acid and ammonium acetate were both 0.5 mol / L.
  • the pH of this buffer solution was measured and found to be 4.6.
  • the above mixed aqueous solution was dropped into the buffer solution while stirring the buffer solution at room temperature to prepare a precipitated powder.
  • the pH of the buffer solution decreased, and when the pH reached 2.0, the dropping of the mixed aqueous solution into the buffer solution was terminated.
  • the obtained precipitated powder was filtered and washed with a large amount of water, and then heated to a temperature of 120 ° C. and dried to produce a brown FePO 4 .nH 2 O powder.
  • this FePO 4 ⁇ nH 2 O powder and CH 3 COOLi ⁇ 2H 2 O (lithium acetate dihydrate) were prepared at a molar ratio of 1: 1, and this mixture was mixed with pure water and poly A carboxylic acid polymer dispersant was added. Further, in the above mixture, a vapor grown carbon fiber (trade name: VGCF, registered trademark: VGCF, hereinafter referred to as “VGCF”) manufactured by Showa Denko Co., Ltd., and VGCF of 15 parts per 100 parts by weight of LiFePO 4 is used. After adding so that it might become a weight part, it pulverized and mixed using the ball mill, and the slurry was obtained.
  • VGCF vapor grown carbon fiber
  • the obtained slurry was dried with a spray dryer and then granulated, and in a mixed gas of H 2 —N 2 adjusted to a reducing atmosphere with an oxygen partial pressure of 10 ⁇ 20 MPa, at a temperature of 700 ° C. for 5 hours.
  • a positive electrode active material lithium iron phosphate: LiFePO 4 ) containing fibrous carbon (VGCF) was produced by heat treatment.
  • Example 1 From the results of Example 1 above, by making the fibrous carbon unevenly distributed in the region around the positive electrode active material, the electron supply path to the positive electrode active material is improved, and phosphoric acid with poor electron conductivity as the positive electrode active material It can be seen that a chargeable / dischargeable battery can be obtained even using iron lithium.
  • Example 2 Preparation of solid electrolyte> ⁇ Preparation of positive electrode active material> A solid electrolyte and a positive electrode active material were produced in the same manner as in Example 1.
  • 200 mg of the obtained positive electrode mixture was put into a mold having a diameter of 10 mm, and press-molded at a pressure of 329 MPa to produce a molded body.
  • the obtained molded body was heated in a vacuum atmosphere at a temperature of 200 ° C. for 6 hours while being placed on a carbon crucible.
  • the molded body after heating was pulverized in a mortar to obtain a positive electrode mixture.
  • Example 2 From the results of Example 2 above, by making the fibrous carbon unevenly distributed in the region around the positive electrode active material, the electron supply path to the positive electrode active material is improved, and phosphoric acid having poor electron conductivity as the positive electrode active material It can be seen that a chargeable / dischargeable battery can be obtained even using iron lithium.
  • the value of the discharge capacity is close to the theoretical capacity of lithium iron phosphate, and it can be seen that almost all lithium iron phosphate present in the positive electrode mixture is involved in charging and discharging.
  • the lithium ion supply path and the electron supply path are both well formed by molding and heating to obtain a battery having a large capacity. You can see that
  • a positive electrode active material not containing fibrous carbon was produced in the same manner as in Example 1 except that fibrous carbon was added during the process.
  • a high-capacity all-solid battery can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電池特性を高めることが可能な正極材料、全固体電池、および、それらの製造方法を提供する。正極材料は、正極活物質と、硫化物固体電解質と、繊維状炭素とを含む。繊維状炭素が正極活物質の周りに偏在している。全固体電池(10)は、上記の正極材料からなる正極層(11)と、負極層(12)と、正極層(11)と負極層(12)との間に介在する固体電解質層(13)とを備える。

Description

正極材料、全固体電池およびそれらの製造方法
 本発明は、正極材料、全固体電池およびそれらの製造方法に関し、特定的には硫化物固体電解質を含む正極材料、全固体電池およびそれらの製造方法に関する。
 近年、携帯電話、ノートパソコン等の携帯用電子機器の開発に伴い、これらの電子機器のコードレス電源として二次電池の需要が大きくなっている。その中でも、エネルギー密度が高く、充放電可能なリチウムイオン二次電池の開発が盛んに行われている。
 リチウムイオン二次電池では、正極活物質としてコバルト酸リチウム等の金属酸化物、負極活物質として黒鉛等の炭素材料、電解質として、六フッ化リン酸リチウムを有機溶媒に溶解させたもの、すなわち、有機溶媒系電解液が一般に使用されている。このような構成の電池において、活物質量を増加させることにより内部エネルギーを増加させ、さらにエネルギー密度を高くし、出力電流を向上させる試みがなされている。また、電池を大型化すること、電池を車両に安全に搭載することも要求されている。
 しかし、上記の構成のリチウムイオン二次電池では、電解質に用いられる有機溶媒は可燃性物質であるため、電池が発火する等の危険性がある。このため、電池の安全性をさらに高めることが求められている。
 そこで、リチウムイオン二次電池の安全性を高めるための一つの対策として、有機溶媒系電解液に代えて固体電解質を用いることが検討されている。固体電解質としては、高分子、ゲル等の有機材料、ガラス、セラミック等の無機材料を適用することが検討され、その中でも、不燃性のガラスまたはセラミックを主成分とする無機材料を固体電解質として用いる全固体二次電池が注目されている。
 たとえば、特開2011-28893号公報(以下、特許文献1という)には、硫化物固体電解質を用いた全固体電池の構成が記載されている。特許文献1では、正極活物質層(正極層)に、アセチレンブラック、ケッチェンブラック、カーボンファイバー等の導電化材(導電助剤)を添加することにより、正極活物質層の導電性を向上させることができると記載されている。
特開2011-28893号公報
 しかしながら、特許文献1に記載されているように、カーボンファイバー等の導電助剤を固体電解質と正極活物質とに添加して混合すると、導電助剤が凝集しやすいため、導電助剤が正極層内で分散しないで導電助剤の凝集体を形成してしまう。導電助剤が正極層内で凝集すると、正極活物質に電子を供給するという導電助剤の機能が低下する。すなわち、正極層内の電子供給パスが阻害されることにより、良好な電池特性が得られないという問題がある。
 また、導電助剤を正極材料内で分散させるために、固体電解質と正極活物質と導電助剤の混合物を、たとえば、ボールミルによって強く粉砕すると、導電助剤を正極材料内で分散させることができるが、固体電解質が粉砕されてしまう。粉砕された固体電解質粒子間に正極活物質や導電助剤が入り込むことにより、リチウムイオン供給パスが寸断され、良好な電池特性が得られないという問題がある。
 そこで、本発明の目的は、電池特性を高めることが可能な正極材料、全固体電池、および、それらの製造方法を提供することである。
 本発明者らは、正極活物質と硫化物固体電解質とを含む正極材料の構成を種々検討した結果、硫化物固体電解質の周りの領域に比べて正極活物質の周りの領域に繊維状炭素を多く存在させると、すなわち、正極活物質の周りの領域に繊維状炭素を偏在させると、正極層内のリチウムイオン供給パスを確保することができるとともに、正極活物質に電子を良好に供給する、すなわち、正極層内の電子供給パスを確保することができることを見出した。この知見に基づいて、本発明に従った正極材料、全固体電池、および、それらの製造方法は、次のような特徴を備えている。
 本発明に従った正極材料は、正極活物質と、硫化物固体電解質と、繊維状炭素とを含む。繊維状炭素が正極活物質の周りに偏在している。
 本発明の正極材料において、正極活物質が、一般式LiamXObc(ただし、化学式中、Mは1種以上の遷移金属、XはB、Al、Si、P、Cl、Ti、V、Cr、MoおよびWからなる群より選ばれた1種以上の元素であり、aは0<a≦3、mは0<m≦2、bは2≦b≦4、cは0≦c≦1の範囲内の数値である)で表されるポリアニオン構造を有するリチウム複合酸化物を含むことが好ましい。
 上記のリチウム複合酸化物はリン酸化合物であることが好ましい。
 上記のリン酸化合物はリン酸鉄リチウムであることが好ましい。
 本発明に従った全固体電池は、上述した正極材料からなる正極層と、負極層と、正極層と負極層との間に介在する固体電解質層とを備える。
 本発明に従った正極材料の製造方法は、上述した正極材料の製造方法であって、以下の工程を備える。
 (A)正極活物質と繊維状炭素とを混合することによって第1の混合物を作製する工程
 (B)第1の混合物を加熱する工程
 (C)第1の混合物と硫化物固体電解質とを混合することによって第2の混合物を作製する工程
 本発明の正極材料の製造方法は、以下の工程をさらに備えることが好ましい。
 (D)第2の混合物から成形体を作製する工程
 (E)成形体を加熱する工程
 (F)加熱された成形体を粉砕する工程
 本発明に従った全固体電池の製造方法は、上述した全固体電池の製造方法であって、以下の工程を備える。
 (A)正極活物質と繊維状炭素とを混合することによって第1の混合物を作製する工程
 (B)第1の混合物を加熱する工程
 (C)第1の混合物と硫化物固体電解質とを混合することによって第2の混合物を作製する工程
 (D)第2の混合物から成形体を作製する工程
 本発明に従った全固体電池の製造方法は、以下の工程をさらに備えることが好ましい。
 (E)成形体を加熱する工程
 (F)加熱された成形体を粉砕することによって粉砕物を作製する工程
 (G)粉砕物から成形体を作製する工程
 本発明によれば、正極活物質と硫化物固体電解質とを含む正極材料において、繊維状炭素が正極活物質の周りに偏在しているので、正極層内のリチウムイオンパスを確保することができるとともに、正極活物質に電子を良好に供給することができる。これにより、全固体電池の充放電特性を向上させることができる。
本発明の実施形態として全固体電池の電池要素の断面構造を模式的に示す断面図である。 本発明の一つの実施形態として全固体電池の電池要素を模式的に示す斜視図である。 本発明のもう一つの実施形態として全固体電池の電池要素を模式的に示す斜視図である。 本発明の実施例1で作製された全固体電池の充放電曲線を示す図である。 本発明の実施例2で作製された全固体電池の充放電曲線を示す図である。 本発明の比較例で作製された全固体電池の充放電曲線を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1に示すように、本発明の全固体電池10は、正極層11と、負極層12と、正極層11と負極層12との間に介在する固体電解質層13とを備える。図2に示すように本発明の一つの実施形態として全固体電池10は直方体形状に形成され、矩形の平面を有する複数の平板状層からなる積層体で構成される。また、図3に示すように本発明のもう一つの実施形態として全固体電池10は円柱形状に形成され、複数の円板状層からなる積層体で構成される。なお、正極層11と負極層12のそれぞれは、硫化物固体電解質と電極活物質とを含み、固体電解質層13は硫化物固体電解質を含む。
 上記のように構成された本発明の全固体電池10において、正極層11を構成する正極材料は、正極活物質と、硫化物固体電解質と、繊維状炭素とを含む。繊維状炭素が正極活物質の周りに偏在している。
 正極活物質と硫化物固体電解質とを含む正極層11において、繊維状炭素が正極活物質の周りに偏在しているので、正極層11内のリチウムイオンパスを確保することができるとともに、正極活物質に電子を良好に供給することができる。これにより、全固体電池10の充放電特性を向上させることができる。
 正極活物質が、一般式LiamXObc(ただし、化学式中、Mは1種以上の遷移金属、XはB、Al、Si、P、Cl、Ti、V、Cr、MoおよびWからなる群より選ばれた1種以上の元素であり、aは0<a≦3、mは0<m≦2、bは2≦b≦4、cは0≦c≦1の範囲内の数値である)で表されるポリアニオン構造を有するリチウム複合酸化物を含むことが好ましい。
 上記のリチウム複合酸化物はリン酸化合物であることが好ましく、リン酸化合物はリン酸鉄リチウムであることが好ましい。
 上記の本発明の構成と作用効果は、以下に説明する本発明者らの考察と知見に基づくものである。
 全固体電池では、リチウムイオンを供給する電解質が固体であるため、正極活物質(固体)と固体電解質を混合して電子供給パスとリチウムイオン供給パスを形成する必要がある。ところが、固体電解質は電子絶縁体であるので、正極活物質の間に入り込んだ固体電解質は電子伝導を阻害してしまう。このため、固体電解質と正極活物質の混合物に導電性物質を添加することによって正極層の電子伝導性を改善することが考えられる。しかし、単に炭素等の導電性物質を添加するだけでは、正極活物質と導電性物質が離れてしまい、正極活物質へ効率良く電子を供給する電子供給パスを形成することができない。また、導電性物質を正極活物質の表面に付着させても、導電性物質と正極活物質の間に固体電解質が入り込んでしまうため、電子供給パスを形成することができない。特に、オリビン型構造のリチウムリン酸化合物等の電子伝導性が低い正極活物質を用いる場合には正極層内の電子供給パスを確保することが困難である。
 一方、繊維状の形態の導電性物質を用いると、正極活物質の間で電子供給パスが比較的形成されやすいが、繊維状の導電性物質は、固体電解質と正極活物質に添加して混合すると、混合時に凝集しやすい。導電性物質が正極層内で凝集すると、正極層内の電子供給パスが阻害される。
 そこで、本発明者らは、硫化物固体電解質の周りの領域に比べて正極活物質の周りの領域に繊維状炭素を多く存在させると、すなわち、正極活物質の周りの領域に繊維状炭素を偏在させると、正極層内のリチウムイオン供給パスを確保することができるとともに、正極活物質に電子を良好に供給する、すなわち、正極層内の電子供給パスを確保することができることを見出した。
 正極活物質の周りの領域に繊維状炭素を偏在させることによって、以下の作用効果を得ることができる。正極活物質と硫化物固体電解質と繊維状炭素を混合しても、導電性物質としての繊維状炭素が正極活物質と結合しやすくなるので、正極活物質間の電子供給パスを確保することができる。また、正極活物質と硫化物固体電解質と繊維状炭素を混合しても、正極活物質と繊維状炭素が強固に結合することにより、硫化物固体電解質が正極活物質と繊維状炭素の間に入り込むことができず、混合後においても正極活物質と繊維状炭素との電気的接合が良好な状態を保つことができる。さらに、正極活物質と硫化物固体電解質と繊維状炭素を混合しても、繊維状炭素が分散した状態を保つことができ、凝集しない。さらにまた、正極活物質と繊維状炭素を融着させた複合粒子を用いることにより 、正極活物質と導電性物質としての繊維状炭素との間の電子移動が良好になり、正極活物質への電子供給が良好になる。
 好ましくは、正極活物質と繊維状炭素の複合体からなる2次粒子(複合体顆粒)を用いると、正極層内で正極活物質が部分的に凝集した状態となり、正極活物質への電子供給が良好になるため、電池特性をより高めることができる。さらに好ましくは、平均粒径が10μm以上の硫化物固体電解質と正極活物質と繊維状炭素の複合体顆粒からなる2次粒子を用いると、正極活物質へのリチウムイオン供給と電子供給がともに良好になり、電池特性をさらに高めることができる。さらにまた好ましくは、硫化物固体電解質と正極活物質と繊維状炭素の複合体を混合した後、成形して加熱することにより、正極活物質と硫化物固体電解質の間の密着性が良好になり、正極活物質へのリチウムイオン供給がさらに良好になる。
 以上のようにして、正極活物質の周りの領域に繊維状炭素を偏在させる形態を最適化することにより、正極活物質への電子供給パスとリチウムイオン供給パスとがともに良好に形成されることによって、正極層内に含まれる正極活物質のほとんどが活性となり、正極活物質の利用率が90%を超える電池を得ることができる。
 なお、本発明の全固体電池10において正極層11を構成する正極活物質としての上記のポリアニオン構造を有するリチウム複合酸化物としては、たとえば、LiFePO4、LiCoPO4、LiFe0.5Co0.5PO4、LiMnPO4、LiCrPO4、LiFeVO4、LiFeSiO4、LiTiPO4、LiFeBO3、Li3Fe2PO4、LiFe0.9Al0.1PO4、LiFePO3.90.1等を挙げることができる。また、正極活物質の電子電導性を改善する目的で、上記の元素の一部を他の元素で置換したり、リチウム複合酸化物の表面を炭素等の導電性物質で被覆したり、正極活物質の粒子の内部に導電性物質を内包させたものであっても、本発明の効果を阻害することなく、好適に用いることができ、このようなものを用いた場合も本発明の範囲内である。正極活物質を構成する元素の組成比率は上述した比率に限定されず、化学量論からずれていてもよい。
 負極層12は、負極活物質と硫化物固体電解質を含む。負極活物質としては、たとえば、黒鉛、ハードカーボン等の炭素材料、合金系材料、硫黄、金属硫化物等を用いることができる。
 正極層11と負極層12との間に挟まれた固体電解質層13は、硫化物固体電解質を含む。
 なお、正極層11、負極層12、および、固体電解質層13に含まれる固体電解質は、イオン伝導性化合物を含むものであればよく、構成元素としてリチウムと硫黄とを少なくとも含有するものであればよく、このような化合物として、Li2SとP25の混合物、Li2SとB23の混合物等を挙げることができる。また、固体電解質は、構成元素としてリチウムと硫黄に加えて、好ましくはリンをさらに含有すればよく、このような化合物として、Li2SとP25の混合物、Li7311、Li3PS4等を挙げることができ、これらの化合物においてアニオンの一部が酸素で置換されたもの等をあげることができる。上記の化合物の中でも、架橋Sを含まない、仕込み組成が80Li2S-20P25等のガラスおよびガラスセラミックや、Thio‐LISICONであることが好ましい。固体電解質を構成する元素の組成比率は上述した比率に限定されるものではない。
 なお、本発明の全固体電池10は、図1~図3に示される電池要素を、たとえば、セラミックス製の容器に装入された形態で用いられてもよく、図1~図3に示される形態のままで自立した形態で用いられてもよい。
 また、外装方法も特に限定されず、金属ケース、モールド樹脂、アルミニウムラミネートフイルム等を使用してもよい。
 本発明に従った正極材料の製造方法では、正極活物質と繊維状炭素とを混合することによって第1の混合物を作製し、第1の混合物を加熱し、第1の混合物と硫化物固体電解質とを混合することによって第2の混合物を作製する。
 本発明に従った正極材料の製造方法では、さらに、第2の混合物から成形体を作製し、成形体を加熱し、加熱された成形体を粉砕することが好ましい。
 本発明に従った全固体電池10の製造方法では、正極活物質と繊維状炭素とを混合することによって第1の混合物を作製し、第1の混合物を加熱し、第1の混合物と硫化物固体電解質とを混合することによって第2の混合物を作製し、第2の混合物から成形体を作製する。
 本発明に従った全固体電池10の製造方法では、さらに、成形体を加熱し、加熱された成形体を粉砕することによって粉砕物を作製し、粉砕物から成形体を作製することが好ましい。このようにすることにより、正極活物質への電子供給パスとリチウムイオン供給パスとがともに良好に形成されることによって、電池特性をさらに高めることができる。
 なお、本発明の全固体電池10の製造方法では、原材料を圧縮成形することによって正極層11、負極層12、および、固体電解質層13を作製することができる。この場合、上記で作製された正極材料を圧縮成形することによって成形体を作製することによって正極層11を作製する。あるいは、上記の成形体を加熱し、加熱された成形体を粉砕することによって得られた粉砕物を圧縮成形することによって正極層11を作製する。負極層12と固体電解質層13は、原材料を圧縮成形することによって作製される。その後、正極層11と負極層12とを、固体電解質層13を介在させて積層することによって積層体を作製することができる。
 また、原材料を含むスラリー、ペースト、コロイド等の固液混合物を作製することによって、正極層11、負極層12、および、固体電解質層13の各層を作製することもできる。この場合、たとえば、まず、正極層11、負極層12、固体電解質層13の原材料を含む各固液混合物を作製する(固液混合物作製工程)。得られた各固液混合物を用いて、シート、印刷層、膜等の各成形体を作製する。そして、得られた各成形体を積層することによって積層体を作製する(積層体作製工程)。なお、積層体を、たとえば、コインセル内に封止してもよい。封止方法は特に限定されない。たとえば、積層体を樹脂で封止してもよい。また、Al23等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップして、この絶縁ペーストを熱処理することによって封止してもよい。
 なお、正極層11と負極層12から効率的に電流を引き出すため、正極層11と負極層12の上に炭素層、金属層、酸化物層等の集電体層を形成してもよい。集電体層の形成方法は、たとえば、スパッタリング法が挙げられる。また、金属ペーストを塗布またはディップして、この金属ペーストを熱処理してもよい。また、カーボンシートを積層してもよい。
 積層体作製工程では、正極層11、固体電解質層13、および、負極層12を積層して単電池構造を形成することが好ましい。さらに、積層体形成工程において、集電体を介在させて、上記の単電池構造の積層体を複数個、積層して積層体を形成してもよい。この場合、単電池構造の積層体を複数個、電気的に直列、または並列に積層してもよい。
 上記の各層を作製する方法は特に限定されないが、シートの形態の各層を形成するためにドクターブレード法、ダイコーター、コンマコーター等、または、印刷層、膜の形態の各層を形成するためにスクリーン印刷法等を使用することができる。また、各層を積層する方法は特に限定されないが、熱間等方圧プレス、冷間等方圧プレス、静水圧プレス等を使用して積層することができる。
 スラリーは、有機材料を溶剤に溶解した有機ビヒクルと、(正極活物質および固体電解質、負極活物質および固体電解質、または、固体電解質)とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。スラリーに含まれる有機材料は特に限定されないが、硫化物と反応しないアクリル樹脂等を用いることができる。スラリーは可塑剤を含んでもよい。
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
 以下、全固体電池を作製した実施例1、2と比較例について説明する。
 (実施例1)
 <固体電解質の作製>
 硫化物であるLi2S粉末とP25粉末とをメカニカルミリング処理することにより、固体電解質を作製した。
 具体的には、アルゴンガス雰囲気中で、Li2S粉末とP25粉末とを80:20のモル比になるように秤量し、アルミナ製の容器に入れた。直径が10mmのアルミナボールを入れて、容器を密閉した。容器をメカニカルミリング装置(フリッチュ製 遊星ボールミル、型番P-7)にセットして、370rpmの回転数で20時間、メカニカルミリング処理した。その後、容器をアルゴンガス雰囲気中に開放し、容器にトルエンを2ml入れて、容器を密閉した。さらに、メカニカルミリング処理を200rpmの回転数で2時間行った。このようにして得られたスラリー状の材料をアルゴンガス雰囲気中でろ過した後、真空乾燥した。得られた粉末を正極合材用ガラス粉末として用いた。
 得られた粉末を真空雰囲気中にて200℃~300℃の温度で加熱することにより、ガラスセラミック粉末を得た。このガラスセラミック粉末を固体電解質層に用いた。
 <正極活物質の作製>
 FeSO4・7H2Oを純水に溶解させ、この水溶液にP源としてのH3PO4(85%水溶液)と酸化剤としてのH22(30%水溶液)とを加えることによって混合水溶液を作製した。ここで、FeSO4・7H2O、H3PO4、および、H22はモル比率で1:1:1.5になるように調合した。
 次に、酢酸に純水を加え、この水溶液に酢酸アンモニウムを溶かすことによって緩衝溶液を作製した。なお、酢酸と酢酸アンモニウムのモル比は1:1であり、酢酸および酢酸アンモニウムの濃度は、いずれも0.5mol/Lとした。この緩衝溶液のpHを測定したところ、4.6であった。
 そして、緩衝溶液を常温で撹拌しながら、上記の混合水溶液を緩衝溶液に滴下することによって、沈殿粉末を作製した。なお、混合水溶液の滴下量が増加するに伴い、緩衝溶液のpHは低下し、pHが2.0になった時点で混合水溶液の緩衝溶液への滴下を終了した。
 その後、得られた沈殿粉末をろ過し、大量の水で洗浄した後に、120℃の温度に加熱し、乾燥させ、褐色のFePO4・nH2Oの粉末を作製した。
 次に、このFePO4・nH2O粉末とCH3COOLi・2H2O(酢酸リチウム・二水和物)とをモル比で1:1になるように調合し、この混合物に純水とポリカルボン酸系高分子分散剤を添加した。さらに、上記の混合物に、昭和電工株式会社製の気相法炭素繊維(商品名:VGCF、登録商標:VGCF、以下、「VGCF」という)を、100重量部のLiFePO4に対してVGCFが15重量部になるように添加した後、ボールミルを使用して混合粉砕してスラリーを得た。得られたスラリーをスプレードライヤで乾燥した後、造粒し、酸素分圧が10-20MPaの還元雰囲気に調整されたH2‐N2の混合ガス中にて、700℃の温度で5時間、熱処理することによって、繊維状炭素(VGCF)を含む正極活物質(リン酸鉄リチウム:LiFePO4)を作製した。
 <正極合材の作製>
 アルゴンガス雰囲気中にて、上記の固体電解質の作製工程で得られたガラス粉末と上記で得られた繊維状炭素を含む正極活物質とを57:33の重量比になるように秤量し、ロッキングミルで1時間混合することによって、正極合材を作製した。
 <正極合材中の正極活物質と固体電解質と繊維状炭素の分散状態>
 正極合材中の正極活物質と固体電解質と繊維状炭素の分散状態を調べるために、上記で得られた正極合材を分析した。走査型電子顕微鏡およびエネルギー分散型X線分光装置(EDX)(エリオニクス社製、型番:EPA-8900FE、加速電圧20kV、倍率3000倍)を用いて正極合材を分析したところ、繊維状炭素が固体電解質(ガラス粉末)の周りの領域に比べて正極活物質の周りの領域に多く存在すること、すなわち、繊維状炭素が正極活物質の周りの領域に偏在することを確認した。
 <全固体電池の作製>
 ポリエチレンテレフタレート(PET)製の内径が10mmのダイに、上記の固体電解質の作製工程で得られたガラスセラミック粉末150mgを入れた後、110MPaの圧力でプレス成形することによって固体電解質層を作製した。
 上記のダイの片側から、上記で得られた正極合材10mgを入れ、上記のダイの反対側から、負極材料としてのIn‐Liを配置し、さらに両側にステンレス鋼板を配置した後、329MPaの圧力でプレス成形することによって全固体電池の電池要素としての積層体を作製した。得られた積層体をラミネート容器に封入して、全固体電池を作製した。
 <電池特性の評価>
 上記で得られた全固体電池に対し、3.6V~1.8Vの電圧で10μA(電流密度:12.7μA/cm2)の定電流充放電を行った。50℃の温度で充放電サイクルを繰り返し、容量の変化がなくなった時点で放電容量を測定したところ、13mAh/gであった。得られた充放電曲線を図4に示す。充放電曲線において電圧が2.8V付近に平坦部が存在することから、充放電が可逆的に進行することを確認できた。
 以上の実施例1の結果から、繊維状炭素を正極活物質の周りの領域に偏在させることにより、正極活物質への電子供給パスが良好になり、正極活物質として電子伝導性が乏しいリン酸鉄リチウムを用いても、充放電可能な電池を得ることができることがわかる。
 (実施例2)
 <固体電解質の作製><正極活物質の作製>
 実施例1と同様にして、固体電解質と正極活物質を作製した。
 <正極合材の作製>
 アルゴンガス雰囲気中にて、上記の固体電解質の作製工程で得られたガラス粉末と上記で得られた繊維状炭素を含む正極活物質とを57:33の重量比になるように秤量し、ロッキングミルで1時間混合することによって、正極合材を作製した。
 得られた正極合材200mgを直径が10mmの金型に入れて、329MPaの圧力でプレス成形して、成形体を作製した。得られた成形体を、カーボンルツボの上に置いた状態で、真空雰囲気中にて200℃の温度で6時間、加熱した。加熱後の成形体を乳鉢にて粉砕することによって正極合材を得た。
 <正極合材中の正極活物質と固体電解質と繊維状炭素の分散状態>
 正極合材中の正極活物質と固体電解質と繊維状炭素の分散状態を調べるために、上記で得られた正極合材を実施例1と同様にして分析した。繊維状炭素が固体電解質(ガラス粉末)の周りの領域に比べて正極活物質の周りの領域に多く存在すること、すなわち、繊維状炭素が正極活物質の周りの領域に偏在することを確認した。
 <全固体電池の作製>
 実施例1と同様にして全固体電池を作製した。
 <電池特性の評価>
 上記で得られた全固体電池に対し、3.6V~1.8Vの電圧で10μA(電流密度:12.7μA/cm2)の定電流充放電を行った。50℃の温度で充放電サイクルを繰り返し、容量の変化がなくなった時点で放電容量を測定したところ、135mAh/gであった。得られた充放電曲線を図5に示す。充放電曲線において電圧が2.8V付近に平坦部が存在することから、充放電が可逆的に進行することを確認できた。
 以上の実施例2の結果から、繊維状炭素を正極活物質の周りの領域に偏在させることにより、正極活物質への電子供給パスが良好になり、正極活物質として電子伝導性が乏しいリン酸鉄リチウムを用いても、充放電可能な電池を得ることができることがわかる。特に、上記の放電容量の値は、リン酸鉄リチウムの理論容量に近い値であり、正極合材中に存在するほぼすべてのリン酸鉄リチウムが充放電に関与していることがわかる。さらに、固体電解質と繊維状炭素を含む正極活物質とを混合した後、成形して加熱することにより、リチウムイオン供給パスと電子供給パスとがともに良好に形成され、容量の大きい電池を得ることができることがわかる。
 (比較例)
 <固体電解質の作製>
 実施例1と同様にして、固体電解質を作製した。
 <正極活物質の作製>
 工程中において繊維状炭素を添加すること以外は、実施例1と同様にして、繊維状炭素を含まない正極活物質を作製した。
 <正極合材の作製>
 アルゴンガス雰囲気中にて、上記の固体電解質の作製工程で得られたガラス粉末と上記で得られた繊維状炭素を含まない正極活物質とを57:33の重量比になるように秤量し、ロッキングミルで1時間混合した。得られた混合物と上記のVGCFとを90:10の重量比になるように秤量し、ロッキングミルで1時間混合することによって、正極合材を作製した。
 <正極合材中の正極活物質と固体電解質と繊維状炭素の分散状態>
 正極合材中の正極活物質と固体電解質と繊維状炭素の分散状態を調べるために、上記で得られた正極合材を走査型電子顕微鏡(SEM)で観察した。固体電解質がリン酸鉄リチウムと繊維状炭素の間に入り込み、リン酸鉄リチウムと繊維状炭素の間の電子移動が阻害される状態になっていることを確認した。また、一部の繊維状炭素が凝集していることを確認した。
 <全固体電池の作製>
 実施例1と同様にして全固体電池を作製した。
 <電池特性の評価>
 上記で得られた全固体電池に対し、50℃の温度で、3.6V~1.8Vの電圧で10μA(電流密度:12.7μA/cm2)の定電流充放電を試みた。しかし、抵抗が高く、充放電しなかったので、定電流の電流値を下げ、充放電の電圧範囲を拡げて定電流充放電を行った。具体的には5V~1.5Vの電圧で1μA(電流密度:1.3μA/cm2)の定電流充放電を行った。その結果、得られた充放電曲線を図6に示す。図6に示すように、充放電挙動が見られたが、リン酸鉄リチウムの充放電電圧とは異なる電圧で電流が流れていることがわかる。これは副反応による充放電挙動を示しており、この電池のリン酸鉄リチウムは充放電挙動に関与していないことがわかる。
 以上の比較例の結果から、導電助剤としてVGCFを添加しただけでは、正極活物質としてリン酸鉄リチウムを用いた硫化物固体電池を充放電させることができないことがわかる。
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
 本発明により、高容量の全固体電池を得ることができる。
 10:全固体電池、11:正極層、12:負極層、13:固体電解質層。
                                                                                

Claims (9)

  1.  正極活物質と、硫化物固体電解質と、繊維状炭素とを含み、
     前記繊維状炭素が前記正極活物質の周りに偏在している、正極材料。
  2.  前記正極活物質が、一般式LiamXObc(ただし、化学式中、Mは1種以上の遷移金属、XはB、Al、Si、P、Cl、Ti、V、Cr、MoおよびWからなる群より選ばれた1種以上の元素であり、aは0<a≦3、mは0<m≦2、bは2≦b≦4、cは0≦c≦1の範囲内の数値である)で表されるポリアニオン構造を有するリチウム複合酸化物を含む、請求項1に記載の正極材料。
  3.  前記リチウム複合酸化物が、リン酸化合物である、請求項2に記載の正極材料。
  4.  前記リン酸化合物が、リン酸鉄リチウムである、請求項3に記載の正極材料。
  5.  請求項1から請求項4までのいずれか1項に記載の正極材料からなる正極層と、
     負極層と、
     前記正極層と前記負極層との間に介在する固体電解質層と、
    を備える、全固体電池。
  6.  請求項1から請求項4までのいずれか1項に記載の正極材料の製造方法であって、
     前記正極活物質と前記繊維状炭素とを混合することによって第1の混合物を作製する工程と、
     前記第1の混合物を加熱する工程と、
     前記第1の混合物と前記硫化物固体電解質とを混合することによって第2の混合物を作製する工程と、
    を備える、正極材料の製造方法。
  7.  前記第2の混合物から成形体を作製する工程と、
     前記成形体を加熱する工程と、
     前記加熱された成形体を粉砕する工程と、
    をさらに備える、請求項6に記載の正極材料の製造方法。
  8.  請求項5に記載の全固体電池の製造方法であって、
     前記正極活物質と前記繊維状炭素とを混合することによって第1の混合物を作製する工程と、
     前記第1の混合物を加熱する工程と、
     前記第1の混合物と前記硫化物固体電解質とを混合することによって第2の混合物を作製する工程と、
     前記第2の混合物から成形体を作製する工程と、
    を備える、全固体電池の製造方法。
  9.  前記成形体を加熱する工程と、
     前記加熱された成形体を粉砕することによって粉砕物を作製する工程と、
     前記粉砕物から成形体を作製する工程と、
    をさらに備える、請求項8に記載の全固体電池の製造方法。

                                                                                    
PCT/JP2013/079673 2012-11-07 2013-11-01 正極材料、全固体電池およびそれらの製造方法 WO2014073469A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014545681A JP5796798B2 (ja) 2012-11-07 2013-11-01 正極材料、全固体電池およびそれらの製造方法
US14/699,170 US20150249264A1 (en) 2012-11-07 2015-04-29 Positive electrode material, all solid-state battery, and methods respectively for producing positive electrode material and all-solid state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012245528 2012-11-07
JP2012-245528 2012-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/699,170 Continuation US20150249264A1 (en) 2012-11-07 2015-04-29 Positive electrode material, all solid-state battery, and methods respectively for producing positive electrode material and all-solid state battery

Publications (1)

Publication Number Publication Date
WO2014073469A1 true WO2014073469A1 (ja) 2014-05-15

Family

ID=50684575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079673 WO2014073469A1 (ja) 2012-11-07 2013-11-01 正極材料、全固体電池およびそれらの製造方法

Country Status (3)

Country Link
US (1) US20150249264A1 (ja)
JP (1) JP5796798B2 (ja)
WO (1) WO2014073469A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213184A (ja) * 2015-05-11 2016-12-15 出光興産株式会社 電極合材の製造方法
CN107275607A (zh) * 2017-06-13 2017-10-20 福州大学 含b、v、o簇化合物的新型锂电池正极材料
WO2022230163A1 (ja) * 2021-04-30 2022-11-03 日産自動車株式会社 電気デバイス用正極材料並びにこれを用いた電気デバイス用正極および電気デバイス
WO2024048025A1 (ja) * 2022-08-30 2024-03-07 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446873B2 (en) * 2016-12-30 2019-10-15 Intel Corporation Solid-state battery
JP6876648B2 (ja) * 2018-03-22 2021-05-26 株式会社東芝 二次電池、電池パック及び車両
CN112133921A (zh) * 2020-09-30 2020-12-25 蜂巢能源科技有限公司 适用于全固态电池的正极材料层、其制备方法、正极片和全固态电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340152A (ja) * 2003-07-28 2005-12-08 Showa Denko Kk 高密度電極及びその電極を用いた電池
JP2008108740A (ja) * 2007-12-03 2008-05-08 Showa Denko Kk 電池用電極材および二次電池
JP2009016265A (ja) * 2007-07-06 2009-01-22 Showa Denko Kk リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法
JP2009176720A (ja) * 2007-12-25 2009-08-06 Kao Corp リチウム電池正極用複合材料の製造方法
JP2009266400A (ja) * 2008-04-22 2009-11-12 Dai Ichi Kogyo Seiyaku Co Ltd リチウム二次電池用正極及びこれを用いたリチウム二次電池
JP2011513900A (ja) * 2008-02-28 2011-04-28 ハイドロ−ケベック 複合電極材
JP2011159534A (ja) * 2010-02-02 2011-08-18 Toyota Motor Corp リチウム電池
JP2011529257A (ja) * 2008-07-28 2011-12-01 ハイドロ−ケベック 複合電極材
JP2012248414A (ja) * 2011-05-27 2012-12-13 Toyota Motor Corp 固体二次電池システムおよび再生固体二次電池の製造方法
JP2013084499A (ja) * 2011-10-12 2013-05-09 Toyota Motor Corp 硫化物固体電池システム
JP2013118143A (ja) * 2011-12-05 2013-06-13 Toyota Motor Corp 固体電池用電極の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510036B2 (ja) * 2009-05-28 2014-06-04 Tdk株式会社 活物質、活物質の製造方法及びリチウムイオン二次電池
JP5272995B2 (ja) * 2009-09-29 2013-08-28 トヨタ自動車株式会社 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340152A (ja) * 2003-07-28 2005-12-08 Showa Denko Kk 高密度電極及びその電極を用いた電池
JP2009016265A (ja) * 2007-07-06 2009-01-22 Showa Denko Kk リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法
JP2008108740A (ja) * 2007-12-03 2008-05-08 Showa Denko Kk 電池用電極材および二次電池
JP2009176720A (ja) * 2007-12-25 2009-08-06 Kao Corp リチウム電池正極用複合材料の製造方法
JP2011513900A (ja) * 2008-02-28 2011-04-28 ハイドロ−ケベック 複合電極材
JP2009266400A (ja) * 2008-04-22 2009-11-12 Dai Ichi Kogyo Seiyaku Co Ltd リチウム二次電池用正極及びこれを用いたリチウム二次電池
JP2011529257A (ja) * 2008-07-28 2011-12-01 ハイドロ−ケベック 複合電極材
JP2011159534A (ja) * 2010-02-02 2011-08-18 Toyota Motor Corp リチウム電池
JP2012248414A (ja) * 2011-05-27 2012-12-13 Toyota Motor Corp 固体二次電池システムおよび再生固体二次電池の製造方法
JP2013084499A (ja) * 2011-10-12 2013-05-09 Toyota Motor Corp 硫化物固体電池システム
JP2013118143A (ja) * 2011-12-05 2013-06-13 Toyota Motor Corp 固体電池用電極の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213184A (ja) * 2015-05-11 2016-12-15 出光興産株式会社 電極合材の製造方法
CN107275607A (zh) * 2017-06-13 2017-10-20 福州大学 含b、v、o簇化合物的新型锂电池正极材料
WO2022230163A1 (ja) * 2021-04-30 2022-11-03 日産自動車株式会社 電気デバイス用正極材料並びにこれを用いた電気デバイス用正極および電気デバイス
WO2024048025A1 (ja) * 2022-08-30 2024-03-07 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法

Also Published As

Publication number Publication date
JPWO2014073469A1 (ja) 2016-09-08
JP5796798B2 (ja) 2015-10-21
US20150249264A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
WO2017141735A1 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP5796798B2 (ja) 正極材料、全固体電池およびそれらの製造方法
JP5796687B2 (ja) 正極材料、二次電池およびそれらの製造方法
JP6912658B2 (ja) 全固体二次電池及びその製造方法
US11018374B2 (en) All-solid-state battery
KR101723186B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US20190181432A1 (en) Cathode mixture, cathode active material layer, all solid state battery, and method for producing cathode active material layer
JP5796686B2 (ja) 全固体電池およびその製造方法
US20150093651A1 (en) Lithium battery and method of preparing cathode active material for the lithium battery
CN111201660B (zh) 固体电解质组合物、全固态二次电池及其制造方法
WO2014141962A1 (ja) 全固体電池
WO2020059550A1 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
CN111247673B (zh) 活性物质层形成用组合物、电池、电极片及相关制造方法
JP5850163B2 (ja) 全固体電池
JP5930063B2 (ja) 正極材料、全固体電池およびそれらの製造方法
KR101586536B1 (ko) 전고상 리튬이차전지용 탄소섬유 시트 집전체의 제조방법 및 탄소섬유 시트 집전체를 포함하는 전고상 리튬이차전지
JP5644951B2 (ja) 全固体電池用未焼結積層体、全固体電池およびその製造方法
US11532837B2 (en) Sulfide solid electrolyte particles and all-solid-state battery
Palanisamy et al. Lithium metal battery pouch cell assembly and prototype demonstration using tailored polypropylene separator
WO2013161982A1 (ja) 固体電池およびその製造方法
US20220102702A1 (en) Anode material and solid-state battery
US20200287202A1 (en) Configuring anisotropic expansion of silicon-dominant anodes using particle size
CN114665148A (zh) 全固体电池及其制造方法
JP2020024780A (ja) 全固体電池およびその製造方法
WO2013161981A1 (ja) 固体電池の製造方法および固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852979

Country of ref document: EP

Kind code of ref document: A1