WO2014073465A1 - レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法 - Google Patents
レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法 Download PDFInfo
- Publication number
- WO2014073465A1 WO2014073465A1 PCT/JP2013/079668 JP2013079668W WO2014073465A1 WO 2014073465 A1 WO2014073465 A1 WO 2014073465A1 JP 2013079668 W JP2013079668 W JP 2013079668W WO 2014073465 A1 WO2014073465 A1 WO 2014073465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- lens
- machine
- processing machine
- size
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B9/00—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
- B24B9/02—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
- B24B9/06—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
- B24B9/08—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
- B24B9/14—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
- B24B9/148—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B27/00—Other grinding machines or devices
- B24B27/0023—Other grinding machines or devices grinding machines with a plurality of working posts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B27/00—Other grinding machines or devices
- B24B27/0076—Other grinding machines or devices grinding machines comprising two or more grinding tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
Definitions
- the present invention relates to a lens processing system, a processing size management device, a processing size management method, and a spectacle lens manufacturing method used for processing a lens shape of a spectacle lens.
- a processing machine that performs eyeglass processing of spectacle lenses targets a plurality of types of lens materials, and selectively uses a plurality of types of processing tools for the target lens materials. What you do is common.
- the size adjustment of a process is performed as a pre-process before performing a target lens shape process.
- the size adjustment for processing is within the allowable range for the difference between the actual size of the spectacle lens after the target lens processing and the desired size (for example, an allowable value specified in advance so that the spectacle lens can be inserted into the spectacle frame without any problem)
- the following is performed for each of various lens materials to be processed and various processing tools used for the processing at a predetermined stage such as when the apparatus is introduced or when the tool is replaced.
- the size adjustment of the processing for example, an inter-axis distance adjustment between the rotation axis of the lens material and the rotation axis of the processing tool is performed (for example, see Patent Document 1).
- the present invention relates to a lens processing system, a processing size management apparatus, a processing size management method, and a spectacle lens manufacturing method capable of simplifying the process of adjusting the processing size for each processing machine when there are a plurality of processing machines.
- the purpose is to provide.
- a first aspect of the present invention is a lens processing system comprising: a plurality of processing machines that perform eyeglass processing of spectacle lenses; and a processing size management device that is used by being connected to the plurality of processing machines.
- the processing size management device uses the processing tool in the processing machine in association with the type of lens material to be processed by the processing machine and the type of processing tool used by the processing machine for each model of the processing machine.
- Storage means for storing and holding information on processing characteristics when processing the lens material, and the information stored and held by the storage means is obtained by at least one of the plurality of processing machines.
- Information regarding processing characteristics of the processing machine, and the processing machine of the same model as the at least one processing machine among the plurality of processing machines is configured to process the lens material with the processing machine.
- said storage means is a lens processing system characterized by comprising a correction means for correcting the process parameters for the process based on the information stored and held.
- a processing machine of the same model as the processing machine other than the at least one processing machine is preliminarily used as a reference. For at least one type of the lens material defined, a processing size adjustment was performed for each type of the processing tool so that an error between the desired size and the actual size of the spectacle lens after the target lens processing was within an allowable range.
- a third aspect of the present invention is a processing size management apparatus that is used by being connected to a plurality of processing machines that perform eyeglass processing of spectacle lenses, and for each type of the processing machine, the processing machine is a processing target.
- Storage means for storing and storing information on processing characteristics when processing the lens material using the processing tool in the processing machine in association with the type of lens material to be processed and the type of processing tool used by the processing machine;
- acquisition means for acquiring information on processing characteristics in at least one processing machine of the plurality of processing machines, and the same as the at least one processing machine among the plurality of processing machines.
- the processing means When processing the lens material with the processing tool using the processing tool for the processing machine of the model, the processing means A management means for correcting the process parameters for engineering a processing size management apparatus comprising: a.
- a processing size management method for managing processing sizes in a plurality of processing machines that perform eyeglass processing of spectacle lenses, wherein at least one of the plurality of processing machines is used. For each type of lens material to be processed by the processing machine and all types of processing tools used by the processing machine, information on processing characteristics when the lens material is processed using the processing tool is acquired.
- a processing size management method characterized in that it comprises a. According to a fifth aspect of the present invention, there is provided a spectacle lens characterized in that the spectacle lens is formed by a target lens shape processing using the processing machine whose processing size is managed by the processing size management method according to the fourth aspect. It is a manufacturing method.
- it is explanatory drawing which shows a specific example of the information regarding the processing characteristic of a processing machine which the database part of a server apparatus memorize
- It is explanatory drawing which shows a specific example of the size management table which the management means in the correction management program part of a client apparatus manages in the lens processing system of embodiment of this invention.
- FIG. 1 is a block diagram illustrating a schematic configuration example of the entire lens processing system according to the present embodiment.
- the lens processing system is used for processing a lens shape of an eyeglass lens, and is constructed, for example, in an eyeglass lens processing center. More specifically, the lens processing system includes a plurality of processing machines 10 installed in a spectacle lens processing center, a three-dimensional circumference measuring machine 20, a management device 30, and a communication line 40 that connects these devices. Configured.
- each of the plurality of processing machines 10 performs eyeglass processing of a spectacle lens.
- the plurality of processing machines 10 may include different models.
- the three-dimensional circumference measuring machine 20 measures the circumference of the spectacle lens after processing the target lens shape.
- the management device 30 functions as a processing size management device that is used by being connected to a plurality of processing machines 10, and includes a server device 31 and a client device 32 in this embodiment. Both the server device 31 and the client device 32 have a computer function.
- the server device 31 controls and manages the operation of the entire system, whereas the client device 32 controls each processing machine 10. Are different from each other in that they control and manage the operation of the.
- a plurality of client devices 32 may be provided in the system in consideration of the number of processing machines 10 present in the system and the number of processing machines 10 that can be managed by the client device 32.
- the server device 31 and the client device 32 are provided as separate devices. However, they may be provided as a single device.
- the processing machine 10 performs eyeglass processing of spectacle lenses.
- the target lens shape processing is performed on an uncut lens having a predetermined outer shape.
- the peripheral edge of the uncut lens is processed into a shape that can be framed in the spectacle frame.
- the processing machine 10 performs such target processing by selectively using a plurality of types of processing tools.
- the processing tool here refers to a cutting / grinding tool for the periphery of the uncut lens, and specifically includes various types such as a bevel tool, a flat tool, a bevel polish tool, and a flat polish tool.
- the processing machine 10 may need to target multiple types of lens materials.
- lens materials that can be processed may vary in workability (for example, good or bad machinability) depending on the type. Therefore, the processing machine 10 has several processing modes to cope with the difference in workability, and the processing conditions (for example, the tool driving speed) on the apparatus side can be changed by switching the processing modes. It is configured.
- the number of types of lens materials to be processed and the number of processing modes in the processing machine 10 do not necessarily coincide with each other, and in this embodiment, a larger number of lens materials than the number of processing modes are assumed as processing targets. Shall.
- the processing machine 10 is comprised so that it can respond to process size adjustment as a pre-process of a target lens shape process. Therefore, the processing machine 10 has a function as the adjusting means 11.
- the adjusting means 11 is a function for dealing with the processing size adjustment.
- the processing size adjustment is performed at a predetermined stage such as when the apparatus is introduced or when the tool is changed so that the error between the actual size of the spectacle lens after the target lens processing and the desired size falls within an allowable range. Performed by maintenance personnel.
- processing size adjustment for example, after actually processing a predetermined lens and measuring the actual size after the processing, in order to keep the error between the actual size and the desired size within an allowable range, It is conceivable to set processing conditions for the processing machine 10 in advance so as to eliminate the minute. More specifically, as processing conditions for eliminating the error, for example, for the processing parameters such as the inter-axis distance between the lens rotation axis and the processing tool rotation axis, the tool diameter (offset amount) of the processing tool, etc.
- the correction value is set in advance on the processing machine 10 side.
- Such processing size adjustment may be performed by using a known technique (for example, see Patent Document 1).
- a correction value of a processing parameter from an operation panel (not shown) of the processing machine 10 is used. Can be performed by an operator or the like.
- the processing machine 10 is configured to be able to cope with the processing parameter correction as a process at the time of processing the target lens shape. Therefore, the processing machine 10 has a function as the correction means 12.
- the correction means 12 is a function for dealing with machining parameter correction.
- the processing parameter correction is for eliminating the error so that the error between the actual size of the spectacle lens after the target lens processing and the desired size falls within an allowable range, as in the processing size adjustment described above. .
- the processing parameter correction is performed at the time of processing the target lens shape by the processing machine 10, that is, performed at the operation stage of the processing machine 10. This is different from the processing size adjustment performed.
- the processing parameter correction is not performed by an operator of the processing machine 10 or the like as in the processing size adjustment but based on information from the client device 32 to which the processing machine 10 is connected. Specifically, when a correction value for eliminating an error amount is notified from the client device 32 with respect to a processing parameter such as a tool diameter of the processing tool, the processing amount reflecting the notified correction value is determined. On top of that, we will be processing the target.
- Such a function as the correction unit 12 receives a correction value notified from the client device 32 (inquires the client device 32 for the correction value in some cases), and performs drive control of the processing machine 10 based on the correction value. As described above, this can be realized by setting a control program of the processing machine 10.
- the management device 30 that functions as a processing size management device in the lens processing system will be described in more detail.
- the management device 30 includes the server device 31 and the client device 32. Hereinafter, these will be described in order.
- the server device 31 includes a computer that manages and controls the overall operation of the lens processing system, and centrally manages information related to the target lens shape processing performed in the lens processing system.
- the server device 31 is connected to a terminal device (not shown) installed in the spectacle store via a wide area network such as the Internet, and accepts an order for spectacle lenses from the terminal device.
- a terminal device not shown
- the information about the job according to the order is managed, and the result of measuring the circumference of the spectacle lens after processing the target lens shape obtained by the three-dimensional circumference measuring machine 20 in association with the information about the job.
- the server device 31 has a database unit 33, and is configured to store and hold various types of information in the database unit 33.
- Various information stored and held in the database unit 33 include processing characteristics in the processing machine 10 in the system, in addition to information to be centrally managed in the system as described above (for example, information on jobs and information related thereto). There is information about. That is, the database unit 33 functions as a storage unit that stores and holds information related to processing characteristics in the processing machine 10.
- Information on processing characteristics in the processing machine 10 is information for specifying what processing characteristics each processing machine 10 has when processing a lens material using a processing tool in the processing machine 10. is there. Specifically, as an example of information on processing characteristics, information specifying how much the actual size after processing is relative to the processing size instructed from the outside, that is, the desired size and the actual size after processing Information that identifies the error is included.
- FIG. 2 is an explanatory diagram showing a specific example of information relating to machining characteristics stored and held by the database unit 33 of the present embodiment.
- information on processing characteristics is stored and held in association with the type of lens material to be processed by the processing machine 10 and the type of processing tool used by the processing machine 10. That is, the information on the machining characteristics includes, for example, a bevel tool (see FIG. 2A), a flat tool (see FIG. 2B), a bevel polish tool (see FIG. 2C), and a flat polish tool (FIG. 2D). ))
- the database unit 33 for each type of lens material to be processed, such as material A to material I, for example.
- Each lens material type is associated with a processing mode (for example, mode A to mode D) of the processing machine 10 used when processing the lens material.
- processing characteristics includes a theoretical lens perimeter value (hereinafter referred to as “perimeter”) when a preset reference outer shape (hereinafter referred to as “reference shape”) is realized with a flat lens. "Reference value”), the actual lens perimeter value (hereinafter referred to as "actual measurement”) when a predetermined power lens (for example, each of a zero power lens (Plano), an S + 4.00 lens, and an S-7.00 lens) is processed into a reference shape.
- a predetermined power lens for example, each of a zero power lens (Plano), an S + 4.00 lens, and an S-7.00 lens
- specific contents of information relating to machining characteristics include apparatus-side correction values and parameter correction values in addition to the above-described contents.
- Both the apparatus-side correction value and the parameter correction value are used to keep the error between the actual size of the processed lens and the desired size within an allowable range.
- the apparatus-side correction value and the parameter correction value are used when the apparatus-side correction value is set on the processing machine 10 side, whereas the parameter correction value is notified from the client device 32 to the processing machine 10. In some respects, they are different from each other.
- the apparatus-side correction value is used for machining size adjustment, whereas the parameter correction value is used for machining parameter correction.
- the information regarding the machining characteristics as described above is stored and held in the database unit 33 individually for each model of the processing machine 10 when a plurality of types of the processing machines 10 are mixed in the system.
- Such information on processing characteristics in the database unit 33 is obtained by actually processing a predetermined power lens into a reference shape in at least one of the plurality of processing machines 10 in the system.
- At least one processing machine 10 that actually performs processing may be only one if there is only a single model in the system, but if there are multiple models in the system, the number of models Minutes are needed.
- the client device 32 includes a computer that controls and manages the operation of each processing machine 10 in the system while following the management and control by the server device 31. Specifically, the client device 32 receives information related to the job managed by the server device 31 from the server device 31 and notifies the processing device 10 that executes the job (ie, eyeglass lens processing). Thus, the job processing operation in the processing machine 10 is controlled. In addition, prior to job processing, the client device 32 acquires information on processing characteristics obtained by at least one processing machine 10 in the system, and transmits the acquired information to the server device 31 to transmit the server. The device 31 is requested to hold the memory.
- the client device 32 includes a control program unit 34 and a correction management program unit 35.
- the control program unit 34 is for managing and controlling jobs to be executed by the processing machine 10. That is, the control program unit 34 has a function of receiving information on a job from the server device 31 and notifying information to the processing machine 10 that executes the job (job execution instruction). Note that these functions may be realized using known techniques, and detailed description thereof is omitted here.
- the correction management program unit 35 is not present in the conventional system. Based on the stored information stored in the database unit 33 of the server device 31, the correction management program unit 35 performs processing parameter correction when the processing machine 10 executes a job. To notify. In order to perform such processing, the correction management program unit 35 is configured to have functions as an acquisition unit 36 and a management unit 37.
- the acquisition unit 36 acquires information on processing characteristics obtained by at least one processing machine 10 in the system, transmits the acquired information to the server device 31, and stores it in the database unit 33 of the server device 31. It is a function to hold. What is necessary is just to perform acquisition of the information regarding a process characteristic using a well-known technique.
- a display device such as a display provided in the client device 32 and an input device such as a keyboard
- a GUI (Graphical User Interface) screen for prompting information input is displayed on the display device while the operator or the like is displayed. It is conceivable to acquire information on machining characteristics by inputting various information from an input device.
- the client device 32 receives various information input from an operator or the like on the operation panel or the like of at least one processing machine 10 from the processing machine 10, the client device 32 is It is also conceivable to acquire information on processing characteristics.
- the management unit 37 manages the processing parameter correction in the processing machine 10 when the control program unit 34 instructs the processing machine 10 to execute the job and the processing machine 10 executes the job according to the instruction. It is a function for. Processing parameter correction management is performed using a size management table for each processing machine 10. That is, the management unit 37 creates a size management table for each processing machine 10, and notifies the correction value managed on the size management table to the processing machine 10 while using the created size management table. Processing parameter correction is performed individually for each processing machine 10.
- FIG. 3 is an explanatory diagram showing a specific example of the size management table managed by the management unit 37 in the correction management program unit 35 of the present embodiment.
- the size management table is created for each processing machine 10, and the type of lens material (material A, material B,%) To be processed by the processing machine 10 and its processing.
- the types of processing tools used by the machine 10 (bevel tools, flat tools,...)
- correction values H11, H12,... For correction of processing parameters required in each combination are managed in association with each other. (Memory retention).
- “parameter correction values” are read from the database unit 33 and stored in the correction values H11, H12... In the size management table.
- the correction management program unit 35 having functions as the acquisition unit 36 and the management unit 37 can be realized by a software program executed by the client device 32 that is a computer.
- the correction management program unit 35 as a software program is installed in the client device 32 and used.
- the present invention is not necessarily limited to this, and the correction management program unit 35 may exist in the server device 31 or another client device 32 in the system as long as the client device 32 is accessible.
- FIG. 4 is a flowchart showing a specific example of the processing size management procedure in the present embodiment.
- step 101 the processing size of the processing machine 10 is adjusted (step 101; hereinafter, step is abbreviated as “S”). ).
- the processing size adjustment is performed by the operation of an operator or the like while using the function as the adjusting means 11 of the processing machine 10.
- the first processing machine 10 performs processing on an unprocessed flat lens made of a predetermined lens material (for example, material A) so that its outer shape becomes a reference shape having a desired size.
- a predetermined lens material for example, material A
- the reference shape having a desired size is, for example, a circular shape in plan view in which the circumference is the circumference reference value. This is because if it is a circular shape in plan view, measurement of an actual size described later can be easily performed.
- the reason for processing the flat lens is that the influence of the lens curve can be eliminated, and the outer shape processing and the actual size measurement can be performed with high accuracy.
- the external shape processing for the flat lens is performed for each type of processing tool used by the first processing machine 10.
- the flat lens after the outer shape processing is obtained by the number of all kinds of processing tools used by the first processing machine 10. And after performing the external shape process with respect to a flat lens, the actual size of the perimeter of the outer periphery is measured about the flat lens after the process.
- the size measurement may be performed using the three-dimensional circumference measuring machine 20 in the system, but is not limited thereto.
- an operator or the like may measure using a measuring machine such as a caliper. It doesn't matter. Thereafter, the operator or the like compares the desired size (circumference reference value) with the actual size and adjusts the processing size for the first processing machine 10 so that the error is within the allowable range.
- the operator or the like operates the operation panel of the first processing machine 10 so as to eliminate the calculated error.
- Correction values for various machining parameters are set in advance on the processing machine 10 side for each type of machining tool.
- Such processing may be performed using a function (known function) inherently possessed by the first processing machine 10.
- a function known function
- an error between a desired size and an actual size is obtained at least for a flat lens made of a predetermined lens material, no matter what kind of processing tool is used.
- the outer shape can be processed so that the minute is within the allowable range. That is, in other words, preparation for appropriately grasping the processing characteristics described later is completed.
- the first processing machine 10 grasps the processing characteristics of the processing machine 10 (S102). For grasping the processing characteristics, the processing machine 10 performs processing so that the outer shape becomes a reference shape of a desired size for an unprocessed predetermined power lens, and measures the actual size of the spectacle lens after processing. By doing.
- the reference shape of the desired size is the same as that of the flat lens described above.
- the actual size may be measured using the three-dimensional circumference measuring machine 20 in the system as in the case of the flat lens described above, but is not limited to this, and calipers and the like are not limited thereto. You may make it measure using the measuring machine of.
- an unprocessed predetermined power lens for example, each of a power zero lens (Plano), an S + 4.00 lens, and an S-7.00 lens
- the first processing machine 10 uses each predetermined power lens.
- the outer periphery is actually processed into a reference shape of a desired size by the processing machine 10, and the lens peripheral length after the processing (that is, the actual size of each predetermined power lens after processing) is measured.
- the circumference difference with respect to the circumference reference value of the measurement result that is, the error between the desired size and the actual size after processing
- the processing characteristics are grasped for all types of lens materials to be processed by the processing machine 10 and for all types of processing tools used by the processing machine 10. To do. Therefore, after grasping the processing characteristics for all of these types, it is recognized how the difference in the type of lens material or the type of processing tool affects the processing characteristics in the first processing machine 10. You can get it.
- the processing characteristics are grasped by the first processing machine 10 which is at least one processing machine 10 in the system, but since it is “at least one”, a plurality of processing machines of the same model are used. It is also conceivable to do in each of the ten.
- the processing characteristics are grasped by each of the plurality of processing machines 10, it is possible to expect higher accuracy and improved reliability of the grasped results.
- an operator or the like performs processing size adjustment using an apparatus-side correction value (for example, see FIG. 2) as necessary (S103).
- the processing size adjustment here is performed by paying attention to a lens material (for example, material A) of a reference type set in advance for each type of processing tool.
- this lens material is referred to as “reference glass material”.
- an operator or the like grasps a radius converted value of a circumference difference actually measured for a predetermined power lens of a reference glass material. For example, when the processing tool is a bevel tool (for example, see FIG. 2A), the radius converted value of the circumference difference for the reference glass material is “0.00”, and when the processing tool is a bevel polish tool (for example, FIG.
- the radius converted value of the circumferential length difference for the reference glass material is “0.01”. And if the radius conversion value of the circumference difference about a reference glass material is grasped, the radius conversion value of the circumference difference grasped by the operation of an operator or the like while using the function as the adjusting means 11 in the first processing machine 10. Is set in advance on the processing machine 10 side for each type of processing tool as the apparatus-side correction value of the processing machine 10.
- the apparatus-side correction value set on the processing machine 10 side is referred to as a “machine offset value”.
- the machine offset value is set to “0.00” for the bevel tool or is not set (for example, see FIG.
- the machine offset value is set to “0.01” for the bevel polish tool. Is set (see, for example, FIG. 2C). Note that the machine offset value is set to a value common to all machining modes even when the machining machine 10 can support a plurality of machining modes (for example, mode A to mode D). Such processing may be performed using a function (known function) inherently possessed by the first processing machine 10.
- the first processing machine 10 thereafter sets the desired size and actual size at least for the reference glass material, regardless of the type of processing tool used. It becomes possible to perform contour processing so that the error is within the allowable range. That is, in other words, at least for the reference glass material, the processing characteristics can be homogenized (standardized) regardless of the type of processing tool used.
- the client device 32 acquires information on the processing characteristics of the first processing machine 10 and stores the acquired information in the database unit 33 of the server device 31 (S104).
- the acquisition unit 36 of the correction management program unit 35 displays a GUI screen that prompts information input, and allows an operator or the like to input various information.
- various information can be input using the input device of the client device 32, the information may be input using an operation panel or the like in the first processing machine 10 connected to the client device 32.
- the information input at this time is information obtained in the above-described step (S102), and is information related to machining characteristics in the first processing machine 10. More specifically, it is information about each item shown in FIG. Of these items, it is essential to input the circumference reference value and the actually measured circumference, but other items may be obtained by inputting from the GUI screen in the same manner as the mandatory input items.
- the database unit 33 of the server device 31 stores and holds information on the machining characteristics as shown in FIG. Note that the storage and holding in the database unit 33 is performed in association with information for identifying the model of the first processing machine 10 (that is, individually for each model of the processing machine 10).
- the processing size of each processing machine 10 is adjusted (S105a, S105b,).
- the size adjustment of the processing is performed by the operation of an operator or the like while using the function as the adjusting means 11 of the processing machine 10.
- the processing size adjustment performed on the second and subsequent processing machines 10 is different from the processing size adjustment on the first processing machine 10 in the following points.
- the processing characteristics are not grasped as in the first processing machine 10, so that it is not necessary to adjust the processing size to properly grasp the processing characteristics. is there. Therefore, in the second and subsequent processing machines 10, the predetermined processing lens of the reference glass material is used instead of the prior processing size adjustment using the flat lens as in the first processing machine 10. Adjust the processing size.
- the outer shape is a desired size (that is, a size whose circumference becomes a circumference reference value). ) Is processed so as to be a reference shape. And the actual size of the perimeter of the outer periphery is measured about the power zero lens after the process.
- the size measurement may be performed using the three-dimensional circumference measuring machine 20 in the system, but is not limited thereto. For example, an operator or the like may measure using a measuring machine such as a caliper. It doesn't matter.
- Such processing and measurement are performed for each type of processing tool used by each processing machine 10 in each of the second and subsequent processing machines 10.
- the measurement results of the power zero lens and the actual size after the outer shape processing are obtained by the number of all types of processing tools used by the second and subsequent processing machines 10.
- the operator or the like compares the desired size (circumference reference value) with the actual size, calculates an error between the desired size and the actual size, for example, using a radius conversion value, and the error is within an allowable range. Therefore, by operating the operation panel of the second and subsequent processing machines 10, a correction value of a processing parameter (for example, the tool diameter of the processing tool) that eliminates the calculated error is set for each type of processing tool.
- a machine offset value is set in advance on the processing machine 10 side. Such processing may be performed using a function (known function) inherently possessed by the second and subsequent processing machines 10.
- the desired size and the actual size are used at least for the reference glass material, regardless of the type of processing tool used. It is possible to perform external shape processing so that the error amount falls within an allowable range. That is, in other words, at least for the reference glass material, as with the first processing machine 10, the processing characteristics can be homogenized (standardized) regardless of the type of processing tool used.
- the client device 32 determines the size management table for each processing machine 10 with respect to the processing machines 10 existing in the Les ⁇ BR> tower Y processing system, that is, the first and second and subsequent processing machines 10. (For example, refer to FIG. 3) is created (S106).
- the management unit 37 of the correction management program unit 35 determines the type of lens material (material A, material B) that is to be processed by the processing machine 10 for each processing machine 10 under management. , etc. And the type of processing tool used by the processing machine 10 (a bevel tool, a flat tool, etc. This recognition is performed for each processing machine 10, but the same recognition result can be obtained if the same type of processing machine 10 is used.
- the table created in this way is a size management table for each processing machine 10.
- the table creation and the information acquisition necessary for the creation may be performed using a known technique, and the method itself is not particularly limited.
- values are stored in the correction values H11, H12,... In each size management table after that. S107).
- the management unit 37 of the correction management program unit 35 first accesses the database unit 33 of the server device 31, and information on the machining characteristics acquired by the first processing machine 10.
- the “parameter correction value” is read out.
- the “parameter correction value” is associated with each of the lens material type and the processing tool type.
- the management unit 37 of the correction management program unit 35 maintains the association between the lens material type and the processing tool type, and the correction values H11, H12,... In the size management table. Store the read “parameter correction value” in the appropriate location in the section.
- a size management table in which “parameter correction values” of the information regarding the machining characteristics acquired by the first processing machine 10 are stored as correction values H11, H12. It will be completed.
- the correction values H11, H12,... can be managed (stored) for each type of lens material and further for each type of processing tool. Therefore, when managing correction values on the processing machine 10 side, only a single correction value or a correction value for each processing mode (for example, mode A to mode D) can be handled. It is possible to perform batch management of a very wide variety of correction values such as each type and each processing tool type. In other words, it is possible to realize correction value management of machining parameters that could not be dealt with by conventional technical common sense.
- the size management table completed in this way is different for each processing machine 10, but if it is for the processing machine 10 of the same model, it will have the same contents at least when the table is completed. That is, both the size management table for the first processing machine 10 and the size management table for the second and subsequent processing machines 10 are both acquired by the first processing machine 10.
- the “parameter correction value” is stored.
- the correction values H11, H12,... In the size management table may be appropriately updated according to the operating status of each processing machine 10. For example, in a predetermined stage after the processing machine 10 is operated, the actual size of the peripheral length of the processed lens is measured, and based on the measurement result, a new value that allows an error between the desired size and the actual size to be within an allowable range It is conceivable to change the correction values H11, H12,. In this way, it is possible to avoid the influence of the operating status of the processing machine 10 (for example, the influence of the progress of wear of the processing tool) on the actual size of the lens after processing.
- the preparation stage in the lens processing system of this embodiment is completed. That is, after each of the above-described steps (S101 to S107), the lens processing system according to the present embodiment can enter an operation stage in which eyeglass processing of a spectacle lens is performed.
- the server device 31 monitors whether or not an eyeglass lens is ordered (that is, whether or not there is a job).
- various information necessary for executing the job is managed in the database unit 33, and a job number unique to the job is converted into a barcode and output.
- the bar-coded job number is attached to an uncut lens that is to be processed by the job, and the first processing machine 10 or the second and subsequent processing machines 10 that perform the target lens processing. Sent to either.
- the first processing machine 10 that performs the target lens shape processing or the second and subsequent processing machines 10 is simply referred to as the processing machine 10.
- the processing machine 10 When an uncut lens with a barcode attached is sent, the processing machine 10 reads the barcode with a barcode reader provided in the processing machine 10 to recognize the job number, and sends the job number to the client device 32. Notice. Based on the notified job number, the client device 32 requests the server device 31 to notify information related to the job specified by the job number. When various information related to the request is notified from the server device 31, the client device 32 notifies the processing machine 10 that is the request source of the notified various information.
- Examples of various information to be notified include job identification data (job number, etc.), lens data (product code specifying lens material, lens power, lens thickness, surface shape curve value, back surface shape curve value, antireflection Film type, lens color type, etc.), target lens shape data (three-dimensional target lens shape, two-dimensional target lens shape, theoretical circumference, left eye / right eye, frame / pattern, etc.) , Processing condition data (lens material type, processing tool type, etc.) are included.
- the function as the management unit 37 of the correction management program unit 35 accesses the storage information of the size management table for the selected processing machine 10, From the size management table, the correction value of the processing parameter associated with the type of lens material and the type of processing tool related to the job to be executed by the processing machine 10 (that is, the corresponding “parameter correction value”) is read out.
- the parameter correction value "is notified to the selected processing machine 10 (S108).
- the client device 32 executes the job using the “parameter correction value” read from the size management table as accompanying information together with various information such as lens data, target lens shape data, and processing condition data.
- the processing machine 10 is notified.
- the processing machine 10 is also notified of the “parameter correction value”. Therefore, in the processing machine 10, when executing the target lens processing job, the function as the correction unit 12 receives the notified “parameter correction value”, and sets the processing amount reflecting the received “parameter correction value”. decide. That is, based on the received “parameter correction value”, the machining parameter specified by various information from the client device 32, specifically, the tool diameter (offset amount) of the machining tool, is divided by the “parameter correction value”. Only correction is made (S109a, S109b, S109c).
- Such processing parameter correction by the correction means 12 is performed based on a size management table managed by the client device 32.
- the size management table can collectively manage a wide variety of correction values such as lens material types and processing tool types. Therefore, in the correction of the processing parameters by the correcting means 12, regardless of the types of processing modes that the processing machine 10 can handle, all types of lens materials that can be processed by the processing machine 10 are corrected appropriately for each lens material. Can be done. Further, all types of processing tools that can be used in the processing machine 10 can be corrected appropriately for each processing tool.
- the processing machine 10 When the correction unit 12 corrects the processing parameter, the processing machine 10 performs the target lens processing on the spectacle lens using the corrected processing parameter, that is, with the corrected size (S110a, S110b, S110c).
- the second and subsequent processing machines 10 perform the processing parameter correction based on the “parameter correction value” acquired by the first processing machine 10, that is, information on processing characteristics other than the own processing machine 10. become.
- the processing size adjustment is performed (S 105 a, S 105 b,%) Prior to performing the target lens shape reflecting the result of the processing parameter correction.
- the processing characteristics are homogenized (standardized). Therefore, even when the machining parameter correction is performed based on the “parameter correction value” acquired by the first processing machine 10, the result of the processing parameter correction is reflected in the second and subsequent processing machines 10.
- the target lens shape processing is appropriate (that is, an error between the desired size and the actual size can be within an allowable range).
- processing size management is performed when the processing machine 10 processes the eyeglass lens.
- the server device 31 accepts an order from an eyeglass store, an uncut lens with a job number converted to a bar code is sent to one processing machine 10 that is the job execution subject. Based on the barcode reading result of the processing machine 10, various information necessary for job execution is notified from the client device 32 to the processing machine 10. At this time, the processing machine 10 is also notified of the correction value of the processing parameter from the client device 32 as described above. In other words, the processing machine 10 is notified of a correction value of the processing parameter (for example, a correction value converted to a radius value) for each job (order from the spectacle store).
- a correction value of the processing parameter for example, a correction value converted to a radius value
- the processing machine 10 when an uncut lens made of a lens material related to an order from the spectacle store is set, the processing machine 10 makes the periphery of the set uncut lens a target lens shape related to the order from the spectacle store. Start processing the target lens.
- the processing amount for the uncut lens in the processing machine 10 at this time is a processing amount reflecting the correction value notified from the client device 32. That is, the processing machine 10 performs eyeglass lens processing while correcting the processing parameters for each job (order from an eyeglass store) under the processing size management by the server device 31 and the client device 32 described above.
- the eyeglass lens after the target lens processing is taken out from the processing machine 10, and a notification that the target lens processing is completed is sent from the processing machine 10 to the client device 32. And is performed from the client device 32 to the server device 31.
- the eyeglass lens is manufactured by order from the eyeglass store in the lens processing system of the present embodiment.
- the correction management program unit 35 creates a size management table for each processing machine 10 based on the stored information.
- the processing parameters for the target lens processing specifically, for example, the tool diameter of the processing tool
- the processing parameters are corrected regardless of whether the target lens processing is performed by either the first processing machine 10 or the second and subsequent processing machines 10.
- the error between the desired size and the actual size of the spectacle lens after the target lens processing falls within an allowable range.
- the processing parameter correction is performed on the second and subsequent processing machines 10 by directly applying the information on the processing characteristics of the first processing machine 10. Therefore, in the second and subsequent processing machines 10, at the time of introduction into the lens processing system, it is only necessary to adjust the processing size for each processing tool for at least the reference glass material, and all types to be processed by the processing machine 10. There is no need to adjust the individual processing size for each lens material. That is, it is not necessary to grasp the processing characteristics of the second and subsequent processing machines 10 as performed by the first processing machine 10. Therefore, even when a lens processing system including a plurality of processing machines 10 is constructed, the labor for adjusting the processing size in the second and subsequent processing machines 10 can be greatly simplified.
- a lens processing system is built especially for so-called made-to-order lenses (a lens that can have various specifications for not only lens prescription but also lens materials and lens peripheral processing for each customer order). In some cases, it is very effective. This is because, for a custom-made lens, each processing machine 10 has to cope with various lens materials, processing tools, etc. Therefore, the effect of simplifying the processing size adjustment in the second and subsequent processing machines 10 is effective. This is because it appears prominently.
- glasses for the reference glass material that is, at least one type of lens material predetermined to be used as a reference
- the first processing described above The machining parameters are corrected based on the machining characteristics in the machine 10. That is, in the second and subsequent processing machines 10, the processing size adjustment for the reference glass material is performed, and thereby, the processing characteristics that are mainly compatible with the first processing machine 10 are homogenized (standardized). Has been.
- the target lens shape processing that reflects the processing parameter correction results in the second and subsequent processing machines 10 is As in the case of the first processing machine 10, it is appropriate (that is, an error between the desired size and the actual size can be within an allowable range). This does not simply apply the “parameter correction value” in the first processing machine 10 to the second and subsequent processing machines 10 as it is. Based on the relationship with the processing characteristics in this case, the technical idea to be applied to the second and subsequent processing machines 10 is embodied.
- the machining parameters are corrected while using the size management table managed by the correction management program unit 35 for both the first processing machine 10 and the second and subsequent processing machines 10. Therefore, unlike the case where correction values for each processing mode (for example, mode A to mode D) are managed on the side of each processing machine 10, each processing machine 10 corresponds to each type of lens material and each processing tool type. A large variety of correction values can be collectively managed.
- the number of processing modes that can be handled by the processing machine 10 is naturally limited due to the storage and storage capacity of information in the processing machine 10, but the management program unit 35 side of the client device 32 supports this. This is because a large capacity information storage capacity can be utilized compared to the processing machine 10.
- the correction management program unit 35 that manages the processing parameter correction in each processing machine 10 is arranged in the client device 32 has been described as an example. It only needs to exist in any part of the lens processing system, and may be arranged in another device (for example, the server device 31).
- the correction management program unit 35 manages the machining parameter correction using the size management table for each processing machine 10 is taken as an example, but the present invention is not necessarily limited thereto. is not. If the size management table for each processing machine 10 is used, it is possible to avoid the influence of the operating status of the processing machine 10 on the result of the target lens shape processing as described above. Considering only the machining parameter correction in each processing machine 10 at the initial stage of operation, for example, by reading out the stored information from the database unit 33 each time, the “parameter correction value required for machining parameter correction without a size management table is obtained. Can be notified to each processing machine 10.
- the specific method for transferring various information between the client machine 32 and each processing machine 10 including the exchange of “parameter correction value” is not particularly limited. That is, the exchange of various information may be performed with respect to each processing machine 10 with the client device 32 as the main body, or each processing machine 10 with the client apparatus 32 as the main body as necessary. This may be performed by requesting information from the client 32 or reading information from a size management table in the client device 32 or the like.
- each processing machine 10 installed in the processing center, the server device 31, and the client device 32 execute a target lens processing job in response to an order from a terminal device installed in the spectacle store.
- the target lens processing job is executed in response to an order from a terminal device installed in a processing center instead of an eyeglass store.
- the spectacle frame shape is measured with a measuring machine installed in the processing center, and the lens is processed into a spectacle frame whose shape is measured, and shipped as a spectacle finished product from the processing center. It is possible to construct a mechanism such as
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Eyeglasses (AREA)
Abstract
眼鏡レンズの玉型加工を行う複数の加工機10と、これらに接続されて用いられる加工サイズ管理装置30と、を備えるレンズ加工システムにおいて、前記加工サイズ管理装置30には、前記加工機10の機種毎に、レンズ素材の種類および加工ツールの種類と関連付けて、当該加工機10における加工特性に関する情報を記憶保持する記憶手段33を設ける。前記記憶手段33が記憶保持する情報は、前記複数の加工機10のうちの少なくとも一つで得られた情報であり、前記少なくとも一つと同機種の加工機10は、当該加工機10にて加工を行う際に、前記記憶手段33が記憶保持する情報に基づいて当該加工のための加工パラメータを補正する補正手段12を備える。
Description
本発明は、眼鏡レンズの玉型加工のために用いられるレンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法に関する。
眼鏡レンズの玉型加工を行う加工機は、複数種類のレンズ素材を加工対象とするとともに、加工対象となるレンズ素材に対して複数種類の加工ツールを選択的に用いて、当該玉型加工を行うものが一般的である。そして、この種の加工機では、玉型加工を行う前の事前処理として、加工のサイズ調整が行われる。加工のサイズ調整は、玉型加工後における眼鏡レンズの実サイズと所望サイズとの誤差分を許容範囲内(例えば眼鏡レンズの眼鏡フレームへの枠入れが問題なく行えるように予め規定された許容値以下)に収めるべく、装置導入時やツール交換時等の所定段階にて、加工対象となる各種レンズ素材およびその加工に用いる各種加工ツールのそれぞれについて行われるものである。具体的には、加工のサイズ調整として、例えばレンズ素材の回転軸と加工ツールの回転軸との間の軸間距離調整が行われる(例えば、特許文献1参照)。
しかしながら、従来は、上述したような加工のサイズ調整を行う場合、加工機が用いる加工ツール毎に、加工対象となる全種のレンズ素材に対して、それぞれ個別に当該サイズ調整を行う必要があった。そのため、例えば眼鏡レンズの加工センター内に複数の加工機を備えたレンズ加工システムを構築する場合には、複数の加工機のそれぞれについてサイズ調整を行う必要があり、当該サイズ調整に多くの時間を要してしまう。このことから、特に複数の加工機が存在する場合には、各加工機でのサイズ調整のための手間の簡略化が強く求められている。
本発明は、複数の加工機が存在する場合に、各加工機に対する加工のサイズ調整の手間を簡略化することができるレンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法を提供することを目的とする。
本発明は、上記目的を達成するために案出されたものである。
本発明の第1の態様は、眼鏡レンズの玉型加工を行う複数の加工機と、前記複数の加工機に接続されて用いられる加工サイズ管理装置と、を備えるレンズ加工システムであって、前記加工サイズ管理装置は、前記加工機の機種毎に、当該加工機が加工対象とするレンズ素材の種類および当該加工機が用いる加工ツールの種類と関連付けて、当該加工機にて前記加工ツールを用いて前記レンズ素材を加工したときの加工特性に関する情報を記憶保持する記憶手段を備えており、前記記憶手段が記憶保持する情報は、前記複数の加工機のうちの少なくとも一つの加工機で得られた当該加工機の加工特性に関する情報であり、前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機は、当該加工機にて前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、前記記憶手段が記憶保持する情報に基づいて当該加工のための加工パラメータを補正する補正手段を備えていることを特徴とするレンズ加工システムである。
本発明の第2の態様は、第1の態様に記載の発明において、前記複数の加工機のうち前記少なくとも一つの加工機以外の当該加工機と同機種の加工機は、基準とすべく予め定められた少なくとも1種の前記レンズ素材につき、前記加工ツールの種類毎に玉型加工後における眼鏡レンズの所望サイズと実サイズとの誤差分を許容範囲内に収めるための加工サイズ調整を行った上で、前記補正手段が、前記基準となる少なくとも1種以外の前記レンズ素材について加工を行う際に、前記加工パラメータの補正を行うように構成されていることを特徴とする。
本発明の第3の態様は、眼鏡レンズの玉型加工を行う複数の加工機に接続されて用いられる加工サイズ管理装置であって、前記加工機の機種毎に、当該加工機が加工対象とするレンズ素材の種類および当該加工機が用いる加工ツールの種類と関連付けて、当該加工機にて前記加工ツールを用いて前記レンズ素材を加工したときの加工特性に関する情報を記憶保持する記憶手段と、前記記憶手段に記憶保持させる情報として、前記複数の加工機のうちの少なくとも一つの加工機における加工特性に関する情報を取得する取得手段と、前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機に対して、当該加工機にて前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、前記記憶手段が記憶保持する情報に基づいて当該加工のための加工パラメータを補正させる管理手段と、を備えることを特徴とする加工サイズ管理装置である。
本発明の第4の態様は、眼鏡レンズの玉型加工を行う複数の加工機における加工サイズを管理する加工サイズ管理方法であって、前記複数の加工機のうちの少なくとも一つの加工機にて、当該加工機が加工対象とするレンズ素材の全種類および当該加工機が用いる加工ツールの全種類のそれぞれにつき、当該加工ツールを用いて当該レンズ素材を加工したときの加工特性に関する情報を取得する工程と、前記少なくとも一つの加工機で取得した加工特性に関する情報を、当該加工機の機種、前記レンズ素材の種類および前記加工ツールの種類と関連付けて記憶保持する工程と、前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機にて、前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、既に記憶保持している加工特性に関する情報に基づいて当該加工のための加工パラメータを補正する工程と、を備えることを特徴とする加工サイズ管理方法である。
本発明の第5の態様は、第4の態様に記載の加工サイズ管理方法により加工サイズが管理される前記加工機を用いた玉型加工によって眼鏡レンズを形成することを特徴とする眼鏡レンズの製造方法である。
本発明の第1の態様は、眼鏡レンズの玉型加工を行う複数の加工機と、前記複数の加工機に接続されて用いられる加工サイズ管理装置と、を備えるレンズ加工システムであって、前記加工サイズ管理装置は、前記加工機の機種毎に、当該加工機が加工対象とするレンズ素材の種類および当該加工機が用いる加工ツールの種類と関連付けて、当該加工機にて前記加工ツールを用いて前記レンズ素材を加工したときの加工特性に関する情報を記憶保持する記憶手段を備えており、前記記憶手段が記憶保持する情報は、前記複数の加工機のうちの少なくとも一つの加工機で得られた当該加工機の加工特性に関する情報であり、前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機は、当該加工機にて前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、前記記憶手段が記憶保持する情報に基づいて当該加工のための加工パラメータを補正する補正手段を備えていることを特徴とするレンズ加工システムである。
本発明の第2の態様は、第1の態様に記載の発明において、前記複数の加工機のうち前記少なくとも一つの加工機以外の当該加工機と同機種の加工機は、基準とすべく予め定められた少なくとも1種の前記レンズ素材につき、前記加工ツールの種類毎に玉型加工後における眼鏡レンズの所望サイズと実サイズとの誤差分を許容範囲内に収めるための加工サイズ調整を行った上で、前記補正手段が、前記基準となる少なくとも1種以外の前記レンズ素材について加工を行う際に、前記加工パラメータの補正を行うように構成されていることを特徴とする。
本発明の第3の態様は、眼鏡レンズの玉型加工を行う複数の加工機に接続されて用いられる加工サイズ管理装置であって、前記加工機の機種毎に、当該加工機が加工対象とするレンズ素材の種類および当該加工機が用いる加工ツールの種類と関連付けて、当該加工機にて前記加工ツールを用いて前記レンズ素材を加工したときの加工特性に関する情報を記憶保持する記憶手段と、前記記憶手段に記憶保持させる情報として、前記複数の加工機のうちの少なくとも一つの加工機における加工特性に関する情報を取得する取得手段と、前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機に対して、当該加工機にて前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、前記記憶手段が記憶保持する情報に基づいて当該加工のための加工パラメータを補正させる管理手段と、を備えることを特徴とする加工サイズ管理装置である。
本発明の第4の態様は、眼鏡レンズの玉型加工を行う複数の加工機における加工サイズを管理する加工サイズ管理方法であって、前記複数の加工機のうちの少なくとも一つの加工機にて、当該加工機が加工対象とするレンズ素材の全種類および当該加工機が用いる加工ツールの全種類のそれぞれにつき、当該加工ツールを用いて当該レンズ素材を加工したときの加工特性に関する情報を取得する工程と、前記少なくとも一つの加工機で取得した加工特性に関する情報を、当該加工機の機種、前記レンズ素材の種類および前記加工ツールの種類と関連付けて記憶保持する工程と、前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機にて、前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、既に記憶保持している加工特性に関する情報に基づいて当該加工のための加工パラメータを補正する工程と、を備えることを特徴とする加工サイズ管理方法である。
本発明の第5の態様は、第4の態様に記載の加工サイズ管理方法により加工サイズが管理される前記加工機を用いた玉型加工によって眼鏡レンズを形成することを特徴とする眼鏡レンズの製造方法である。
本発明によれば、複数の加工機が存在する場合に、各加工機に対する加工のサイズ調整の手間を簡略化することができる。
以下、本発明の実施形態を、図面に基づいて説明する。
本実施形態では、以下の順序で項分けをして説明を行う。
1.レンズ加工システム全体の概略構成
2.加工機の構成
3.加工サイズ管理装置の構成
4.加工サイズ管理の手順
5.眼鏡レンズの製造手順
6.本実施形態の効果
7.変形例等
本実施形態では、以下の順序で項分けをして説明を行う。
1.レンズ加工システム全体の概略構成
2.加工機の構成
3.加工サイズ管理装置の構成
4.加工サイズ管理の手順
5.眼鏡レンズの製造手順
6.本実施形態の効果
7.変形例等
<1.レンズ加工システム全体の概略構成>
先ず、本実施形態におけるレンズ加工システム全体の概略構成について説明する。
図1は、本実施形態におけるレンズ加工システム全体の概略構成例を示すブロック図である。
先ず、本実施形態におけるレンズ加工システム全体の概略構成について説明する。
図1は、本実施形態におけるレンズ加工システム全体の概略構成例を示すブロック図である。
レンズ加工システムは、眼鏡レンズの玉型加工のために用いられるもので、例えば眼鏡レンズの加工センター内に構築されるものである。さらに詳しくは、レンズ加工システムは、眼鏡レンズの加工センター内に設置された複数の加工機10、三次元周長測定機20、管理装置30およびこれらの各装置間を接続する通信回線40を備えて構成されている。
このような構成のレンズ加工システムにおいて、複数の加工機10は、それぞれが眼鏡レンズの玉型加工を行うものである。なお、複数の加工機10は、異なる機種が混在していてもよい。
三次元周長測定機20は、玉型加工後の眼鏡レンズの周長を測定するものである。
管理装置30は、複数の加工機10に接続されて用いられる加工サイズ管理装置として機能するものであり、本実施形態ではサーバ装置31およびクライアント装置32から構成されている。これらサーバ装置31およびクライアント装置32は、いずれもコンピュータとしての機能を有したものであるが、サーバ装置31がシステム全体の動作を制御・管理するのに対して、クライアント装置32が各加工機10における動作を制御・管理する点で、それぞれは互いに相違する。クライアント装置32は、システム内に存在する加工機10の数と当該クライアント装置32が管理し得る加工機10の数とを考慮して、システム内に複数設けられていてもよい。なお、本実施形態では、サーバ装置31とクライアント装置32が別装置として設けられている場合を例に挙げているが、これらは一つの装置として一体に設けられていても構わない。
三次元周長測定機20は、玉型加工後の眼鏡レンズの周長を測定するものである。
管理装置30は、複数の加工機10に接続されて用いられる加工サイズ管理装置として機能するものであり、本実施形態ではサーバ装置31およびクライアント装置32から構成されている。これらサーバ装置31およびクライアント装置32は、いずれもコンピュータとしての機能を有したものであるが、サーバ装置31がシステム全体の動作を制御・管理するのに対して、クライアント装置32が各加工機10における動作を制御・管理する点で、それぞれは互いに相違する。クライアント装置32は、システム内に存在する加工機10の数と当該クライアント装置32が管理し得る加工機10の数とを考慮して、システム内に複数設けられていてもよい。なお、本実施形態では、サーバ装置31とクライアント装置32が別装置として設けられている場合を例に挙げているが、これらは一つの装置として一体に設けられていても構わない。
<2.加工機の構成>
次に、レンズ加工システムにおける加工機10について、さらに詳しく説明する。
次に、レンズ加工システムにおける加工機10について、さらに詳しく説明する。
加工機10は、上述したように、眼鏡レンズの玉型加工を行うものである。玉型加工は、所定外形形状を有したアンカットレンズに対して行う。玉型加工を行うと、アンカットレンズの周縁は、眼鏡フレームに枠入れ可能な形状に加工される。このような玉型加工を、加工機10は、複数種類の加工ツールを選択的に用いて行う。ここでいう加工ツールとは、アンカットレンズの周縁に対する切削・研削ツールのことであり、具体的にはヤゲンツール、平ツール、ヤゲンポリッシュツール、平ポリッシュツール等の各種類が挙げられる。
玉型加工を行う対象となるアンカットレンズのレンズ素材には、複数種類のものが存在する。したがって、加工機10は、複数種類のレンズ素材を加工対象とする必要が生じ得る。
ただし、加工対象となり得るレンズ素材は、その種類によって加工性(例えば切削性の良し悪し)に違いが生じていることがある。このことから、加工機10は、加工性の違いに対応すべく、いくつかの加工モードを用意しており、加工モードの切り替えによって装置側の加工条件(例えばツール駆動速度)を可変させるように構成されている。
ただし、加工対象となるレンズ素材の種類数と加工機10における加工モード数は、必ずしも一致している必要はなく、本実施形態では加工モード数よりも多種のレンズ素材が加工対象として想定されるものとする。
ただし、加工対象となり得るレンズ素材は、その種類によって加工性(例えば切削性の良し悪し)に違いが生じていることがある。このことから、加工機10は、加工性の違いに対応すべく、いくつかの加工モードを用意しており、加工モードの切り替えによって装置側の加工条件(例えばツール駆動速度)を可変させるように構成されている。
ただし、加工対象となるレンズ素材の種類数と加工機10における加工モード数は、必ずしも一致している必要はなく、本実施形態では加工モード数よりも多種のレンズ素材が加工対象として想定されるものとする。
また、加工機10は、玉型加工の事前処理として、加工サイズ調整に対応し得るように構成されている。そのために、加工機10は、調整手段11としての機能を備えている。
調整手段11は、加工サイズ調整に対応するための機能である。加工サイズ調整は、玉型加工後における眼鏡レンズの実サイズと所望サイズとの誤差分を許容範囲内に収めるべく、装置導入時やツール交換時等の所定段階にて、加工機10のオペレータや保守員等によって行われる。具体的には、加工サイズ調整として、例えば所定レンズを実際に加工して、その加工後の実サイズを測定した後に、実サイズと所望サイズとの誤差分を許容範囲内に収めるべく、当該誤差分を解消するような加工条件を予め加工機10に設定しておくことが考えられる。さらに詳しくは、誤差分を解消する加工条件として、例えばレンズ回転軸と加工ツール回転軸との軸間距離や加工ツールのツール径(オフセット量)等といった加工パラメータについて、誤差分を解消するための補正値を、加工機10の側に予め設定しておくのである。このような加工サイズ調整は、公知技術(例えば、特許文献1参照)を利用して行うものであればよく、その一具体例としては加工機10の図示せぬ操作パネルから加工パラメータの補正値をオペレータ等が入力することによって行うことが考えられる。
調整手段11は、加工サイズ調整に対応するための機能である。加工サイズ調整は、玉型加工後における眼鏡レンズの実サイズと所望サイズとの誤差分を許容範囲内に収めるべく、装置導入時やツール交換時等の所定段階にて、加工機10のオペレータや保守員等によって行われる。具体的には、加工サイズ調整として、例えば所定レンズを実際に加工して、その加工後の実サイズを測定した後に、実サイズと所望サイズとの誤差分を許容範囲内に収めるべく、当該誤差分を解消するような加工条件を予め加工機10に設定しておくことが考えられる。さらに詳しくは、誤差分を解消する加工条件として、例えばレンズ回転軸と加工ツール回転軸との軸間距離や加工ツールのツール径(オフセット量)等といった加工パラメータについて、誤差分を解消するための補正値を、加工機10の側に予め設定しておくのである。このような加工サイズ調整は、公知技術(例えば、特許文献1参照)を利用して行うものであればよく、その一具体例としては加工機10の図示せぬ操作パネルから加工パラメータの補正値をオペレータ等が入力することによって行うことが考えられる。
また、加工機10は、玉型加工に際しての処理として、加工パラメータ補正に対応し得るように構成されている。そのために、加工機10は、補正手段12としての機能を備えている。
補正手段12は、加工パラメータ補正に対応するための機能である。加工パラメータ補正は、上述した加工サイズ調整と同様に、玉型加工後における眼鏡レンズの実サイズと所望サイズとの誤差分を許容範囲内に収めるべく、当該誤差分を解消するためのものである。ただし、加工パラメータ補正は、加工機10での玉型加工に際して行われるもの、すなわち加工機10の運用段階で行われるものである点で、玉型加工の事前処理として加工機10の準備段階で行われる加工サイズ調整とは異なる。また、加工パラメータ補正は、加工サイズ調整のように加工機10のオペレータ等によって行われるのではなく、加工機10が接続するクライアント装置32からの情報に基づいて行われる。具体的には、加工ツールのツール径等といった加工パラメータについて、誤差分を解消するための補正値がクライアント装置32から通知されると、その通知された補正値を反映させた加工量を決定した上で、玉型加工を行うことになる。このような補正手段12としての機能は、クライアント装置32から通知される補正値を受け付け(場合によってはクライアント装置32に補正値を問い合わせ)、その補正値に基づいて加工機10の駆動制御を行うように、当該加工機10の制御プログラムを設定することによって実現が可能である。
補正手段12は、加工パラメータ補正に対応するための機能である。加工パラメータ補正は、上述した加工サイズ調整と同様に、玉型加工後における眼鏡レンズの実サイズと所望サイズとの誤差分を許容範囲内に収めるべく、当該誤差分を解消するためのものである。ただし、加工パラメータ補正は、加工機10での玉型加工に際して行われるもの、すなわち加工機10の運用段階で行われるものである点で、玉型加工の事前処理として加工機10の準備段階で行われる加工サイズ調整とは異なる。また、加工パラメータ補正は、加工サイズ調整のように加工機10のオペレータ等によって行われるのではなく、加工機10が接続するクライアント装置32からの情報に基づいて行われる。具体的には、加工ツールのツール径等といった加工パラメータについて、誤差分を解消するための補正値がクライアント装置32から通知されると、その通知された補正値を反映させた加工量を決定した上で、玉型加工を行うことになる。このような補正手段12としての機能は、クライアント装置32から通知される補正値を受け付け(場合によってはクライアント装置32に補正値を問い合わせ)、その補正値に基づいて加工機10の駆動制御を行うように、当該加工機10の制御プログラムを設定することによって実現が可能である。
なお、加工機10において、上述した内容以外の事項は、公知技術を利用して構成されたものであるため、ここではその説明を省略する。
<3.加工サイズ管理装置の構成>
次に、レンズ加工システムにおいて、加工サイズ管理装置として機能する管理装置30について、さらに詳しく説明する。
管理装置30は、上述したように、サーバ装置31およびクライアント装置32から構成されている。以下、これらについて順に説明する。
次に、レンズ加工システムにおいて、加工サイズ管理装置として機能する管理装置30について、さらに詳しく説明する。
管理装置30は、上述したように、サーバ装置31およびクライアント装置32から構成されている。以下、これらについて順に説明する。
(サーバ装置の構成)
サーバ装置31は、レンズ加工システムの全体の動作を管理・制御するコンピュータからなり、レンズ加工システムで行われる玉型加工に関する情報を一元管理するものである。具体的には、サーバ装置31は、眼鏡店に設置された図示せぬ端末装置とインターネット等の広域ネットワーク網を介して接続しており、その端末装置からの眼鏡レンズの注文を受け付ける。そして、注文を受け付けると、その注文に応じたジョブに関する情報を管理するとともに、そのジョブに関する情報と関連付けて三次元周長測定機20で得られた玉型加工後の眼鏡レンズの周長測定結果を管理するようになっている。
サーバ装置31は、レンズ加工システムの全体の動作を管理・制御するコンピュータからなり、レンズ加工システムで行われる玉型加工に関する情報を一元管理するものである。具体的には、サーバ装置31は、眼鏡店に設置された図示せぬ端末装置とインターネット等の広域ネットワーク網を介して接続しており、その端末装置からの眼鏡レンズの注文を受け付ける。そして、注文を受け付けると、その注文に応じたジョブに関する情報を管理するとともに、そのジョブに関する情報と関連付けて三次元周長測定機20で得られた玉型加工後の眼鏡レンズの周長測定結果を管理するようになっている。
また、サーバ装置31は、データベース部33を有しており、そのデータベース部33内に各種情報を記憶保持するように構成されている。データベース部33で記憶保持する各種情報としては、上述したようなシステム内で一元管理すべき情報(例えばジョブに関する情報やこれに関連する情報等)の他に、システム内の加工機10における加工特性に関する情報がある。つまり、データベース部33は、加工機10における加工特性に関する情報を記憶保持する記憶手段として機能するものである。
加工機10における加工特性に関する情報は、加工機10にて加工ツールを用いてレンズ素材を加工したときに、加工機10毎にどのような加工特性を有しているかを特定するための情報である。具体的には、加工特性に関する情報の例として、外部から指示された加工サイズに対して加工後の実サイズがどの程度になるかを特定する情報、すなわち所望サイズと加工後の実サイズとの誤差分を特定する情報が挙げられる。
ここで、データベース部33が記憶保持する加工特性に関する情報について、具体例を挙げてさらに詳しく説明する。
図2は、本実施形態のデータベース部33が記憶保持する加工特性に関する情報の一具体例を示す説明図である。
図2は、本実施形態のデータベース部33が記憶保持する加工特性に関する情報の一具体例を示す説明図である。
図例のように、加工特性に関する情報は、加工機10が加工対象とするレンズ素材の種類および当該加工機10が用いる加工ツールの種類と関連付けて記憶保持される。すなわち、加工特性に関する情報は、例えばヤゲンツール(図2(a)参照)、平ツール(図2(b)参照)、ヤゲンポリッシュツール(図2(c)参照)、平ポリッシュツール(図2(d)参照)といった加工ツールの種類別、かつ、例えばマテリアルA~マテリアルIといった加工対象となるレンズ素材の種類毎に、データベース部33内に記憶保持されている。なお、レンズ素材の種類のそれぞれに対しては、当該レンズ素材を加工する際に用いられる加工機10の加工モード(例えばモードA~モードD)が対応付けられている。
加工特性に関する情報の具体的な内容としては、予め設定された基準となる外形形状(以下「基準形状」という)を平レンズで実現した場合における理論上のレンズ周長の値(以下「周長基準値」という)、所定度数レンズ(例えば、度数ゼロレンズ(Plano)、S+4.00レンズ、S-7.00レンズのそれぞれ)を基準形状に加工した場合における実際のレンズ周長の値(以下「実測周長」という)、複数レンズの実測周長の平均値、および、周長基準値と実測周長の平均値との周長差をレンズ半径方向の値に換算したもの(以下「周長差の半径変換値」という)を、互いに関連付けたものが例示できる。
さらに、加工特性に関する情報の具体的な内容としては、上述した内容に加えて、装置側補正値と、パラメータ補正値とが挙げられる。これら装置側補正値とパラメータ補正値は、いずれも、加工後レンズの実サイズと所望サイズとの誤差分を許容範囲内に収めるために用いられるものである。ただし、装置側補正値とパラメータ補正値は、装置側補正値が加工機10の側に設定されて用いられるのに対して、パラメータ補正値がクライアント装置32から加工機10に通知されるものである点で、それぞれが互いに相違する。また、装置側補正値が加工サイズ調整に用いられるものであるのに対して、パラメータ補正値が加工パラメータ補正に用いられるものである点でも、それぞれが互いに相違する。なお、装置側補正値とパラメータ補正値は、「周長差の半径変換値」=「装置側補正値」+「パラメータ補正値」の関係にある。
以上のような加工特性に関する情報は、システム内に複数機種の加工機10が混在している場合には、当該加工機10の機種毎に個別に、データベース部33内に記憶保持される。
このようなデータベース部33内の加工特性に関する情報は、システム内における複数の加工機10のうちの少なくとも一つにおいて、所定度数レンズを基準形状に実際に加工して得られたものである。実際に加工を行う少なくとも一つの加工機10は、システム内に単一機種のみが存在する場合は一つだけでよいが、システム内に複数機種が混在している場合には、その機種数の分が必要となる。
(クライアント装置)
クライアント装置32は、サーバ装置31による管理・制御に従いつつ、システム内の各加工機10における動作を制御・管理するコンピュータからなる。具体的には、クライアント装置32は、サーバ装置31が管理するジョブに関する情報を当該サーバ装置31から受け取り、これをそのジョブ(すなわち眼鏡レンズの玉型加工)を実行する加工機10へ通知することで、その加工機10におけるジョブ処理動作を制御するようになっている。また、クライアント装置32は、ジョブの処理に先立ち、システム内の少なくとも一つの加工機10で得られる加工特性に関する情報について、その取得を行うとともに、取得した情報をサーバ装置31へ送信して当該サーバ装置31での記憶保持を依頼するようになっている。
クライアント装置32は、サーバ装置31による管理・制御に従いつつ、システム内の各加工機10における動作を制御・管理するコンピュータからなる。具体的には、クライアント装置32は、サーバ装置31が管理するジョブに関する情報を当該サーバ装置31から受け取り、これをそのジョブ(すなわち眼鏡レンズの玉型加工)を実行する加工機10へ通知することで、その加工機10におけるジョブ処理動作を制御するようになっている。また、クライアント装置32は、ジョブの処理に先立ち、システム内の少なくとも一つの加工機10で得られる加工特性に関する情報について、その取得を行うとともに、取得した情報をサーバ装置31へ送信して当該サーバ装置31での記憶保持を依頼するようになっている。
このような処理を行うために、クライアント装置32は、制御プログラム部34と、補正管理プログラム部35とを有して構成されている。
制御プログラム部34は、加工機10に実行させるジョブの管理・制御を行うためのものである。すなわち、制御プログラム部34は、サーバ装置31からのジョブに関する情報の受け取り、ジョブを実行する加工機10への情報通知(ジョブの実行指示)等を行う機能を有している。なお、これらの機能は、公知技術を利用して実現すればよく、ここではその詳細な説明を省略する。
補正管理プログラム部35は、従来システムには無かったものであり、サーバ装置31のデータベース部33内の記憶保持情報に基づき、加工機10がジョブを実行する際の加工パラメータ補正を当該加工機10に通知するものである。このような処理を行うために、補正管理プログラム部35は、取得手段36および管理手段37としての機能を有して構成されている。
取得手段36は、システム内の少なくとも一つの加工機10で得られた加工特性に関する情報を取得して、その取得した情報をサーバ装置31へ送信して当該サーバ装置31のデータベース部33内に記憶保持させる機能である。加工特性に関する情報の取得は、公知技術を利用して行うようにすればよい。一具体例としては、例えば、クライアント装置32が備えるディスプレイ等の表示装置とキーボード等の入力装置を用いて、情報入力を促すGUI(Graphical User Interface)画面を表示装置で表示しつつ、オペレータ等に各種情報を入力装置から入力させることで、加工特性に関する情報の取得を行うことが考えられる。また、他の具体例としては、例えば、少なくとも一つの加工機10の操作パネル等でオペレータ等に入力された各種情報を、その加工機10からクライアント装置32が受け取ることで、当該クライアント装置32が加工特性に関する情報の取得を行うようにすることも考えられる。
管理手段37は、制御プログラム部34が加工機10に対してジョブの実行を指示し、その指示に応じて加工機10がジョブを実行する際に、その加工機10における加工パラメータ補正を管理するための機能である。加工パラメータ補正の管理は、加工機10毎のサイズ管理テーブルを用いて行う。つまり、管理手段37は、加工機10毎のサイズ管理テーブルを作成し、その作成したサイズ管理テーブルを用いつつ、サイズ管理テーブル上で管理されている補正値を加工機10に通知することで、その加工機10毎に個別に加工パラメータ補正を行わせるのである。
図3は、本実施形態の補正管理プログラム部35における管理手段37が管理するサイズ管理テーブルの一具体例を示す説明図である。
図例にように、サイズ管理テーブルは、加工機10毎に作成されるもので、その加工機10が加工対象とするレンズ素材の種類(マテリアルA,マテリアルB,・・・)と、その加工機10が用いる加工ツールの種類(ヤゲンツール,平ツール,・・・)と、それぞれの組み合わせにおいて必要となる加工パラメータ補正のための補正値H11,H12・・・とについて、これらを互いに関連付けて管理(記憶保持)するものである。なお、サイズ管理テーブルにおける補正値H11,H12・・・には、詳細を後述するように、データベース部33内から「パラメータ補正値」が読み出されて格納されることになる。
図例にように、サイズ管理テーブルは、加工機10毎に作成されるもので、その加工機10が加工対象とするレンズ素材の種類(マテリアルA,マテリアルB,・・・)と、その加工機10が用いる加工ツールの種類(ヤゲンツール,平ツール,・・・)と、それぞれの組み合わせにおいて必要となる加工パラメータ補正のための補正値H11,H12・・・とについて、これらを互いに関連付けて管理(記憶保持)するものである。なお、サイズ管理テーブルにおける補正値H11,H12・・・には、詳細を後述するように、データベース部33内から「パラメータ補正値」が読み出されて格納されることになる。
これら取得手段36および管理手段37としての機能を有する補正管理プログラム部35は、コンピュータであるクライアント装置32で実行されるソフトウエアプログラムによって実現することが考えられる。その場合に、ソフトウエアプログラムとしての補正管理プログラム部35は、クライアント装置32にインストールされて用いられる。ただし、必ずしもこれに限定されることはなく、補正管理プログラム部35は、クライアント装置32がアクセス可能であれば、サーバ装置31やシステム内の他のクライアント装置32に存在していてもよい。
<4.加工サイズ管理の手順>
次に、上述した構成のレンズ加工システムにおける加工サイズ管理の手順について説明する。
図4は、本実施形態における加工サイズ管理の手順の一具体例を示すフロー図である。
次に、上述した構成のレンズ加工システムにおける加工サイズ管理の手順について説明する。
図4は、本実施形態における加工サイズ管理の手順の一具体例を示すフロー図である。
(1台目の加工機での処理)
本実施形態のレンズ加工システムにおいては、ある機種の1台目の加工機10の導入時に、先ず、その加工機10についての加工サイズ調整を行う(ステップ101、以下ステップを「S」と略す。)。加工サイズ調整は、当該加工機10の調整手段11としての機能を用いつつ、オペレータ等の作業によって行う。
本実施形態のレンズ加工システムにおいては、ある機種の1台目の加工機10の導入時に、先ず、その加工機10についての加工サイズ調整を行う(ステップ101、以下ステップを「S」と略す。)。加工サイズ調整は、当該加工機10の調整手段11としての機能を用いつつ、オペレータ等の作業によって行う。
具体的には、1台目の加工機10において、予め定められたレンズ素材(例えばマテリアルA)の未加工の平レンズに対し、その外形が所望サイズの基準形状となるような加工を行う。所望サイズの基準形状は、例えば周長が周長基準値となる平面視円形状とすることが考えられる。平面視円形状であれば、後述する実サイズの測定を容易に行えるからである。また、平レンズを加工対象とするのは、レンズカーブの影響を排除でき、高精度に外形加工および実サイズ測定を行い得るからである。
平レンズに対する外形加工は、1台目の加工機10が用いる加工ツールの種類毎に行う。したがって、1台目の加工機10が用いる加工ツールの全種類の数分だけ、外形加工後の平レンズが得られることになる。
そして、平レンズに対する外形加工を行った後は、その加工後の平レンズについて、その外周の周長の実サイズを測定する。サイズ測定は、システム内の三次元周長測定機20を用いて行うことが考えられるが、これに限定されることはなく、例えばオペレータ等がノギス等の測定機を用いて測定するようにしても構わない。
その後、オペレータ等は、所望サイズ(周長基準値)と実サイズとを比較し、その誤差分が許容範囲内に収まるようにすべく、1台目の加工機10に対する加工サイズ調整を行う。具体的には、所望サイズと実サイズとの誤差分を例えば半径換算値で算出した後に、オペレータ等が1台目の加工機10の操作パネルを操作して、算出した誤差分を解消するような加工パラメータ(例えば加工ツールのツール径)の補正値を、加工ツールの種類毎に、当該加工機10の側に予め設定しておく。このような処理は、1台目の加工機10が本来的に有している機能(公知機能)を利用して行えばよい。
これにより、1台目の加工機10では、それ以降、少なくとも予め定められたレンズ素材の平レンズについては、どの種類の加工ツールを用いた場合であっても、所望サイズと実サイズとの誤差分が許容範囲内に収まるような外形加工を行い得るようになる。すなわち、換言すると、後述する加工特性の把握を適切に行う準備が整うことになる。
平レンズに対する外形加工は、1台目の加工機10が用いる加工ツールの種類毎に行う。したがって、1台目の加工機10が用いる加工ツールの全種類の数分だけ、外形加工後の平レンズが得られることになる。
そして、平レンズに対する外形加工を行った後は、その加工後の平レンズについて、その外周の周長の実サイズを測定する。サイズ測定は、システム内の三次元周長測定機20を用いて行うことが考えられるが、これに限定されることはなく、例えばオペレータ等がノギス等の測定機を用いて測定するようにしても構わない。
その後、オペレータ等は、所望サイズ(周長基準値)と実サイズとを比較し、その誤差分が許容範囲内に収まるようにすべく、1台目の加工機10に対する加工サイズ調整を行う。具体的には、所望サイズと実サイズとの誤差分を例えば半径換算値で算出した後に、オペレータ等が1台目の加工機10の操作パネルを操作して、算出した誤差分を解消するような加工パラメータ(例えば加工ツールのツール径)の補正値を、加工ツールの種類毎に、当該加工機10の側に予め設定しておく。このような処理は、1台目の加工機10が本来的に有している機能(公知機能)を利用して行えばよい。
これにより、1台目の加工機10では、それ以降、少なくとも予め定められたレンズ素材の平レンズについては、どの種類の加工ツールを用いた場合であっても、所望サイズと実サイズとの誤差分が許容範囲内に収まるような外形加工を行い得るようになる。すなわち、換言すると、後述する加工特性の把握を適切に行う準備が整うことになる。
このような加工サイズ調整を行った後は、続いて、1台目の加工機10において、当該加工機10における加工特性の把握を行う(S102)。加工特性の把握は、当該加工機10において、実際に未加工の所定度数レンズに対し、その外形が所望サイズの基準形状となるような加工を行い、その加工後の眼鏡レンズの実サイズを測定することによって行う。所望サイズの基準形状は、上述した平レンズの場合と同様である。また、実サイズの測定についても、上述した平レンズの場合と同様に、システム内の三次元周長測定機20を用いて行うことが考えられるが、これに限定されることはなく、ノギス等の測定機を用いて測定するようにしても構わない。
具体的には、未加工の所定度数レンズ(例えば、度数ゼロレンズ(Plano)、S+4.00レンズ、S-7.00レンズのそれぞれ)を用意し、1台目の加工機10において各所定度数レンズの外周を当該加工機10で実際に所望サイズの基準形状に加工し、その加工後におけるレンズ周長(すなわち加工後の各所定度数レンズの実サイズ)を測定する。
このようにして得られる測定結果を用いれば、当該測定結果の周長基準値に対する周長差(すなわち所望サイズと加工後の実サイズとの誤差分)を算出することができ、これにより1台目の加工機10がどのような加工特性を有しているかを特定することが可能となる。つまり、平レンズであれば所望サイズと実サイズとの誤差分が許容範囲内に収まるような外形加工を行い得るところ、同じ加工条件であっても所定度数レンズを加工対象とした場合にはどのような誤差分が生じてしまうのか、または誤差分が許容範囲内に収まるのか等について、当該所定度数レンズに対する加工特性として把握し得るようになる。
このようにして得られる測定結果を用いれば、当該測定結果の周長基準値に対する周長差(すなわち所望サイズと加工後の実サイズとの誤差分)を算出することができ、これにより1台目の加工機10がどのような加工特性を有しているかを特定することが可能となる。つまり、平レンズであれば所望サイズと実サイズとの誤差分が許容範囲内に収まるような外形加工を行い得るところ、同じ加工条件であっても所定度数レンズを加工対象とした場合にはどのような誤差分が生じてしまうのか、または誤差分が許容範囲内に収まるのか等について、当該所定度数レンズに対する加工特性として把握し得るようになる。
また、加工特性の把握は、1台目の加工機10において、当該加工機10で加工対象となるレンズ素材の全種類について行うとともに、当該加工機10が用いる加工ツールの全種類について行うものとする。したがって、これらの全種類についての加工特性の把握後は、レンズ素材の種類の違いまたは加工ツールの種類の違いが、1台目の加工機10における加工特性にどのような影響を及ぼすかについて認識し得るようになる。
以上のような手法による加工特性の把握を行うことで、1台目の加工機10における加工特性に関する情報(具体的には、例えば図2に示した情報を構成するそれぞれの数値)が特定されることになる。
なお、加工特性の把握は、上述したように、システム内における少なくとも一つの加工機10である1台目の加工機10において行うが、「少なくとも一つ」であるから同一機種の複数の加工機10のそれぞれにおいて行うことも考えられる。複数の加工機10のそれぞれで加工特性の把握を行う場合には、その把握結果についての高精度化や信頼性向上等が期待できる。ただし、加工特性の把握を行うための負担等を考慮すると、上述したように1台目の加工機10のみにおいて行うことが好ましい。
なお、加工特性の把握は、上述したように、システム内における少なくとも一つの加工機10である1台目の加工機10において行うが、「少なくとも一つ」であるから同一機種の複数の加工機10のそれぞれにおいて行うことも考えられる。複数の加工機10のそれぞれで加工特性の把握を行う場合には、その把握結果についての高精度化や信頼性向上等が期待できる。ただし、加工特性の把握を行うための負担等を考慮すると、上述したように1台目の加工機10のみにおいて行うことが好ましい。
ここで、1台目の加工機10においては、必要に応じて、オペレータ等が、装置側補正値(例えば図2参照)を用いた加工サイズ調整を行う(S103)。ここでの加工サイズ調整は、加工ツールの各種類毎に、予め設定された基準となる種類のレンズ素材(例えばマテリアルA)に着目して行う。以下、このレンズ素材のことを「基準硝材」という。具体的には、先ず、オペレータ等が、基準硝材の所定度数レンズについて実測された周長差の半径換算値を把握する。例えば、加工ツールがヤゲンツールの場合(例えば図2(a)参照)には基準硝材についての周長差の半径換算値は「0.00」であり、加工ツールがヤゲンポリッシュツールの場合(例えば図2(c)参照)には基準硝材についての周長差の半径換算値は「0.01」である。そして、基準硝材についての周長差の半径換算値を把握したら、1台目の加工機10における調整手段11としての機能を用いつつ、オペレータ等の作業によって、把握した周長差の半径換算値を当該加工機10の装置側補正値として、加工ツールの各種類別に当該加工機10の側に予め設定しておく。以下、加工機10の側に設定された装置側補正値を「マシンオフセット値」という。これにより、例えば、ヤゲンツールについてはマシンオフセット値が「0.00」と設定され、または無設定となるが(例えば図2(a)参照)、ヤゲンポリッシュツールについてはマシンオフセット値が「0.01」と設定されることになる(例えば図2(c)参照)。なお、マシンオフセット値は、加工機10が複数の加工モード(例えばモードA~モードD)に対応し得る場合であっても、全加工モードに共通の値が設定されるものとする。このような処理は、1台目の加工機10が本来的に有している機能(公知機能)を利用して行えばよい。
このような加工サイズ調整を行うことで、1台目の加工機10では、それ以降、少なくとも基準硝材については、どの種類の加工ツールを用いた場合であっても、所望サイズと実サイズとの誤差分が許容範囲内に収まるような外形加工を行い得るようになる。すなわち、換言すると、少なくとも基準硝材については、どの種類の加工ツールを用いた場合についても、加工特性を均質化(標準化)することができる。
(加工サイズ管理装置での処理)
その後は、クライアント装置32が、1台目の加工機10における加工特性に関する情報の取得を行い、取得した情報をサーバ装置31のデータベース部33内に記憶保持させる(S104)。
その後は、クライアント装置32が、1台目の加工機10における加工特性に関する情報の取得を行い、取得した情報をサーバ装置31のデータベース部33内に記憶保持させる(S104)。
具体的には、クライアント装置32において、補正管理プログラム部35の取得手段36が、情報入力を促すGUI画面を表示させ、オペレータ等に各種情報の入力を行わせる。各種情報の入力は、クライアント装置32の入力装置を用いて行うことが考えられるが、クライアント装置32と接続する1台目の加工機10における操作パネル等を用いて行うようにしても構わない。このときに入力される情報は、上述したステップ(S102)で得られた情報であり、1台目の加工機10における加工特性に関する情報である。さらに詳しくは、図2に示した各項目についての情報である。なお、これらの各項目のうち、周長基準値および実測周長については入力を必須とするが、他の項目については、必須入力項目と同様にGUI画面から入力させて取得してもよいし、あるいは必須入力項目の入力内容から取得手段36が演算によって算出することで取得してもよい。
これにより、サーバ装置31のデータベース部33には、図2に示したような加工特性に関する情報が記憶保持されることになる。なお、データベース部33での記憶保持は、1台目の加工機10の機種を識別する情報と関連付けて(すなわち加工機10の機種毎に個別に)行われるものとする。
これにより、サーバ装置31のデータベース部33には、図2に示したような加工特性に関する情報が記憶保持されることになる。なお、データベース部33での記憶保持は、1台目の加工機10の機種を識別する情報と関連付けて(すなわち加工機10の機種毎に個別に)行われるものとする。
(2台目以降の加工機での処理)
ここで、レンズ加工システム内において、1台目の加工機10と同一機種の加工機10が新たに導入された場合を考える。以下、新たに導入された加工機10を、2台目以降の加工機10という。
ここで、レンズ加工システム内において、1台目の加工機10と同一機種の加工機10が新たに導入された場合を考える。以下、新たに導入された加工機10を、2台目以降の加工機10という。
2台目以降の加工機10の導入時には、先ず、当該加工機10のそれぞれについての加工サイズ調整を行う(S105a,S105b,・・・)。加工のサイズ調整は、当該加工機10の調整手段11としての機能を用いつつ、オペレータ等の作業によって行う。
ただし、2台目以降の加工機10に対して行う加工サイズ調整は、以下に述べる点で、1台目の加工機10に対する加工サイズ調整とは異なる。
ただし、2台目以降の加工機10に対して行う加工サイズ調整は、以下に述べる点で、1台目の加工機10に対する加工サイズ調整とは異なる。
2台目以降の加工機10に対しては、1台目の加工機10で行ったような加工特性の把握を行わないので、加工特性の把握を適切に行うための加工サイズ調整が不要である。そのため、2台目以降の加工機10では、1台目の加工機10で行ったような平レンズを用いた事前の加工サイズ調整は行わずに、それに代わり基準硝材の所定度数レンズを用いた加工サイズ調整を行う。
具体的には、2台目以降の加工機10のそれぞれにおいて、例えば基準硝材の未加工の度数ゼロレンズ(Plano)に対し、その外形が所望サイズ(すなわち周長が周長基準値となるサイズ)の基準形状となるような加工を行う。そして、その加工後の度数ゼロレンズについて、その外周の周長の実サイズを測定する。サイズ測定は、システム内の三次元周長測定機20を用いて行うことが考えられるが、これに限定されることはなく、例えばオペレータ等がノギス等の測定機を用いて測定するようにしても構わない。
このような加工および測定は、2台目以降の加工機10のそれぞれにおいて、各加工機10が用いる加工ツールの種類毎に行う。したがって、2台目以降の加工機10が用いる加工ツールの全種類の数分だけ、外形加工後の度数ゼロレンズおよび実サイズの測定結果が得られることになる。
その後、オペレータ等は、所望サイズ(周長基準値)と実サイズとを比較して、所望サイズと実サイズとの誤差分を例えば半径換算値で算出し、その誤差分が許容範囲内に収まるようにすべく、2台目以降の加工機10の操作パネルを操作して、算出した誤差分を解消するような加工パラメータ(例えば加工ツールのツール径)の補正値を、加工ツールの種類毎に、当該加工機10の側にマシンオフセット値として予め設定しておく。このような処理は、2台目以降の加工機10が本来的に有している機能(公知機能)を利用して行えばよい。
このような加工および測定は、2台目以降の加工機10のそれぞれにおいて、各加工機10が用いる加工ツールの種類毎に行う。したがって、2台目以降の加工機10が用いる加工ツールの全種類の数分だけ、外形加工後の度数ゼロレンズおよび実サイズの測定結果が得られることになる。
その後、オペレータ等は、所望サイズ(周長基準値)と実サイズとを比較して、所望サイズと実サイズとの誤差分を例えば半径換算値で算出し、その誤差分が許容範囲内に収まるようにすべく、2台目以降の加工機10の操作パネルを操作して、算出した誤差分を解消するような加工パラメータ(例えば加工ツールのツール径)の補正値を、加工ツールの種類毎に、当該加工機10の側にマシンオフセット値として予め設定しておく。このような処理は、2台目以降の加工機10が本来的に有している機能(公知機能)を利用して行えばよい。
このような加工サイズ調整を行うことで、2台目以降の加工機10においては、それ以降、少なくとも基準硝材については、どの種類の加工ツールを用いた場合であっても、所望サイズと実サイズとの誤差分が許容範囲内に収まるような外形加工を行い得るようになる。すなわち、換言すると、少なくとも基準硝材については、1台目の加工機10と同様に、どの種類の加工ツールを用いた場合についても、加工特性を均質化(標準化)することができる。
(加工サイズ管理装置での処理)
その後は、クライアント装置32が、レ・BR>塔Y加工システム内に存在している加工機10、すなわち1台目および2台目以降の各加工機10について、加工機10毎のサイズ管理テーブル(例えば図3参照)を作成する(S106)。
その後は、クライアント装置32が、レ・BR>塔Y加工システム内に存在している加工機10、すなわち1台目および2台目以降の各加工機10について、加工機10毎のサイズ管理テーブル(例えば図3参照)を作成する(S106)。
具体的には、クライアント装置32において、補正管理プログラム部35の管理手段37が、管理下にある各加工機10別に、その加工機10が加工対象とするレンズ素材の種類(マテリアルA,マテリアルB,・・・)と、その加工機10が用いる加工ツールの種類(ヤゲンツール,平ツール,・・・)とを認識する。この認識は各加工機10別に行うが、同一機種の加工機10であれば同一の認識結果が得られる。そして、レンズ素材の種類と加工ツールの種類を認識したら、これらと加工パラメータ補正のための補正値H11,H12・・・とを互いに関連付けてテーブル形式で管理(記憶保持)するための枠組み(ひな形)を作成する。このようにして作成されるテーブルが、各加工機10別のサイズ管理テーブルとなる。なお、テーブル作成およびその作成に必要となる情報取得等は、公知技術を利用して行うものであればよく、その手法自体が特に限定されるものではない。
加工機10毎にサイズ管理テーブルを作成したら、その後は、各サイズ管理テーブルに対して、各サイズ管理テーブルにおける補正値H11,H12・・・の項への値(初期値)の格納を行う(S107)。
具体的には、クライアント装置32において、補正管理プログラム部35の管理手段37が、先ず、サーバ装置31のデータベース部33にアクセスして、1台目の加工機10において取得された加工特性に関する情報のうちの「パラメータ補正値」を読み出す。この「パラメータ補正値」は、レンズ素材の種類および加工ツールの種類のそれぞれと関連付けられているものである。そして、「パラメータ補正値」を読み出したら、補正管理プログラム部35の管理手段37は、レンズ素材の種類および加工ツールの種類との関連付けを維持しつつ、サイズ管理テーブルにおける補正値H11,H12・・・の項の該当する箇所に、読み出した「パラメータ補正値」を格納する。これにより、加工パラメータ補正のための補正値H11,H12・・・として、1台目の加工機10において取得された加工特性に関する情報のうちの「パラメータ補正値」が格納されたサイズ管理テーブルが完成することになる。
このようなサイズ管理テーブルによれば、レンズ素材の種類毎に、さらには加工ツールの種類毎に、補正値H11,H12・・・を管理(記憶保持)することが可能となる。したがって、加工機10の側で補正値を管理する場合には単一の補正値または加工モード(例えばモードA~モードD)別の補正値にしか対応できなかったが、これとは異なりレンズ素材の種類毎、加工ツールの種類毎といった非常に多種多様な補正値の一括管理が行えるようになる。つまり、従来の技術常識では対応し得なかったような加工パラメータの補正値管理が実現可能となる。
このようにして完成されたサイズ管理テーブルは、各加工機10別のものではあるが、同一機種の加工機10についてのものであれば、少なくともテーブル完成時点では同一内容のものとなる。つまり、1台目の加工機10についてのサイズ管理テーブルに対しても、また2台目以降の加工機10についてのサイズ管理テーブルに対しても、いずれも1台目の加工機10において取得された「パラメータ補正値」が格納されることになる。
なお、サイズ管理テーブルの完成後において、そのサイズ管理テーブルにおける補正値H11,H12・・・は、各加工機10の稼働状況に応じて適宜更新されるものであってもよい。例えば、加工機10の稼働後の所定段階において、加工後レンズの周長の実サイズを測定し、その測定結果に基づいて所望サイズと実サイズとの誤差分が許容範囲内に収まるような新たな補正値に、補正値H11,H12・・・を都度変更することが考えられる。このようにすれば、加工機10の稼働状況による影響(例えば加工ツールの摩耗進行の影響)が加工後レンズの実サイズに及んでしまうのを回避し得るようになる。つまり、加工機10の稼働状況にかかわらずに、眼鏡レンズに対する玉型加工の加工精度を向上させ得るようになる。このことは、クライアント装置32において、補正管理プログラム部35の管理手段37が、加工機10毎に個別のサイズ管理テーブルを作成することによって実現される。換言すると、加工機10別のサイズ管理テーブルの作成は、各加工機10の稼働後における玉型加工の加工精度向上に寄与すると言える。
以上のような手順を経て、本実施形態のレンズ加工システムにおける準備段階が終了する。つまり、上述した各ステップ(S101~S107)以降、本実施形態のレンズ加工システムでは、眼鏡レンズの玉型加工を行う運用段階に入り得る。
運用段階では、サーバ装置31が眼鏡レンズの注文の有無(すなわちジョブの有無)を監視している。そして、ジョブが発生すると、そのジョブの実行に必要となる各種情報をデータベース部33内で管理するとともに、そのジョブに固有のジョブ番号をバーコード化して出力する。バーコード化したジョブ番号は、そのジョブにて玉型加工されるアンカットレンズに付された状態で、その玉型加工を行う1台目の加工機10または2台目以降の加工機10のいずれかへ送られる。以下、玉型加工を行う1台目の加工機10または2台目以降の加工機10のいずれかを、単に加工機10という。
バーコードが付されたアンカットレンズが送られてくると、加工機10では、その加工機10が備えるバーコードリーダでバーコードを読み取ってジョブ番号を認識し、そのジョブ番号をクライアント装置32へ通知する。クライアント装置32は、通知されたジョブ番号を基に、そのジョブ番号によって特定されるジョブに関する情報の通知をサーバ装置31に要求する。そして、要求に係る各種情報がサーバ装置31から通知されると、クライアント装置32は、その通知された各種情報を要求元である加工機10へ通知する。通知する各種情報には、例えば、ジョブの識別データ(ジョブ番号等)、レンズデータ(レンズの素材を特定する商品コード、レンズ度数、レンズ肉厚、表面形状カーブ値、裏面形状カーブ値、反射防止膜の種類、レンズカラーの種類等)、玉型形状データ(眼鏡フレームの三次元的玉型形状、二次元的玉型形状、理論周長、左眼/右眼の別、フレーム/パターン等)、加工条件データ(レンズ素材の種類、加工ツールの種類等)が含まれる。
また、クライアント装置32においては、上述した各種情報の通知と併せて、補正管理プログラム部35の管理手段37としての機能が、選択した加工機10についてのサイズ管理テーブルの格納情報にアクセスして、そのサイズ管理テーブルから加工機10に実行させるジョブに係るレンズ素材の種類および加工ツールの種類に関連付けられている加工パラメータの補正値(すなわち該当する「パラメータ補正値」)を読み出し、その読み出した「パラメータ補正値」を選択した加工機10へ通知する(S108)。
これにより、クライアント装置32からは、レンズデータ、玉型形状データ、加工条件データ等の各種情報と併せて、サイズ管理テーブルから読み出された「パラメータ補正値」が付随情報として、ジョブを実行する加工機10に対して通知されることになる。
これにより、クライアント装置32からは、レンズデータ、玉型形状データ、加工条件データ等の各種情報と併せて、サイズ管理テーブルから読み出された「パラメータ補正値」が付随情報として、ジョブを実行する加工機10に対して通知されることになる。
(玉型加工ジョブを実行する加工機での処理)
一方、玉型加工ジョブを実行する加工機10では、クライアント装置32から上述した各種情報が通知されると、その通知された各種情報の内容に基づき、玉型加工ジョブの実行を開始する。
一方、玉型加工ジョブを実行する加工機10では、クライアント装置32から上述した各種情報が通知されると、その通知された各種情報の内容に基づき、玉型加工ジョブの実行を開始する。
このとき、加工機10には、「パラメータ補正値」についても併せて通知されている。そのため、加工機10においては、玉型加工ジョブの実行にあたり、補正手段12としての機能が、通知された「パラメータ補正値」を受け付け、その受け取った「パラメータ補正値」を反映させた加工量を決定する。つまり、受け取った「パラメータ補正値」に基づいて、クライアント装置32からの各種情報によって特定される加工パラメータ、具体的には加工ツールのツール径(オフセット量)を、その「パラメータ補正値」の分だけ補正するのである(S109a,S109b,S109c)。
このような補正手段12による加工パラメータ補正は、クライアント装置32が管理するサイズ管理テーブルに基づいて行われる。そして、そのサイズ管理テーブルは、レンズ素材の種類毎、加工ツールの種類毎といった非常に多種多様な補正値の一括管理を行い得るものである。したがって、補正手段12による加工パラメータ補正では、加工機10が対応可能な加工モードの種類にかかわらずに、その加工機10で加工対象となり得る全種のレンズ素材について、各レンズ素材別に適切な補正が行えることになる。さらには、その加工機10で用い得る全種の加工ツールについて、各加工ツール別に適切な補正が行えることにもなる。
そして、補正手段12が加工パラメータ補正を行ったら、加工機10は、その補正後の加工パラメータを用いて、すなわちその補正後のサイズにて、眼鏡レンズに対する玉型加工を行う(S110a,S110b,S110c)。
このとき、例えば2台目以降の加工機10は、1台目の加工機10で取得された「パラメータ補正値」、すなわち自機以外の加工特性に関する情報に基づいて、加工パラメータ補正を行うことになる。ところが、2台目以降の加工機10においては、その加工パラメータ補正の結果が反映された玉型加工を行うのに先立ち、加工サイズ調整が行われており(S105a,S105b,・・・)、これにより加工特性の均質化(標準化)がされている。したがって、1台目の加工機10で取得された「パラメータ補正値」に基づいて加工パラメータ補正を行った場合であっても、2台目以降の加工機10においてその加工パラメータ補正の結果が反映された玉型加工は、1台目の加工機10の場合と同様に、適切なもの(すなわち所望サイズと実サイズとの誤差分を許容範囲内に収めることが可能なもの)となる。
以上のような手順を経て、本実施形態のレンズ加工システムでは、加工機10が眼鏡レンズの玉型加工を行う際の加工サイズ管理が行われる。
<5.眼鏡レンズの製造手順>
次に、上述したレンズ加工システムを用いて行う眼鏡レンズの製造手順について簡単に説明する。
次に、上述したレンズ加工システムを用いて行う眼鏡レンズの製造手順について簡単に説明する。
レンズ加工システムでは、サーバ装置31が眼鏡店からの注文を受け付けると、バーコード化したジョブ番号が付されたアンカットレンズが、ジョブの実行主体となる一つの加工機10へ送られる。そして、加工機10でのバーコードの読み取り結果に基づき、その加工機10に対してジョブの実行に必要となる各種情報がクライアント装置32から通知される。このとき、加工機10には、既に説明したように、クライアント装置32から加工パラメータの補正値が併せて通知される。つまり、加工機10には、ジョブ(眼鏡店からの注文)毎に、加工パラメータの補正値(例えば半径値換算の補正値)が通知される。
ここで、眼鏡店からの注文に係るレンズ素材からなるアンカットレンズがセットされると、加工機10は、セットされたアンカットレンズの周縁を眼鏡店からの注文に係る玉型形状とするための玉型加工を開始する。このときの加工機10でのアンカットレンズに対する加工量は、クライアント装置32から通知された補正値を反映させた加工量となる。つまり、加工機10は、上述したサーバ装置31およびクライアント装置32による加工サイズ管理の下、ジョブ(眼鏡店からの注文)毎に加工パラメータ補正を行いつつ、眼鏡レンズの玉型加工を行う。そして、加工機10での玉型加工が終了すると、玉型加工後の眼鏡レンズが加工機10から取り出されるとともに、玉型加工が終了した旨の通知が加工機10からクライアント装置32に対して行われ、さらにクライアント装置32からサーバ装置31に対して行われる。
以上のような手順を経て、本実施形態のレンズ加工システムにおいて、眼鏡店からの注文による眼鏡レンズの製造が行われることになる。
<6.本実施形態の効果>
本実施形態によれば、以下のような効果が得られる。
本実施形態によれば、以下のような効果が得られる。
本実施形態においては、レンズ加工システム内における少なくとも一つの加工機10である1台目の加工機10で加工特性に関する情報を把握し、その加工特性に関する情報をデータベース部33に記憶保持しておくとともに、その記憶保持情報に基づいて補正管理プログラム部35が加工機10毎のサイズ管理テーブルを作成する。そして、各加工機10にて眼鏡レンズの玉型加工を行う際には、1台目の加工機10のみならず、2台目以降の加工機10についても、サイズ管理テーブルによる管理内容、すなわち1台目の加工機10で把握された加工特性に関する情報に基づいて、当該玉型加工のための加工パラメータ(具体的には、例えば加工ツールのツール径)を補正する。したがって、本実施形態のレンズ加工システムによれば、1台目の加工機10および2台目以降の加工機10のいずれで玉型加工を行った場合であっても、加工パラメータの補正を経ることで、その玉型加工後の眼鏡レンズについて、所望サイズと実サイズとの誤差分が許容範囲内に収まるものとなる。
しかも、本実施形態によれば、加工パラメータの補正にあたり、1台目の加工機10のみならず、2台目以降の加工機10についても、当該補正を1台目の加工機10で把握した加工特性に関する情報に基づいて行う。つまり、同一機種であれば、2台目以降の加工機10についても、1台目の加工機10における加工特性に関する情報をそのまま適用して、加工パラメータ補正を行う。したがって、2台目以降の加工機10においては、レンズ加工システム内への導入時に、少なくとも基準硝材について各加工ツール毎の加工サイズ調整を行えばよく、当該加工機10で加工対象となる全種のレンズ素材に対する個別の加工サイズ調整を行う必要がない。つまり、2台目以降の加工機10に対しては、1台目の加工機10で行ったような加工特性の把握を行わずに済む。そのため、複数の加工機10を備えるレンズ加工システムを構築する場合であっても、2台目以降の加工機10における加工サイズ調整のための手間を大幅に簡略化することができる。
このことは、特にいわゆるオーダーメイドレンズ(顧客の注文毎に、レンズ処方のみならず、レンズ素材やレンズ周縁加工等についても、様々な仕様が存在し得るレンズ)に対応するレンズ加工システムを構築する場合に、非常に有効であると言える。なぜならば、オーダーメイドレンズについては、各加工機10が様々なレンズ素材や加工ツール等に対応しなければならず、それゆえに2台目以降の加工機10における加工サイズ調整の簡略化の効果が顕著に現れるからである。
また、本実施形態において、2台目以降の加工機10では、基準硝材(すなわち基準とすべく予め定められた少なくとも1種のレンズ素材)につき、加工ツールの種類毎に玉型加工後における眼鏡レンズの所望サイズと実サイズとの誤差分を許容範囲内に収めるための加工サイズ調整を行った上で、基準硝材以外のレンズ素材について玉型加工を行う際に、上述した1台目の加工機10における加工特性に基づく加工パラメータの補正を行う。つまり、2台目以降の加工機10においては、基準硝材についての加工サイズ調整が行われており、これにより主に1台目の加工機10に対応するような加工特性の均質化(標準化)がされている。したがって、1台目の加工機10における加工特性に基づいて加工パラメータ補正を行う場合であっても、2台目以降の加工機10においてその加工パラメータ補正の結果が反映された玉型加工は、1台目の加工機10の場合と同様に、適切なもの(すなわち所望サイズと実サイズとの誤差分を許容範囲内に収めることが可能なもの)となる。これは、単に1台目の加工機10における「パラメータ補正値」を2台目以降の加工機10についてもそのまま適用するのではなく、各種レンズ素材の間の加工特性の違いを、基準硝材の場合の加工特性との関係性に基づき、2台目以降の加工機10にも適用しようとする技術的思想を具現化したものである。
さらに、本実施形態においては、1台目の加工機10および2台目以降の加工機10のいずれについても、補正管理プログラム部35が管理するサイズ管理テーブルを用いつつ、加工パラメータ補正を行う。したがって、各加工機10の側で加工モード(例えばモードA~モードD)別の補正値を管理する場合とは異なり、各加工機10が対応するレンズ素材の種類毎、加工ツールの種類毎といった非常に多種多様な補正値の一括管理が行えるようになる。加工機10が対応し得る加工モード数には、その加工機10における情報の記憶蓄積容量等の関係から、自ずと制約が課せられてしまうが、クライアント装置32の管理プログラム部35の側で対応すれば、加工機10に比べて大容量の情報記憶蓄積容量を活用可能となるからである。つまり、従来の技術常識では対応し得なかったような加工パラメータの補正値管理が実現可能となるので、様々な仕様が存在し得る眼鏡レンズのそれぞれに対して適切な玉型加工を行い得るようになる。このことは、特にオーダーメイドレンズに対応するレンズ加工システムを構築する場合に、非常に有効であると言える。
<7.変形例等>
以上に本発明の実施形態を説明したが、上記の開示内容は、本発明の例示的な実施形態を示すものである。すなわち、本発明の技術的範囲は、上記の例示的な実施形態に限定されるものではない。
以上に本発明の実施形態を説明したが、上記の開示内容は、本発明の例示的な実施形態を示すものである。すなわち、本発明の技術的範囲は、上記の例示的な実施形態に限定されるものではない。
例えば、上述した実施形態では、各加工機10での加工パラメータ補正を管理する補正管理プログラム部35がクライアント装置32に配されている場合を例に挙げて説明したが、補正管理プログラム部35はレンズ加工システム内のいずれかの箇所に存在していればよく、他装置(例えばサーバ装置31)に配されていてもよい。
また、上述した実施形態では、補正管理プログラム部35が各加工機10別のサイズ管理テーブルを用いて加工パラメータ補正を管理する場合を例に挙げたが、本発明は必ずしもこれに限定されるものではない。各加工機10別のサイズ管理テーブルを用いた場合であれば、既に説明したように加工機10の稼働状況による影響が玉型加工の結果に及んでしまうのを回避し得るようになるが、稼働初期段階の各加工機10における加工パラメータ補正だけを考えれば、例えばその都度データベース部33から記憶保持情報の読み出しを行うことで、サイズ管理テーブルが無くとも加工パラメータ補正に必要な「パラメータ補正値」を各加工機10へ通知することが可能である。
また、「パラメータ補正値」のやり取りをはじめとするクライアント装置32と各加工機10との間の各種情報の授受についても、その具体的な手法が特に限定されるものではない。すなわち、各種情報の授受は、クライアント装置32が主体となって各加工機10に対して行うものであってもよいし、あるいは各加工機10のそれぞれが主体となって必要に応じてクライアント装置32に情報を要求したりクライアント装置32内のサイズ管理テーブル等から情報読み出したりすることで行ってもよい。
さらに、上述した実施形態では、加工センター内に設置された各加工機10、サーバ装置31およびクライアント装置32が、眼鏡店に設置された端末装置からの注文に応じて、玉型加工ジョブを実行する場合を例に挙げたが、本発明は必ずしもこれに限定されるものではなく、例えば眼鏡店ではなく加工センター内に設置された端末装置からの注文に応じて玉型加工ジョブを実行することも可能である。具体的には、加工センター内に設置された測定機で眼鏡フレーム形状を測定し、形状が測定された眼鏡フレームに玉型加工済みレンズを枠入れして、眼鏡完成品として加工センターから出荷するといった仕組みを構築することが考えられる。
10…加工機、11…調整手段、12…補正手段、20…三次元周長測定機、30…管理装置(加工サイズ管理装置)、31…サーバ装置、32…クライアント装置、33…データベース部(記憶手段)、34…制御プログラム部、35…補正管理プログラム部、36…取得手段、37…管理手段、40…通信回線
Claims (5)
- 眼鏡レンズの玉型加工を行う複数の加工機と、前記複数の加工機に接続されて用いられる加工サイズ管理装置と、を備えるレンズ加工システムであって、
前記加工サイズ管理装置は、前記加工機の機種毎に、当該加工機が加工対象とするレンズ素材の種類および当該加工機が用いる加工ツールの種類と関連付けて、当該加工機にて前記加工ツールを用いて前記レンズ素材を加工したときの加工特性に関する情報を記憶保持する記憶手段を備えており、
前記記憶手段が記憶保持する情報は、前記複数の加工機のうちの少なくとも一つの加工機で得られた当該加工機の加工特性に関する情報であり、
前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機は、当該加工機にて前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、前記記憶手段が記憶保持する情報に基づいて当該加工のための加工パラメータを補正する補正手段を備えている
ことを特徴とするレンズ加工システム。 - 前記複数の加工機のうち前記少なくとも一つの加工機以外の当該加工機と同機種の加工機は、基準とすべく予め定められた少なくとも1種の前記レンズ素材につき、前記加工ツールの種類毎に玉型加工後における眼鏡レンズの所望サイズと実サイズとの誤差分を許容範囲内に収めるための加工サイズ調整を行った上で、前記補正手段が、前記基準となる少なくとも1種以外の前記レンズ素材について加工を行う際に、前記加工パラメータの補正を行うように構成されている
ことを特徴とする請求項1記載のレンズ加工システム。 - 眼鏡レンズの玉型加工を行う複数の加工機に接続されて用いられる加工サイズ管理装置であって、
前記加工機の機種毎に、当該加工機が加工対象とするレンズ素材の種類および当該加工機が用いる加工ツールの種類と関連付けて、当該加工機にて前記加工ツールを用いて前記レンズ素材を加工したときの加工特性に関する情報を記憶保持する記憶手段と、
前記記憶手段に記憶保持させる情報として、前記複数の加工機のうちの少なくとも一つの加工機における加工特性に関する情報を取得する取得手段と、
前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機に対して、当該加工機にて前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、前記記憶手段が記憶保持する情報に基づいて当該加工のための加工パラメータを補正させる管理手段と、
を備えることを特徴とする加工サイズ管理装置。 - 眼鏡レンズの玉型加工を行う複数の加工機における加工サイズを管理する加工サイズ管理方法であって、
前記複数の加工機のうちの少なくとも一つの加工機にて、当該加工機が加工対象とするレンズ素材の全種類および当該加工機が用いる加工ツールの全種類のそれぞれにつき、当該加工ツールを用いて当該レンズ素材を加工したときの加工特性に関する情報を取得する工程と、
前記少なくとも一つの加工機で取得した加工特性に関する情報を、当該加工機の機種、
前記レンズ素材の種類および前記加工ツールの種類と関連付けて記憶保持する工程と、
前記複数の加工機のうち前記少なくとも一つの加工機と同機種の加工機にて、前記レンズ素材に対し前記加工ツールを用いて加工を行う際に、既に記憶保持している加工特性に関する情報に基づいて当該加工のための加工パラメータを補正する工程と、
を備えることを特徴とする加工サイズ管理方法。 - 請求項4に記載の加工サイズ管理方法により加工サイズが管理される前記加工機を用いた玉型加工によって眼鏡レンズを形成する
ことを特徴とする眼鏡レンズの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13853659.4A EP2926950A4 (en) | 2012-11-06 | 2013-11-01 | LENS FINISHING SYSTEM, FINITE SIZE MANAGEMENT DEVICE, FINITE SIZE MANAGEMENT METHOD, AND GLASSES GLASS MANUFACTURING METHOD |
CN201380057863.6A CN104768709B (zh) | 2012-11-06 | 2013-11-01 | 镜片加工系统、加工尺寸管理装置、加工尺寸管理方法及眼镜镜片的制造方法 |
US14/439,793 US20150290762A1 (en) | 2012-11-06 | 2013-11-01 | Lens edging system, edging size management device, edging size management method and method of manufacturing spectacle lens |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012244552A JP5972759B2 (ja) | 2012-11-06 | 2012-11-06 | レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法 |
JP2012-244552 | 2012-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014073465A1 true WO2014073465A1 (ja) | 2014-05-15 |
Family
ID=50684571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079668 WO2014073465A1 (ja) | 2012-11-06 | 2013-11-01 | レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150290762A1 (ja) |
EP (1) | EP2926950A4 (ja) |
JP (1) | JP5972759B2 (ja) |
CN (1) | CN104768709B (ja) |
WO (1) | WO2014073465A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3159760A1 (en) * | 2015-09-30 | 2017-04-26 | Nidek Co., Ltd. | Terminal device and terminal control program |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014164178A (ja) * | 2013-02-26 | 2014-09-08 | Hoya Corp | 眼鏡レンズの製造システム、製造装置、製造方法、製造情報管理システム、製造情報管理装置、および製造情報管理方法 |
JP6536053B2 (ja) * | 2015-02-04 | 2019-07-03 | 株式会社ニデック | 眼鏡レンズ加工用装置、および眼鏡レンズ加工用プログラム |
JP6503769B2 (ja) * | 2015-02-04 | 2019-04-24 | 株式会社ニデック | 眼鏡レンズ加工用装置、眼鏡レンズ加工用システム、眼鏡レンズ加工プログラム、眼鏡レンズ加工方法、および眼鏡レンズ加工用端末装置 |
WO2016125798A1 (ja) * | 2015-02-04 | 2016-08-11 | 株式会社ニデック | 眼鏡レンズ加工用システム、眼鏡レンズ加工用装置、眼鏡レンズ加工用端末装置、眼鏡レンズ加工用プログラム、および眼鏡レンズ加工方法 |
JP6536052B2 (ja) * | 2015-02-04 | 2019-07-03 | 株式会社ニデック | 眼鏡レンズ加工用システム、およびそれに用いられる眼鏡レンズ加工用端末装置、眼鏡レンズ加工用プログラム |
JP6769019B2 (ja) * | 2015-09-30 | 2020-10-14 | 株式会社ニデック | 端末装置、及び端末制御プログラム |
JP6759547B2 (ja) * | 2015-09-30 | 2020-09-23 | 株式会社ニデック | 端末装置、眼鏡制作システム、及び端末制御プログラム |
CN105607210A (zh) * | 2015-12-29 | 2016-05-25 | 捷西迪(广州)光学科技有限公司 | 一种光学镜筒加工系统及其加工方法 |
CN110108528A (zh) * | 2019-05-09 | 2019-08-09 | 贵州航天新力铸锻有限责任公司 | 金属材料的智能制样系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413539A (ja) * | 1990-04-27 | 1992-01-17 | Topcon Corp | 眼鏡レンズ加工システム |
JP2000225548A (ja) * | 1999-02-05 | 2000-08-15 | Shigiya Machinery Works Ltd | 玉摺機による眼鏡レンズの加工方法 |
WO2005044513A1 (ja) * | 2003-11-05 | 2005-05-19 | Hoya Corporation | 眼鏡レンズの供給方法 |
JP4772342B2 (ja) | 2005-02-28 | 2011-09-14 | 株式会社ニデック | 眼鏡レンズ加工装置 |
US20120133886A1 (en) * | 2010-07-20 | 2012-05-31 | Essilor International (Compagnie Generale D'optique) | Method of calculating a setpoint for beveling or grooving an ophthalmic lens |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1681136A (en) * | 1927-10-22 | 1928-08-14 | John F Ruth | Metal window |
JP3276866B2 (ja) * | 1996-12-27 | 2002-04-22 | ホーヤ株式会社 | 眼鏡加工方法及び眼鏡フレーム |
JP4186766B2 (ja) * | 2003-09-12 | 2008-11-26 | セイコーエプソン株式会社 | 眼鏡レンズの製造システム及び眼鏡レンズの製造方法 |
WO2006046558A1 (ja) * | 2004-10-25 | 2006-05-04 | Hoya Corporation | 眼鏡レンズ測定加工装置、その測定加工方法、眼鏡レンズ製造方法及び眼鏡製造方法 |
FR2910647B1 (fr) * | 2007-05-29 | 2009-11-27 | Essilor Int | Procede de detourage de lentilles ophtalmiques par lecture et mise a jour d'un registre de base de donnees de lentilles et/ou de montures |
CA2735704C (en) * | 2008-08-29 | 2020-05-05 | Nikon-Essilor Co., Ltd. | Lens processing management system |
JP5730491B2 (ja) * | 2010-02-26 | 2015-06-10 | 株式会社ニコン・エシロール | レンズ加工管理システム、レンズ製造システム、レンズ製造方法、コンピュータプログラム、レンズ加工管理方法、データ供給装置、レンズ設計データ利用管理システム、レンズ設計データ利用管理装置、及びレンズ設計データ利用管理プログラム |
JP6127530B2 (ja) * | 2013-01-17 | 2017-05-17 | 株式会社ニデック | 眼鏡レンズ加工装置および加工制御データ作成プログラム |
-
2012
- 2012-11-06 JP JP2012244552A patent/JP5972759B2/ja not_active Expired - Fee Related
-
2013
- 2013-11-01 US US14/439,793 patent/US20150290762A1/en not_active Abandoned
- 2013-11-01 WO PCT/JP2013/079668 patent/WO2014073465A1/ja active Application Filing
- 2013-11-01 EP EP13853659.4A patent/EP2926950A4/en not_active Withdrawn
- 2013-11-01 CN CN201380057863.6A patent/CN104768709B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413539A (ja) * | 1990-04-27 | 1992-01-17 | Topcon Corp | 眼鏡レンズ加工システム |
JP2000225548A (ja) * | 1999-02-05 | 2000-08-15 | Shigiya Machinery Works Ltd | 玉摺機による眼鏡レンズの加工方法 |
WO2005044513A1 (ja) * | 2003-11-05 | 2005-05-19 | Hoya Corporation | 眼鏡レンズの供給方法 |
JP4772342B2 (ja) | 2005-02-28 | 2011-09-14 | 株式会社ニデック | 眼鏡レンズ加工装置 |
US20120133886A1 (en) * | 2010-07-20 | 2012-05-31 | Essilor International (Compagnie Generale D'optique) | Method of calculating a setpoint for beveling or grooving an ophthalmic lens |
Non-Patent Citations (1)
Title |
---|
See also references of EP2926950A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3159760A1 (en) * | 2015-09-30 | 2017-04-26 | Nidek Co., Ltd. | Terminal device and terminal control program |
US10627799B2 (en) | 2015-09-30 | 2020-04-21 | Nidek Co., Ltd. | Terminal device and terminal control program |
Also Published As
Publication number | Publication date |
---|---|
US20150290762A1 (en) | 2015-10-15 |
EP2926950A4 (en) | 2016-10-19 |
CN104768709B (zh) | 2018-01-09 |
CN104768709A (zh) | 2015-07-08 |
JP2014091202A (ja) | 2014-05-19 |
EP2926950A1 (en) | 2015-10-07 |
JP5972759B2 (ja) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5972759B2 (ja) | レンズ加工システム、加工サイズ管理装置、加工サイズ管理方法および眼鏡レンズの製造方法 | |
JP6002151B2 (ja) | 眼鏡レンズの玉型加工システム、眼鏡レンズの製造方法、および玉型加工機 | |
JP5138053B2 (ja) | 眼鏡レンズの周縁加工方法 | |
JP6074438B2 (ja) | 眼鏡レンズ、眼鏡レンズの製造装置及び製造方法 | |
US9962803B2 (en) | Lens edging system, edging size management device, edging size management method and method of manufacturing spectacle lens | |
JP6063248B2 (ja) | レンズ加工システム、発注側端末装置およびレンズ発注方法 | |
EP2963485B1 (en) | Spectacle lens production system, production device, production method, production information management system, production information management device, and production information management method | |
JP2013205747A (ja) | 眼鏡レンズ加工方法、眼鏡レンズ加工システムおよび眼鏡レンズ加工プログラム | |
JP4553184B2 (ja) | 眼鏡レンズの製造方法及び眼鏡レンズ、並びに刻印装置 | |
JP2014193501A (ja) | レンズ加工制御装置、レンズ加工制御プログラム、レンズ形状判定方法および眼鏡レンズの製造方法 | |
US11511385B2 (en) | Method of preparing an operation of surfacing of a lens blank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13853659 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013853659 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14439793 Country of ref document: US |