WO2014073290A1 - 電力変換装置の制御装置 - Google Patents

電力変換装置の制御装置 Download PDF

Info

Publication number
WO2014073290A1
WO2014073290A1 PCT/JP2013/076723 JP2013076723W WO2014073290A1 WO 2014073290 A1 WO2014073290 A1 WO 2014073290A1 JP 2013076723 W JP2013076723 W JP 2013076723W WO 2014073290 A1 WO2014073290 A1 WO 2014073290A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
temperature
alarm signal
circuit
protection
Prior art date
Application number
PCT/JP2013/076723
Other languages
English (en)
French (fr)
Inventor
昭 中森
覚 本橋
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112013001471.8T priority Critical patent/DE112013001471T5/de
Priority to CN201380019418.0A priority patent/CN104247245B/zh
Publication of WO2014073290A1 publication Critical patent/WO2014073290A1/ja
Priority to US14/506,920 priority patent/US9337719B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch

Definitions

  • the present invention relates to a control device for a power conversion device that drives a semiconductor element constituting the power conversion device and has a semiconductor element protection function.
  • This intelligent power module for example, includes a plurality of semiconductor elements composed of power transistors such as IGBTs and their drive circuits, as well as a protection circuit against abnormalities such as overcurrent of each of the semiconductor elements, voltage drop of the control power supply, overheating, etc. It is modularized as a part. Further, for example, in Patent Document 1, an alarm signal having a preset pulse width is externally output according to the type of abnormality detected by each protection circuit, in addition to the plurality of protection circuits that respectively detect the abnormality described above. It has also been proposed to incorporate a notification circuit into the intelligent power module.
  • FIG. 8 is a block diagram showing a schematic configuration of a control device of this type of power conversion device.
  • a control device 1 of this power conversion device includes an inverter 2 that converts DC power into AC power.
  • a plurality of semiconductor elements constituting the inverter 2 in this example, six IGBTs (Insulated Gate Bipolar Transistors) 11 to 16 are individually driven by the drive circuits 3U to 3Z.
  • reference numerals 21 to 26 denote freewheeling diodes connected in antiparallel between the emitters and collectors of the IGBTs 11 to 16, respectively.
  • the six IGBTs 11 to 16 constituting the inverter 2 are connected in series two by two to constitute three sets of half bridge circuits. These half-bridge circuits are respectively interposed between a positive terminal P and a negative terminal N connected to a DC power source (not shown).
  • the three sets of half-bridge circuits provided in parallel constitute a three-phase full-bridge circuit that converts DC power supplied between the positive terminal P and the negative terminal N into three-phase AC power.
  • the three-phase AC power converted by the inverter 2 is supplied to an AC load 4 such as an electric motor.
  • the IGBTs 11, 12, and 13 connected to the positive terminal P side generate positive power of the U-phase, V-phase, and W-phase of three-phase AC.
  • Each of the generated upper arms is configured.
  • the IGBTs 14, 15, and 16 connected to the negative terminal N side constitute lower arms that respectively generate three-phase alternating current X-phase, Y-phase, and Z-phase negative power.
  • These IGBTs 11 to 16 are switched on and off by the drive circuits 3U to 3Z with different phases, thereby switching the DC power.
  • the IGBTs 11 to 16 output three-phase AC power from the series connection point between the IGBTs 11 to 16 via the output terminals U, V, and W.
  • Each of the drive circuits 3U to 3Z inputs a control signal Sm provided from an inverter control unit (not shown) to turn on the gate of the IGBT 14.
  • a gate control circuit 31 that performs off-control is provided.
  • the control signal Sm is a pulse signal that has been subjected to pulse width modulation (PWM) under phase control corresponding to each of the U phase to Z phase described above in the inverter control section.
  • PWM pulse width modulation
  • the gate control circuit 31 receives a protection signal (driving stop signal) Sp from a protection signal generation circuit 35 described later. When the protection signal Sp is off (H level), the gate control circuit 31 applies the control signal Sm to the gate of the IGBT 14 to drive the IGBT 14 on and off. The gate control circuit 31 prevents the control signal Sm from passing when the protection signal Sp is on (L level). By blocking the passage of the control signal Sm, the driving of the IGBT 14 is prohibited, thereby protecting the IGBT 14 from abnormality.
  • a protection signal driving stop signal
  • the drive circuit 3X includes a control voltage detection circuit 32, a current detection circuit 33, and a temperature detection circuit 34 as a plurality of protection circuits for realizing the protection function of the IGBT 14.
  • the control voltage detection circuit 32 includes a first comparator CP1 that compares the control voltage Vcc of the drive circuit 3U supplied from an external power supply with a preset first threshold voltage Vth1. When the control voltage Vcc drops below the first threshold voltage Vth1, the control voltage detection circuit 32 comprising the first comparator CP1 detects this as an abnormal drop in the control voltage Vcc and detects an H level voltage abnormality.
  • the detection signal Svd is output.
  • the current detection circuit 33 includes a second comparator CP2 that compares a voltage Vi indicating the current I flowing through the IGBT 14 detected from the current detection emitter of the IGBT 14 with a preset second threshold voltage Vth2. Prepare. When the voltage Vi exceeds the second threshold voltage Vth2, the current detection circuit 33 comprising the second comparator CP2 detects this as an overcurrent and outputs an H-level overcurrent abnormality detection signal Soc.
  • the temperature detection circuit 34 is a temperature T of the IGBT 14 detected by a temperature detection diode 18 as a temperature sensor incorporated in the same semiconductor chip as the IGBT 14, specifically, a semiconductor chip on which the IGBT 14 is formed. Is provided with a third comparator CP3 that compares a voltage Vt indicating the temperature T with a preset third threshold voltage Vth3. When the voltage Vt falls below the third threshold voltage Vth3, the temperature detection circuit 34 comprising the third comparator CP3 detects this as overheating and outputs an H level overheating abnormality detection signal Soh.
  • the protection signal generation circuit 35 is energized via the OR circuit 36 when any one of the detection circuits 32, 33, 34 outputs the abnormality detection signals Svd, Soc, Soh, and is output for a predetermined time.
  • the level of the protection signal Sp is generated and applied to the gate control circuit 31.
  • the protection signal Sp is also given to the other drive circuits 3Y and 3Z via the terminal AE. Accordingly, not only the IGBT 14 but also the remaining IGBTs 15 and 16 are inhibited from being driven by the protection signal Sp.
  • the abnormality detection signals Svd, Soc, Soh output from the detection circuits 32, 33, 34 are supplied to the alarm signal generation circuit 37.
  • the alarm signal generation circuit 37 generates an alarm signal when the abnormality detection signals Svd, Soc, Soh are given from the detection circuits 32, 33, 34.
  • the alarm signal is generated in advance with different pulse widths Tvd, which are associated with each of the detection circuits 32, 33, 34 in advance with a predetermined pulse interval Ta. It consists of a pulse signal train of Toc and Toh.
  • the alarm signal including the pulse signal train is output to the outside via the output transistor 38 and is used for generating the control signal Sm.
  • This control signal Sm is given to the inverter control unit described above and used to drive the drive circuit 3X.
  • Patent Document 2 proposes that each of the temperatures of the plurality of semiconductor elements is detected, and the highest temperature information among these temperature information is selected and output externally. Has been.
  • the present invention has been made in view of such circumstances, the purpose of which is to use the output terminal that outputs the alarm signal to the outside, the temperature information of the semiconductor element without interfering with the output of the alarm signal, It is another object of the present invention to provide a control device for a power conversion device having a simple configuration that can be output externally so as to be clearly distinguishable from an alarm signal.
  • a control device for a power conversion device includes a drive circuit for driving a semiconductor element constituting the power conversion device, and a protection signal by detecting information necessary for the protection operation of the semiconductor device.
  • a plurality of protection circuits for stopping driving of the semiconductor element by the drive circuit according to the protection signal, and generating an alarm signal having a pulse width according to a protection factor according to an output of the protection circuit.
  • An alarm signal generation circuit that outputs, in particular, a temperature signal generation circuit that detects a temperature of the semiconductor element and generates a PWM signal correlated with the temperature having a period different from the pulse width of the alarm signal; And an output control circuit that selects the PWM signal at all times and selects the alarm signal instead of the PWM signal when the alarm signal is generated and externally outputs the alarm signal.
  • the control device for a power conversion device includes a plurality of drive circuits that respectively drive a plurality of semiconductor elements constituting the power conversion device, and the semiconductor elements provided corresponding to the plurality of semiconductor elements, respectively.
  • a plurality of protection circuits for detecting information necessary for the protection operation and generating a protection signal and stopping the driving of the semiconductor element by the driving circuit according to the protection signal, and corresponding to each of the semiconductor elements
  • An alarm signal generation circuit that generates an alarm signal having a pulse width corresponding to a protection factor according to the output of the corresponding plurality of protection circuits and outputs the alarm signal to the outside, and particularly detects the temperature of each of the semiconductor elements.
  • a temperature signal generation circuit that generates a PWM signal correlated with the temperature having a period different from the pulse width of the alarm signal; And an output control circuit that selects the PWM signal at all times and selects the alarm signal instead of the PWM signal when the alarm signal is generated and externally outputs the alarm signal.
  • the plurality of protection circuits include a voltage detection circuit that detects a control voltage applied to the control device, a temperature detection circuit that detects a temperature of the semiconductor element, and a current detection circuit that detects a current flowing through the semiconductor element. And generating protection signals for undervoltage protection, overheat protection, and overcurrent protection, respectively.
  • the temperature signal generation circuit is configured not to generate a PWM signal when the temperature of the semiconductor element is less than a set temperature, and to generate a PWM signal corresponding to the detected temperature only when the temperature is equal to or higher than the set temperature. Is done.
  • the temperature signal generation circuit is preferably configured to generate a PWM signal corresponding to the temperature of the semiconductor element while limiting at least one of an upper limit and a lower limit of the duty.
  • the output control circuit preferably selects and outputs the alarm signal over a period during which the alarm generation circuit generates an alarm signal, and replaces the alarm signal when generation of the alarm signal is stopped.
  • a multiplexer for selecting and outputting the PWM signal.
  • the multiplexer is configured so that the operation of the multiplexer is controlled according to a switching signal generated by delaying a trailing edge of the alarm signal and the PWM signal is selectively output.
  • the plurality of drive circuits are integrated with the plurality of protection circuits and the alarm signal generation circuit corresponding to each of the plurality of semiconductor elements constituting the power conversion device, and the temperature signal generation circuit is integrated. It is preferable that the output circuit and the plurality of drive circuits are integrated separately. In this case, it is preferable that the temperature signal generation circuit is configured to select the highest temperature among the plurality of detected temperatures and generate a PWM signal correlated with the highest temperature.
  • a PWM signal corresponding to the detected temperature of the semiconductor element and an alarm signal having a pulse width corresponding to an abnormality factor, for example, are selected and output externally using a common output terminal. .
  • the PWM signal can be steadily output during normal operation when the alarm signal is not output. Therefore, it is not necessary to newly provide an output terminal for outputting the PWM signal.
  • the PWM signal is preferably distinguished from the alarm signal by setting it shorter than the minimum pulse interval of the alarm signal. Can also be facilitated.
  • the alarm signal selection output is prioritized over the PWM signal, and the PWM signal is selected instead of the alarm signal selection output in accordance with a switching signal generated by delaying the trailing edge of the alarm signal. Output. Therefore, the output of the alarm signal itself is not hindered, and erroneous identification of the alarm signal can be prevented beforehand. Also, while maintaining the alarm signal output function, the alarm signal output terminal can be shared to output a PWM signal correlated with the temperature of the semiconductor element. Therefore, its practical advantage is great.
  • FIG. 4 is a signal waveform diagram showing an operation of the rising delay circuit shown in FIG. 3.
  • FIG. 3 is a signal waveform diagram showing a control operation of a multiplexer in the temperature detection circuit shown in FIG. 2.
  • the signal waveform diagram for demonstrating the problem at the time of switching a PWM signal and an alarm signal simply.
  • the signal waveform figure at the time of switching a PWM signal and an alarm signal with the signal which delayed the alarm signal.
  • the schematic block diagram of the drive circuit in the control apparatus shown in FIG. The figure which shows the example of the alarm signal of the pulse width according to a protection factor.
  • FIG. 1 is a block diagram showing a schematic configuration of a power conversion device according to the embodiment.
  • the control device 1 of this power conversion device is basically provided with an inverter 2 that converts DC power into AC power, as well as the control device 1 shown in FIG.
  • six drive circuits 3U to 3Z for individually driving the IGBTs 11 to 16 are provided. These drive circuits 3U to 3Z are basically configured in the same manner as that shown in FIG. 9 described above, and therefore detailed description thereof will be omitted.
  • the control device 1 further includes a temperature signal output circuit 6 in addition to the drive circuits 3U to 3Z.
  • the temperature signal output circuit 6 detects the temperatures of the IGBTs 14, 15, and 16 constituting the lower arms of the three sets of half bridge circuits in the inverter 2, and generates a PWM signal correlated with the detected temperatures. It is characterized by doing so.
  • control device 1 includes three drive circuits 3U, 3V, and 3W that respectively drive the IGBTs 11, 12, and 13 that constitute the upper arms of the above-described three sets of half-bridge circuits in the inverter 2.
  • These drive circuits 3U, 3V, 3W are provided with control voltages applied to the drive circuit 3U (3V, 3W) by the detection circuits 32, 33, 34 as shown in FIG. 9, and the IGBT 11 (12, 13). And the current flowing through the IGBT 11 (12, 13) are respectively detected.
  • Each of the drive circuits 3U, 3V, 3W generates a protection signal for undervoltage protection, overheat protection, and overcurrent protection according to the detection information, and generates an alarm signal with a pulse width corresponding to the type of abnormality. Output.
  • control device 1 includes three drive circuits 3X, 3Y, and 3Z that respectively drive the IGBTs 14, 15, and 16 constituting the lower arms of the three sets of half-bridge circuits. These drive circuits 3X, 3Y, 3Z are used without being connected to the temperature detecting diodes 18 provided in association with the IGBTs 14, 15, 16 respectively. These drive circuits 3X, 3Y, 3Z detect the control voltage applied from the detection circuits 32, 33, 34 to the drive circuit 3X (3Y, 3Z) and the current flowing through the IGBT 14 (15, 16), respectively. To do. In other words, the drive circuit 3X (3Y, 3Z) does not detect the temperature of the IGBT 11 (12, 13), unlike the drive circuit 3U (3V, 3W). The drive circuit 3X (3Y, 3Z) generates a protection signal for low voltage protection and overcurrent protection, generates an alarm signal having a pulse width corresponding to the type of abnormality, and outputs the generated alarm signal.
  • the temperature detection diodes 18 attached to the IGBTs 14, 15, and 16 are connected to the temperature signal output circuit 6 instead of the drive circuits 3X, 3Y, and 3Z, respectively. Accordingly, each of these temperature detecting diodes 18 provides information indicating the temperature of each of the IGBTs 14, 15, 16 in parallel to the temperature signal output circuit 6.
  • the temperature signal output circuit 6 includes, for example, three temperature detection circuits 61x, 61y, and 61z provided in parallel as shown in a schematic configuration in FIG. These temperature detection circuits 61x, 61y, 61z detect the temperatures of the IGBTs 14, 15, 16 via the temperature detection diodes 18 provided in association with the IGBTs 14, 15, 16 as described above. .
  • each of the temperature detection circuits 61x includes a constant current source 6a that drives the temperature detection diode 18 at a constant current, and the temperature detection diode 18 that changes according to the temperature of the IGBT 14 (15, 16).
  • a constant current source 6a that drives the temperature detection diode 18 at a constant current
  • the temperature detection diode 18 that changes according to the temperature of the IGBT 14 (15, 16).
  • an input buffer 6b for detecting the terminal voltage OHX (OHY, OHZ)
  • an inverting amplifier 6c for inverting the output of the input buffer 6b.
  • the terminal voltage OHX (OHY, OHZ) of the temperature detection diode 18 decreases in inverse proportion to the temperature increase of the IGBT 14 (15, 16). Therefore, the inverting amplifier 6c serves to increase the output voltage of the temperature detection circuit 61x (61y, 61z) in proportion to the temperature rise of the IGBT 14 (15, 16) by inverting the output of the input buffer 6b
  • the temperature signal output circuit 6 includes a maximum value selector 62 that selects a maximum value (maximum temperature) among voltages proportional to temperatures output from the three temperature detection circuits 61x, 61y, and 61z. .
  • the voltage indicating the maximum temperature selected via the maximum value selector 62 is clamped via a limiter 63 that limits the upper limit value and the lower limit value, and then applied to the comparator 64.
  • the comparator 64 plays a role as a PWM converter that generates a PWM signal correlated with temperature by comparing the voltage proportional to the temperature described above with a triangular wave voltage signal of a predetermined period output from the oscillator 65.
  • the limiter 63 uses the output voltage of the maximum value selector 62 in a temperature range in which the temperature of the IGBT 14 (15, 16) in the on / off operation state needs to be monitored, for example, a temperature of 60 to 250 ° C. Limit the voltage to the temperature of the region. Note that the temperature range to be monitored includes an abnormal overheat temperature range.
  • the duty change width of the PWM signal generated by the comparator 64 is associated with the temperature range to be monitored. This association ensures the accuracy of temperature detection and the detection range (dynamic range).
  • the comparator 64 compares such a triangular wave voltage signal with the voltage indicating the temperature and inverts the output thereof, so that a PWM with a fixed period in which the pulse width (duty) changes in relation to the temperature. Generate a signal.
  • the PWM signal correlated with the temperature generated by the comparator 64 in this way is supplied to the first input terminal A of the multiplexer 66 which is a two-input selection type output control circuit described later, and passes through the multiplexer 66.
  • the output is applied to the gate of the output transistor (MOS-FET) 67.
  • the PWM signal is externally output via the output terminal AER as a change in drain voltage accompanying the on / off operation of the output transistor (MOS-FET) 67.
  • the temperature signal output circuit 6 receives an alarm signal output from each of the drive circuits 3X, 3Y, and 3Z via a terminal AE.
  • the alarm signal input through the terminal AE is output through the first rising delay circuit 71 and the falling delay circuit 72 in order.
  • the rising timing and falling timing of this alarm signal are delayed by [TAEup] and [TAEdown], respectively.
  • the delayed alarm signal is applied to the first input terminal B of the multiplexer (output control circuit) 66 and is output via the multiplexer 66 instead of the PWM signal described above.
  • the alarm signal input from the terminal AE is supplied to the first rising delay circuit 71 and simultaneously input to the second rising delay circuit 73.
  • the alarm signal is given to the logic circuit 74 with its rising timing delayed by [TAEmask] as will be described later.
  • the logic circuit 74 generates a binary switching signal for controlling the selection operation of the multiplexer 66 according to the alarm signal delayed by the second rise delay circuit 73 and the output of the maximum value selector 62. Take a role.
  • the logic circuit 74 forcibly sets the switching signal to the L level when the signal given from the second rising delay circuit 73 is at the L level.
  • the logic circuit 74 is configured such that when the signal supplied from the second rising delay circuit 73 is at H level and the output voltage of the maximum value selector 62 is equal to or higher than a set voltage indicating a preset temperature. Set the switching signal to H level.
  • the logic circuit 74 controls the selection operation of the multiplexer 66 by applying the switching signal generated as described above to the control terminal S of the multiplexer 66. At the same time, the logic circuit 74 controls the oscillation operation of the oscillator 65 by supplying the switching signal to the oscillator 65.
  • the multiplexer 66 is controlled in operation by the switching signal applied to the control terminal S, and selects the second input terminal B when an L level switching signal is given. As a result, the multiplexer 66 selectively outputs the alarm signal whose timing is adjusted through the first rising delay circuit 71 and the falling delay circuit 72 in order.
  • the multiplexer 66 selects the first input terminal A when the H level switching signal is given, and selectively outputs the PWM signal generated by the comparator 64.
  • the multiplexer 66 alternatively selects signals to be applied to the first and second input terminals A and B in response to the switching signal. Through the series of operations, the multiplexer 66 selectively switches between the alarm signal and the PWM signal for output.
  • the oscillator 65 is configured to oscillate only when the switching signal is at the H level.
  • the H-level switching signal is output only when the output voltage (temperature) of the maximum value selector 62 indicates that it is equal to or higher than a preset temperature as described above.
  • the preset temperature is the minimum temperature at which the temperature of the IGBT 14 (15, 16) needs to be monitored, for example, 60 ° C. Therefore, the oscillator 65 oscillates only when the temperature of the IGBT 14 (15, 16) rises to the temperature range to be monitored and no alarm signal is input, and generates the triangular wave voltage signal. Used to generate PWM signals.
  • FIG. 3 shows a configuration example of the rising delay circuit 71 (73).
  • the rising delay circuit 71 (73) is composed of a pair of p-channel FETs 81 and 82 whose gates are connected to each other, and is driven by a constant current source 83 to generate a current proportional to a constant current flowing through the p-channel FET 81.
  • a current mirror circuit that outputs from the p-channel FET 82 is provided.
  • the rising delay circuit 71 (73) is composed of a p-channel FET 84 and an n-channel FET 85 having sources connected to each other and gates connected to each other, and a totem pole to which a constant current is supplied via the current mirror circuit.
  • Type switch circuit The p-channel FET 84 and the n-channel FET 85 constituting the switch circuit are turned on in a reciprocal manner in accordance with an input signal applied to the gate via the knot circuit 86.
  • the p-channel FET 84 when the input signal is at the H level and an L level signal is applied to the gates of the p-channel FET 84 and the n-channel FET 85 via the knot circuit 86, the p-channel FET 84 is turned on. The n-channel FET 85 is turned off. Conversely, when the input signal is at the L level and an H level signal is applied to the gates of the p-channel FET 84 and the n-channel FET 85 via the knot circuit 86, the p-channel FET 84 is turned off and the n-channel FET 84 is turned off. The channel FET 85 is turned on.
  • a capacitor 87 is connected to a connection point of the p-channel FET 84 and the n-channel FET 85 which are connected to the totem pole and which are turned on contrary to each other as described above.
  • the p-channel FET 84 plays a role of charging the capacitor 87 with a constant current by the ON operation when the input signal is at the H level.
  • the terminal voltage (charge voltage Vchg) of the capacitor 87 increases at a constant rate by charging the capacitor 87 accompanying the ON operation of the p-channel FET 84.
  • the n-channel FET 85 plays a role of instantaneously discharging the charge of the capacitor 87 by the ON operation when the input signal is at L level.
  • the terminal voltage (charge voltage Vchg) of the capacitor 87 instantaneously becomes zero (0) due to the discharge of the capacitor 87 accompanying the ON operation of the n-channel FET 85.
  • the charging voltage Vchg of the capacitor 87 exhibiting such a change is compared with a reference voltage Vref in a comparator 88.
  • the comparator 88 outputs a signal that becomes H level when the charging voltage Vchg exceeds the reference voltage Vref, and becomes L level when the charging voltage Vchg does not satisfy the reference voltage Vref.
  • the output of the comparator 88 becomes the output signal of the rise delay circuit 71 (73).
  • the rise delay circuit 71 (73) configured in this way, the charging voltage Vchg of the capacitor 87 is obtained from the timing when the input voltage is inverted to the H level as shown in FIG.
  • the output voltage is inverted to H level after a delay of TAEup until the reference voltage Vref is reached.
  • the output voltage of the rising delay circuit 71 (73) is instantaneously inverted to the L level at the timing when the input voltage is inverted to the L level. Therefore, by passing through the rise delay circuit 71 (73), the input signal is outputted with only the rise timing delayed. Specifically, in the case of the alarm signal, only the trailing edge timing of the alarm signal that is inverted to H level is delayed and output.
  • the knot circuit 86 may be omitted, and the input signal may be directly applied to the gates of the p-channel FET 84 and the n-channel FET 85.
  • the capacitor 87 is charged with a constant current when the input voltage is at the L level, and the charged charge is instantaneously discharged when the input voltage is at the H level. Therefore, the output voltage of the comparator 88 is instantaneously inverted to the H level at the timing when the input voltage is inverted to the H level, and is delayed by the time TAEdown after the input voltage is inverted to the L level. Invert to level. Therefore, by omitting the knot circuit 86, the above-described falling delay circuit 72 can be similarly configured.
  • the alarm signal input through the terminal AE is generated by the pulse width Tvd (Toc, Toh) corresponding to the protection factor as described with reference to FIG. )
  • Tvd Toc, Toh
  • the L level pulse signal is composed of a pulse signal train as shown in FIG. 5A, which continues at a predetermined time interval Ta.
  • This alarm signal is output via the first rising delay circuit 71 and the falling delay circuit 72 in order.
  • the signal applied to the second input terminal B of the multiplexer 66 through the rising delay circuit 71 and the falling delay circuit 72 in order is a falling timing that is the leading edge (leading edge) of the alarm signal. Is delayed by time TAEdown.
  • the signal given to the logic circuit 74 is obtained by outputting the alarm signal only through the second rising delay circuit 73. Therefore, the signal output via the second rising delay circuit 73 is inverted to the L level at the leading edge timing of the alarm signal as shown in FIG. 5C, and the trailing edge of the alarm signal is timed. The signal is inverted to H level at a timing delayed by TAEmask.
  • the delay time TAEmask of the second rising delay circuit 73 is set to be longer than the above-described alarm signal pulse interval Ta (TAEmask> Ta), whereby the pulse of the pulse signal sequence forming the alarm signal is set. It is possible to mask the H level period indicating the signal interval Ta. That is, the second rising delay circuit 73 charges the capacitor 87 via the p-channel FET 84 at the timing when the alarm signal is inverted to the H level. However, the delay time TAEmask of the second rising delay circuit 73 is set longer than the pulse interval Ta of the alarm signal (TAEmask> Ta). Accordingly, the alarm signal is inverted to L level before the charging voltage Vchg of the capacitor 87 reaches the reference voltage Vref by charging.
  • the n-channel FET 85 is turned on and the charge of the capacitor 87 is instantaneously discharged, so that the charge voltage Vchg of the capacitor 87 does not reach the reference voltage Vref.
  • the output is kept at the L level. Therefore, even when the alarm signal is applied as a pulse signal train as described above, the signal applied to the logic circuit 74 is maintained at the L level over the period in which the alarm signal is input.
  • the first rising delay circuit 71 and the falling delay circuit 72 are sequentially set as described above over the period in which the alarm signal is input.
  • the alarm signal subjected to delay control is provided to the multiplexer 66 and output through the multiplexer 66. Then, the input of the alarm signal is interrupted, and the signal given from the second rising delay circuit 73 to the logic circuit 74 is inverted to H level, so that the PWM signal generated under the above-described condition is converted into the multiplexer. 66.
  • the alarm signal and the PWM signal are alternatively selected via the multiplexer 66 and are externally output via the output transistor 38.
  • the multiplexer 66 preferentially outputs the alarm signal instead of the PWM signal when the alarm signal is input. Therefore, the temperature of the IGBTs 14, 15, and 16 can be constantly monitored from the PWM signal by detecting a signal output to the outside via the output transistor 38. Further, when an abnormality occurs, the type of abnormality can be determined from the alarm signal.
  • the alarm signal is one of the drive circuits 3X, 3Y and 3Z. Is generated when an abnormal drop of the control voltage Vcc or an overcurrent of the IGBT 14 (15, 16) is detected. Therefore, when the power converter is operating normally, the alarm signal is not issued. Therefore, the temperature signal output circuit 6 steadily generates a PWM signal corresponding to the temperature of the IGBT 14 (15, 16) and outputs it externally via the multiplexer 66.
  • the alarm signal is given to the temperature signal output circuit 6. Then, the temperature signal output circuit 6 selectively outputs the alarm signal instead of the PWM signal in accordance with the input of the alarm signal as described above. At this time, when the delay control for the alarm signal is not executed, the switching control of the multiplexer 66 is executed at the input timing of the alarm signal. As a result, for example, as shown in FIG. 6, the PWM signal may remain L level, and the alarm signal may be output continuously.
  • the L level of the previous PWM signal and the L level of the alarm signal are linked, and apparently the initial pulse width of the alarm signal is greater than the original pulse width Tvd. Also spread. As a result, a large error Terror occurs in the measurement of the pulse width of the alarm signal, and the determination of the alarm signal type based on the pulse width occurs.
  • the information related to the temperature of the IGBTs 14, 15, and 16 which are semiconductor elements is steady as PWM signals correlated with the maximum temperature by using the external output terminal of the alarm signal.
  • an alarm signal indicating the type of abnormality can be output instead of the PWM signal. Therefore, the output terminal for the PWM signal and the output terminal for the alarm signal can be shared by one external output terminal, and therefore it is not necessary to increase the number of output terminals as an IPM.
  • the temperature information is a PWM signal correlated with temperature, and the period of the PWM signal is made shorter than the pulse width of the alarm signal, thereby facilitating the discrimination between the PWM signal and the alarm signal. Is possible. Therefore, even if one external output terminal is shared and the PWM signal and the alarm signal are externally output, the identification is easy. Therefore, there is no problem in the external output of these signals. Further, since the temperature abnormality of the semiconductor element can be monitored from the PWM signal, there is no problem also in this respect. Therefore, its practical advantage is great.
  • each of the drive circuits 3U to 3Z described above is provided with the temperature detection diode 18 according to the temperature detected via the temperature detection diode 18. It is also possible to incorporate a circuit function for generating a PWM signal and a function for selecting and outputting a PWM signal and an alarm signal.
  • the multiplexer 66 is switched and controlled in accordance with whether or not the alarm signal is input, but the multiplexer 66 can be switched and controlled using the protection signal Sp described above, for example.
  • the present invention can be variously modified and implemented without departing from the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 電力変換装置を構成する半導体素子の保護動作に必要な情報を検出し、保護要因に応じたパルス幅のアラーム信号を生成して外部出力するアラーム信号生成回路と、前記半導体素子の温度を検出して前記アラーム信号のパルス幅とは異なる周期の前記温度に相関したPWM信号を生成する温度信号生成回路と、常時は前記PWM信号を選択し、前記アラーム信号の発生時には前記PWM信号に代えて前記アラーム信号を選択して外部出力する出力制御回路とを備える。

Description

電力変換装置の制御装置
 本発明は、電力変換装置を構成する半導体素子を駆動すると共に、半導体素子の保護機能を備えた電力変換装置の制御装置に関する。
 近時、インテリジェント・パワーモジュール(IPM)が注目されている。このインテリジェント・パワーモジュールは、例えばIGBT等のパワートランジスタからなる複数の半導体素子とその駆動回路と共に、前記各半導体素子の過電流、制御電源の電圧低下、過熱等の異常に対する保護回路を1つの電子部品としてモジュール化したものである。また、例えば特許文献1には、上述した異常をそれぞれ検出する複数の保護回路に加えて、各保護回路にて検出した異常の種別に応じて、予め設定したパルス幅のアラーム信号を外部出力する通知回路を前記インテリジェント・パワーモジュールに組み込むことも提唱されている。
 図8はこの種の電力変換装置の制御装置の概略構成を示すブロック図である。この電力変換装置の制御装置1は、直流電力を交流電力に変換するインバータ2を備える。インバータ2を構成する複数の半導体素子、この例では6個のIGBT(Insulated Gate Bipolar Transistor)11~16は、駆動回路3U~3Zによってそれぞれ個別に駆動される。尚、図中21~26は、前記IGBT11~16の各エミッタ・コレクタ間にそれぞれ逆並列に接続されたフリーホイリング・ダイオードをそれぞれ示している。
 インバータ2を構成する6個のIGBT11~16は、2個ずつ直列に接続されて3組のハーフブリッジ回路を構成する。これらのハーフブリッジ回路は図示しない直流電源に接続された正極端子Pと負極端子Nとの間にそれぞれ介装される。並列に設けられた前記3組のハーフブリッジ回路は、前記正極端子Pと前記負極端子Nとの間に供給される直流電力を三相交流電力に変換する三相フルブリッジ回路を構成する。このインバータ2により変換された三相交流電力は、電動モータ等の交流負荷4に供給される。
 より詳しくは前記インバータ2を構成する6個のIGBT11~16の内、正極端子P側に接続されたIGBT11,12,13は、三相交流のU相、V相およびW相の正の電力をそれぞれ生成する上アームを構成する。また負極端子N側に接続されたIGBT14,15,16は、三相交流のX相、Y相およびZ相の負の電力をそれぞれ生成する下アームを構成している。これらのIGBT11~16は、前記駆動回路3U~3Zにより互いに位相を異ならせてオン・オフ駆動されることで前記直流電力をスイッチングする。そして前記IGBT11~16は、該IGBT11~16間の直列接続点から出力端子U,V,Wを介して三相交流電力を出力する。
 また前記駆動回路3U~3Zのそれぞれは、図9に駆動回路3Xの概略構成を代表して示すように、図示しないインバータ制御部から与えられる制御信号Smを入力して前記IGBT14のゲートをオン・オフ制御するゲート制御回路31を備える。前記制御信号Smは、前記インバータ制御部において前述したU相~Z相のそれぞれに応じた位相制御の下でパルス幅変調(PWM)したパルス信号からなる。
 前記ゲート制御回路31には、後述する保護信号生成回路35から保護信号(駆動停止信号)Spが入力されている。このゲート制御回路31は、前記保護信号Spがオフ(Hレベル)のときに、前記IGBT14のゲートに前記制御信号Smを印加して該IGBT14をオン・オフ駆動する。また前記ゲート制御回路31は前記保護信号Spがオン(Lレベル)のとき、前記制御信号Smの通過を阻止する。この制御信号Smの通過阻止により前記IGBT14の駆動が禁止され、これによってIGBT14が異常から保護される。
 また前記駆動回路3Xは、前記IGBT14の保護機能を実現する複数の保護回路として、制御電圧検出回路32、電流検出回路33、および温度検出回路34を備える。制御電圧検出回路32は、外部電源から供給される当該駆動回路3Uの制御電圧Vccと、予め設定した第1の閾値電圧Vth1とを比較する第1の比較器CP1を備える。この第1の比較器CP1からなる制御電圧検出回路32は、前記制御電圧Vccが第1の閾値電圧Vth1以下に低下したとき、これを制御電圧Vccの異常低下として検出してHレベルの電圧異常検出信号Svdを出力する。
 また前記電流検出回路33は、前記IGBT14の電流検出エミッタから検出される当該IGBT14に流れる電流Iを示す電圧Viと、予め設定した第2の閾値電圧Vth2とを比較する第2の比較器CP2を備える。この第2の比較器CP2からなる電流検出回路33は、前記電圧Viが第2の閾値電圧Vth2を超えるとき、これを過電流として検出してHレベルの過電流異常検出信号Socを出力する。
 更に前記温度検出回路34は、前記IGBT14と同じ半導体チップに組み込まれた温度センサとしての温度検出用ダイオード18にて検出された前記IGBT14の温度T、具体的には前記IGBT14が形成された半導体チップの温度Tを示す電圧Vtと、予め設定した第3の閾値電圧Vth3とを比較する第3の比較器CP3を備える。この第3の比較器CP3からなる温度検出回路34は、前記電圧Vtが第3の閾値電圧Vth3を下回るとき、これを過熱として検出してHレベルの過熱異常検出信号Sohを出力する。
 保護信号生成回路35は、前記各検出回路32,33,34のいずれかが前記異常検出信号Svd,Soc,Sohを出力したとき、オア回路36を介して付勢されて一定時間に亘ってLレベルの前記保護信号Spを生成して前記ゲート制御回路31に与える。またこの保護信号Spは、端子AEを介して他の駆動回路3Y,3Zにも与えられる。これによって当該保護信号Spにより前記IGBT14のみならず、残りのIGBT15,16の駆動も禁止される。
 一方、前記各検出回路32,33,34がそれぞれ出力する前記異常検出信号Svd,Soc,Sohは、アラーム信号生成回路37に与えられる。このアラーム信号生成回路37は、前記検出回路32,33,34から前記異常検出信号Svd,Soc,Sohが与えられたときにアラーム信号を生成する。このアラーム信号は、例えば図10(a)~(c)に示すように、予め前記各検出回路32,33,34にそれぞれ対応付けられた、所定のパルス間隔Taで連なる互いに異なるパルス幅Tvd,Toc,Tohのパルス信号列からなる。ちなみに前記アラーム信号をなすパルス信号列の上記各パルス幅Tvd,Toc,Tohは、例えばTvd(=T),Toc(=2T),Toh(=4T)として設定される。そして前記パルス信号列からなる前記アラーム信号は、出力トランジスタ38を介して外部出力され、前述した制御信号Smの生成に供される。この制御信号Smは前述したインバータ制御部に与えられて前記駆動回路3Xの駆動に用いられる。
 ところで近年、エネルギー・マネジメントの観点から、前記インテリジェント・パワーモジュール(IPM)内における半導体素子である前記各IGBT11~16の温度を常時監視したいという要求が高まっている。しかし複数の半導体素子の温度を個々に検出して外部出力するには、前記IPMにおける出力端子数が増加する。更には前記インバータ制御部での処理負担が増えるという問題が発生する。このような不具合を解消する手法として、例えば特許文献2には、前記複数の半導体素子の温度をそれぞれ検出し、これらの温度情報の中で最も高い温度情報を選択して外部出力することが提唱されている。
特開2012-143125号公報 特開2000-134074号公報
 しかしながら特許文献2に紹介される手法によれば、複数の温度センサにて検出された温度情報をアナログ絶縁アンプを介して収集することが必要である。しかも温度情報を示すアナログ電圧を外部出力するので、その処理回路の構成が複雑化し、コストアップの要因となることが否めない。更には前記アラーム信号を外部出力する出力端子、具体的にはデジタルポートに加えて、前記温度情報を外部出力する為の専用の出力端子、具体的にはアナログポートを設ける必要がある。これ故、半導体モジュール(IPM)の出力端子数が増加することが否めない。
 本発明はこのような事情を考慮してなされたもので、その目的は、アラーム信号を外部出力する出力端子を利用して前記半導体素子の温度情報を、前記アラーム信号の出力を妨げることなく、またアラーム信号と明確に識別可能に外部出力することのできる簡易な構成の電力変換装置の制御装置を提供することにある。
 上述した目的を達成するべく本発明に係る電力変換装置の制御装置は、電力変換装置を構成する半導体素子を駆動する駆動回路と、前記半導体素子の保護動作に必要な情報を検出して保護信号を生成し、この保護信号に従って前記駆動回路による前記半導体素子の駆動を停止させる複数の保護回路と、これらの保護回路の出力に応じて保護要因に応じたパルス幅のアラーム信号を生成して外部出力するアラーム信号生成回路とを備え、特に
 前記半導体素子の温度を検出して前記アラーム信号のパルス幅とは異なる周期の前記温度に相関したPWM信号を生成する温度信号生成回路と、
 常時は前記PWM信号を選択し、前記アラーム信号の発生時には前記PWM信号に代えて前記アラーム信号を選択して外部出力する出力制御回路と
を備えたことを特徴としている。
 また本発明に係る電力変換装置の制御装置は、電力変換装置を構成する複数の半導体素子をそれぞれ駆動する複数の駆動回路と、前記複数の半導体素子にそれぞれ対応して設けられて前記各半導体素子の保護動作に必要な情報を検出して保護信号を生成し、この保護信号に従って前記駆動回路による前記半導体素子の駆動を停止させる複数の保護回路と、前記各半導体素子にそれぞれ対応して設けられて、対応する前記複数の保護回路の出力に応じて保護要因に応じたパルス幅のアラーム信号をそれぞれ生成して外部出力するアラーム信号生成回路とを備え、特に
 前記各半導体素子の温度をそれぞれ検出して前記アラーム信号のパルス幅とは異なる周期の前記温度に相関したPWM信号を生成する温度信号生成回路と、
 常時は前記PWM信号を選択し、前記アラーム信号の発生時には前記PWM信号に代えて前記アラーム信号を選択して外部出力する出力制御回路と
を備えたことを特徴としている。
 具体的には前記複数の保護回路は、当該制御装置に加えられる制御電圧を検出する電圧検出回路、前記半導体素子の温度を検出する温度検出回路および前記半導体素子に流れる電流を検出する電流検出回路を含み、低電圧保護、過熱保護、および過電流保護の保護信号をそれぞれ生成するものからなる。
 好ましくは前記温度信号生成回路は、前記半導体素子の温度が設定温度に満たないときにはPWM信号を生成せず、前記設定温度以上のときにだけ前記検出温度に応じたPWM信号を生成するように構成される。また前記温度信号生成回路を、前記半導体素子の温度に応じたPWM信号を、そのデューティの上限および下限の少なくとも一方を制限して生成するように構成することが望ましい。
 また前記出力制御回路は、好ましくは前記アラーム生成回路がアラーム信号を生成している期間に亘って該アラーム信号を選択して出力し、前記アラーム信号の生成が停止したとき、前記アラーム信号に代えて前記PWM信号を選択して出力するマルチプレクサからなる。特に前記マルチプレクサを、前記アラーム信号のトレーリングエッジを遅延して生成された切替え信号に従って動作制御されて前記PWM信号を選択出力するように構成することが好ましい。
 更には、例えば前記複数の駆動回路を、電力変換装置を構成する複数の半導体素子のそれぞれに対応する前記複数の保護回路および前記アラーム信号生成回路と共にそれぞれ集積回路化し、また前記温度信号生成回路を、前記出力回路と共に前記複数の駆動回路とは別個に集積回路化することが好ましい。この場合、前記温度信号生成回路を、前記複数の検出温度の中の最高温度を選択し、当該最高温度に相関するPWM信号を生成するように構成することが望ましい。
 上記構成の電力変換装置の制御装置によれば、半導体素子の検出温度に応じたPWM信号と、例えば異常要因に応じたパルス幅のアラーム信号とを選択し、出力端子を共用して外部出力する。そして前記アラーム信号が出力されない正常動作時には前記PWM信号を定常的に出力することができる。従って前記PWM信号を出力する為の出力端子を新たに設ける必要がない。また前記PWM信号の周期を、前記アラーム信号のパルス間隔と異ならせているので、好ましくは前記アラーム信号の最小パルス間隔よりも短く設定しておくことで、前記PWM信号と前記アラーム信号との識別を容易化することもできる。
 特に本発明では前記PWM信号よりも前記アラーム信号の選択出力を優先させ、該アラーム信号のトレーリングエッジを遅延して生成した切替え信号に従って、前記アラーム信号の選択出力に代えて前記PWM信号を選択出力する。従って前記アラーム信号自体の出力が妨げられることがなく、該アラーム信号の誤識別を未然に防ぐことができる。またアラーム信号の出力機能を保ったまま、該アラーム信号の出力端子を共用して半導体素子の温度に相関したPWM信号を出力することができる。従ってその実用的利点が多大である。
本発明の一実施形態に係る電力変換装置の制御装置の概略構成図。 図1に示す制御装置における温度信号出力回路の概略構成図。 立上り遅れ回路の構成例を示す図。 図3に示す立上り遅れ回路の動作を示す信号波形図。 図2に示す温度検出用回路におけるマルチプレクサの制御動作を示す信号波形図。 PWM信号とアラーム信号とを単純に切替えた際の問題を説明する為の信号波形図。 アラーム信号を遅延した信号にてPWM信号とアラーム信号とを切替えた場合の信号波形図。 一般的な電力変換装置の制御装置の概略構成図。 図8に示す制御装置における駆動回路の概略構成図。 保護要因に応じたパルス幅のアラーム信号の例を示す図。
 以下、図面を参照して本発明の一実施形態に係る電力変換装置の制御装置について説明する。
 図1は実施形態に係る電力変換装置の概略構成を示すブロック図である。この電力変換装置の制御装置1は、基本的には図8に示した制御装置1と同様に、直流電力を交流電力に変換するインバータ2を備えると共に、インバータ2を構成する6個の半導体素子、例えばIGBT11~16を個別に駆動する6個の駆動回路3U~3Zを備える。これらの駆動回路3U~3Zは、基本的には前述した図9に示すものと同様に構成されるものであり、従ってその詳細な説明については省略する。更にこの制御装置1は、前記駆動回路3U~3Zとは別に温度信号出力回路6を備える。そしてこの温度信号出力回路6にて、前記インバータ2における前述した3組のハーフブリッジ回路の下アームを構成する前記IGBT14,15,16の温度を検出し、検出した温度に相関するPWM信号を生成するようにしたことを特徴としている。
 即ち、この制御装置1は、前記インバータ2における前述した3組のハーフブリッジ回路の上アームを構成する前記IGBT11,12,13をそれぞれ駆動する3個の駆動回路3U,3V,3Wを備える。これらの駆動回路3U,3V,3Wは、図9に示したように前記各検出回路32,33,34により当該駆動回路3U(3V,3W)に加えられる制御電圧、前記IGBT11(12,13)の温度、および前記IGBT11(12,13)に流れる電流をそれぞれ検出する。そして前記各駆動回路3U,3V,3Wは、上記検出情報に従って低電圧保護、過熱保護、および過電流保護の保護信号を生成し、異常の種別に応じたパルス幅のアラーム信号を生成して外部出力する。
 また前記制御装置1は、前記3組のハーフブリッジ回路の下アームを構成する前記IGBT14,15,16をそれぞれ駆動する3個の駆動回路3X,3Y,3Zを備える。これらの駆動回路3X,3Y,3Zは、前記各IGBT14,15,16にそれぞれ付随して設けられた前記温度検出用ダイオード18に接続することなく用いられる。これらの駆動回路3X,3Y,3Zは、前記各検出回路32,33,34から当該駆動回路3X(3Y,3Z)に加えられる制御電圧、および前記IGBT14(15,16)に流れる電流をそれぞれ検出する。換言すれば前記駆動回路3X(3Y,3Z)は、前記駆動回路3U(3V,3W)と異なってIGBT11(12,13)の温度を検出しない。そして前記駆動回路3X(3Y,3Z)は、低電圧保護、および過電流保護の保護信号を生成し、異常の種別に応じたパルス幅のアラーム信号を生成して外部出力する。
 前記各IGBT14,15,16にそれぞれ付随して設けられた前記温度検出用ダイオード18は、前記駆動回路3X,3Y,3Zに代えて前記温度信号出力回路6にそれぞれ接続されている。従ってこれらの各温度検出用ダイオード18は、前記各IGBT14,15,16の温度をそれぞれ示す情報を前記温度信号出力回路6に並列に与える。
 さて前記温度信号出力回路6は、例えば図2にその概略構成を示すように並列に設けられた3個の温度検出回路61x,61y,61zを備える。これらの温度検出回路61x,61y,61zは、前述したように前記IGBT14,15,16に付随して設けられた温度検出用ダイオード18を介して前記各IGBT14,15,16の温度をそれぞれ検出する。
 ちなみに前記各温度検出回路61x(61y,61z)は、前記温度検出用ダイオード18を定電流駆動する定電流源6a、前記IGBT14(15,16)の温度に応じて変化する前記温度検出用ダイオード18の端子電圧OHX(OHY,OHZ)を検出する入力バッファ6b、およびこの入力バッファ6bの出力を反転する反転増幅器6cをそれぞれ備える。ちなみに前記温度検出用ダイオード18の端子電圧OHX(OHY,OHZ)は、前記IGBT14(15,16)の温度上昇に反比例して低下する。従って前記反転増幅器6cは、前記入力バッファ6bの出力を反転することで前記温度検出回路61x(61y,61z)の出力電圧を前記IGBT14(15,16)の温度上昇に比例させて増加させる役割を担う。
 またこの温度信号出力回路6は、前記3個の温度検出回路61x,61y,61zからそれぞれ出力される温度に比例した電圧の中の最大値(最高温度)を選択する最大値選択器62を備える。そしてこの最大値選択器62を介して選択された最高温度を示す電圧は、その上限値および下限値を制限するリミッタ63を介してクランプ処理された後、比較器64に与えられる。この比較器64は、上述した温度に比例した電圧と、発振器65が出力する所定周期の三角波電圧信号と比較処理することで温度に相関するPWM信号を生成するPWM変換器としての役割を担う。
 尚、前記リミッタ63は、前記最大値選択器62の出力電圧を、オン・オフ動作状態にある前記IGBT14(15,16)の温度を監視する必要のある温度域、例えば60~250℃の温度域の温度に相当する電圧に制限する。尚、上記監視対象とする温度域は異常過熱温度域を含む。このリミッタ63の出力電圧機能により、前記比較器64が生成するPWM信号のデューティの変化幅が前記監視対象とする温度域に対応付けられる。この対応付けにより温度検出の精度と検出範囲(ダイナミックレンジ)とが確保される。
 さて前記発振器65が出力し、前記比較器64によるPWM信号の生成に供される前記三角波電圧信号の周期は、前述したアラーム信号の異常の種別に応じたパルス幅Tvd,Toc,Tohに比較して、特にその最小のパルス幅Tvd(=T)に比較して十分に短く設定されている。そして前記比較器64は、このような三角波電圧信号と前記温度を示す電圧とを比較してその出力を反転することで、前記温度に相関してパルス幅(デューティ)が変化する一定周期のPWM信号を生成する。
 このようにして比較器64により生成された温度に相関するPWM信号は、後述する2入力選択型の出力制御回路であるマルチプレクサ66の第1の入力端子Aに与えられ、該マルチプレクサ66を介して出力されて出力トランジスタ(MOS-FET)67のゲートに印加される。そして前記PWM信号は、前記出力トランジスタ(MOS-FET)67のオン・オフ動作に伴うドレイン電圧の変化として、出力端子AERを介して外部出力される。
 一方、前記温度信号出力回路6には、前記駆動回路3X,3Y,3Zのそれぞれから出力されるアラーム信号が端子AEを介して入力される。上記端子AEを介して入力されたアラーム信号は、第1の立上り遅れ回路71および立下り遅れ回路72を順に介して出力される。するとこのアラーム信号は、後述するようにその立上りタイミングおよび立下りタイミングがそれぞれ[TAEup][TAEdown]だけ遅れる。遅れたアラーム信号は、前記マルチプレクサ(出力制御回路)66の第1の入力端子Bに与えられ、該マルチプレクサ66を介して前述したPWM信号に代えて出力される。
 また前記端子AEから入力されたアラーム信号は、前記第1の立上り遅れ回路71に与えられると同時に第2の立上り遅れ回路73に入力され。そして前記アラーム信号は、後述するようにその立上りタイミングが[TAEmask]だけ遅れ制御されてロジック回路74に与えられる。このロジック回路74は、前記第2の立上り遅れ回路73により遅れ制御されたアラーム信号と、前記最大値選択器62の出力とに従って前記マルチプレクサ66の選択動作を制御する2値の切替え信号を生成する役割を担う。
 具体的には前記ロジック回路74は、前記第2の立上り遅れ回路73から与えられる信号がLレベルであるとき、前記切替え信号を強制的にLレベルに設定する。また前記ロジック回路74は、前記第2の立上り遅れ回路73から与えられる信号がHレベルであり、且つ前記最大値選択器62の出力電圧が予め設定した温度を示す設定電圧以上であるとき、前記切替え信号をHレベルに設定する。そして前記ロジック回路74は、上述した如く生成した切替え信号を前記マルチプレクサ66の制御端子Sに印加することで該マルチプレクサ66の選択動作を制御する。同時に前記ロジック回路74は、前記切替え信号を前記発振器65に与えることで該発振器65の発振動作を制御する。
 前記マルチプレクサ66は、その制御端子Sに加えられる前記切替え信号により動作制御され、Lレベルの切替え信号が与えられたときには前記第2の入力端子Bを選択する。これ結果、前記マルチプレクサ66は、前記第1の立上り遅れ回路71および立下り遅れ回路72を順に介してタイミング調整されたアラーム信号を選択出力する。また前記マルチプレクサ66は、Hレベルの切替え信号が与えられたときには前記第1の入力端子Aを選択し、前記比較器64にて生成されたPWM信号を選択出力する。この結果、マルチプレクサ66は、前記切替え信号に応じて前記第1および第2の入力端子A,Bにそれぞれ加えられる信号を択一的に選択する。これらの一連の動作により前記マルチプレクサ66は、前記アラーム信号とPWM信号とを選択的に切り替えて出力する。
 また前記発振器65は、前記切替え信号がHレベルのときにだけ発振動作するように構成されている。ちなみにHレベルの切替え信号は、前述したように前記最大値選択器62の出力電圧(温度)が予め設定した温度以上であることを示すときにだけ出力される。尚、上記予め設定した温度とは、前記IGBT14(15,16)の温度を監視する必要のある最低温度、例えば60℃である。従って前記発振器65は、前記IGBT14(15,16)の温度が監視対象とする温度範囲まで上昇し、且つ前記アラーム信号の入力がないときにだけ発振動作して前記三角波電圧信号を生成し、前記PWM信号の生成に供する。
 ここで前記第1および第2の立上り遅れ回路71,73と前記立下り遅れ回路72について説明する。図3は前記立上り遅れ回路71(73)の構成例を示している。この立上り遅れ回路71(73)は、ゲートを相互に接続した一対のpチャネルFET81,82により構成され、定電流源83により駆動されて前記pチャネルFET81に流れる一定の電流に比例した電流を前記pチャネルFET82から出力するカレントミラー回路を備える。更に前記立上り遅れ回路71(73)は、ソースを相互に接続すると共にゲートを相互に接続したpチャネルFET84とnチャネルFET85により構成され、前記カレントミラー回路を介して一定電流が供給されるトーテムポール型のスイッチ回路を備える。このスイッチ回路を構成する上記pチャネルFET84およびnチャネルFET85は、ノット回路86を介してゲートに印加される入力信号に応じて相反してオン動作する。
 具体的には入力信号がHレベルで、前記ノット回路86を介して前記pチャネルFET84および前記nチャネルFET85の各ゲートにLレベルの信号が加えられたとき、前記pチャネルFET84がオン動作し、前記nチャネルFET85がオフ動作する。逆に入力信号がLレベルで、前記ノット回路86を介して前記pチャネルFET84および前記nチャネルFET85の各ゲートにHレベルの信号が加えられたとき、前記pチャネルFET84がオフ動作し、前記nチャネルFET85がオン動作する。
 一方、トーテムポール接続されて上述した如く相反してオン動作する前記pチャネルFET84およびnチャネルFET85の接続点にはコンデンサ87が接続されている。前記pチャネルFET84は、前記入力信号がHレベルのとき、そのオン動作によって前記コンデンサ87を一定電流で充電する役割を担う。該コンデンサ87の端子電圧(充電電圧Vchg)は、前記pチャネルFET84のオン動作に伴う前記コンデンサ87の充電により一定の上昇率で高くなる。また前記nチャネルFET85は、前記入力信号がLレベルのとき、そのオン動作によって前記コンデンサ87の充電電荷を瞬時的に放電する役割を担う。このnチャネルFET85のオン動作に伴う前記コンデンサ87の放電により該コンデンサ87の端子電圧(充電電圧Vchg)は瞬時に零(0)となる。
 そしてこのような変化を呈する前記コンデンサ87の充電電圧Vchgは比較器88において基準電圧Vrefと比較されている。この比較器88は前記充電電圧Vchgが基準電圧Vrefを超えたときにHレベルとなり、前記充電電圧Vchgが基準電圧Vrefに満たないときにはLレベルとなる信号を出力する。この比較器88の出力が前記立上り遅れ回路71(73)の出力信号となる。
 従ってこのように構成された立上り遅れ回路71(73)によれば、図4にその入出力信号の関係を示すように、入力電圧がHレベルに反転したタイミングから前記コンデンサ87の充電電圧Vchgが前記基準電圧Vrefに達するまでの時間TAEupだけ遅れてその出力電圧がHレベルに反転する。そして前記立上り遅れ回路71(73)の出力電圧は、前記入力電圧がLレベルに反転するタイミングで瞬時にLレベルに反転する。故にこの立上り遅れ回路71(73)を介することにより、その入力信号は立上りタイミングだけが遅延されて出力される。具体的には前記アラーム信号の場合には、Hレベルに反転する該アラーム信号のトレーリングエッジのタイミングだけが遅延されて出力される。
 尚、前記ノット回路86を省略し、入力信号を前記pチャネルFET84およびnチャネルFET85のゲートに直接印加するように構成しても良い。このようにすれば、前記コンデンサ87は前記入力電圧がLレベルのときに一定電流で充電され、前記入力電圧がHレベルのときにその充電電荷が瞬時に放電されることになる。従って前記比較器88の出力電圧は、入力電圧がHレベルに反転するタイミングで瞬時にその出力電圧がHレベルに反転し、前記入力電圧がLレベルに反転してから前記時間TAEdownだけ遅れてLレベルに反転する。故に前記ノット回路86を省略することで、前述した立下り遅れ回路72を同様に構成することができる。
 ここで前述した温度信号出力回路6の説明に戻ると、前記端子AEを介して入力されるアラーム信号は、図10を参照して説明したように保護要因に応じたパルス幅Tvd(Toc,Toh)のLレベルのパルス信号が所定の時間間隔Taを隔てて連続する図5(a)に示すようなパルス信号列からなる。そしてこのアラーム信号が前記第1の立上り遅れ回路71および立下り遅れ回路72を順に介して出力される。すると、該立上り遅れ回路71および立下り遅れ回路72の遅れ時間TAEup,TAEdownが等しい場合、その出力信号は図5(b)に示すように前記アラーム信号を時間TAEup(=TAEdown)だけ遅延した信号となる。
 換言すれば前記立上り遅れ回路71および立下り遅れ回路72を順に介して前記マルチプレクサ66の第2の入力端子Bに与えられる信号は、前記アラーム信号のリーディングエッジ(前縁)である立下りのタイミングが時間TAEdownだけ遅れる。更に前記第2の入力端子Bに与えられる信号は、そのトレーリングエッジ(後縁)である立上がりのタイミングが時間TAEupだけ遅れた信号、つまり前記アラーム信号を時間TAEup(=TAEdown)だけ遅延した信号となる。
 これに対して前記ロジック回路74に与えられる信号は、前記アラーム信号を第2の立上り遅れ回路73だけを介して出力したものである。従って前記第2の立上り遅れ回路73を介して出力される信号は、図5(c)に示すようにアラーム信号のリーディングエッジのタイミングでLレベルに反転し、該アラーム信号のトレーリングエッジが時間TAEmaskだけ遅れたタイミングでHレベルに反転する信号となる。
 尚、前記第2の立上り遅れ回路73の遅れ時間TAEmaskを、前述したアラーム信号のパルス間隔Taよりも長く(TAEmask>Ta)設定しておくことにより、前記アラーム信号を形成するパルス信号列のパルス信号間隔Taを示すHレベルの期間をマスクすることが可能となる。即ち、前記第2の立上り遅れ回路73は、前記アラーム信号がHレベルに反転したタイミングで前記pチャネルFET84を介してコンデンサ87を充電する。しかし前記第2の立上り遅れ回路73の遅れ時間TAEmaskが前記アラーム信号のパルス間隔Taよりも長く(TAEmask>Ta)設定されている。従って充電によって前記コンデンサ87の充電電圧Vchgが前記基準電圧Vrefに達する前に前記アラーム信号がLレベルに反転する。
 この結果、前記nチャネルFET85がオン動作して前記コンデンサ87の充電電荷が瞬時に放電されるので、前記コンデンサ87の充電電圧Vchgが前記基準電圧Vrefに達することがなく、従って前記比較器88の出力がLレベルに保たれる。故に前記アラーム信号が前述したようなパルス信号列として与えられる場合であっても、該アラーム信号が入力されている期間に亘って前記ロジック回路74に与えられる信号がLレベルに保たれる。
 従って前記第2の立上り遅れ回路73による上述したアラーム信号の遅延制御により、該アラーム信号が入力されている期間に亘って前述した如く第1の立上り遅れ回路71および前記立下り遅れ回路72を順に介して遅延制御されたアラーム信号が前記マルチプレクサ66に与えられ、該マルチプレクサ66を介して出力される。そして前記アラーム信号の入力が途絶え、前記第2の立上り遅れ回路73から前記ロジック回路74に与えられる信号がHレベルに反転することで、前述した条件の下で生成された前記PWM信号が前記マルチプレクサ66を介して出力される。
 この結果、前記マルチプレクサ66を介して前記アラーム信号と前記PWM信号とが択一的に選択され、前記出力トランジスタ38を介して外部出力されることになる。特に前記マルチプレクサ66は、前記アラーム信号が入力されたとき、前記PWM信号に代えて該アラーム信号を優先的に出力する。従って前記出力トランジスタ38を介して外部出力される信号を検出することにより、常時は前記PWM信号から前記IGBT14,15,16の温度を監視することが可能となる。また異常発生時には前記アラーム信号からその異常の種別を判定することが可能となる。
 ここで前記第1および第2の立上り遅れ回路71,73と前記立下り遅れ回路72による前記アラーム信号の遅延制御について更に説明を加えると、前記アラーム信号は前記駆動回路3X,3Y,3Zのいずれかにおいて前記制御電圧Vccの異常低下、または前記IGBT14(15,16)の過電流が検出されたときに生成される。従って電力変換装置が正常に動作している場合には、前記アラーム信号が発せられることない。これ故、前記温度信号出力回路6においては、定常的には前記IGBT14(15,16)の温度に応じたPWM信号を生成し、前記マルチプレクサ66を介して外部出力する。
 このような状況下において前記駆動回路3X,3Y,3Zのいずれかがアラーム信号を発すると、該アラーム信号は前記温度信号出力回路6に与えられる。すると前記温度信号出力回路6においては、前述したようにアラーム信号の入力に伴って前記PWM信号に代えて該アラーム信号を選択出力する。この際、前述したアラーム信号に対する遅延制御を実行しない場合には、前記アラーム信号の入力タイミングにおいて前記マルチプレクサ66の切替え制御が実行される。この結果、例えば図6に示すように前記PWM信号がLレベルのまま、これに継続して前記アラーム信号が出力される恐れがある。
 すると前記PWM信号から前記アラーム信号への切り替え時点において該前PWM信号のLレベルと前記アラーム信号のLレベルとが連なり、見掛け上、該アラーム信号の最初のパルス幅が、本来のパルス幅Tvdよりも拡がる。この結果、アラーム信号のパルス幅計測に大きな誤差Terrorが生じ、パルス幅によるアラーム信号の種別判定に支障が生じる。
 この点、前述したアラーム信号に対する遅延制御によれば、前記温度信号出力回路6に入力された前記アラーム信号に対して前述した遅延制御を実行する。故に該アラーム信号の入力タイミングにおいて前記マルチプレクサ66の切替え制御が行われた後に、該マルチプレクサ66に前述した時間TAEdown(=TAEup)だけ遅延されたアラーム信号が与えられる。この結果、図7に示すようにマルチプレクサ66の出力とし、前述した如く遅延処理されたアラーム信号が得られることになる。従って前記温度信号出力回路6から出力される前記アラーム信号のパルス幅が変化することはない。従って前記アラーム信号を監視する前述したインバータ制御部側においては前記アラーム信号のパルス幅を正確に計測して、その異常要因を識別することが可能となる。
 かくして上述した電力変換装置の制御装置によれば、アラーム信号の外部出力端子を利用して、半導体素子である前記IGBT14,15,16の温度に関する情報を、その最高温度に相関するPWM信号として定常的に出力しながら、該IGBT14,15,16の異常検出時には該異常の種別を示すアラーム信号を前記PWM信号に代えて出力することができる。従って前記PWM信号の出力端子と前記アラーム信号の出力端子とを1つの外部出力端子にて共用することができ、従ってIPMとしての出力端子数を増加させる必要がない。
 しかも温度情報を温度に相関するPWM信号とし、且つ該PWM信号の周期を前記アラーム信号のパルス幅よりも短くしておくことで、前記PWM信号とアラーム信号との識別の容易化を図ることも可能である。従って1つの外部出力端子を共用して前記PWM信号とアラーム信号とを外部出力しても、その識別が容易である。従ってこれらの各信号の外部出力に支障が生じることがない。また半導体素子の温度異常については前記PWM信号から監視することができるので、この点でも問題を生じることはない。従ってその実用的利点が多大である。
 尚、本発明は上述した実施形態に限定されるものではない。例えば実施形態に示した専用の温度信号出力回路6を設けることに代えて、前述した複数の駆動回路3U~3Zのそれぞれに、前記温度検出用ダイオード18を介して検出される温度に応じて前記PWM信号を生成する回路機能および該PWM信号とアラーム信号との選択出力回路機能を組み込むことも可能である。
 またここでは前記アラーム信号の入力の有無に応じて前記マルチプレクサ66を切替え制御したが、例えば前述した保護信号Spを利用して前記マルチプレクサ66を切替え制御することも可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
 1 電力変換装置の制御装置
 2 インバータ
 3U~3Z 駆動回路
 4 交流負荷
 6 温度信号出力回路
 11~16 半導体素子(IGBT)
 18 温度検出用ダイオード
 21~26 フリーホイリング・ダイオード
 31 ゲート制御回路
 32 制御電圧検出回路(保護回路)
 33 電流検出回路(保護回路)
 34 温度検出回路(保護回路)
 35 保護信号生成回路
 36 オア回路
 37 アラーム信号生成回路
 38 出力トランジスタ(出力回路)
 61x,61y,61z 温度検出回路
 62 最大値選択器
 63 リミッタ
 64 比較器
 65 発振器
 66 マルチプレクサ(出力制御回路)
 67 出力トランジスタ
 71 第1の立上り遅れ回路
 72 立下り遅れ回路
 73 第2の立上り遅れ回路
 74 ロジック回路

Claims (9)

  1.  電力変換装置を構成する半導体素子を駆動する駆動回路と、
     前記半導体素子の保護動作に必要な情報を検出して保護信号を生成し、この保護信号に従って前記駆動回路による前記半導体素子の駆動を停止させる複数の保護回路と、
     これらの保護回路の出力に応じて前記半導体素子の保護要因に応じたパルス幅のアラーム信号を生成し、このアラーム信号を外部出力するアラーム信号生成回路と、
     前記半導体素子の温度を検出して前記アラーム信号のパルス幅とは異なる周期の前記温度に相関したPWM信号を生成する温度信号生成回路と、
     常時は前記PWM信号を選択し、前記アラーム信号の発生時には前記PWM信号に代えて前記アラーム信号を選択して外部出力する出力制御回路と
    を具備したことを特徴とする電力変換装置の制御装置。
  2.  電力変換装置を構成する複数の半導体素子をそれぞれ駆動する複数の駆動回路と、
     前記複数の半導体素子にそれぞれ対応して設けられて前記各半導体素子の保護動作に必要な情報を検出して保護信号を生成し、この保護信号に従って前記駆動回路による前記半導体素子の駆動を停止させる複数の保護回路と、
     前記各半導体素子にそれぞれ対応して設けられ、対応する前記複数の保護回路の出力に応じて保護要因に応じたパルス幅のアラーム信号をそれぞれ生成して外部出力するアラーム信号生成回路と、
     前記各半導体素子の温度をそれぞれ検出して前記アラーム信号のパルス幅とは異なる周期の前記温度に相関したPWM信号を生成する温度信号生成回路と、
     常時は前記PWM信号を選択し、前記アラーム信号の発生時には前記PWM信号に代えて前記アラーム信号を選択して外部出力する出力制御回路と
    を具備したことを特徴とする電力変換装置の制御装置。
  3.  前記複数の保護回路は、当該制御装置に加えられる制御電圧を検出する電圧検出回路、前記半導体素子の温度を検出する温度検出回路および前記半導体素子に流れる電流を検出する電流検出回路を含み、低電圧保護、過熱保護、および過電流保護の保護信号をそれぞれ生成するものである請求項1または2に記載の電力変換装置の制御装置。
  4.  前記温度信号生成回路は、前記半導体素子の温度が設定温度に満たないときにはPWM信号を生成せず、前記設定温度以上のときにだけ前記半導体素子の温度に応じたPWM信号を生成するものである請求項1または2に記載の電力変換装置の制御装置。
  5.  前記温度信号生成回路は、前記半導体素子の温度に応じたPWM信号を、そのデューティの上限および下限の少なくとも一方を制限して生成するものである請求項1または2に記載の電力変換装置の制御装置。
  6.  前記出力制御回路は、前記アラーム生成回路がアラーム信号を生成している期間に亘って該アラーム信号を選択して出力し、前記アラーム信号の生成が停止したとき、前記アラーム信号に代えて前記PWM信号を選択して出力するマルチプレクサからなる請求項1または2に記載の電力変換装置の制御装置。
  7.  前記マルチプレクサは、前記アラーム信号のトレーリングエッジを遅延して生成された切替え信号に従って動作制御されて前記PWM信号を選択出力するものである請求項6に記載の電力変換装置の制御装置。
  8.  前記複数の駆動回路は、電力変換装置を構成する複数の半導体素子のそれぞれに対応する前記複数の保護回路および前記アラーム信号生成回路と共にそれぞれ集積回路化され、
     前記温度信号生成回路は、前記出力回路と共に前記複数の駆動回路とは別個に集積回路化されている請求項2に記載の電力変換装置の制御装置。
  9.  前記温度信号生成回路は、前記複数の検出温度の中の最高温度を選択し、当該最高温度に相関するPWM信号を生成するものである請求項8に記載の電力変換装置の制御装置。
PCT/JP2013/076723 2012-11-06 2013-10-01 電力変換装置の制御装置 WO2014073290A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013001471.8T DE112013001471T5 (de) 2012-11-06 2013-10-01 Leistungsumsetzer-Steuervorrichtung
CN201380019418.0A CN104247245B (zh) 2012-11-06 2013-10-01 功率转换装置的控制装置
US14/506,920 US9337719B2 (en) 2012-11-06 2014-10-06 Power converter control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012244485A JP6201296B2 (ja) 2012-11-06 2012-11-06 電力変換装置の制御装置
JP2012-244485 2012-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/506,920 Continuation US9337719B2 (en) 2012-11-06 2014-10-06 Power converter control device

Publications (1)

Publication Number Publication Date
WO2014073290A1 true WO2014073290A1 (ja) 2014-05-15

Family

ID=50684407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076723 WO2014073290A1 (ja) 2012-11-06 2013-10-01 電力変換装置の制御装置

Country Status (5)

Country Link
US (1) US9337719B2 (ja)
JP (1) JP6201296B2 (ja)
CN (1) CN104247245B (ja)
DE (1) DE112013001471T5 (ja)
WO (1) WO2014073290A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601985B2 (en) * 2014-04-30 2017-03-21 Nxp Usa, Inc. Segmented driver for a transistor device
CN106134047B (zh) * 2014-09-29 2018-10-16 富士电机株式会社 半导体装置
US10247616B2 (en) * 2015-03-05 2019-04-02 Renesas Electronics Corporation Electronics device
JP6527436B2 (ja) * 2015-09-24 2019-06-05 ルネサスエレクトロニクス株式会社 電子装置
WO2017208668A1 (ja) * 2016-06-03 2017-12-07 富士電機株式会社 半導体素子の駆動装置
CN109005673B (zh) * 2016-09-02 2020-09-08 富士电机株式会社 半导体元件的驱动装置
JP6824142B2 (ja) * 2017-11-22 2021-02-03 三菱電機株式会社 電力半導体モジュールおよび電力変換装置
JP7176192B2 (ja) * 2018-02-06 2022-11-22 株式会社デンソー スイッチの駆動装置
JP7038647B2 (ja) * 2018-12-12 2022-03-18 三菱電機株式会社 インテリジェントパワーモジュール
CN109799721B (zh) * 2019-01-31 2021-12-14 海信(山东)空调有限公司 一种家用电器的控制电路、控制方法及家用电器
JP6664017B1 (ja) * 2019-02-01 2020-03-13 株式会社ケーヒン 温度検出装置、異常検出装置及び電力変換装置
US11258364B2 (en) * 2020-04-09 2022-02-22 High Tech Technology Limited Flexible array of DC-DC converters reconfigurable using a shared serial bus
JP7491066B2 (ja) 2020-06-04 2024-05-28 富士電機株式会社 半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198440A (ja) * 1997-01-06 1998-07-31 Zexel Corp 電力制御装置の安全度表示方法及び電力制御装置の安全度表示装置
JP2000134074A (ja) * 1998-10-27 2000-05-12 Hitachi Ltd 半導体モジュール
JP2006079404A (ja) * 2004-09-10 2006-03-23 Nsk Ltd センサ信号の多重化送受信装置
JP2006238546A (ja) * 2005-02-23 2006-09-07 Nissan Motor Co Ltd インバータ温度検出装置
JP2011172336A (ja) * 2010-02-17 2011-09-01 Denso Corp 電力変換装置
JP2012143125A (ja) * 2010-12-14 2012-07-26 Fuji Electric Co Ltd 半導体素子の駆動装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382396A (ja) * 1989-08-23 1991-04-08 Mitsubishi Electric Corp パルス幅変調形インバータ装置
JPH0870580A (ja) * 1994-08-30 1996-03-12 Sanyo Electric Co Ltd 警報回路
US6934139B2 (en) * 2000-05-01 2005-08-23 Fuji Electric Device Technology Co., Ltd. Intelligent power module
JP2003125588A (ja) * 2001-10-12 2003-04-25 Mitsubishi Electric Corp 電力変換装置
US6930293B2 (en) * 2002-02-04 2005-08-16 Canon Kabushiki Kaisha Induction heating apparatus, heat fixing apparatus and image forming apparatus
JP4681911B2 (ja) * 2005-02-25 2011-05-11 三菱電機株式会社 電力用半導体装置
JP4918795B2 (ja) * 2006-03-16 2012-04-18 富士電機株式会社 パワーエレクトロニクス機器
JP5161641B2 (ja) * 2008-04-18 2013-03-13 株式会社東芝 温度検出回路
TWI353727B (en) * 2008-07-22 2011-12-01 Ge Investment Co Ltd Load control module
JP5360002B2 (ja) * 2010-06-28 2013-12-04 富士電機株式会社 半導体素子の駆動装置
US20120152934A1 (en) * 2010-12-20 2012-06-21 Samsung Electronics Co., Ltd. Induction heating fuser unit and image forming apparatus including the same
CN103460588B (zh) * 2011-04-08 2016-05-25 富士电机株式会社 电力转换装置的控制装置
JP6201302B2 (ja) * 2012-11-22 2017-09-27 富士電機株式会社 半導体素子の駆動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198440A (ja) * 1997-01-06 1998-07-31 Zexel Corp 電力制御装置の安全度表示方法及び電力制御装置の安全度表示装置
JP2000134074A (ja) * 1998-10-27 2000-05-12 Hitachi Ltd 半導体モジュール
JP2006079404A (ja) * 2004-09-10 2006-03-23 Nsk Ltd センサ信号の多重化送受信装置
JP2006238546A (ja) * 2005-02-23 2006-09-07 Nissan Motor Co Ltd インバータ温度検出装置
JP2011172336A (ja) * 2010-02-17 2011-09-01 Denso Corp 電力変換装置
JP2012143125A (ja) * 2010-12-14 2012-07-26 Fuji Electric Co Ltd 半導体素子の駆動装置

Also Published As

Publication number Publication date
DE112013001471T5 (de) 2014-12-04
US9337719B2 (en) 2016-05-10
CN104247245B (zh) 2018-08-21
US20150023076A1 (en) 2015-01-22
CN104247245A (zh) 2014-12-24
JP6201296B2 (ja) 2017-09-27
JP2014093903A (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP6201296B2 (ja) 電力変換装置の制御装置
US9667061B2 (en) Semiconductor element drive device
JP5360002B2 (ja) 半導体素子の駆動装置
CN107852155B (zh) 半导体元件的过电流保护装置
US11183835B2 (en) Short circuit detection and protection for a gate driver circuit and methods of detecting the same using logic analysis
US10432080B2 (en) Driving device of semiconductor device
JP6398949B2 (ja) 半導体素子の駆動装置
JP6468399B2 (ja) 半導体素子の駆動装置
JP6954013B2 (ja) 判定装置
US9692406B2 (en) Power device drive circuit
JP6007605B2 (ja) 半導体素子の駆動装置
JP5223758B2 (ja) 電力変換回路の駆動回路
JP6717380B2 (ja) 半導体モジュール、及び半導体モジュールに使われるスイッチング素子のチップ設計方法
JP2010183765A (ja) 電力変換回路の電流検出装置
US10018665B2 (en) Power conversion apparatus, status detection device, and method for status detection
US10141834B2 (en) Multi-phase power conversion device control circuit
JP2008301617A (ja) 電力変換器の保護装置
JP7028039B2 (ja) スイッチの駆動回路
JP7059768B2 (ja) スイッチ駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013001471

Country of ref document: DE

Ref document number: 1120130014718

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852594

Country of ref document: EP

Kind code of ref document: A1