WO2014073247A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2014073247A1
WO2014073247A1 PCT/JP2013/070873 JP2013070873W WO2014073247A1 WO 2014073247 A1 WO2014073247 A1 WO 2014073247A1 JP 2013070873 W JP2013070873 W JP 2013070873W WO 2014073247 A1 WO2014073247 A1 WO 2014073247A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switching
pattern
auxiliary
control device
Prior art date
Application number
PCT/JP2013/070873
Other languages
French (fr)
Japanese (ja)
Inventor
東 聖
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014545593A priority Critical patent/JP5819010B2/en
Publication of WO2014073247A1 publication Critical patent/WO2014073247A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current

Definitions

  • the present invention relates to a power conversion device, and more particularly to a power conversion device capable of reducing a leakage current generated by switching accompanying power conversion.
  • an inverter as a conventional power converter, a series circuit in which first and second switches are connected in series is connected in a three-phase bridge, and the switching operation of the first and second switches of each phase is performed by a space vector method.
  • There is a two-level inverter that converts a DC voltage into a three-phase AC voltage by controlling.
  • a leakage current flows between the neutral point of the AC motor and the inverter through the floating capacity of the AC motor and the inverter due to the switching, and generates common mode noise.
  • leakage current for example, a method of reducing leakage current by changing the switching pattern of the inverter in a certain cycle has been proposed. Specifically, for example, the leakage current is canceled by shifting the switching operation of the U phase that is the phase with the longest on-time in a certain cycle to reverse the switching operation of the W phase that is the phase with the shortest on-time.
  • the leakage current is canceled by shifting the switching operation of the U phase that is the phase with the longest on-time in a certain cycle to reverse the switching operation of the W phase that is the phase with the shortest on-time.
  • the conventional inverter is configured as described above, and even if the switching operations of the U phase and the W phase are reversed, a leakage current is generated due to the switching operation of the remaining phase, so that the leakage current cannot be sufficiently reduced. was there. This is a problem that is required to be further solved by the increase in the switching frequency of the inverter accompanying the recent improvement in performance of the switching element.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power conversion device capable of reducing leakage current generated by switching associated with power conversion.
  • the power converter according to the present invention includes a switching circuit, a control device that controls the switching circuit, and an auxiliary device.
  • the switching circuit three legs each having an upper arm and a lower arm are connected in a three-phase bridge, and the AC side is connected to an AC side device via a connection line.
  • the control device switches each phase so that a first zero vector period in which all the upper arms are turned on and a second zero vector period in which all the lower arms are turned on have the same length in one cycle. Temporarily setting a pattern and shifting the first phase switching pattern of the first phase having the longest on period or the switching pattern of the second phase having the shortest on period in the temporarily set switching pattern of each phase.
  • the switching pattern is changed so as to eliminate the zero vector period, and the switching operation of the switching circuit is controlled.
  • the auxiliary device has an auxiliary circuit, a simulated impedance, and an auxiliary control device.
  • the auxiliary circuit includes a first switch and a second switch connected in series, and both ends thereof are connected in parallel to the leg.
  • the simulated impedance is obtained by simulating the impedance between the connection line and the AC-side device, and is inserted between the connection between the first switch and the second switch and the ground.
  • the auxiliary control device controls the switching operation of the auxiliary circuit so as to be opposite to the switching operation of the remaining third phase excluding the first phase and the second phase of the switching circuit.
  • the power conversion device according to the present invention is configured as described above, it is possible to reduce the leakage current generated by switching associated with power conversion.
  • FIGS. 15A and 15B are diagrams showing a one-phase portion of a switching unit according to Embodiment 2 of the present invention
  • FIG. 15A is a diagram of a case where a positive current flows
  • FIG. 15B is a diagram of a case where a negative current flows. is there. It is a figure for demonstrating the dead time period in the switching pattern of the three-phase inverter by Embodiment 2 of this invention.
  • FIG. FIGS. 1 to 13 are diagrams for explaining the first embodiment for carrying out the present invention.
  • FIG. 1 is a configuration diagram showing a configuration of a three-phase inverter
  • FIG. 2 is a diagram showing a switching pattern of the three-phase inverter.
  • It is. 3 to 5 are diagrams showing a first comparative example
  • FIG. 3 is a diagram showing a switching pattern and a leakage current of a conventional three-phase inverter as a first comparative example
  • FIG. 4 is a three-phase diagram of FIG.
  • FIG. 5 is a diagram showing a waveform diagram of each phase voltage and common mode voltage of the inverter
  • FIG. 5 is a diagram showing a locus of flux linkage vector in the three-phase inverter of FIG.
  • FIG. 6 is a diagram showing a voltage vector and a flux linkage vector in a three-phase inverter.
  • 7 and 8 are diagrams showing a second comparative example
  • FIG. 7 is a diagram showing a switching pattern and a leakage current of the three-phase inverter according to the second comparative example
  • FIG. 8 is a diagram of the three-phase inverter of FIG. It is a figure which shows the wave form diagram of each phase voltage and a common mode voltage.
  • FIG. 6 is a diagram showing a voltage vector and a flux linkage vector in a three-phase inverter.
  • 7 and 8 are diagrams showing a second comparative example
  • FIG. 7 is a diagram showing a switching pattern and a leakage current of the three-phase inverter according to the second comparative example
  • FIG. 8 is a diagram of the three-phase inverter of FIG. It is
  • FIG. 9 is a diagram showing the trajectory of the flux linkage number vector in the three-phase inverter according to Embodiment 1 of the present invention, and is also a diagram showing the trajectory of the flux linkage number vector according to the second comparative example.
  • FIG. 10 is a diagram showing a switching pattern of a three-phase inverter which is a modification of the first embodiment.
  • 11 and 12 are diagrams showing a third comparative example,
  • FIG. 11 is a diagram showing a switching pattern and a leakage current of a three-phase inverter according to the third comparative example, and
  • FIG. 12 is a diagram showing each of the three-phase inverters of FIG. It is a figure which shows the wave form diagram of a phase voltage and a common mode voltage.
  • FIG. 13 is a diagram showing the trajectory of the flux linkage number vector in the three-phase inverter according to the modification of the first embodiment of the present invention, and is also a diagram showing the trajectory of the flux linkage number vector according to the third comparativ
  • a three-phase inverter 10 as a power conversion device includes a switching unit 1 as a switching circuit, a first control unit 7 as a control device that controls the switching unit 1, and an auxiliary device 20.
  • the switching unit 1 has a DC side connected to the smoothing capacitor 2 and an AC side connected to an AC motor 6 as an AC side device via a wiring 5.
  • a DC voltage is supplied to the switching unit 1 from a converter (not shown) via a smoothing capacitor 2.
  • the wiring 5 is expressed by the impedance between the inductor and the resistor.
  • Radiating fins 3 are provided on the upper arm and lower arms 1a to 1f (details will be described later) of the switching unit 1.
  • a stray capacitance 4 exists between the radiation fin 3 and the upper and lower arms 1a to 1f.
  • the switching unit 1 is composed of three-phase legs of U, V, and W phases.
  • the U phase is composed of a leg in which an upper arm 1a and a lower arm 1b are connected in series
  • the V phase is composed of a leg in which an upper arm 1c and a lower arm 1d are connected in series
  • the W phase is an upper phase.
  • the arm 1e and the lower arm 1f are configured by legs connected in series, and a three-phase AC motor 6 is connected to a connection point of each arm via a wiring 5.
  • Each arm 1a to 1f has a transistor such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET as a switching element and a diode connected in reverse parallel thereto, and changes the voltage applied to the AC motor 6 by the switching operation of the transistor.
  • the first control unit 7 includes a microprocessor (not shown), and the control of the switching unit 1 by the first control unit 7 is performed on a program incorporated in the microprocessor.
  • the auxiliary device 20 includes a first impedance 21, a second impedance 22, an auxiliary circuit 23, and a second control unit 24 as an auxiliary control device.
  • the auxiliary circuit 23 includes a leg in which an upper arm 23 a as a first switch and a lower arm 23 b as a second switch are connected in series, and is connected in parallel with each leg of the switching unit 1.
  • Each arm 23a, 23b has a transistor such as an IGBT or a MOSFET and a diode connected in antiparallel thereto.
  • a series connection body of the first impedance 21 and the second impedance 22 is inserted as a simulated impedance between a connection point between the upper arm 23a and the lower arm 23b and the ground.
  • the first impedance 21 is an impedance that simulates one phase of the wiring 5
  • the second impedance 22 is an impedance that simulates one phase of the AC motor 6.
  • the second control unit 24 has a microprocessor (not shown). The control of the auxiliary circuit 23 by the second control unit 24 is performed on a program incorporated in the microprocessor.
  • FIG. 2 shows the switching pattern of each phase in a certain cycle T, that is, the U, V, W phase of the switching unit 1 and the X phase which is the leg of the auxiliary circuit 23.
  • T the voltage of each phase of U, V, and W is controlled with a switching pattern as shown in FIG.
  • periods t1 and t7 are called zero vector periods, and no voltage is generated between the lines of the AC motor.
  • the zero vector period t1 in which all lower arms are turned on is set at two places, the beginning and end of one cycle T, and the center part of the one cycle T (the previous T / 2 period
  • the zero vector period t1 and the zero vector period t7 have the same length.
  • FIG. 4 shows the voltages of the U, V, and W phases and the potential at the neutral point of the AC motor, that is, the common mode voltage.
  • the voltage of the DC power supply is 1.0.
  • the common mode voltage changes between 0 and 1.0 as shown in FIG.
  • the trajectory of the flux linkage vector given to the AC motor is as shown in FIG. 5 in the one cycle, and the zero vector ⁇ 0 is given at the start point St of one cycle, and thereafter ⁇ 1, ⁇ 2, ⁇ 7, ⁇ 2 , ⁇ 1, ⁇ 0 (where ⁇ 0 and ⁇ 7 are zero vectors) in this order, and the start point St and the end point End are on one circular locus Cr.
  • FIG. 6 shows the voltage vector Vn and the flux linkage number vector ⁇ n in the three-phase inverter.
  • the transistors constituting the arm of each phase perform switching operation six times in one cycle, and during the switching operation, the leakage current as shown in FIG. 3 is caused by the AC motor and the three-phase inverter through the ground floating capacity of the AC motor. Flows between the neutral point and the three-phase inverter, generating common mode noise.
  • the switching operation of the U phase (first phase), which is the phase with the longest on time in a certain cycle T, is shifted to the phase with the shortest on time.
  • the switching pattern shown in FIG. 7 is determined as follows.
  • the second comparative example is the same as the U, V, W phase switching pattern (see FIG. 2) of the switching unit 1 of the three-phase inverter 10 according to the first embodiment.
  • a switching pattern similar to that shown in FIG. 3 is temporarily set.
  • the U-phase pulse generation period is shifted as shown in FIG. 2 so that the zero vector periods t1 and t7 are eliminated, so that the U-phase off period is opposite to the W-phase on period. That is, the switching-off timing in the U phase that is the phase with the longest on period and the switching on timing in the W phase that is the phase with the shortest on period are combined, and the switching on timing in the U phase and the W phase And the switching-off timing at.
  • switching of the switching unit 1 is controlled by changing the switching pattern.
  • the output voltage of the three-phase inverter does not change as an average value.
  • the switching (timing) of the U phase and the W phase is synchronized and switched in opposite directions. For this reason, potential fluctuations associated with the switching of the U phase and the W phase are offset, and the leakage current is also canceled. As shown in FIG. 7, the leakage current is only generated during the V-phase switching operation, and is reduced to 1/3 compared to the first comparative example.
  • FIG. 8 shows the voltages of the U, V, and W phases and the common mode voltage according to the second comparative example.
  • the common mode voltage changes between about 0.66 and about 0.33 by the V-phase switching operation, and the voltage fluctuation is the same as that of the first comparative example.
  • it is reduced to 1/3. 7 is the same as that of the three-phase inverter 10 according to the first embodiment of the present invention, and the locus of the flux linkage number vector given to the AC motor when switching is performed with the switching pattern according to the second comparative example shown in FIG. 9 shows.
  • FIG. 8 shows the voltages of the U, V, and W phases and the common mode voltage according to the second comparative example.
  • the flux linkage vector ⁇ 1, ⁇ 2, ⁇ 4, ⁇ 2, ⁇ 1 changes in order from the start point St of one cycle, and at the end point End, the end point in the three-phase inverter of the first comparative example shown in FIG. Same as End.
  • the auxiliary device 20 including the auxiliary circuit 23 is provided, and the second control unit 24 performs switching control of the leg (X phase) of the auxiliary circuit 23.
  • the U, V, and W phases of the switching unit 1 of the three-phase inverter 10 are controlled by the first control unit 7 with the same switching pattern as in the second comparative example described above, and the auxiliary circuit 23
  • the X phase is controlled by the second control unit 24 as follows. That is, the upper arm 23a and the lower arm 23b of the auxiliary circuit 23 are switched in a pattern opposite to the V-phase switching pattern in synchronization with the V-phase switching that is the third phase.
  • the leakage current due to the V-phase switching and the leakage current due to the X-phase switching cancel each other, and the leakage current flowing through the AC motor 6 is almost completely canceled out.
  • the switching pattern may be as shown in FIG. That is, in FIG. 10, the switching operation of the W phase (second phase) that is the phase with the shortest on time in one cycle T is shifted to switch the U phase (first phase) that is the phase with the longest on time. The operation is reversed. Further, the X phase by the auxiliary circuit 23 is similarly switched in a switching pattern opposite to the V phase in synchronization with the V phase switching. Also in this case, the leakage current due to the W-phase switching and the leakage current due to the U-phase switching cancel each other, and further, the leakage current due to the V-phase switching and the leakage current due to the X-phase switching cancel each other. Almost no leakage current flows through.
  • FIG. 11 shows a third comparative example which is a comparative example for the modification shown in FIG.
  • the third comparative example does not have the X phase of the switching pattern of FIG. 10 and is a switching pattern of only the U, V, and W phases.
  • the common mode voltage between the AC motor and the ground is as shown in FIG. 12, the voltage fluctuation is reduced to 1/3 as compared with the first comparative example, and the leakage current shown in FIG. Although it is reduced to 1/3 as compared with one comparative example, it remains.
  • the trajectory of the flux linkage vector at this time is the same in the modified example shown in FIG. 10 and the third comparative example shown in FIG. 11, as shown in FIG. 13, and the start point St and end point End of one cycle Are at the same position on the same circular locus Cr as shown in FIG.
  • the auxiliary circuit 23 is connected to a simulated impedance by the first impedance 21 and the second impedance 22.
  • the second impedance 22 expresses the floating impedance of the AC motor 6 as a load, and is generally a high impedance. Therefore, the current output from the auxiliary circuit 23 is sufficiently smaller than the current output from the switching unit 1. For this reason, the upper arm 23a and the lower arm 23b constituting the auxiliary circuit 23 can be configured by elements having a small current capacity, and a small and inexpensive auxiliary circuit 23 can be realized.
  • the switching pattern shown in FIG. 2 may be a switching pattern in which all the U phases are turned on and all the W phases are turned off. In this case as well, the same effect can be obtained by performing the X-phase switching in a pattern opposite to the V-phase switching pattern in synchronization with the V-phase switching.
  • FIG. 14 to 18 show the second embodiment.
  • FIG. 14 is a block diagram showing the configuration of the three-phase inverter 30 according to the second embodiment.
  • FIG. 15 shows one phase of the switching unit 1.
  • FIG. 15A shows a case where a positive current indicated by an arrow flows
  • FIG. 15B shows a case where a negative current flows.
  • FIG. 16 is a diagram for explaining a dead time period in the switching pattern of the three-phase inverter
  • FIG. 17 is a diagram showing a switching pattern of the three-phase inverter 30 according to the second embodiment.
  • the three-phase inverter 30 is provided with a third control unit 37 as a control device that controls the switching unit 1. Since other configurations are the same as those of the first embodiment shown in FIG. 1, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • a dead time period Td is set in order to prevent occurrence of a short-circuit current due to simultaneous conduction of the upper arm 1a and the lower arm 1b shown in FIG.
  • each phase voltage in the dead time period Td depends on the direction of the current.
  • FIG. 15A when the current polarity is positive, the diode on the lower arm 1b side conducts during the dead time period Td, and the low potential side voltage is output.
  • FIG. 15B when the current polarity is negative, the diode on the upper arm 1a side conducts during the dead time period Td, and the high potential side voltage is output.
  • the V phase is the case of FIG. 15B, and the current polarity is negative.
  • Td there is a dead time period Td when the ON state is switched from the upper arm 1c to the lower arm 1d. Therefore, an extra voltage pulse pattern is generated in the voltage region of the shaded portion A2 in the figure, and the switching pattern It does not become a rectangular voltage waveform.
  • the diode on the upper arm 1c side is automatically turned on as soon as the dead time period Td is entered, so that the pulse pattern is not excessively generated.
  • the third control unit 37 corrects the pulse pattern according to the direction of the current as shown in FIG. 17 in order to eliminate the influence of the dead time period Td.
  • the ON time is increased by the width corresponding to the dead time period Td indicated by the hatched portions B1 and B3. That is, the ON timing is advanced by the dead time period Td.
  • the ON time is shortened by a width corresponding to the dead time period Td indicated by the hatched portion B2. That is, the OFF timing is advanced by the dead time period Td.
  • the widths of the hatched portions B1, B2, and B3 and the widths of the hatched portions A1, A2, and A3 are all the same and correspond to the dead time period Td.
  • the dead time period Td is set so that the upper arm and the lower arm are not simultaneously turned on. Based on the dead time period Td, the dead time period Td is set according to the direction of the current flowing in the upper arm and the lower arm. Is corrected as shown in FIG.
  • the auxiliary circuit 23 is connected to a simulated impedance by the first impedance 21 and the second impedance 22.
  • the second impedance 22 expresses the floating impedance of the AC motor 6 as a load, and is generally a high impedance. Therefore, the current output from the auxiliary circuit 23 is sufficiently smaller than the current output from the switching unit 1.
  • a current with high-frequency vibration flows only at the switching timing, and no current flows thereafter. For this reason, in the case of the auxiliary circuit 23, unlike the switching unit 1, it is not necessary to determine the switching pattern in consideration of the output voltage in the dead time period Td according to the current polarity. That is, by switching the upper arm 23a and the lower arm 23b of the auxiliary circuit 23 as shown in FIG. 18, a desired output voltage can be obtained for the X phase.
  • the IGBT is illustrated and described using the switching elements constituting the arms 1a to 1f as transistors, but other semiconductor switching elements such as MOSFETs may be used.
  • the power conversion device is an inverter.
  • the power source and the load are switched, and the power transmission direction is changed, and the same effect can be obtained.

Abstract

A three-phase inverter (10) is provided with a switching unit (1) in which three legs are connected in a three-phase bridge, and an auxiliary circuit (23) composed of a single leg. A pseudo-impedance (21, 22) is connected to the auxiliary circuit (23). A first control unit (1) changes a switching pattern which has been temporarily set so that a zero-vector interval (t1), in which all upper arms of the switching unit (1) are on in a single cycle, and a zero-vector interval (t7), in which all lower arms are on, are the same length so as to offset the switching pattern of a first phase having the longest on-interval or a second phase having the shortest on-interval to eliminate the zero-vector interval and control the switching operation of the switching unit (1). The second control unit (24) controls the switching operation of the auxiliary circuit (23) so as to be the reverse of the third-phase switching operation of the switching unit (1).

Description

電力変換装置Power converter
 この発明は、電力変換装置、特に電力変換にともなうスイッチングにより発生する漏洩電流を低減できる電力変換装置に関するものである。 The present invention relates to a power conversion device, and more particularly to a power conversion device capable of reducing a leakage current generated by switching accompanying power conversion.
 従来の電力変換装置としてのインバータにおいて、第1及び第2のスイッチが直列に接続された直列回路を三相ブリッジ接続し、空間ベクトル法により各相の第1及び第2のスイッチのスイッチング動作を制御することにより、直流電圧を3相交流電圧に変換する2レベルのインバータがある。スイッチングにともない交流電動機及びインバータの対地浮遊容量を介して漏洩電流が交流電動機の中性点とインバータとの間に流れ、コモンモードノイズを発生させる。 In an inverter as a conventional power converter, a series circuit in which first and second switches are connected in series is connected in a three-phase bridge, and the switching operation of the first and second switches of each phase is performed by a space vector method. There is a two-level inverter that converts a DC voltage into a three-phase AC voltage by controlling. A leakage current flows between the neutral point of the AC motor and the inverter through the floating capacity of the AC motor and the inverter due to the switching, and generates common mode noise.
 このような漏洩電流を低減するために、例えば、あるサイクルにおいてインバータのスイッチングパターンを変更することにより、漏洩電流を低減する方法が提案されている。具体的には、例えば、あるサイクルにおいて最もオン時間の長い相であるU相のスイッチング動作をずらして最もオン時間が短い相であるW相のスイッチング動作と逆とすることにより、漏洩電流を打ち消すようにするものである(例えば、非特許文献1参照)。 In order to reduce such leakage current, for example, a method of reducing leakage current by changing the switching pattern of the inverter in a certain cycle has been proposed. Specifically, for example, the leakage current is canceled by shifting the switching operation of the U phase that is the phase with the longest on-time in a certain cycle to reverse the switching operation of the W phase that is the phase with the shortest on-time. (For example, refer nonpatent literature 1).
 従来のインバータは以上のように構成され、U相とW相とのスイッチング動作を互いに逆にしてもなお残る相のスイッチング動作による漏洩電流が発生するため、充分に漏洩電流を低減できないという問題点があった。これは、近年のスイッチング素子の性能向上にともなうインバータのスイッチング周波数の高周波化により、より一層解決を要請される問題点となっている。 The conventional inverter is configured as described above, and even if the switching operations of the U phase and the W phase are reversed, a leakage current is generated due to the switching operation of the remaining phase, so that the leakage current cannot be sufficiently reduced. was there. This is a problem that is required to be further solved by the increase in the switching frequency of the inverter accompanying the recent improvement in performance of the switching element.
 この発明は上記のような問題点を解決するためになされたものであり、電力変換にともなうスイッチングにより発生する漏洩電流を低減できる電力変換装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power conversion device capable of reducing leakage current generated by switching associated with power conversion.
 この発明に係る電力変換装置においては、スイッチング回路と、該スイッチング回路を制御する制御装置と、補助装置とを有する。前記スイッチング回路は、それぞれ上アーム及び下アームを有する3つのレグが三相ブリッジ接続され、交流側が接続線を介して交流側機器に接続されるものである。前記制御装置は、1サイクル中に前記上アームが全てオンとなる第1の零ベクトル期間と前記下アームが全てオンとなる第2の零ベクトル期間とが同じ長さとなるように各相のスイッチングパターンを仮設定し、前記仮設定した各相のスイッチングパターンにおいてオン期間が最も長い第1相のスイッチングパターンまたはオン期間が最も短い第2相のスイッチングパターンをずらすことにより前記第1及び第2の零ベクトル期間をなくすようにスイッチングパターンを変更し前記スイッチング回路のスイッチング動作を制御するものである。前記補助装置は、補助回路と模擬インピーダンスと補助制御装置とを有するものである。前記補助回路は、第1スイッチ及び第2スイッチが直列接続されて成り、その両端が前記レグと並列に接続される。前記模擬インピーダンスは、前記接続線と前記交流側機器とのインピーダンスを模擬したものであって、前記第1スイッチと前記第2スイッチとの接続部と、アースとの間に挿入される。前記補助制御装置は前記スイッチング回路の前記第1相及び第2相を除いた残りの第3相のスイッチング動作と逆になるように、前記補助回路のスイッチング動作を制御するものである。 The power converter according to the present invention includes a switching circuit, a control device that controls the switching circuit, and an auxiliary device. In the switching circuit, three legs each having an upper arm and a lower arm are connected in a three-phase bridge, and the AC side is connected to an AC side device via a connection line. The control device switches each phase so that a first zero vector period in which all the upper arms are turned on and a second zero vector period in which all the lower arms are turned on have the same length in one cycle. Temporarily setting a pattern and shifting the first phase switching pattern of the first phase having the longest on period or the switching pattern of the second phase having the shortest on period in the temporarily set switching pattern of each phase. The switching pattern is changed so as to eliminate the zero vector period, and the switching operation of the switching circuit is controlled. The auxiliary device has an auxiliary circuit, a simulated impedance, and an auxiliary control device. The auxiliary circuit includes a first switch and a second switch connected in series, and both ends thereof are connected in parallel to the leg. The simulated impedance is obtained by simulating the impedance between the connection line and the AC-side device, and is inserted between the connection between the first switch and the second switch and the ground. The auxiliary control device controls the switching operation of the auxiliary circuit so as to be opposite to the switching operation of the remaining third phase excluding the first phase and the second phase of the switching circuit.
 この発明による電力変換装置は、以上のように構成されているので、電力変換にともなうスイッチングにより発生する漏洩電流を低減できる。 Since the power conversion device according to the present invention is configured as described above, it is possible to reduce the leakage current generated by switching associated with power conversion.
この発明の実施の形態1による三相インバータの構成を示す図である。It is a figure which shows the structure of the three-phase inverter by Embodiment 1 of this invention. この発明の実施の形態1による三相インバータのスイッチングパターンを示す図である。It is a figure which shows the switching pattern of the three-phase inverter by Embodiment 1 of this invention. 第1比較例による三相インバータのスイッチングパターンと漏洩電流とを示す図である。It is a figure which shows the switching pattern and leakage current of the three-phase inverter by a 1st comparative example. 第1比較例における各相電圧およびコモンモード電圧の波形図である。It is a wave form diagram of each phase voltage and common mode voltage in the 1st comparative example. 第1比較例において交流電動機に与えられる磁束鎖交数ベクトルの軌跡を示す図である。It is a figure which shows the locus | trajectory of the flux linkage number vector given to an alternating current motor in a 1st comparative example. 三相インバータにおける電圧ベクトル及び磁束鎖交数ベクトルを示す図である。It is a figure which shows the voltage vector and flux linkage number vector in a three-phase inverter. 第2比較例による三相インバータのスイッチングパターンと漏洩電流とを示す図である。It is a figure which shows the switching pattern and leakage current of the three-phase inverter by a 2nd comparative example. 第2比較例による各相電圧およびコモンモード電圧の波形図である。It is a wave form diagram of each phase voltage and common mode voltage by the 2nd comparative example. この発明の実施の形態1において交流電動機に与えられる磁束鎖交数ベクトルの軌跡を示す図である。It is a figure which shows the locus | trajectory of the flux linkage number vector given to an alternating current motor in Embodiment 1 of this invention. この発明の実施の形態1による三相インバータのスイッチングパターンの変形例を示す図である。It is a figure which shows the modification of the switching pattern of the three-phase inverter by Embodiment 1 of this invention. 第3比較例による三相インバータのスイッチングパターンと漏洩電流とを示す図である。It is a figure which shows the switching pattern and leakage current of the three-phase inverter by a 3rd comparative example. 第3比較例における各相電圧およびコモンモード電圧の波形図である。It is a wave form diagram of each phase voltage and common mode voltage in the 3rd comparative example. この発明の実施の形態1の変形例において交流電動機に与えられる磁束鎖交数ベクトルの軌跡を示す図である。It is a figure which shows the locus | trajectory of the flux linkage number vector given to an alternating current motor in the modification of Embodiment 1 of this invention. この発明の実施の形態2による三相インバータの構成を示す図である。It is a figure which shows the structure of the three-phase inverter by Embodiment 2 of this invention. この発明の実施の形態2によるスイッチング部の1相分を示す図であり、図15(a)は正の電流が流れるケースの図、図15(b)は負の電流が流れるケースの図である。FIGS. 15A and 15B are diagrams showing a one-phase portion of a switching unit according to Embodiment 2 of the present invention, FIG. 15A is a diagram of a case where a positive current flows, and FIG. 15B is a diagram of a case where a negative current flows. is there. この発明の実施の形態2による三相インバータのスイッチングパターンにおけるデッドタイム期間を説明するための図である。It is a figure for demonstrating the dead time period in the switching pattern of the three-phase inverter by Embodiment 2 of this invention. この発明の実施の形態2による三相インバータのスイッチングパターンを示す図である。It is a figure which shows the switching pattern of the three-phase inverter by Embodiment 2 of this invention. この発明の実施の形態2による三相インバータのスイッチングパターンと補助回路の各アームのスイッチングパターンを示す図である。It is a figure which shows the switching pattern of the three-phase inverter by Embodiment 2 of this invention, and the switching pattern of each arm of an auxiliary circuit.
実施の形態1.
 図1~図13は、この発明を実施するための実施の形態1を説明するものであり、図1は三相インバータの構成を示す構成図、図2は三相インバータのスイッチングパターンを示す図である。また、図3~図5は第1比較例を示す図であり、図3は第1比較例として従来の三相インバータのスイッチングパターンと漏洩電流とを示す図、図4は図3の三相インバータの各相電圧およびコモンモード電圧の波形図を示す図、図5は図3の三相インバータにおける磁束鎖交数ベクトルの軌跡を示す図である。また、図6は三相インバータにおける電圧ベクトル及び磁束鎖交数ベクトルを示す図である。
 さらに、図7、図8は第2比較例を示す図であり、図7は第2比較例による三相インバータのスイッチングパターンと漏洩電流とを示す図、図8は図7の三相インバータの各相電圧およびコモンモード電圧の波形図を示す図である。図9は、この発明の実施の形態1による三相インバータにおける磁束鎖交数ベクトルの軌跡を示す図であり、第2比較例による磁束鎖交数ベクトルの軌跡を示す図でもある。
 また、図10は実施の形態1における変形例である三相インバータのスイッチングパターンを示す図である。さらに図11、図12は第3比較例を示す図であり、図11は第3比較例による三相インバータのスイッチングパターンと漏洩電流とを示す図、図12は図11の三相インバータの各相電圧およびコモンモード電圧の波形図を示す図である。図13は、この発明の実施の形態1の変形例による三相インバータにおける磁束鎖交数ベクトルの軌跡を示す図であり、第3比較例による磁束鎖交数ベクトルの軌跡を示す図でもある。
Embodiment 1 FIG.
FIGS. 1 to 13 are diagrams for explaining the first embodiment for carrying out the present invention. FIG. 1 is a configuration diagram showing a configuration of a three-phase inverter, and FIG. 2 is a diagram showing a switching pattern of the three-phase inverter. It is. 3 to 5 are diagrams showing a first comparative example, FIG. 3 is a diagram showing a switching pattern and a leakage current of a conventional three-phase inverter as a first comparative example, and FIG. 4 is a three-phase diagram of FIG. FIG. 5 is a diagram showing a waveform diagram of each phase voltage and common mode voltage of the inverter, and FIG. 5 is a diagram showing a locus of flux linkage vector in the three-phase inverter of FIG. FIG. 6 is a diagram showing a voltage vector and a flux linkage vector in a three-phase inverter.
7 and 8 are diagrams showing a second comparative example, FIG. 7 is a diagram showing a switching pattern and a leakage current of the three-phase inverter according to the second comparative example, and FIG. 8 is a diagram of the three-phase inverter of FIG. It is a figure which shows the wave form diagram of each phase voltage and a common mode voltage. FIG. 9 is a diagram showing the trajectory of the flux linkage number vector in the three-phase inverter according to Embodiment 1 of the present invention, and is also a diagram showing the trajectory of the flux linkage number vector according to the second comparative example.
FIG. 10 is a diagram showing a switching pattern of a three-phase inverter which is a modification of the first embodiment. 11 and 12 are diagrams showing a third comparative example, FIG. 11 is a diagram showing a switching pattern and a leakage current of a three-phase inverter according to the third comparative example, and FIG. 12 is a diagram showing each of the three-phase inverters of FIG. It is a figure which shows the wave form diagram of a phase voltage and a common mode voltage. FIG. 13 is a diagram showing the trajectory of the flux linkage number vector in the three-phase inverter according to the modification of the first embodiment of the present invention, and is also a diagram showing the trajectory of the flux linkage number vector according to the third comparative example.
 図1において、電力変換装置としての三相インバータ10は、スイッチング回路としてのスイッチング部1と、スイッチング部1を制御する制御装置としての第1制御部7と、補助装置20とを有する。
 スイッチング部1は、直流側が平滑コンデンサ2に、交流側が配線5を介して交流側機器としての交流電動機6に接続されている。スイッチング部1には平滑コンデンサ2を介して図示しないコンバータから直流電圧が供給される。なお、配線5はインダクタと抵抗とのインピーダンスで表現している。スイッチング部1の上アーム及び下アーム1a~1f(詳細後述)には、放熱フィン3が設けられている。そして、放熱フィン3と上アーム及び下アーム1a~1fとの間に浮遊容量4が存在する。
In FIG. 1, a three-phase inverter 10 as a power conversion device includes a switching unit 1 as a switching circuit, a first control unit 7 as a control device that controls the switching unit 1, and an auxiliary device 20.
The switching unit 1 has a DC side connected to the smoothing capacitor 2 and an AC side connected to an AC motor 6 as an AC side device via a wiring 5. A DC voltage is supplied to the switching unit 1 from a converter (not shown) via a smoothing capacitor 2. The wiring 5 is expressed by the impedance between the inductor and the resistor. Radiating fins 3 are provided on the upper arm and lower arms 1a to 1f (details will be described later) of the switching unit 1. A stray capacitance 4 exists between the radiation fin 3 and the upper and lower arms 1a to 1f.
 スイッチング部1は、U,V,W相の3相分のレグにて構成されている。U相は上アーム1aと下アーム1bとが直列に接続されたレグにて構成され、V相は上アーム1cと下アーム1dとが直列に接続されたレグにて構成され、W相は上アーム1eと下アーム1fとが直列に接続されたレグにて構成され、各アームの接続点に配線5を介して三相の交流電動機6が接続される。各アーム1a~1fは、スイッチング素子としてのIGBT(Insulated Gate Bipolar Transistor)やMOSFET等のトランジスタとこれに逆並列に接続されたダイオードを有し、トランジスタのスイッチング動作により交流電動機6に与える電圧を変化させる。第1制御部7は図示しないマイクロプロセッサを有し、第1制御部7によるスイッチング部1の制御はマイクロプロセッサに組み込まれたプログラム上で行われる。 The switching unit 1 is composed of three-phase legs of U, V, and W phases. The U phase is composed of a leg in which an upper arm 1a and a lower arm 1b are connected in series, the V phase is composed of a leg in which an upper arm 1c and a lower arm 1d are connected in series, and the W phase is an upper phase. The arm 1e and the lower arm 1f are configured by legs connected in series, and a three-phase AC motor 6 is connected to a connection point of each arm via a wiring 5. Each arm 1a to 1f has a transistor such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET as a switching element and a diode connected in reverse parallel thereto, and changes the voltage applied to the AC motor 6 by the switching operation of the transistor. Let The first control unit 7 includes a microprocessor (not shown), and the control of the switching unit 1 by the first control unit 7 is performed on a program incorporated in the microprocessor.
 補助装置20は、第1インピーダンス21、第2インピーダンス22、補助回路23、および補助制御装置としての第2制御部24を有する。補助回路23は、第1スイッチとしての上アーム23aと第2スイッチとしての下アーム23bとが直列に接続されたレグで構成され、スイッチング部1の各レグと並列に接続される。各アーム23a、23bは、IGBTやMOSFET等のトランジスタとこれに逆並列に接続されたダイオードを有する。そして、上アーム23aと下アーム23bとの接続点とアースとの間に、第1インピーダンス21と第2インピーダンス22との直列接続体が模擬インピーダンスとして挿入されている。
 なお、第1インピーダンス21は配線5の1相分を模擬するインピーダンスであり、第2インピーダンス22は交流電動機6の1相分を模擬するインピーダンスである。
 第2制御部24は図示しないマイクロプロセッサを有する。第2制御部24による補助回路23の制御はマイクロプロセッサに組み込まれたプログラム上で行われる。
The auxiliary device 20 includes a first impedance 21, a second impedance 22, an auxiliary circuit 23, and a second control unit 24 as an auxiliary control device. The auxiliary circuit 23 includes a leg in which an upper arm 23 a as a first switch and a lower arm 23 b as a second switch are connected in series, and is connected in parallel with each leg of the switching unit 1. Each arm 23a, 23b has a transistor such as an IGBT or a MOSFET and a diode connected in antiparallel thereto. A series connection body of the first impedance 21 and the second impedance 22 is inserted as a simulated impedance between a connection point between the upper arm 23a and the lower arm 23b and the ground.
The first impedance 21 is an impedance that simulates one phase of the wiring 5, and the second impedance 22 is an impedance that simulates one phase of the AC motor 6.
The second control unit 24 has a microprocessor (not shown). The control of the auxiliary circuit 23 by the second control unit 24 is performed on a program incorporated in the microprocessor.
 次に三相インバータ10の動作について説明する。図2はある1サイクルTにおける各相、即ち、スイッチング部1のU,V,W相および補助回路23のレグであるX相における各相のスイッチングパターンである。
 図2のスイッチングパターンによる動作の説明に先立ち、第1比較例として、補助回路23のない従来の一般的な三相インバータを交流電動機に接続した場合の動作を説明する。例えば、ある1サイクルTにおいて、U,V,W各相の電圧が図3に示すようなスイッチングパターンで制御される。図3において、期間t1、t7は零ベクトル期間と称され、交流電動機の線間には電圧が発生しない。まず、第1の零ベクトル期間として、下アームが全てオンとなる零ベクトル期間t1を1サイクルTの始めと終わりの2箇所に設定し、1サイクルTの中央部(先のT/2期間の終わりと後のT/2期間の始め)に第2の零ベクトル期間として、上アームが全てオンとなる零ベクトル期間t7を2期間分設定する。ここで、零ベクトル期間t1と零ベクトル期間t7とは同じ長さにする。
Next, the operation of the three-phase inverter 10 will be described. FIG. 2 shows the switching pattern of each phase in a certain cycle T, that is, the U, V, W phase of the switching unit 1 and the X phase which is the leg of the auxiliary circuit 23.
Prior to the description of the operation by the switching pattern of FIG. 2, the operation when a conventional general three-phase inverter without the auxiliary circuit 23 is connected to an AC motor will be described as a first comparative example. For example, in one cycle T, the voltage of each phase of U, V, and W is controlled with a switching pattern as shown in FIG. In FIG. 3, periods t1 and t7 are called zero vector periods, and no voltage is generated between the lines of the AC motor. First, as the first zero vector period, the zero vector period t1 in which all lower arms are turned on is set at two places, the beginning and end of one cycle T, and the center part of the one cycle T (the previous T / 2 period As the second zero vector period at the end and the beginning of the subsequent T / 2 period, two zero vector periods t7 in which all the upper arms are turned on are set. Here, the zero vector period t1 and the zero vector period t7 have the same length.
 このときのU,V,W各相の電圧と、交流電動機の中性点の電位すなわちコモンモード電圧を図4に示す。なお、直流電源の電圧を1.0とする。三相インバータのスイッチング動作にともない、コモンモード電圧は、図4に示すように0と1.0との間を変化する。なお、交流電動機に与えられる磁束鎖交数ベクトルの軌跡は、当該1サイクルにおいて、図5に示すようになり、1サイクルの始点Stにおいて零ベクトルφ0が与えられ、以下φ1,φ2、φ7,φ2,φ1,φ0(但し、φ0及びφ7は零ベクトル)の順に与えられ、始点St及び終点Endは一つの円軌跡Cr上にある。なお、図5において、零ベクトルφ0及びφ7を黒丸で表している。
 また、三相インバータにおける電圧ベクトルVn及び磁束鎖交数ベクトルφnを図6に示す。各相のアームを構成するトランジスタは1サイクルに合計6回スイッチング動作を行い、スイッチング動作時に、図3に示すような漏洩電流が、交流電動機及び三相インバータの対地浮遊容量を介して交流電動機の中性点と三相インバータとの間に流れ、コモンモードノイズが発生する。
FIG. 4 shows the voltages of the U, V, and W phases and the potential at the neutral point of the AC motor, that is, the common mode voltage. Note that the voltage of the DC power supply is 1.0. With the switching operation of the three-phase inverter, the common mode voltage changes between 0 and 1.0 as shown in FIG. The trajectory of the flux linkage vector given to the AC motor is as shown in FIG. 5 in the one cycle, and the zero vector φ0 is given at the start point St of one cycle, and thereafter φ1, φ2, φ7, φ2 , Φ1, φ0 (where φ0 and φ7 are zero vectors) in this order, and the start point St and the end point End are on one circular locus Cr. In FIG. 5, zero vectors φ0 and φ7 are represented by black circles.
FIG. 6 shows the voltage vector Vn and the flux linkage number vector φn in the three-phase inverter. The transistors constituting the arm of each phase perform switching operation six times in one cycle, and during the switching operation, the leakage current as shown in FIG. 3 is caused by the AC motor and the three-phase inverter through the ground floating capacity of the AC motor. Flows between the neutral point and the three-phase inverter, generating common mode noise.
 このような漏洩電流を低減するために、例えば、背景技術として述べたように、インバータのスイッチングパターンを変更することにより、漏洩電流を低減する方法が提案されている。具体的には、例えば図7に示す第2比較例のように、あるサイクルTにおいて最もオン時間の長い相であるU相(第1相)のスイッチング動作をずらして最もオン時間が短い相であるW相(第2相)のスイッチング動作と逆とすることにより、漏洩電流を打ち消すようにするものである。図7に示したスイッチングパターンは次のようにして決められる。なお、この第2比較例は、この実施の形態1による三相インバータ10のスイッチング部1のU,V,W相のスイッチングパターン(図2参照)と同じである。 In order to reduce such leakage current, for example, as described in the background art, a method of reducing leakage current by changing the switching pattern of the inverter has been proposed. Specifically, for example, as in the second comparative example shown in FIG. 7, the switching operation of the U phase (first phase), which is the phase with the longest on time in a certain cycle T, is shifted to the phase with the shortest on time. By reversing the switching operation of a certain W phase (second phase), the leakage current is canceled out. The switching pattern shown in FIG. 7 is determined as follows. The second comparative example is the same as the U, V, W phase switching pattern (see FIG. 2) of the switching unit 1 of the three-phase inverter 10 according to the first embodiment.
 まず、図3に示すものと同様のスイッチングパターンを仮設定する。次に、上記零ベクトル期間t1及びt7がなくなるように、U相のパルス発生期間を図2のようにずらし、U相のオフ期間がW相のオン期間と逆になるようにする。すなわち、オン期間が最も長い相であるU相におけるスイッチングオフのタイミングと、オン期間が最も短い相であるW相におけるスイッチングオンのタイミングとを合わせ、かつU相におけるスイッチングオンのタイミングと、W相におけるスイッチングオフのタイミングとを合わせる。このようにスイチングパターンを変更してスイッチング部1のスイッチングを制御する。
 ここで、三相インバータの出力電圧は平均値として変化しない。
First, a switching pattern similar to that shown in FIG. 3 is temporarily set. Next, the U-phase pulse generation period is shifted as shown in FIG. 2 so that the zero vector periods t1 and t7 are eliminated, so that the U-phase off period is opposite to the W-phase on period. That is, the switching-off timing in the U phase that is the phase with the longest on period and the switching on timing in the W phase that is the phase with the shortest on period are combined, and the switching on timing in the U phase and the W phase And the switching-off timing at. In this way, switching of the switching unit 1 is controlled by changing the switching pattern.
Here, the output voltage of the three-phase inverter does not change as an average value.
 このように、一つ相のスイッチングパターンをずらすことにより、U相とW相のスイッチング(のタイミング)が同期し、かつ互いに逆方向にスイッチングする。このため、U相及びW相のスイッチングにともなう電位変動が相殺され、漏洩電流も打ち消される。漏洩電流は、図7に示すようにV相のスイッチング動作のときに発生するのみとなり、第1比較例と比して1/3に低減される。 Thus, by shifting the switching pattern of one phase, the switching (timing) of the U phase and the W phase is synchronized and switched in opposite directions. For this reason, potential fluctuations associated with the switching of the U phase and the W phase are offset, and the leakage current is also canceled. As shown in FIG. 7, the leakage current is only generated during the V-phase switching operation, and is reduced to 1/3 compared to the first comparative example.
 この第2比較例によるU,V,W各相の電圧とコモンモード電圧を図8に示す。図8において、コモンモード電圧は直流電源の電圧を1.0とするとき、V相のスイッチング動作により約0.66と約0.33との間を変化し、電圧変動は第1比較例と比して1/3に低減される。
 図7に示す第2比較例によるスイッチングパターンでスイッチングしたときに交流電動機に与えられる磁束鎖交数ベクトルの軌跡は、この発明の実施の形態1による三相インバータ10の場合と同じであり、図9に示す。
 図9において、1サイクルの始点Stから順に磁束鎖交数ベクトルφ1、φ2,φ4、φ2,φ1の順に変化し、終点Endにおいては、図5に示した第1比較例の三相インバータにおける終点Endと同じになる。
FIG. 8 shows the voltages of the U, V, and W phases and the common mode voltage according to the second comparative example. In FIG. 8, when the voltage of the DC power supply is 1.0, the common mode voltage changes between about 0.66 and about 0.33 by the V-phase switching operation, and the voltage fluctuation is the same as that of the first comparative example. In comparison, it is reduced to 1/3.
7 is the same as that of the three-phase inverter 10 according to the first embodiment of the present invention, and the locus of the flux linkage number vector given to the AC motor when switching is performed with the switching pattern according to the second comparative example shown in FIG. 9 shows.
In FIG. 9, the flux linkage vector φ1, φ2, φ4, φ2, φ1 changes in order from the start point St of one cycle, and at the end point End, the end point in the three-phase inverter of the first comparative example shown in FIG. Same as End.
 第2比較例では、依然としてV相のスイッチングによる漏洩電流が残る。この実施の形態においては、補助回路23を備えた補助装置20を設けて、第2制御部24により補助回路23のレグ(X相)をスイッチング制御する。
 図2に示すように、三相インバータ10のスイッチング部1のU,V,W相は、第1制御部7により、上述した第2比較例と同様のスイッチングパターンで制御し、補助回路23によるX相は第2制御部24により以下のように制御する。即ち、補助回路23の上アーム23a及び下アーム23bが、第3相であるV相のスイッチングと同期してV相のスイッチングパターンと逆のパターンでスイッチングされる。これにより、V相のスイッチングによる漏洩電流とX相のスイッチングによる漏洩電流とが打ち消し合い、交流電動機6を介して流れる漏洩電流がほぼ完全に打ち消されて無くなる。
In the second comparative example, leakage current due to V-phase switching still remains. In this embodiment, the auxiliary device 20 including the auxiliary circuit 23 is provided, and the second control unit 24 performs switching control of the leg (X phase) of the auxiliary circuit 23.
As shown in FIG. 2, the U, V, and W phases of the switching unit 1 of the three-phase inverter 10 are controlled by the first control unit 7 with the same switching pattern as in the second comparative example described above, and the auxiliary circuit 23 The X phase is controlled by the second control unit 24 as follows. That is, the upper arm 23a and the lower arm 23b of the auxiliary circuit 23 are switched in a pattern opposite to the V-phase switching pattern in synchronization with the V-phase switching that is the third phase. Thereby, the leakage current due to the V-phase switching and the leakage current due to the X-phase switching cancel each other, and the leakage current flowing through the AC motor 6 is almost completely canceled out.
 また、変形例として、スイッチングパターンを、図10に示すようにしてもよい。すなわち、図10において、ある1サイクルTにおける最もオン時間が短い相であるW相(第2相)のスイッチング動作をずらして、最もオン時間の長い相であるU相(第1相)のスイッチング動作と逆にしている。さらに、補助回路23によるX相は同様にV相のスイッチングと同期してV相と逆のスイッチングパターンでスイッチングする。
 この場合も、W相のスイッチングによる漏洩電流とU相のスイッチングによる漏洩電流とが打ち消し合って、さらに、V相のスイッチングによる漏洩電流とX相のスイッチングによる漏洩電流とが打ち消し合い、交流電動機6を介する漏洩電流は、ほぼ流れない。
As a modification, the switching pattern may be as shown in FIG. That is, in FIG. 10, the switching operation of the W phase (second phase) that is the phase with the shortest on time in one cycle T is shifted to switch the U phase (first phase) that is the phase with the longest on time. The operation is reversed. Further, the X phase by the auxiliary circuit 23 is similarly switched in a switching pattern opposite to the V phase in synchronization with the V phase switching.
Also in this case, the leakage current due to the W-phase switching and the leakage current due to the U-phase switching cancel each other, and further, the leakage current due to the V-phase switching and the leakage current due to the X-phase switching cancel each other. Almost no leakage current flows through.
 図10に示す変形例に対する比較例である第3比較例を図11に示す。第3比較例は、図10のスイッチングパターンのX相がなく、U,V,W相のみのスイッチングパターンである。この場合、交流電動機とアースとの間のコモンモード電圧は、図12に示すようになり、第1比較例と比して電圧変動は1/3に低減され、図11に示す漏洩電流も第1比較例と比して1/3に低減されるが、残存している。
 なお、このときの磁束鎖交数ベクトルの軌跡は、図10に示す変形例と図11に示す第3比較例とで同じで、図13に示すようになり、1サイクルの始点Stと終点Endは図5あるいは図9に示したものと同じ円軌跡Cr上の同じ位置にある。
FIG. 11 shows a third comparative example which is a comparative example for the modification shown in FIG. The third comparative example does not have the X phase of the switching pattern of FIG. 10 and is a switching pattern of only the U, V, and W phases. In this case, the common mode voltage between the AC motor and the ground is as shown in FIG. 12, the voltage fluctuation is reduced to 1/3 as compared with the first comparative example, and the leakage current shown in FIG. Although it is reduced to 1/3 as compared with one comparative example, it remains.
The trajectory of the flux linkage vector at this time is the same in the modified example shown in FIG. 10 and the third comparative example shown in FIG. 11, as shown in FIG. 13, and the start point St and end point End of one cycle Are at the same position on the same circular locus Cr as shown in FIG.
 このように、三相インバータにおいて、ある1相のスイッチングパターンをずらすという簡便な方式により、漏洩電流を低減することができるという効果がある。また、図5、図9及び図12に示したように、三相インバータの出力電圧つまり磁束鎖交数ベクトルの始点Stと終点Endとは、変化しないため、所望の電圧を交流電動機6に与えることができるという効果がある。またスイッチングパターンをずらすのみであることから、出力電圧の制限が少ないという効果がある。また補助回路23の動作により、交流電動機6を介して流れる漏洩電流をほぼ完全に、すなわち充分なレベルまで低減することができる。 Thus, in a three-phase inverter, there is an effect that leakage current can be reduced by a simple method of shifting a certain one-phase switching pattern. Further, as shown in FIGS. 5, 9, and 12, the output voltage of the three-phase inverter, that is, the start point St and the end point End of the flux linkage number vector do not change, so that a desired voltage is given to the AC motor 6. There is an effect that can be. Further, since only the switching pattern is shifted, there is an effect that the restriction on the output voltage is small. Further, the operation of the auxiliary circuit 23 can reduce the leakage current flowing through the AC motor 6 almost completely, that is, to a sufficient level.
 また、この実施の形態では、補助回路23には、第1インピーダンス21および第2インピーダンス22による模擬インピーダンスが接続されている。特に、第2インピーダンス22は負荷である交流電動機6の浮遊インピーダンスを表現するもので、一般的に高いインピーダンスとなる。従って、補助回路23が出力する電流は、スイッチング部1が出力する電流よりも充分に小さい。このため、補助回路23を構成する上アーム23a、下アーム23bは、電流容量の小さい素子で構成することができ、小型で安価な補助回路23が実現できる。 In this embodiment, the auxiliary circuit 23 is connected to a simulated impedance by the first impedance 21 and the second impedance 22. In particular, the second impedance 22 expresses the floating impedance of the AC motor 6 as a load, and is generally a high impedance. Therefore, the current output from the auxiliary circuit 23 is sufficiently smaller than the current output from the switching unit 1. For this reason, the upper arm 23a and the lower arm 23b constituting the auxiliary circuit 23 can be configured by elements having a small current capacity, and a small and inexpensive auxiliary circuit 23 can be realized.
 なお、図2で示したスイッチングパターンにおいて、U相が全てオンしてW相が全てオフするようなスイッチングパターンでも良い。この場合も同様に、V相のスイッチングと同期してV相のスイッチングパターンと逆のパターンでX相のスイッチングを行うことで、同様の効果が得られる。 Note that the switching pattern shown in FIG. 2 may be a switching pattern in which all the U phases are turned on and all the W phases are turned off. In this case as well, the same effect can be obtained by performing the X-phase switching in a pattern opposite to the V-phase switching pattern in synchronization with the V-phase switching.
実施の形態2.
 図14~図18は、実施の形態2を示すものであり、図14は、この実施の形態2による三相インバータ30の構成を示す構成図、図15はスイッチング部1の1相分を示す図であり、特に図15(a)は図中矢印で示す正の電流が流れるケース、図15(b)は負の電流が流れるケースである。図16は三相インバータのスイッチングパターンにおけるデッドタイム期間を説明するための図、図17はこの実施の形態2による三相インバータ30のスイッチングパターンを示す図である。
 図14に示すように、三相インバータ30において、スイッチング部1を制御する制御装置としての第3制御部37が設けられている。その他の構成については、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
Embodiment 2. FIG.
14 to 18 show the second embodiment. FIG. 14 is a block diagram showing the configuration of the three-phase inverter 30 according to the second embodiment. FIG. 15 shows one phase of the switching unit 1. FIG. In particular, FIG. 15A shows a case where a positive current indicated by an arrow flows, and FIG. 15B shows a case where a negative current flows. FIG. 16 is a diagram for explaining a dead time period in the switching pattern of the three-phase inverter, and FIG. 17 is a diagram showing a switching pattern of the three-phase inverter 30 according to the second embodiment.
As shown in FIG. 14, the three-phase inverter 30 is provided with a third control unit 37 as a control device that controls the switching unit 1. Since other configurations are the same as those of the first embodiment shown in FIG. 1, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
 一般的にインバータのスイッチングにおいて、図15に示した上アーム1aと下アーム1bとが同時に導通することによる短絡電流の発生を防止するためにデッドタイム期間Tdを設定する。ここでデッドタイム期間Tdの各相電圧は電流の向きに依存する。図15(a)に示すように、電流極性が正の時は、デッドタイム期間Tdに下アーム1b側のダイオードが導通して低電位側の電圧が出力される。一方図15(b)に示すように、電流極性が負の時は、デッドタイム期間Tdに上アーム1a側のダイオードが導通し、高電位側の電圧が出力される。 Generally, in inverter switching, a dead time period Td is set in order to prevent occurrence of a short-circuit current due to simultaneous conduction of the upper arm 1a and the lower arm 1b shown in FIG. Here, each phase voltage in the dead time period Td depends on the direction of the current. As shown in FIG. 15A, when the current polarity is positive, the diode on the lower arm 1b side conducts during the dead time period Td, and the low potential side voltage is output. On the other hand, as shown in FIG. 15B, when the current polarity is negative, the diode on the upper arm 1a side conducts during the dead time period Td, and the high potential side voltage is output.
 仮に上記実施の形態1によるスイッチングパターンにデッドタイム期間Tdを設定したときの実際の出力電圧を、図16に基づいて説明する。図において、U相、W相は図15(a)のケースであり、電流極性が正である。このとき下アーム1b,1fから上アーム1a,1eへそれぞれオン状態を切り替えるときにデッドタイム期間Tdが存在するため、図中の斜線部A1,A3の領域で、電圧のパルスパターンが欠けて、スイッチングパターン通りの矩形の電圧波形とならない。なお上アーム1a,1eから下アーム1b,1fに切り替えるときはデッドタイム期間Tdに入ると即座に下アーム1b,1f側のダイオードが自動的に導通するため、上記パルスパターンの欠けは発生しない。 The actual output voltage when the dead time period Td is set in the switching pattern according to the first embodiment will be described with reference to FIG. In the figure, the U phase and the W phase are the case of FIG. 15A, and the current polarity is positive. At this time, since there is a dead time period Td when the ON state is switched from the lower arms 1b and 1f to the upper arms 1a and 1e, the voltage pulse pattern is missing in the shaded areas A1 and A3 in the figure, The voltage waveform is not rectangular according to the switching pattern. When switching from the upper arms 1a, 1e to the lower arms 1b, 1f, the diodes on the lower arms 1b, 1f are automatically turned on as soon as the dead time period Td is entered, so that the pulse pattern is not lost.
 一方、V相は図15(b)のケースであり、電流極性が負である。このとき上アーム1cから下アーム1dへオン状態を切り替えるときにデッドタイム期間Tdが存在するため、図中の斜線部A2の電圧の領域で、電圧のパルスパターンが余分に発生して、スイッチングパターン通りの矩形の電圧波形とならない。なお下アーム1dから上アーム1cに切り替えるときはデッドタイム期間Tdに入ると即座に上アーム1c側のダイオードが自動的に導通するため、上記パルスパターンの余分な発生はない。 On the other hand, the V phase is the case of FIG. 15B, and the current polarity is negative. At this time, there is a dead time period Td when the ON state is switched from the upper arm 1c to the lower arm 1d. Therefore, an extra voltage pulse pattern is generated in the voltage region of the shaded portion A2 in the figure, and the switching pattern It does not become a rectangular voltage waveform. When switching from the lower arm 1d to the upper arm 1c, the diode on the upper arm 1c side is automatically turned on as soon as the dead time period Td is entered, so that the pulse pattern is not excessively generated.
 このようにデッドタイム期間Tdの存在によりパルスパターンによる実際の出力電圧にずれが生じるため、漏洩電流を完全に打ち消すことができない。そこで、この実施の形態2では、第3制御部37は、上記デッドタイム期間Tdの影響をなくすために、図17に示すように、電流の向きに応じてパルスパターンを補正する。U相とW相については斜線部B1、B3で示すデッドタイム期間Tdに相当する幅分だけオン時間を長くする。すなわちデッドタイム期間Tdだけオンのタイミングを早くする。V相については斜線部B2で示すデッドタイム期間Tdに相当する幅分だけオン時間を短くする。すなわちデッドタイム期間Tdだけオフのタイミングを早くする。なお、各斜線部B1,B2,B3の幅と斜線部A1,A2,A3の幅は全て同じであり、デッドタイム期間Tdに相当する。
 以上のように、上アームと下アームとが同時にオン状態とならないようにデッドタイム期間Tdを設定し、このデッドタイム期間Tdに基づき、上アーム及び下アームに流れる電流の向きに応じて図2に示すスイッチングパターンを図17に示すように補正する。
As described above, since the actual output voltage due to the pulse pattern is shifted due to the presence of the dead time period Td, the leakage current cannot be completely canceled. Therefore, in the second embodiment, the third control unit 37 corrects the pulse pattern according to the direction of the current as shown in FIG. 17 in order to eliminate the influence of the dead time period Td. For the U phase and the W phase, the ON time is increased by the width corresponding to the dead time period Td indicated by the hatched portions B1 and B3. That is, the ON timing is advanced by the dead time period Td. For the V phase, the ON time is shortened by a width corresponding to the dead time period Td indicated by the hatched portion B2. That is, the OFF timing is advanced by the dead time period Td. The widths of the hatched portions B1, B2, and B3 and the widths of the hatched portions A1, A2, and A3 are all the same and correspond to the dead time period Td.
As described above, the dead time period Td is set so that the upper arm and the lower arm are not simultaneously turned on. Based on the dead time period Td, the dead time period Td is set according to the direction of the current flowing in the upper arm and the lower arm. Is corrected as shown in FIG.
 これにより実際に出力電圧が変化するタイミングがU,V,W,X相間で合致するため、更なる漏洩電流の低減ができるという効果がある。 This makes it possible to further reduce the leakage current because the timing at which the output voltage actually changes matches between the U, V, W, and X phases.
 また、補助回路23には、第1インピーダンス21および第2インピーダンス22による模擬インピーダンスが接続されている。特に、第2インピーダンス22は負荷である交流電動機6の浮遊インピーダンスを表現するもので、一般的に高いインピーダンスとなる。従って、補助回路23が出力する電流は、スイッチング部1が出力する電流よりも充分に小さい。また補助回路23では、スイッチングしたタイミングのみ高周波振動を伴う電流が流れ、その後は電流が流れない。
 このため、補助回路23の場合、スイッチング部1と異なり、電流極性に応じてデッドタイム期間Tdの出力電圧を考慮してスイッチングパターンを決定する必要は無い。即ち、補助回路23の上アーム23a、下アーム23bのスイッチングを、図18に示すように行うことにより、X相に所望の出力電圧が得られる。
The auxiliary circuit 23 is connected to a simulated impedance by the first impedance 21 and the second impedance 22. In particular, the second impedance 22 expresses the floating impedance of the AC motor 6 as a load, and is generally a high impedance. Therefore, the current output from the auxiliary circuit 23 is sufficiently smaller than the current output from the switching unit 1. In the auxiliary circuit 23, a current with high-frequency vibration flows only at the switching timing, and no current flows thereafter.
For this reason, in the case of the auxiliary circuit 23, unlike the switching unit 1, it is not necessary to determine the switching pattern in consideration of the output voltage in the dead time period Td according to the current polarity. That is, by switching the upper arm 23a and the lower arm 23b of the auxiliary circuit 23 as shown in FIG. 18, a desired output voltage can be obtained for the X phase.
 本実施の形態では、各アーム1a~1fを構成するスイッチング素子をトランジスタとしてIGBTを図示して説明したが、MOSFET等他の半導体スイッチング素子でも良い。 In the present embodiment, the IGBT is illustrated and described using the switching elements constituting the arms 1a to 1f as transistors, but other semiconductor switching elements such as MOSFETs may be used.
 上記各実施の形態においては電力変換装置がインバータである場合について示したが、コンバータであっても電源と負荷が入れ替わり電力の伝達方向が変わるのみであり、同様の効果を奏する。 In each of the above embodiments, the case where the power conversion device is an inverter has been shown. However, even if it is a converter, the power source and the load are switched, and the power transmission direction is changed, and the same effect can be obtained.
 なお、本発明は、その発明の範囲内において、上述した各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変更、省略することが可能である。 In the present invention, within the scope of the invention, the above-described embodiments can be freely combined, or each embodiment can be appropriately changed or omitted.

Claims (4)

  1.  スイッチング回路と、該スイッチング回路を制御する制御装置と、補助装置とを有する電力変換装置であって、
     前記スイッチング回路は、それぞれ上アーム及び下アームを有する3つのレグが三相ブリッジ接続され、交流側が接続線を介して交流側機器に接続されるものであり、
     前記制御装置は、1サイクル中に前記上アームが全てオンとなる第1の零ベクトル期間と前記下アームが全てオンとなる第2の零ベクトル期間とが同じ長さとなるように各相のスイッチングパターンを仮設定し、前記仮設定した各相のスイッチングパターンにおいてオン期間が最も長い第1相のスイッチングパターンまたはオン期間が最も短い第2相のスイッチングパターンをずらすことにより前記第1及び第2の零ベクトル期間をなくすようにスイッチングパターンを変更し前記スイッチング回路のスイッチング動作を制御するものであり、
     前記補助装置は、補助回路と模擬インピーダンスと補助制御装置とを有するものであって、
     前記補助回路は、第1スイッチ及び第2スイッチが直列接続されて成り、その両端が前記レグと並列に接続され、
     前記模擬インピーダンスは、前記接続線と前記交流側機器とのインピーダンスを模擬したものであって、前記第1スイッチと前記第2スイッチとの接続部と、アースとの間に挿入され、
     前記補助制御装置は、前記スイッチング回路の前記第1相及び第2相を除いた残りの第3相のスイッチング動作と逆になるように、前記補助回路のスイッチング動作を制御するものである
    電力変換装置。
    A power conversion device having a switching circuit, a control device for controlling the switching circuit, and an auxiliary device,
    In the switching circuit, three legs each having an upper arm and a lower arm are connected in a three-phase bridge, and the AC side is connected to an AC side device via a connection line.
    The control device switches each phase so that a first zero vector period in which all the upper arms are turned on and a second zero vector period in which all the lower arms are turned on have the same length in one cycle. Temporarily setting a pattern and shifting the first phase switching pattern of the first phase having the longest on period or the switching pattern of the second phase having the shortest on period in the temporarily set switching pattern of each phase. The switching pattern is changed so as to eliminate the zero vector period, and the switching operation of the switching circuit is controlled.
    The auxiliary device has an auxiliary circuit, a simulated impedance, and an auxiliary control device,
    The auxiliary circuit is composed of a first switch and a second switch connected in series, and both ends thereof are connected in parallel to the leg,
    The simulated impedance is a simulation of the impedance of the connection line and the AC side device, and is inserted between the connection between the first switch and the second switch and the ground,
    The auxiliary control device controls the switching operation of the auxiliary circuit so as to be opposite to the switching operation of the remaining third phase excluding the first phase and the second phase of the switching circuit. apparatus.
  2.  前記制御装置は、前記第1相におけるスイッチングオフのタイミングと、前記第2相におけるスイッチングオンのタイミングとを合わせ、かつ前記第1相におけるスイッチングオンのタイミングと、前記第2相におけるスイッチングオフのタイミングとを合わせるものである
    請求項1に記載の電力変換装置。
    The control device combines the switching-off timing in the first phase with the switching-on timing in the second phase, and the switching-on timing in the first phase and the switching-off timing in the second phase. The power conversion device according to claim 1, wherein
  3.  前記制御装置は、前記上アームと前記下アームとが同時にオン状態とならないようにデッドタイム期間を設定し、前記デッドタイム期間に基づき前記上アーム及び前記下アームに流れる電流の向きに応じて前記変更されたスイッチングパターンを補正するものである
    請求項1または請求項2に記載の電力変換装置。
    The control device sets a dead time period so that the upper arm and the lower arm are not simultaneously turned on, and the control device sets the dead time period according to the direction of the current flowing in the upper arm and the lower arm based on the dead time period. The power converter according to claim 1 or 2, which corrects the changed switching pattern.
  4.  前記補助制御装置は、前記第1スイッチと前記第2スイッチとが同時にオン状態とならないように、前記補助回路の出力電圧を変化させるタイミングの直前にデッドタイム期間を設けるものである
    請求項3に記載の電力変換装置。
    4. The auxiliary control device according to claim 3, wherein a dead time period is provided immediately before the timing of changing the output voltage of the auxiliary circuit so that the first switch and the second switch are not turned on simultaneously. The power converter described.
PCT/JP2013/070873 2012-11-07 2013-08-01 Power conversion device WO2014073247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014545593A JP5819010B2 (en) 2012-11-07 2013-08-01 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012245008 2012-11-07
JP2012-245008 2012-11-07

Publications (1)

Publication Number Publication Date
WO2014073247A1 true WO2014073247A1 (en) 2014-05-15

Family

ID=50684367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070873 WO2014073247A1 (en) 2012-11-07 2013-08-01 Power conversion device

Country Status (2)

Country Link
JP (1) JP5819010B2 (en)
WO (1) WO2014073247A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501620A (en) * 2016-01-08 2019-01-17 ニューフレイ リミテッド ライアビリティ カンパニー Software controlled electronic circuit for switching power supply to a three-phase motor
JP2019092344A (en) * 2017-11-16 2019-06-13 株式会社ジェイテクト Motor control device
JP2019092345A (en) * 2017-11-16 2019-06-13 株式会社ジェイテクト Motor control device
JP2019092343A (en) * 2017-11-16 2019-06-13 株式会社ジェイテクト Motor control device
CN111886790A (en) * 2018-03-19 2020-11-03 三菱电机株式会社 Power conversion device and rotary machine drive system
JP2021064989A (en) * 2019-10-10 2021-04-22 三星電子株式会社Samsung Electronics Co.,Ltd. PWM control inverter
JP2021106458A (en) * 2019-12-26 2021-07-26 サンデンホールディングス株式会社 Inverter device
DE112020007064T5 (en) 2020-04-10 2023-01-19 Mitsubishi Electric Corporation POWER CONVERSION DEVICE AND ROTARY MACHINE DRIVE SYSTEM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023760A (en) * 1996-07-04 1998-01-23 Hitachi Ltd Method for controlling voltage pwm converter
JP2009100505A (en) * 2007-10-15 2009-05-07 Fuji Electric Systems Co Ltd 3-level power converter
JP2012010596A (en) * 2006-03-31 2012-01-12 Fujitsu General Ltd Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023760A (en) * 1996-07-04 1998-01-23 Hitachi Ltd Method for controlling voltage pwm converter
JP2012010596A (en) * 2006-03-31 2012-01-12 Fujitsu General Ltd Power converter
JP2009100505A (en) * 2007-10-15 2009-05-07 Fuji Electric Systems Co Ltd 3-level power converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAVEENDE REDDY: "DTC SVPWM:Advanced Techniques for Reduced Common Mode Voltage", IJCEM INTERNATIONAL JOURNAL OF COMPUTATIONAL ENGINEERING & MANAGEMENT, vol. 15, no. 4, July 2012 (2012-07-01), pages 93 - 95 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501620A (en) * 2016-01-08 2019-01-17 ニューフレイ リミテッド ライアビリティ カンパニー Software controlled electronic circuit for switching power supply to a three-phase motor
JP2019092344A (en) * 2017-11-16 2019-06-13 株式会社ジェイテクト Motor control device
JP2019092345A (en) * 2017-11-16 2019-06-13 株式会社ジェイテクト Motor control device
JP2019092343A (en) * 2017-11-16 2019-06-13 株式会社ジェイテクト Motor control device
JP7054435B2 (en) 2017-11-16 2022-04-14 株式会社ジェイテクト Motor control device
CN111886790A (en) * 2018-03-19 2020-11-03 三菱电机株式会社 Power conversion device and rotary machine drive system
JP2021064989A (en) * 2019-10-10 2021-04-22 三星電子株式会社Samsung Electronics Co.,Ltd. PWM control inverter
JP7402009B2 (en) 2019-10-10 2023-12-20 三星電子株式会社 PWM control inverter
JP2021106458A (en) * 2019-12-26 2021-07-26 サンデンホールディングス株式会社 Inverter device
JP7394619B2 (en) 2019-12-26 2023-12-08 サンデン株式会社 inverter device
DE112020007064T5 (en) 2020-04-10 2023-01-19 Mitsubishi Electric Corporation POWER CONVERSION DEVICE AND ROTARY MACHINE DRIVE SYSTEM

Also Published As

Publication number Publication date
JPWO2014073247A1 (en) 2016-09-08
JP5819010B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5819010B2 (en) Power converter
JP5457449B2 (en) Power converter
WO2011033698A1 (en) Power converter
US10581342B2 (en) Three-level two-stage decoupled active NPC converter
JP6763487B2 (en) Drive power supply
US9203337B2 (en) Method for controlling a multiphase machine
US20120218801A1 (en) Current-source power converting apparatus
JP6984727B2 (en) Power converter and motor system
JP4622840B2 (en) AC / AC direct converter controller
JP2008236889A (en) Inverter device
WO2020255459A1 (en) Power conversion device
JP2020102933A (en) Switching power supply device and method for controlling the same
JP2022520864A (en) How to turn off power semiconductor switches in a bridge circuit, a bridge circuit, and an inverter that includes a bridge circuit
JP2008048537A (en) Ac-ac power conversion apparatus
JP5737268B2 (en) Power converter
JP6179652B2 (en) Power conversion device and power conversion method
JP6045203B2 (en) Motor drive device
JP6461439B1 (en) DC / DC converter
JP2021168534A (en) Power conversion device
JP2010252628A (en) Power converter
JP6705234B2 (en) Inverter control method
KR102195774B1 (en) Circuit for driving switching module of inveter and apparatus for driving swtiching module of inveter
JP2007267486A (en) Converter
JP2005218247A (en) Driving method of inverter and inverter
JP6552388B2 (en) Control apparatus and control method of current source power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853117

Country of ref document: EP

Kind code of ref document: A1