WO2014072067A1 - Katalysatorsystem zur behandlung von nox- und partikelhaltigem dieselabgas - Google Patents

Katalysatorsystem zur behandlung von nox- und partikelhaltigem dieselabgas Download PDF

Info

Publication number
WO2014072067A1
WO2014072067A1 PCT/EP2013/003374 EP2013003374W WO2014072067A1 WO 2014072067 A1 WO2014072067 A1 WO 2014072067A1 EP 2013003374 W EP2013003374 W EP 2013003374W WO 2014072067 A1 WO2014072067 A1 WO 2014072067A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen oxide
catalyst system
oxide storage
catalyst
particulate filter
Prior art date
Application number
PCT/EP2013/003374
Other languages
English (en)
French (fr)
Inventor
Michael Schiffer
Ulrich Goebel
Franz Dornhaus
Anke Schuler
Ruediger Hoyer
Marcus Pfeifer
Gerald Jeske
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Priority to EP13789490.3A priority Critical patent/EP2931405A1/de
Priority to KR1020157015583A priority patent/KR102088152B1/ko
Priority to JP2015541038A priority patent/JP6285945B2/ja
Priority to US14/442,022 priority patent/US9527036B2/en
Priority to CN201380058683.XA priority patent/CN104780997A/zh
Publication of WO2014072067A1 publication Critical patent/WO2014072067A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a catalyst system for the treatment of diesel exhaust gas, which comprises in the flow direction of the exhaust gas, a nitrogen oxide storage catalyst and a diesel particulate filter, both components having catalytically active noble metals.
  • the exhaust gas of diesel-powered vehicles also contains components resulting from incomplete combustion of the fuel in the combustion chamber of the cylinder.
  • HC residual hydrocarbons
  • these include particulate emissions, also referred to as “diesel soot” or “soot particles”.
  • Diesel soot particulate emissions
  • These are complex agglomerates of predominantly carbon-containing solid particles and an adherent liquid phase, which mostly consists of relatively long-chain hydrocarbon condensates.
  • the liquid phase adhering to the solid components is also referred to as "Soluble Organic Fraction SOP" or "Volatile Organic Fraction VOR”.
  • Particulate filters are used to remove particulate emissions from the exhaust gas of diesel vehicles.
  • Particulate filters are usually wall flow filter substrates, ie honeycomb bodies with mutually gas-tight closed inlet and outlet channels, which are bounded by porous walls and separated from each other.
  • the particle-containing exhaust gas flowing into the inflow channels is forced to pass through the porous wall by a gas-tight sealing plug located on the outlet side and exits from the wall flow filter substrate again from the outflow channels closed on the inflow side. This diesel soot is filtered out of the exhaust.
  • the filter may be coated with a catalyst layer capable of lowering the soot ignition temperature.
  • Particulate filters provided with a catalyst layer are also referred to as cDPF (catalyzed diesel particulate filter) and are described, for example, in SAE publication SAE 2005-01-1756.
  • nitrogen oxide storage catalysts for which the term "lean NOx trap" or LNT has become commonplace In the subsequent rich operating phase of the engine, they are stored in the form of nitrates and the resulting nitrogen oxides are converted with the reducing exhaust gas components on the storage catalytic converter to form nitrogen, carbon dioxide and water This method of operation is described, for example, in SAE Specification SAE 950809.
  • Suitable storage materials are, in particular, oxides, carbonates or hydroxides of magnesium, calcium, strontium, barium, the alkali metals, the rare earth metals or mixtures thereof. These connections Because of their basic properties, they are able to form nitrates with the acid nitrogen oxides of the exhaust gas and store them in this way. They are deposited to produce a large interaction surface with the exhaust gas in the highest possible dispersion on suitable carrier materials.
  • nitrogen oxide storage catalysts generally contain noble metals such as platinum, palladium and / or rhodium as catalytically active components. Their task is on the one hand to oxidize NO to N0 2 under lean conditions, as well as CO and HC to C0 2 and on the other hand during the rich operating phases in which the nitrogen oxide storage catalyst is regenerated to reduce released N0 2 to nitrogen.
  • SCR Selective Catalytic Reduction
  • ammonia used as the reducing agent can be generated as a secondary emission in the exhaust system or it is made available by metering a precursor compound from which ammonia can be formed, such as urea, ammonium carbamate or ammonium formate into the exhaust line and subsequent hydrolysis.
  • a source for providing the reducing agent an injection device for the demand-based metering of the reducing agent into the exhaust gas and an SCR catalytic converter arranged in the flow path of the exhaust gas are necessary.
  • the nitrogen oxide storage catalyst is designed so that it stores nitrogen oxide under lean conditions at temperatures of 300 ° C to 550 ° C.
  • a disadvantage of this system is the space required with the use of two nitrogen oxide storage catalysts, which is not available in many cases. Incidentally, the use of two nitrogen oxide storage catalysts is not optimal for economic reasons.
  • US 2010/236224 describes a system which may comprise a nitrogen oxide storage catalyst and a particle filter in the flow direction of the exhaust gas.
  • the system is characterized in particular in that, downstream of the nitrogen oxide storage catalytic converter, it has a device for metering air into the exhaust gas stream for reducing hydrocarbons.
  • the present invention relates to a catalyst system for treating diesel exhaust gas in the flow direction of the exhaust gas
  • a diesel particulate filter containing noble metal selected from the group consisting of platinum, palladium and platinum and palladium,
  • the noble metal loading of the nitrogen oxide storage catalyst is 100 to 180 g / ft 3 (3.53 to 6.36 g / l) and the noble metal loading of the diesel particulate filter is 5 to 35 g / ft 3 (0.18 to 1, 24 g / l).
  • the noble metal loading of the nitrogen oxide storage catalyst is higher than the noble metal loading of the diesel particulate filter.
  • the data g / ft 3 or g / l respectively denote the amount of the respective component in g per volume of the carrier substrate in ft 3 or I.
  • Nitrogen oxide storage components that can be used in the nitrogen oxide storage catalysts, for example, oxides, hydroxides, oxide hydroxides, carbonates and bicarbonates of the alkali metals, earth ⁇ alkali metals, of lanthanum and the lanthanides (Ce to Lu).
  • oxides, hydroxides, oxide hydroxides, carbonates and bicarbonates of sodium, potassium, strontium, barium and lanthanum Preference is given to oxides, hydroxides, oxide hydroxides, carbonates and bicarbonates of sodium, potassium, strontium, barium and lanthanum.
  • Particularly preferred is the use of oxides, hydroxides, oxide hydroxides and carbonates of strontium and barium, and mixtures thereof.
  • nitrogen oxide storage components oxides, hydroxides, oxide hydroxides, carbonates and / or bicarbonates of the alkali metals or alkaline earth metals in amounts of 15 to 20 g / l, based on the respective oxide.
  • additional components for example cerium oxide.
  • the amount of nitrogen oxide storage components is 150 to 250 g / l, based on the respective oxides.
  • Suitable noble metals for the nitrogen oxide storage catalyst for example, platinum, palladium and / or rhodium into consideration. In particular, it is possible to use platinum or palladium as the sole noble metal or else in a mixture with one another. If platinum and palladium are used, the weight ratio Pt: Pd is in particular 2: 1 to 10: 1.
  • the noble metal loading of the nitrogen oxide storage catalyst is 150 to 180 g / ft 3 (5.30 to 6.36 g / L).
  • Nitrogen oxide storage component and noble metal are usually present on suitable carrier materials.
  • high-surface-area, high-melting oxides are used in particular, for example aluminum oxide, silicon dioxide, titanium dioxide, but also cerium-zirconium mixed oxides and magnesium-aluminum mixed oxides.
  • nitrogen oxide storage component and noble metal can be present together on a carrier material or else on different carrier materials.
  • the nitrogen oxide storage catalyst is present in embodiments of the present invention as a ceramic or metallic flow-through substrate as a supporting body, on which the catalytically active constituents are applied in the form of a coating. Suitable flow substrates are known and available on the market.
  • the total washcoat loading of the nitrogen oxide storage catalyst in embodiments of the present invention is from 250 to 400 g / l.
  • the diesel particulate filter contains as precious metal platinum, palladium or platinum and palladium. In one embodiment of the present invention, it contains only platinum or only palladium.
  • it contains platinum and palladium at a weight ratio Pt: Pd of from 1: 2 to 12: 1, for example 1: 1, 6: 1, 10: 1 and 12: 1.
  • the noble metal loading of the diesel particulate filter is 10 to 25 g / ft 3 (0.35 to 0.88 g / i).
  • the diesel particulate filter contains a zeolite compound, in particular in an amount of 5 to 25 g / l, in particular 10 to 20 g / l come into consideration.
  • Suitable zeolite compounds are thermally stable, large or medium pore zeolite structure types, in particular ⁇ -zeolite, zeolite Y, mordenite and ZSM-5.
  • the diesel particulate filter includes components resulting in an H 2 S barrier function. Suitable components are known to the person skilled in the art and described in the literature.
  • EP 2 275 194 A1 describes an H 2 S barrier function which is achieved by a copper compound, for example copper oxide, and a refractory carrier material, for example a y-aluminum oxide-containing coating.
  • the catalytically active ingredients so in particular precious metal and possibly the zeolite on a carrier material.
  • the materials already mentioned above in connection with the nitrogen oxide storage catalyst come into question.
  • the diesel particulate filter is present in embodiments of the present invention as a ceramic or metallic wall flow filter substrate as a supporting body, on which the catalytically active ingredients are applied in the form of one or more coatings.
  • the catalytically active ingredients are in the porous Walls between the inflow and outflow before. Suitable wall flow filter substrates are known and available on the market.
  • the catalytically active components are in one embodiment of the present invention homogeneously prior to the entire length of the wall flow filter substrate ⁇ distributed.
  • a wall-flow filter substrate of length L which extends between an inlet end face and outlet face, a first catalytically active zone extending from the inlet end face on a length E and a second catalytically active zone, which in their composition of the 1, and which extends from the exit end face along a length Z, where E + Z ⁇ L.
  • the length of the upstream zone is for example between 20 and 50% of the total length of the filter substrate.
  • the content of zeolite may be the same or similar in the two zones.
  • the upstream zone has a significantly higher noble metal loading, in particular 60 to 90% of the total noble metal content of the filter coating.
  • the filter has an H 2 S blocking function according to EP 2 275 194 A1, a zoned embodiment is advantageous.
  • the copper compound in a zone which occupies 20 to 80%, preferably 40 to 60% of the substrate length and can form the inlet or outlet side zone applied.
  • the remaining length of the filter substrate is then substantially provided with the noble metal-containing coating described above.
  • the washcoat loading of the diesel particulate filter in embodiments of the present invention is 8 to 40 g / l.
  • the catalyst system for treating diesel exhaust gas comprises an SCR catalyst, which is arranged in the flow direction of the exhaust gas after the diesel particulate filter.
  • Suitable SCR catalysts are in particular those based on mixed oxide and those based on zeolite.
  • Suitable mixed oxides are, for example, vanadium-containing or vanadium-free mixed oxides, for example cerium- and lanthanoid-containing mixed oxides.
  • Zeolite-based SCR catalysts are in particular copper- or iron-exchanged zeolites, for example of the types CHA, SAPO, ZSM-5 and zeolite ⁇ .
  • the particle filter preferably contains a platinum-rich coating. This means that it contains either only platinum or platinum and palladium in a ratio of at least 4: 1 in a loading of 20 to 50 g / cft.
  • the catalyst system according to the invention preferably comprises no device for metering air into the exhaust gas stream.
  • a nitrogen oxide storage catalyst containing a nitrogen oxide storage component and precious metal in an amount of 150 to 180 g / ft 3 (5.30 to 6.36 g / l) and
  • a diesel particulate filter comprising platinum and palladium in the weight ratio Pt: Pd of 1: 1 and in an amount of 10 to 25 g / ft 3 (0.35 to 0.88 g / l), and a zeolite compound in an amount of 10 to 25 g / l.
  • the catalyst system according to the invention is outstandingly suitable for the treatment of diesel exhaust gases and can be used with regard to Treatment of NOx, HC, CO and particulate meet the requirements of Euro 6 legislation.
  • the present invention thus also relates to a process for the treatment of diesel exhaust gases, which is characterized in that the diesel exhaust gas is passed through a catalyst system, which in the flow direction of the exhaust gas
  • a diesel particulate filter containing noble metal selected from the group consisting of platinum, palladium and platinum and palladium,
  • the noble metal loading of the nitrogen oxide storage catalyst is 100 to 180 g / ft 3 (3.53 to 6.36 g / l) and the noble metal loading of the diesel particulate filter is 5 to 35 g / ft 3 (0.18 to 1.24 g / l) amounts to.
  • the nitrogen oxide storage catalytic converter assumes the function of NOx and CO conversion in the lean / rich exhaust gas, while the diesel particulate filter is responsible exclusively for the conversion of HC and residual CO traces and for particle filtration and regeneration. This is achieved in particular by the fact that the noble metal contained in the catalyst system is optimally distributed to nitrogen oxide storage catalyst and diesel particulate filter.
  • Embodiments of the method according to the invention correspond to the above-described embodiments of the catalyst system according to the invention.
  • a commercially available flow-through substrate was coated with a catalyst formulation in a total amount of 347 g / l in a conventional manner.
  • the washcoat contained 100 g / ft 3 of platinum, 22 g / ft 3 of palladium and 5 g / ft 3 of rhodium supported on a conventional lanthanum-stabilized alumina. and 17 g / l BaO and 220 g / l ceria.
  • the total noble metal loading of the nitrogen oxide storage catalyst is 127 g / ft 3 .
  • a commercially available wall flow filter substrate was coated in the following manner:
  • Inlet side zone 100 g / ft 3 of platinum and palladium in a weight ratio of 2: 1 on a lanthanum stabilized alumina and 9 g / l of a commercially available beta zeolite on one third the length of the filter substrate.
  • Downstream zone 10 g / cft of platinum and palladium in a weight ratio of 2: 1 on a lanthanum stabilized alumina and 10 g / l of a commercially available beta zeolite on the remaining two thirds of the length of the filter substrate.
  • Inlet side zone 55 g / ft 3 of platinum and palladium in the weight ratio 1: 1 on a lanthanum stabilized alumina and 9 g / l of a commercially available beta zeolite on one third the length of the filter substrate.
  • Downstream zone 10 g / ft 3 of platinum and palladium in a weight ratio of 1: 1 on a lanthanum stabilized alumina and 10 g / l of a commercially available zeolites beta on the remaining two-thirds of the length of the filter substrate.
  • Example 1 Accordingly, the catalyst system of Example 1 according to the comparative example in both the CO conversion, as well as to NOx conversion is clearly superior.
  • the nitrogen oxide storage catalyst according to Example 1 a) was combined with a diesel particulate filter according to Example 1 c) to form a catalyst system which had been prepared as follows:
  • a commercial wallflow filter substrate was coated as follows: Homogeneous coating along the entire length L of the wallflow filter substrate: 10 g / ft 3 platinum and palladium in a 1: 1 weight ratio on a lanthanum stabilized alumina and 9 g / l of a commercially available beta zeolite
  • the catalyst system thus obtained is characterized by properties which are comparable to those of the catalyst system of Example 1.
  • Example 1 a The nitrogen oxide storage catalyst according to Example 1 a) was combined with a diesel particulate filter according to Example 1 c) to form a catalyst system which had been prepared as follows:
  • a commercial wallflow filter substrate was coated as follows:
  • Inlet side zone 40 g / ft 3 platinum and palladium in a weight ratio of 2: 1 on a lanthanum stabilized alumina and 9 g / l of a commercially available beta zeolite on one third the length of the filter substrate.
  • Downstream zone 10 g / ft 3 of platinum and palladium in weight ratio 2: 1 on a lanthanum stabilized alumina and 10 g / l of a commercially available beta zeolite on the remaining two-thirds of the length of the filter substrate.
  • the catalyst system thus obtained is characterized by properties which are comparable to those of the catalyst system of Example 1.
  • Example 1 a The nitrogen oxide storage catalyst according to Example 1 a) was combined with a diesel particulate filter and an SCR catalyst to form a catalyst system, wherein in the flow direction of the exhaust gas, the order was nitrogen oxide storage catalyst, diesel particulate filter, SCR catalyst.
  • a commercially available wall flow filter substrate was coated in the following manner:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Katalysatorsystem zur Behandlung von Dieselabgas, das in Strömungsrichtung des Abgases - einen Stickoxid-Speicherkatalysator, der eine Stickoxid-Speicherkomponente, sowie Edelmetall enthält und - einen Dieselpartikelfilter, der Edelmetall ausgewählt aus der Reihe Platin, Palladium und Platin und Palladium enthält, umfasst, dadurch gekennzeichnet, dass die Edelmetallbeladung des Stickoxid-Speicherkatalysators 100 bis 180 g/ft3 (3,53 bis 6,36 g/l) und die Edelmetallbeladung des Dieselpartikelfilters 5 bis 35 g/ft3 (0,18 bis 1,24 g/l) beträgt.

Description

Katalysatorsystem zur Behandlung von NOx- und Partikelhaltigem Dieselabgas
Die vorliegende Erfindung betrifft ein Katalysatorsystem zur Behandlung von Dieselabgas, das in Strömungsrichtung des Abgases einen Stickoxid- Speicherkatalysator und einen Dieselpartikelfilter umfasst, wobei beide Bestandteile katalytisch wirksame Edelmetalle aufweisen.
Das Abgas von mit Dieselmotoren betriebenen Kraftfahrzeugen enthält neben Kohlenmonoxid (CO) und Stickoxiden (NOx) auch Bestandteile, die aus der unvollständigen Verbrennung des Kraftstoffs im Brennraum des Zylinders herrühren. Dazu gehören neben Rest-Kohlenwasserstoffen (HC), die meist ebenfalls überwiegend gasförmig vorliegen, Partikelemissionen, auch als „Dieselruß" oder„Russpartikel" bezeichnet. Dabei handelt es sich um kom- plexe Agglomerate aus überwiegend Kohlenstoff-haltigen Feststoff-Teilchen und einer anhaftenden Flüssigphase, die meist mehrheitlich aus längerkettigen Kohlenwasserstoff-Kondensaten besteht. Die auf den festen Bestandteilen anhaftende Flüssigphase wird auch als „Soluble Organic Fraction SOP' oder„Volatile Organic Fraction VOR' bezeichnet.
Zur Reinigung dieser Abgase müssen die genannten Bestandteile möglichst vollständig in unschädliche Verbindungen umgewandelt werden, was nur unter Einsatz geeigneter Katalysatoren möglich ist. So können Kohlenmonoxid (CO), gasförmige Kohlenwasserstoffe (HC) und gegebenenfalls den Russpartikeln anhaftende organische Agglomerate (sog. „Volatile Organic Fraction" VOF) mit Hilfe von Oxidationskatalysatoren oxidativ entfernt werden. Zur Entfernung von Partikelemissionen aus dem Abgas von Dieselfahrzeugen werden Partikelfilter eingesetzt. Partikelfilter sind in der Regel Wandflussfiltersubstrate, also Wabenkörper mit wechselseitig gasdicht verschlossenen An- und Abströmkanälen, die durch poröse Wände begrenzt und voneinander abgetrennt sind. Das in die Anströmkanäle einströmende partikelhaltige Abgas wird durch einen auf der Austrittsseite befindlichen gasdichten Verschlussstopfen zum Durchtritt durch die poröse Wand gezwungen und tritt aus den auf der Anströmseite verschlossenen Abströmkanälen aus dem Wandflussfiltersubstrat wieder aus. Dabei wird Dieselruß aus dem Abgas herausgefiltert.
Mit steigender Menge an gefilterten Russpartikeln steigt der Gegendruck des Abgassystems an, so dass das Filter in regelmäßigen Abständen durch Abbrennen des Rußes regeneriert werden muss. Da die zum Zünden und Verbrennen des Rußes mit Sauerstoff erforderlichen Temperaturen von mehr als 550 °C in modernen PKW Dieselmotoren üblicherweise nur im Volllastbetrieb erreicht werden können, sind zusätzliche Maßnahmen zur Oxidation der gefilterten Russpartikel zwingend erforderlich, um ein Verstopfen des Filters durch Ruß zu verhindern. Zu diesem Zweck kann das Filter mit einer Katalysatorschicht beschichtet werden, die in der Lage ist, die Russzündtemperatur herabzusetzen. Mit einer Katalysatorschicht versehene Partikelfilter werden auch als cDPF bezeichnet (catalyzed diesel particulate filter) und sind beispielsweise in der SAE-Schrift SAE 2005-01-1756 beschrieben.
Eine Möglichkeit zur Entfernung der Stickoxide bietet der Einsatz von Stickoxid-Speicherkatalysatoren, für die auch der Begriff „Lean NOx Trap" oder LNT üblich geworden ist. Deren Reinigungswirkung beruht darauf, dass in einer mageren Betriebsphase des Motors die Stickoxide vom Speichermaterial des Speicherkatalysators vorwiegend in Form von Nitraten gespeichert werden und diese in einer darauf folgenden fetten Betriebsphase des Motors wieder zersetzt und die so freiwerdenden Stickoxide mit den reduzierenden Abgasanteilen am Speicherkatalysator zu Stickstoff, Kohlendioxid und Wasser umgesetzt werden. Diese Arbeitsweise ist beispielsweise in der SAE-Schrift SAE 950809 beschrieben.
Als Speichermaterialien kommen insbesondere Oxide, Carbonate oder Hydroxide von Magnesium, Calcium, Strontium, Barium, der Alkalimetalle, der Seltenerdmetalle oder Mischungen davon in Frage. Diese Verbindungen sind aufgrund ihrer basischen Eigenschaften in der Lage, mit den sauren Stickoxiden des Abgases Nitrate zu bilden und sie auf diese Weise abzuspeichern. Sie sind zur Erzeugung einer großen Wechselwirkungsfläche mit dem Abgas in möglichst hoher Dispersion auf geeigneten Trägermaterialien abgeschieden. Stickoxid-Speicherkatalysatoren enthalten darüber hinaus in der Regel Edelmetalle wie Platin, Palladium und/oder Rhodium als katalytisch aktive Komponenten. Deren Aufgabe ist es einerseits, unter mageren Bedingungen NO zu N02, sowie CO und HC zu C02 zu oxidieren und andererseits während der fetten Betriebsphasen, in denen der Stickoxid- Speicherkatalysator regeneriert wird, freigesetztes N02 zu Stickstoff zu reduzieren.
Ein weiteres bekanntes Verfahren zur Entfernung von Stickoxiden aus Abgasen in Gegenwart von Sauerstoff ist das Verfahren der selektiven katalytischen Reduktion (SCR- Verfahren; Selective Catalytic Reduction) mittels Ammoniak an einem geeigneten Katalysator, dem SCR-Katalysator. Bei diesem Verfahren werden die aus dem Abgas zu entfernenden Stickoxide mit Ammoniak zu Stickstoff und Wasser umgesetzt. Das als Reduktionsmittel verwendete Ammoniak kann als Sekundäremission in der Abgasanlage erzeugt werden oder es wird durch Eindosierung einer Vorläuferverbindung, aus der Ammoniak gebildet werden kann, wie beispielsweise Harnstoff, Ammoniumcarbamat oder Ammoniumformiat, in den Abgasstrang und anschließende Hydrolyse verfügbar gemacht.
Zur Durchführung der letztgenannten Variante des SCR-Verfahrens sind eine Quelle zur Bereitstellung des Reduktionsmittels, eine Einspritz-vorrichtung zur bedarfsgerechten Eindosierung des Reduktionsmittels in das Abgas und ein im Strömungsweg des Abgases angeordneter SCR-Katalysator notwendig.
Damit die angesprochenen schädlichen Abgaskomponenten im erforderlichen Ausmaß entfernt werden können, müssen die genannten Katalysatoren bzw. Filter in geeigneter Weise zu einem Abgasbehandlungs-system miteinander kombiniert werden. Dies gilt insbesondere für Fahrzeuge, die den Euro 6- Standard oder sogar nachfolgende Standards erfüllen sollen. So beschreibt die US 2006/248874 ein System, das in Strömungsrichtung des Abgases einen Stickoxid-Speicherkatalysator, einen Partikelfilter und wiederum einen Stickoxid-Speicherkatalysator umfasst. Der erste Stickoxid- Speicherkatalysator ist so ausgelegt, dass er bei relativ niedrigen Temperaturen Stickoxid einspeichert und bei Temperaturen ab 300°C selbst bei mageren Bedingungen wieder freigibt. Im letztgenannten Fall kann das Stickoxid zur Oxidation von Partikeln auf dem nachfolgen Partikelfilter genutzt werden. Sofern das Stickoxid aber unter fetten Bedingungen freigesetzt wird, kann es mittels Reduktionskatalysatoren, etwa Rhodium, zu N2 reduziert werden. Der zweite Stickoxid-Speicherkatalysator ist so ausgelegt, dass er Stickoxid unter mageren Bedingungen bei Temperaturen von 300°C bis 550°C einspeichert. Nachteilig an diesem System ist der mit der Verwendung von zwei Stickoxid-Speicherkatalysatoren verbundene Platzbedarf, der in vielen Fällen nicht zur Verfügung steht. Im Übrigen ist die Verwendung von zwei Stickoxid-Speicherkatalysatoren auch aus wirtschaftlichen Gründen nicht optimal.
Die US 2010/236224 beschreibt ein System, das in Strömungsrichtung des Abgases einen Stickoxid-Speicherkatalysator und einen Partikelfilter umfassen kann. Das System ist insbesondere dadurch gekennzeichnet, dass es abströmseitig zum Stickoxid-Speicherkatalysator eine Vorrichtung zum Eindosieren von Luft in den Abgasstrom zur Reduktion von Kohlenwasserstoffen aufweist.
Es besteht somit Bedarf nach einem System, das die genannten Schadstoffe effektiv entfernt, mit dem zur Verfügung stehenden Raum auskommt und in wirtschaftlicher Weise hergestellt werden kann. Es wurde nun gefunden, dass ein System aus einem Stickoxid-Speicherkatalysator und einem abströmseitig dazu angeordneten Dieselpartikelfilter diese Bedingungen erfüllt und insbesondere die CO- und NOx-Emissionen sehr effektiv aus dem Abgas entfernt, wenn katalytisch aktives Edelmetall in optimaler Weise auf beide Bestandteile verteilt ist.
Die vorliegende Erfindung betrifft ein Katalysatorsystem zur Behandlung von Dieselabgas, das in Strömungsrichtung des Abgases
- einen Stickoxid-Speicherkatalysator, der eine Stickoxid-Speicher- komponete, sowie Edelmetall enthält und
- einen Dieselpartikelfilter, der Edelmetall ausgewählt aus der Reihe Platin, Palladium und Platin und Palladium enthält,
umfasst, dadurch gekennzeichnet, dass die Edelmetallbeladung des Stickoxid-Speicherkatalysators 100 bis 180 g/ft3 (3,53 bis 6,36 g/l) und die Edelmetallbeladung des Dieselpartikelfilters 5 bis 35 g/ft3 (0,18 bis 1,24 g/l) beträgt. Somit ist die Edelmetallbeladung des Stickoxid-Speicherkatalysators höher als die Edelmetallbeladung des Dieselpartikelfilters.
Die Angaben g/ft3 bzw. g/l bezeichnen jeweils die Menge der jeweiligen Komponente in g pro Volumen des Trägersubstrates in ft3 bzw. I.
Stickoxid-Speicherkomponenten, die in den Stickoxid-Speicherkatalysatoren zum Einsatz kommen können, sind beispielsweise Oxide, Hydroxide, Oxidhydroxide, Carbonate und Hydrogencarbonate der Alkalimetalle, der Erd¬ alkalimetalle, des Lanthans und der Lanthanoide (Ce bis Lu). Bevorzugt sind Oxide, Hydroxide, Oxidhydroxide, Carbonate und Hydrogencarbonate des Natriums, Kaliums, Strontiums, Bariums und Lanthans. Besonders bevorzugt ist der Einsatz von Oxiden, Hydroxiden, Oxidhydroxiden und Carbonaten des Strontiums und des Bariums, sowie Mischungen davon. In Ausführungsformen der vorliegenden Erfindung werden als Stickoxid- Speicherkomponenten Oxide, Hydroxide, Oxidhydroxide, Carbonate und/oder Hydrogencarbonate der Alkalimetalle oder der Erdalkalimetalle in Mengen von 15 bis 20 g/l, bezogen auf das jeweilige Oxid verwendet. In anderen Ausführungsformen werden zusätzliche Komponenten, beispielsweise Ceroxid, eingesetzt. In diesen Fällen liegt die Menge an Stickoxid- Speicherkomponenten bei 150 bis 250 g/l, bezogen auf die jeweiligen Oxide. Als Edelmetall kommen für den Stickoxid-Speicherkatalysator beispielsweise Platin, Palladium und/oder Rhodium in Betracht. Insbesondere ist es möglich, Platin oder Palladium als alleiniges Edelmetall oder auch in Mischung untereinander zu verwenden. Sofern Platin und Palladium verwendet wird liegt das Gewichtsverhältnis Pt: Pd insbesondere bei 2 : 1 bis 10: 1.
In Ausführungsformen der vorliegenden Erfindung liegt die Edelmetallbeladung des Stickoxid-Speicherkatalysators bei 150 bis 180 g/ft3 (5,30 bis 6,36 g/l). Stickoxid-Speicherkomponente und Edelmetall liegen üblicherweise auf geeigneten Trägermaterialien vor. Als solche werden insbesondere hochoberflächige, hochschmelzende Oxide verwendet, beispielsweise Aluminiumoxid, Siliziumdioxid, Titandioxid, aber auch Cer-Zirkon-Mischoxide und Magnesium-Aluminium-Mischoxide. Im Rahmen der vorliegenden Erfindung können Stickoxid-Speicherkomponente und Edelmetall gemeinsam auf einem Trägermaterial oder auch auf verschiedenen Trägermaterialien vorliegen.
Der Stickoxid-Speicherkatalysator liegt in Ausführungsformen der vorliegenden Erfindung als keramisches oder metallisches Durchflusssubstrat als Tragkörper vor, auf den die katalytisch aktiven Bestandteile in Form einer Beschichtung aufgebracht sind. Geeignete Durchflusssubstrate sind bekannt und am Markt erhältlich. Die Gesamtwashcoatbeladung des Stickoxid-Speicherkatalysators liegt in Ausführungsformen der vorliegenden Erfindung bei 250 bis 400 g/l. Der Dieselpartikelfilter enthält als Edelmetall Platin, Palladium oder Platin und Palladium. In einer Ausführungsform der vorliegenden Erfindung enthält er nur Platin oder nur Palladium.
In einer anderen Ausführungsform der vorliegenden Erfindung enthält er Platin und Palladium mit einem Gewichtsverhältnis Pt: Pd von 1 :2 bis 12 : 1, beispielsweise 1 : 1, 6 : 1, 10 : 1 und 12 : 1.
In einer weiteren Ausführungsform der vorliegenden Erfindung liegt die Edelmetallbeladung des Dieselpartikelfilters bei 10 bis 25 g/ft3 (0,35 bis 0,88 g/i).
In einer weiteren Ausführungsform der vorliegenden Erfindung enthält der Dieselpartikelfilter eine Zeolithverbindung, insbesondere in einer Menge von 5 bis 25 g/l, wobei insbesondere 10 bis 20 g/l in Betracht kommen. Geeignete Zeolithverbindungen sind thermisch stabile, groß- oder mittelporige Zeolith- Strukturtypen, insbesondere ß-Zeolith, Zeolith Y, Mordenit und ZSM-5.
In einer weiteren Ausführungsform der vorliegenden Erfindung enthält der Dieselpartikelfilter Komponenten, die in einer H2S-Sperrfunktion resultieren. Geeignete Komponenten sind dem Fachmann bekannt und in der Literatur beschrieben. Beispielsweise beschreibt die EP 2 275 194 AI eine H2S- Sperrfunktion, die durch eine Kupferverbindung, beispielsweise Kupferoxid, sowie ein feuerfestes Trägermaterial, beispielsweise ein y-Aluminiumoxid, enthaltende Beschichtung erreicht wird. Auch im Dieselpartikelfilter liegen die katalytisch aktiven Bestandteile, also insbesondere Edelmetall und gegebenenfalls die Zeolithverbindung auf einem Trägermaterial vor. Es kommen dafür die bereits oben im Zusammenhang mit dem Stickoxid-Speicherkatalysator genannten Materialien in Frage.
Der Dieselpartikelfilter liegt in Ausführungsformen der vorliegenden Erfindung als keramisches oder metallisches Wandflussfiltersubstrat als Tragkörper vor, auf den die katalytisch aktiven Bestandteile in Form einer oder mehrerer Beschichtungen aufgebracht sind. In besonderen Ausführungsformen liegen die katalytisch aktiven Bestandteile in den porösen Wänden zwischen den Anström- und den Abströmkanälen vor. Geeignete Wandflussfiltersubstrate sind bekannt und am Markt erhältlich.
Die katalytisch aktiven Bestandteile liegen in einer Ausführungsform der vorliegenden Erfindung homogen auf die gesamte Länge des Wandfluss¬ filtersubstrates verteilt vor.
In einer anderen Ausführungsform können sie aber auch in zonierter Form vorliegen. Dies bedeutet, dass ein Wandflussfiltersubstrat der Länge L, die sich zwischen einer Eintrittsstirnfläche und Austrittsstirnfläche erstreckt, eine erste katalytisch aktive Zone, die sich ausgehend von der Eintrittsstirnfläche auf einer Länge E erstreckt und eine zweite katalytisch aktive Zone, die sich in ihrer Zusammensetzung von der ersten unterscheidet und die sich ausgehend von der Austrittsstirnfläche auf einer Länge Z erstreckt, trägt, wobei E + Z < L ist. Die Länge der anströmseitigen Zone liegt beispielsweise zwischen 20 und 50 % der Gesamtlänge des Filtersubstrates.
Der Gehalt an Zeolith kann in den beiden Zonen gleich oder ähnlich sein. In der Regel weist die anströmseitige Zone eine signifikant höhere Edelmetallbeladung auf, insbesondere 60 bis 90% des gesamten Edelmetallgehaltes der Filterbeschichtung.
Sofern der Filter eine H2S-Sperrfunktion gemäß EP 2 275 194 AI aufweist, ist eine zonierte Ausführungsform vorteilhaft. Dazu wird die Kupferverbindung in einer Zone, die 20 bis 80%, bevorzugt 40 bis 60% der Substratlänge einnimmt und die die einlass- oder auslassseitige Zone bilden kann, aufgebracht. Die verbleibende Länge des Filtersubstrates wird dann im Wesentlichen mit der oben beschriebenen edelmetallhaltigen Beschichtung versehen.
Die Washcoatbeladung des Dieselpartikelfilters liegt in Ausführungsformen der vorliegenden Erfindung bei 8 bis 40 g/l.
In einer Ausführungsform der vorliegenden Erfindung umfasst das Katalysatorsystem zur Behandlung von Dieselabgas einen SCR-Katalysator, der in Strömungsrichtung des Abgases nach dem Dieselpartikelfilter angeordnet ist.
Als SCR-Katalysatoren kommen insbesondere solche auf Mischoxid- und solche auf Zeolith-Basis in Frage.
Geeignete Mischoxide sind beispielsweise Vanadium-haltige oder Vanadiumfreie Mischoxide, beispielsweise Cer- und Lanthanoid-haltige Mischoxide.
SCR-Katalysatoren auf Zeolith-Basis sind insbesondere Kupfer- oder Eisenausgetauschte Zeolithe, beispielsweise der Typen CHA, SAPO, ZSM-5 und Zeolith ß.
In einer einen SCR-Katalysator umfassenden Ausführungsform des erfindungsgemäßen Katalysatorsystems enthält der Partikelfilter bevorzugt eine platinreiche Beschichtung. Dies bedeutet, dass sie entweder nur Platin oder Platin und Palladium in einem Verhältnis von mindestens 4: 1 in einer Beladung von 20 bis 50 g/cft, enthält.
Das erfindungsgemäße Katalysatorsystem umfasst bevorzugt keine Vorrichtung zum Eindosieren von Luft in den Abgasstrom.
Die vorliegende Erfindung betrifft in einer weiteren Ausführungsform ein Katalysatorsystem zur Behandlung von Dieselabgas, das in Strömungsrichtung des Abgases
- einen Stickoxid-Speicherkatalysator, der eine Stickoxid-Speicher- komponete, sowie Edelmetall in einer Menge von 150 bis 180 g/ft3 (5,30 bis 6,36 g/l) enthält und
- einen Dieselpartikelfilter, der Platin und Palladium im Gewichtsverhältnis Pt: Pd von 1 : 1 und in einer Menge von 10 bis 25 g/ft3 (0,35 bis 0,88 g/l), sowie eine Zeolithverbindung in einer Menge von 10 bis 25 g/l, enthält, umfasst.
Das erfindungsgemäße Katalysatorsystem eignet sich in hervorragender Weise zur Behandlung von Dieselabgasen und vermag hinsichtlich der Behandlung von NOx, HC, CO und Partikeln die Vorgaben der Euro 6- Gesetzgebung zu erfüllen.
Die vorliegende Erfindung betrifft somit auch ein Verfahren zur Behandlung von Dieselabgasen, das dadurch gekennzeichnet ist, dass das Dieselabgas über ein Katalysatorsystem geleitet wird, das in Strömungsrichtung des Abgases
- einen Stickoxid-Speicherkatalysator, der eine Stickoxid-Speicherkomponente, sowie Edelmetall enthält und
- einen Dieselpartikelfilter, der Edelmetall ausgewählt aus der Reihe Platin, Palladium und Platin und Palladium enthält,
umfasst, wobei die Edelmetallbeladung des Stickoxid-Speicherkatalysators 100 bis 180 g/ft3 (3,53 bis 6,36 g/l) und die Edelmetallbeladung des Dieselpartikelfilters 5 bis 35 g/ft3 (0,18 bis 1,24 g/l) beträgt.
Im erfindungsgemäßen Verfahren übernimmt der Stickoxid-Speicherkatalysator die Funktion der NOx- und CO-Konversion im mageren/fetten Abgas, während der Dieselpartikelfilter ausschließlich für die Konversion von HC und Restspuren CO sowie zur Partikelfiltration und -regeneration verantwortlich ist. Dies wird insbesondere dadurch erreicht, dass das im Katalysatorsystem enthaltene Edelmetall in optimaler Weise auf Stickoxid- Speicherkatalysator und Dieselpartikelfilter verteilt ist.
Ausgestaltungen des erfindungsgemäßen Verfahrens entsprechen den oben beschriebenen Ausgestaltungen des erfindungsgemäßen Katalysatorsystems.
Vergleichsbeispiel
a) Zur Herstellung eines Stickoxid-Speicherkatalysators wurde ein handelsübliches Durchflusssubstrat mit einer Katalysatorformulierung in einer Gesamtmenge von 347 g/l in herkömmlicher Weise beschichtet. Dabei enthielt der Washcoat 100 g/ft3 Platin, 22 g/ ft3 Palladium und 5 g/ ft3 Rhodium geträgert auf einem üblichen Lanthan-stabilisierten Aluminiumoxid, sowie 17 g/l BaO und 220 g/l Ceroxid. Die Gesamt-Edelmetallbeladung des Stickoxid-Speicherkatalysators beträgt 127 g/ft3. b) Zur Herstellung eines Dieselpartikelfilters wurde ein handelsübliches Wandflussfiltersubstrat in folgender Weise beschichtet:
Einlassseitige Zone: 100 g/ ft3 Platin und Palladium im Gewichtsverhältnis 2 : 1 auf einem Lanthan-stabilisierten Aluminiumoxid und 9 g/l eines kommerziell erhältlichen beta-Zeolithen auf einem Drittel der Länge des Filtersubstrates. Abströmseitige Zone : 10 g/cft Platin und Palladium im Gewichtsverhältnis 2 : 1 auf einem Lanthan-stabilisierten Aluminiumoxid und 10 g/l eines kommerziell erhältlichen beta-Zeolithen auf den restlichen zwei Dritteln der Länge des Filtersubstrates.
Es resultiert eine Gesamtbeladung von 40 g/cft Platin und Palladium im Gewichtsverhältnis 2 : 1. c) Der Stickoxid-Speicherkatalysator gemäß a) und der Dieselpartikelfilter gemäß b) wurden zu einem Katalysatorsystem kombiniert (Dieselpartikelfilter abströmseitig). Beispiel 1
a) Zur Herstellung eines Stickoxid-Speicherkatalysators wurde analog zu Punkt a) des Vergleichsbeispiels vorgegangen, mit dem Unterschied, dass die Platin-Beladung auf 126 g/ ft3 und die Palladium-Beladung auf 37,8 g/ ft3 erhöht, während die Rhodium-Beladung konstant bei 5 g/ ft3 gehalten wurde. Damit ergibt sich eine Gesamtbeladung von 168,8 g/ ft3 Edelmetall. b) Zur Herstellung eines Dieselpartikelfilters wurde ein handelsübliches Wandflussfiltersubstrat in folgender Weise beschichtet:
Einlassseitige Zone : 55 g/ ft3 Platin und Palladium im Gewichtsverhältnis 1 : 1 auf einem Lanthan-stabilisierten Aluminiumoxid und 9 g/l eines kommerziell erhältlichen beta-Zeolithen auf einem Drittel der Länge des Filtersubstrates. Abströmseitige Zone: 10 g/ ft3 Platin und Palladium im Gewichtsverhältnis 1 : 1 auf einem Lanthan-stabilisierten Aluminiumoxid und 10 g/l eines kommerziell erhältlichen beta-Zeolithen auf den restlichen zwei Dritteln der Länge des Filtersubstrates.
Es resultiert eine Gesamtbeladung von 25 g/cft Platin und Palladium im Gewichtsverhältnis 1 : 1. c) Der Stickoxid-Speicherkatalysator gemäß a) und der Dieselpartikelfilter gemäß b) wurden zu einem Katalysatorsystem kombiniert (Dieselpartikelfilter abströmseitig). Bestimmung der Systemperformance
Die Systemperformance der Katalysatorsysteme gemäß Beispiel 1 und Vergleichsbeispiel wurde an einem Motorenprüfstand gemäß NEDC (Neuer Europäischer Fahrzyklus) gemessen. Dazu wurden die emittierten Mengen an CO, HC und Ox in mg/km bestimmt. Die Ergebnisse sind Tabelle 1 zu entnehmen
Tabelle 1
Figure imgf000013_0001
Demnach ist das Katalysatorsystem gemäß Beispiel 1 dem gemäß Vergleichsbeispiel sowohl in der CO-Konversion, als auch um NOx-Umsatz deutlich überlegen.
Beispiel 2
Der Stickoxid-Speicherkatalysator gemäß Beispiel 1 a) wurde mit einem Dieselpartikelfilter gemäß Beispiel 1 c) zu einem Katalysatorsystem kombiniert, der wie folgt hergestellt worden war: Ein handelsübliches Wandflussfiltersubstrat wurde wie folgt beschichtet: Homogene Beschichtung über die gesamte Länge L des Wandflussfiltersubstrates: 10 g/ft3 Platin und Palladium im Gewichtsverhältnis 1 : 1 auf einem Lanthan-stabilisierten Aluminiumoxid und 9 g/l eines kommerziell erhältlichen beta-Zeolithen
Es resultiert eine Gesamtbeladung von 10 g/ ft3 Platin und Palladium im Gewichtsverhältnis 1 : 1.
Das so erhaltene Katalysatorsystem zeichnet sich durch Eigenschaften aus, die denen des Katalysatorsystems des Beispiels 1 vergleichbar sind.
Beispiel 3
Der Stickoxid-Speicherkatalysator gemäß Beispiel 1 a) wurde mit einem Dieselpartikelfilter gemäß Beispiel 1 c) zu einem Katalysatorsystem kombiniert, der wie folgt hergestellt worden war:
Ein handelsübliches Wandflussfiltersubstrat wurde wie folgt beschichtet:
Einlassseitige Zone : 40 g/ ft3 Platin und Palladium im Gewichtsverhältnis 2: 1 auf einem Lanthan-stabilisierten Aluminiumoxid und 9 g/l eines kommerziell erhältlichen beta-Zeolithen auf einem Drittel der Länge des Filtersubstrates. Abströmseitige Zone: 10 g/ ft3 Platin und Palladium im Gewichtsverhältnis 2: 1 auf einem Lanthan-stabilisierten Aluminiumoxid und 10 g/l eines kommerziell erhältlichen beta-Zeolithen auf den restlichen zwei Dritteln der Länge des Filtersubstrates.
Es resultiert eine Gesamtbeladung von 20 g/ ft3 Platin und Palladium im Gewichtsverhältnis 2 : 1.
Das so erhaltene Katalysatorsystem zeichnet sich durch Eigenschaften aus, die denen des Katalysatorsystems des Beispiels 1 vergleichbar sind.
Beispiel 4
a) Der Stickoxid-Speicherkatalysator gemäß Beispiel 1 a) wurde mit einem Dieselpartikelfilter und einem SCR-Katalysator zu einem Katalysatorsystem kombiniert, wobei in Strömungsrichtung des Abgases die Reihenfolge Stickoxid-Speicherkatalysator, Dieselpartikelfilter, SCR-Katalysator war. b) Zur Herstellung des Dieselpartikelfilters wurde ein handelsübliches Wandflussfiltersubstrat in folgender Weise beschichtet:
Homogene Beschichtung über die gesamte Länge L des Wandflussfiltersubstrates: 50 g/ft3 Platin und Palladium im Gewichtsverhältnis 6 : 1 auf einem Lanthan-stabilisierten Aluminiumoxid und 33 g/l eines kommerziell erhältlichen beta-Zeolithen
Es resultiert eine Gesamtbeladung von 50 g/ ft3 Platin und Palladium im Gewichtsverhältnis 6: 1. c) Zur Herstellung des SCR-Katalysators wurde ein handelsübliches Durchflusssubstrat mit einem Kupfer-haltigen Zeolith-Washcoat in einer Gesamtmenge von 200 g/l in herkömmlicher Weise beschichtet.

Claims

Patentansprüche
1. Katalysatorsystem zur Behandlung von Dieselabgas, das in Strömungsrichtung des Abgases
- einen Stickoxid-Speicherkatalysator, der eine Stickoxid-Speicher- komponente, sowie Edelmetall enthält und
- einen Dieselpartikelfilter, der Edelmetall ausgewählt aus der Reihe Platin, Palladium und Platin und Palladium enthält,
umfasst, dadurch gekennzeichnet, dass die Edelmetallbeladung des Stickoxid-Speicherkatalysators 100 bis 180 g/ft3 (3,53 bis 6,36 g/l) und die Edelmetallbeladung des Dieselpartikelfilters 5 bis 35 g/ft3 (0,18 bis 1,24 g/l) beträgt.
2. Katalysatorsystem nach Anspruch 1, dadurch gekennzeichnet, dass als Stickoxidspeicherkomponente Oxide, Hydroxide, Oxidhydroxide, Carbonate und Hydrogencarbonate der Alkalimetalle, der Erdalkalimetalle, des Lanthans und der Lanthanoide (Ce bis Lu) verwendet werden.
3. Katalysatorsystem nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass als Stickoxidspeicherkomponente Oxide, Hydroxide, Oxidhydroxide oder Carbonate des Strontiums und des Bariums verwendet werden.
4. Katalysatorsystem nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Edelmetallbeladung des Stickoxid- Speicherkatalysators 150 bis 180 g/ft3 (5,30 bis 6,36 g/l) beträgt.
5. Katalysatorsystem nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Edelmetallbeladung des Dieselpartikelfilters 10 bis 25 g/ft3 (0,35 bis 0,88 g/l) beträgt.
6. Katalysatorsystem nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Dieselpartikelfilter eine Zeolithver- bindung enthält.
7. Katalysatorsystem nach Anspruch 6, dadurch gekennzeichnet, dass als Zeolithverbindungen ß-Zeolith, Zeolith Y, Mordenit oder ZSM-5 verwendet wird.
8. Katalysatorsystem nach Anspruch 6 und/oder 7, dadurch gekennzeichnet, dass die Zeolithverbindung in einer Menge von 5 bis 25 g/l verwendet wird.
9. Katalysatorsystem nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Dieselpartikelfilter eine H2S-Sperrfunktion aufweist.
10. Katalysatorsystem nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es einen SCR-Katalysator umfasst, der in Strömungsrichtung des Abgases nach dem Dieselpartikelfilter angeordnet ist.
11. Katalysatorsystem nach Anspruch 10, dadurch gekennzeichnet, dass als SCR-Katalysator Mischoxide aus der Reihe Vanadium-haltiger und Vanadiumfreier Mischoxide verwendet werden.
12. Katalysatorsystem nach Anspruch 10, dadurch gekennzeichnet, dass als SCR-Katalysator Kupfer- oder Eisen-ausgetauschte Zeolithe der Typen CHA, SAPO, ZSM-5 oder Zeolith ß verwendet werden.
13. Katalysatorsystem nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass es in Strömungsrichtung des Abgases
- einen Stickoxid-Speicherkatalysator, der eine Stickoxid-Speicher- komponete, sowie Edelmetall in einer Menge von 160 bis 180 g/ft3 (5,65 bis 6,36 g/l) enthält und
- einen Dieselpartikelfilter, der Platin und Palladium im Gewichtsverhältnis Pt: Pd von 1 : 1 und in einer Menge von 10 bis 25 g/ft3 (0,35 bis 0,88 g/l), sowie eine Zeolithverbindung in einer Menge von 10 bis 25 g/l, enthält, umfasst.
14. Verfahren zur Behandlung von Dieselabgasen, dadurch gekennzeichnet, dass das Dieselabgas über ein Katalysatorsystem geleitet wird, das in Strömungsrichtung des Abgases
- einen Stickoxid-Speicherkatalysator, der eine Stickoxid-Speicher- komponete, sowie Edelmetall enthält und
- einen Dieselpartikelfilter, der Edelmetall ausgewählt aus der Reihe Platin, Palladium und Platin und Palladium enthält,
umfasst, wobei die Edelmetallbeladung des Stickoxid-Speicherkatalysators 100 bis 180 g/ft3 (3,53 bis 6,36 g/l) und die Edelmetallbeladung des Dieselpartikelfilters 5 bis 35 g/ft3 (0,18 bis 1,24 g/l) beträgt.
PCT/EP2013/003374 2012-11-12 2013-11-08 Katalysatorsystem zur behandlung von nox- und partikelhaltigem dieselabgas WO2014072067A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13789490.3A EP2931405A1 (de) 2012-11-12 2013-11-08 KATALYSATORSYSTEM ZUR BEHANDLUNG VON NOx- UND PARTIKELHALTIGEM DIESELABGAS
KR1020157015583A KR102088152B1 (ko) 2012-11-12 2013-11-08 NOx- 및 입자-함유 디젤 배기 가스의 처리를 위한 촉매 시스템
JP2015541038A JP6285945B2 (ja) 2012-11-12 2013-11-08 NOxおよび粒子を含んでいるディーゼル排気ガスを処理するための触媒システム
US14/442,022 US9527036B2 (en) 2012-11-12 2013-11-08 Catalyst system for treating NOx- and particle-containing diesel exhaust gas
CN201380058683.XA CN104780997A (zh) 2012-11-12 2013-11-08 用于处理含nox和颗粒的柴油排气的催化剂体系

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12192178.7 2012-11-12
EP12192178 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014072067A1 true WO2014072067A1 (de) 2014-05-15

Family

ID=47227536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/003374 WO2014072067A1 (de) 2012-11-12 2013-11-08 Katalysatorsystem zur behandlung von nox- und partikelhaltigem dieselabgas

Country Status (7)

Country Link
US (1) US9527036B2 (de)
EP (1) EP2931405A1 (de)
JP (1) JP6285945B2 (de)
KR (1) KR102088152B1 (de)
CN (1) CN104780997A (de)
DE (1) DE202013011730U1 (de)
WO (1) WO2014072067A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151677A1 (en) * 2013-03-14 2014-09-25 Basf Corporation Zoned catalyst for diesel applications
WO2016202855A1 (en) 2015-06-16 2016-12-22 Basf Se Scr-catalyzed soot filter with integrated lean nox trap catalyst for use in passive selective catalytic reduction
JP2017524514A (ja) * 2014-06-16 2017-08-31 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 排気ガス処理システム
WO2017187419A1 (en) * 2016-04-29 2017-11-02 Johnson Matthey Public Limited Company Exhaust system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828896B2 (en) * 2014-08-12 2017-11-28 Johnson Matthey Public Limited Company Exhaust system with a modified lean NOx trap
DE102016207484A1 (de) * 2016-05-02 2017-11-02 Umicore Ag & Co. Kg Dieseloxidationskatalysator
US20190224649A1 (en) * 2016-07-29 2019-07-25 Umicore Ag & Co. Kg Catalyst for reduction of nitrogen oxides
DE102016121509B4 (de) 2016-11-10 2021-09-16 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
KR20200101461A (ko) * 2018-01-05 2020-08-27 우미코레 아게 운트 코 카게 수동적 질소 산화물 흡착제
CN108404975B (zh) * 2018-04-27 2021-03-23 中自环保科技股份有限公司 一种具有良好低温起燃性能的氧化型催化系统及其制备工艺
US11904299B2 (en) 2018-06-12 2024-02-20 Basf Corporation TWC system for fuel cut NOx control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471924B1 (en) * 1995-07-12 2002-10-29 Engelhard Corporation Method and apparatus for NOx abatement in lean gaseous streams
EP1837076A1 (de) * 2006-03-20 2007-09-26 Ford Global Technologies, LLC Katalysator für einen dieselpartikelfilter mit geringen no2 emissionen
EP1847319A1 (de) * 2005-10-04 2007-10-24 Ibiden Co., Ltd. Poröse wabenstruktur und diese verwendendes abgasreinigungsgerät
WO2008070551A2 (en) * 2006-12-01 2008-06-12 Basf Catalysts Llc Emission treatment systems and methods
EP2481473A2 (de) * 2011-01-26 2012-08-01 Ford Global Technologies, LLC LNT und SCR Katalysatoren für kombinierte LNT-SCR Anwendungen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899534B2 (ja) 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
GB9919013D0 (en) 1999-08-13 1999-10-13 Johnson Matthey Plc Reactor
JP3628277B2 (ja) * 2001-05-25 2005-03-09 日野自動車株式会社 エンジンの排ガス浄化装置
US6971337B2 (en) * 2002-10-16 2005-12-06 Ethyl Corporation Emissions control system for diesel fuel combustion after treatment system
DE10308287B4 (de) * 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Verfahren zur Abgasreinigung
GB0305415D0 (en) 2003-03-08 2003-04-16 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter and NOx absorbent
EP1731727A4 (de) * 2004-03-24 2007-07-18 Babcock Hitachi Kk Abgasreinigungsvorrichtung, abgasreinigungsverfahren und schwefelfangstoff für verbrennungsmotor
US7063642B1 (en) 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
JP2007192055A (ja) * 2006-01-17 2007-08-02 Toyota Motor Corp 排ガス浄化装置と排ガス浄化方法
JP2008151100A (ja) * 2006-12-20 2008-07-03 Toyota Motor Corp 排ガス浄化装置
CN101636564B (zh) 2006-12-21 2012-07-04 约翰逊马西有限公司 包括贫燃内燃发动机和用于其的废气系统的装置
EP1961933B1 (de) * 2007-02-23 2010-04-14 Umicore AG & Co. KG Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
US20090155525A1 (en) * 2007-12-18 2009-06-18 Yuejin Li Passivation-Free Coating Process For A CSF
US20090173063A1 (en) 2008-01-07 2009-07-09 Boorse R Samuel Mitigation of Particulates and NOx in Engine Exhaust
US9453443B2 (en) * 2009-03-20 2016-09-27 Basf Corporation Emissions treatment system with lean NOx trap
US8904760B2 (en) * 2009-06-17 2014-12-09 GM Global Technology Operations LLC Exhaust gas treatment system including an HC-SCR and two-way catalyst and method of using the same
DE102009033635B4 (de) 2009-07-17 2020-11-05 Umicore Ag & Co. Kg Katalytisch aktives Partikelfilter mit Schwefelwasserstoff-Sperrfunktion, seine Verwendung und Verfahren zur Entfernung von Stickoxiden und Partikeln
GB2481057A (en) 2010-06-11 2011-12-14 Johnson Matthey Plc Exhaust system comprising a catalyst with a downstream filter and SCR catalyst
WO2012079598A1 (en) 2010-12-14 2012-06-21 Umicore Ag & Co. Kg Architectural diesel oxidation catalyst for enhanced no2 generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471924B1 (en) * 1995-07-12 2002-10-29 Engelhard Corporation Method and apparatus for NOx abatement in lean gaseous streams
EP1847319A1 (de) * 2005-10-04 2007-10-24 Ibiden Co., Ltd. Poröse wabenstruktur und diese verwendendes abgasreinigungsgerät
EP1837076A1 (de) * 2006-03-20 2007-09-26 Ford Global Technologies, LLC Katalysator für einen dieselpartikelfilter mit geringen no2 emissionen
WO2008070551A2 (en) * 2006-12-01 2008-06-12 Basf Catalysts Llc Emission treatment systems and methods
EP2481473A2 (de) * 2011-01-26 2012-08-01 Ford Global Technologies, LLC LNT und SCR Katalysatoren für kombinierte LNT-SCR Anwendungen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151677A1 (en) * 2013-03-14 2014-09-25 Basf Corporation Zoned catalyst for diesel applications
US9333490B2 (en) 2013-03-14 2016-05-10 Basf Corporation Zoned catalyst for diesel applications
JP2017524514A (ja) * 2014-06-16 2017-08-31 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 排気ガス処理システム
WO2016202855A1 (en) 2015-06-16 2016-12-22 Basf Se Scr-catalyzed soot filter with integrated lean nox trap catalyst for use in passive selective catalytic reduction
WO2017187419A1 (en) * 2016-04-29 2017-11-02 Johnson Matthey Public Limited Company Exhaust system

Also Published As

Publication number Publication date
JP6285945B2 (ja) 2018-02-28
KR20150079986A (ko) 2015-07-08
DE202013011730U1 (de) 2014-04-03
CN104780997A (zh) 2015-07-15
EP2931405A1 (de) 2015-10-21
KR102088152B1 (ko) 2020-03-12
US20150273394A1 (en) 2015-10-01
US9527036B2 (en) 2016-12-27
JP2016502460A (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
EP2931405A1 (de) KATALYSATORSYSTEM ZUR BEHANDLUNG VON NOx- UND PARTIKELHALTIGEM DIESELABGAS
EP1961933B1 (de) Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
EP2123345B1 (de) Vorrichtung zur Reinigung von Dieselabgasen
EP3576865B1 (de) Katalysator zur reinigung der abgase von dieselmotoren
EP2349537A1 (de) Partikelminderung mit kombiniertem scr- und nh3- schlupf - katalysator
EP2674584B1 (de) Verfahren zur Verhinderung der Kontamination eines SCR-Katalysators mit Platin
DE102008009672B4 (de) SCR-Katalysator mit Kohlenwasserstoffspeicherfunktion, dessen Verwendung und Abgasreinigungssystem und dessen Verwendung
DE102012222807A1 (de) Abgassystem für einen mager verbrennenden Verbrennungsmotor, das einen SCR-Katalysator umfasst
EP2653681B2 (de) Verwendung eines Beschichteten Dieselpartikelfilters zum Verhindern der Kontamination eines SCR-Katalysators
EP3442687A1 (de) Partikelfilter mit scr-aktiver beschichtung
DE102010021589A1 (de) Abgasnachbehandlungssystem
EP3623047B1 (de) Katalysator zur reduktion von stickoxiden
WO2020169600A1 (de) Katalysator zur reduktion von stickoxiden
EP3490693B1 (de) Katalysator zur reduktion von stickoxiden
EP3487617A1 (de) Dieseloxidationskatalysator
EP2656904A1 (de) Dieseloxidationskatalysator
EP3389860B1 (de) Verfahren zur verhinderung der kontamination eines katalysators zur selektiven katalytischen reduktion (scr) mit platin
EP3843896B1 (de) Stickoxid-speicherkatalysator
EP3449999A1 (de) Passiver stickoxid-adsorber
EP3459617B1 (de) Partikelfilter mit integrierten katalytischen funktionen
EP3450016A1 (de) Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung
DE10115485A1 (de) Partikelfilter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13789490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013789490

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015541038

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14442022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157015583

Country of ref document: KR

Kind code of ref document: A