WO2014071879A1 - 一种分离发光二极管衬底的方法 - Google Patents

一种分离发光二极管衬底的方法 Download PDF

Info

Publication number
WO2014071879A1
WO2014071879A1 PCT/CN2013/086849 CN2013086849W WO2014071879A1 WO 2014071879 A1 WO2014071879 A1 WO 2014071879A1 CN 2013086849 W CN2013086849 W CN 2013086849W WO 2014071879 A1 WO2014071879 A1 WO 2014071879A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
semiconductor layer
emitting diode
layer
Prior art date
Application number
PCT/CN2013/086849
Other languages
English (en)
French (fr)
Inventor
林文禹
叶孟欣
林科闯
李水清
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2014071879A1 publication Critical patent/WO2014071879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the invention belongs to the field of semiconductor materials, and in particular relates to a method for separating a light-emitting diode substrate.
  • the separation of the photodiode assembly substrate mainly includes the following methods: the first one is laser (Laser) The beam illuminates the substrate to peel it off, called Laser lift-off (LLO); the second is to grind (Polish) Thinning the substrate in combination with dry etching such as ICP Etching or even complete removal; the third is to insert a relatively fragile material between the substrate and the underlying material, and then apply mechanical stress to destroy the layer to separate the substrate, called mechanical peeling (mechanical Lift-off ); the fourth is to grow a Sacrificial Layer Between the substrate and the underlying material, the sacrificial layer and the substrate have a high etching selectivity ratio, and the sacrificial layer is wet etched to the substrate by an etching solution, which is called chemical lift-off ).
  • the structure is placed in a solution that rapidly etches the strip-shaped inverted pyramid cone array material and is separated from the original substrate by rapidly etching the tip of the strip-shaped inverted pyramid cone.
  • the technical solution of the present invention is: a method for separating a light emitting diode substrate, comprising the steps of: providing a growth substrate; forming a first semiconductor layer on the growth substrate, which is distributed in an inverted pyramid pyramid array, The respective cells are separated from each other; a light emitting epitaxial layer is formed over the first semiconductor layer; the first semiconductor layer distributed in an inverted pyramid pyramid array is wet etched to separate the growth substrate.
  • the light-emitting epitaxial layer may be laterally grown to form an air cone penetrating the first semiconductor layer between the growth substrate and the light-emitting epitaxial layer, the top of which is located on the light-emitting epitaxial layer.
  • the surface layer of the exposed light-emitting epitaxial layer has a pattern, which can be directly used for the light-taking structure to enhance the light-collecting efficiency.
  • the geometrical length of the tip of each inverted pyramid cone in contact with the growth substrate cross-section is less than or equal to 1 um.
  • each of the inverted pyramid pyramid sidewalls and the substrate form an angular bottom of 20 to 70. °.
  • the materials of the first semiconductor layer and the growth substrate have a high etching selectivity ratio with each other, and preferably, the etching selectivity ratio is greater than or equal to 10:1 .
  • the materials of the first semiconductor layer and the light-emitting epitaxial layer also have a high etching selectivity ratio with each other, and preferably, the etching selectivity ratio is greater than or equal to 4:1 .
  • the material of the first semiconductor layer may be a material such as AlN, ZnO, or GaO.
  • the inverted pyramid pyramid array is implemented by: epitaxially growing a first semiconductor layer on the growth substrate; forming a mask layer on the first semiconductor layer, patterning the mask layer; using a dry method
  • the first semiconductor layer is etched in combination with etching and wet etching to obtain an inverted pyramid pyramid array.
  • the patterned mask layer is distributed in a strip or block array, and the interval between each unit is 1 ⁇ 10um.
  • the inverted pyramid pyramid array designed by the invention can cause lateral extension of the semiconductor layer grown thereon to improve the crystal quality thereof; by such geometric design, the area of contact with the substrate is minimized to only the tip thereof In part, the tip portion is etched with an etchant to quickly separate the substrate.
  • FIG. 1 is a flow chart of a method of separating a light emitting diode substrate according to the present disclosure.
  • FIGS. 2 to 11 are structural cross-sectional views showing respective steps of a method of separating a light emitting diode substrate in accordance with an embodiment of the present invention.
  • Figure 12 is a pattern of a patterned mask layer.
  • 100 sapphire substrate; 110: AlN layer; 111: inverted pyramid pyramid AlN layer; 120: SiO 2 mask layer; 130: air cone; 131: etching track; 140: luminescent epitaxial layer; 141: n-type layer 142: luminescent layer; 143: p-type layer; 150: bonding layer; 160: supporting substrate.
  • the following embodiment discloses a method of separating a substrate by growing an epitaxial layer of a light-emitting diode on an inverted pyramid pyramid array, the structure being placed in a solution capable of rapidly etching the strip-shaped inverted pyramid cone array material, The growth substrate is separated by rapidly etching the tip of the strip inverted pyramid cone.
  • the foregoing method mainly includes the following steps: Step S10, that is, selecting a growth substrate; Step S20 , that is, growing the first semiconductor layer to form an inverted pyramid pyramid array; step S30, that is, epitaxially growing the luminescent epitaxial layer on the inverted pyramid pyramid array; step S40, that is, pouring the epitaxial layer onto the supporting substrate; S50, that is, wet etching the inverted pyramid pyramid array to remove the growth substrate.
  • step S10 for the GaN-based semiconductor light-emitting diode, materials such as sapphire (Al 2 O 3 ), silicon wafer (Si), silicon carbide (SiC), or the like may be selected.
  • sapphire Al 2 O 3
  • Si silicon wafer
  • SiC silicon carbide
  • a first semiconductor layer may be formed on the substrate, and then a patterned mask layer (such as SiO 2 ) may be formed thereon, and the pattern may be a block array or a strip array, and then dry etching is performed.
  • the first semiconductor layer not covered by the mask layer is removed, and finally the first semiconductor layer is etched by wet etching to form an inverted pyramid pyramid array.
  • the efficiency of subsequently removing the growth substrate can be further improved from the following aspects: 1)
  • the materials of the growth substrate and the semiconductor layer have a high etching selectivity ratio with each other, and are conveniently separated by wet etching, and the etching selectivity ratio is preferably 1 : 10 or more.
  • materials such as AlN, ZnO or GaO may be selected; 2) the geometric length of the tip of each inverted pyramid cone contacting the growth substrate cross-section may be controlled within 1 um, specifically by adjusting the mask The pattern of the film layer and the etch rate control the size of the inverted pyramid cone tip.
  • the materials of the semiconductor layer and the luminescent epitaxial layer also have a high etching selectivity ratio with respect to each other, and the etching selectivity ratio is preferably 4:1 or more.
  • step S30 first, an n-type layer is laterally grown on each of the mutually separated inverted pyramid pyramid arrays, and the substrate and the growth substrate are n. Forming an air cone extending through the first semiconductor layer between the layers, the top portion of which is located in the n-type layer, and then continues to grow the light-emitting layer and p The layer forms a light-emitting epitaxial layer.
  • the material of the light-emitting epitaxial layer includes one of the following and any combination thereof: gallium nitride (GaN), indium gallium nitride (GaInN), aluminum gallium nitride (AlGaN).
  • step S40 generally in p A mirror structure is formed on the layer, and then the light-emitting epitaxial layer is reversely mounted on a heat-dissipating support substrate by metal bonding.
  • a first semiconductor layer 110 is deposited on the sapphire substrate 100.
  • the material of the first semiconductor layer and the growth substrate has a high etching selectivity ratio with each other, facilitating separation using wet etching.
  • AlN is selected as the first semiconductor layer.
  • a patterned SiO 2 mask layer 120 is formed on the AlN material layer 110.
  • the specific pattern is distributed in a strip shape (may also be arranged in a block array, not shown in the drawing), and the interval between the units may be 1 ⁇ 10um, and the preferred value is 3 ⁇ 5um. In this embodiment, 3um is selected.
  • the AlN layer not covered by the SiO 2 mask layer 120 is removed by dry etching to form the etching track 131.
  • the foregoing AlN is etched with a chemical solution from the sidewall of the etched track 131.
  • the layer controls the etching time to form an inverted pyramid cone 111, and the sidewall formed by the sidewall and the substrate is 20 to 70 °.
  • the chemical solution may be a mixture of phosphorus and nitric acid, and the ratio thereof is 3:1. .
  • the SiO 2 mask layer is removed, and finally an AlN inverted pyramid pyramid array is obtained, and the geometric length i of the tip end of the contact with the growth substrate is less than or equal to 1 um. In this embodiment, 0.5 is preferably taken. ⁇ 1um.
  • an n-type layer 141, a light-emitting layer 142, and a p-type layer are sequentially grown on the inverted pyramid pyramid AlN layer. 143, constituting a growth epitaxial layer 140.
  • an air cone 130 extending through the AlN layer 111 is formed between the sapphire substrate 100 and the luminescent epitaxial layer 140, the top of which is located N-type layer 141.
  • a metal bonding layer 150 is formed on the p-type layer.
  • the ohmic contact structure, the metal mirror structure, and the current blocking structure may be included, and then the light emitting epitaxial layer is reversely mounted on the heat dissipation supporting substrate 160 by metal bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Weting (AREA)

Abstract

一种分离发光二极管衬底的方法,包括步骤:提供一生长衬底;在所述生长衬底上形成第一半导体层,其呈倒置金字塔锥体阵列分布,各个单元相互分离;在所述第一半导体层之上形成发光外延层;湿法蚀刻所述呈倒置金字塔锥体阵列分布的第一半导体层,从而分离生长衬底。其为在倒置金字塔锥体阵列上生长发光二极管外延层,将此结构置于可快速蚀刻此条状倒置金字塔锥体阵列材料的溶液里,藉由快速蚀刻此条状倒置金字塔锥之尖端而与原先衬底分离。

Description

一种分离发光二极管衬底的方法
本申请主张如下优先权:中国发明专利申请号 201210449638.4 ,题为 ' 一种分离发光二极管衬底的方法 ' ,于 2012 年 11 月 12 日提交。上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明属于半导体材料领域,具体涉及一种分离发光二级管衬底的方法。
背景技术
随着垂直导通型发光二极管 (Vertical Conductive LED) 的优越特性日渐被证实及量产,分离发光二极管组件衬底的技术即为发展此类组件的重要课题之一。通常分离光二极管组件衬底主要包括以下几种方式:第一种为以激光 (Laser) 光束照射衬底以将其剥离,称之为激光剥离( Laser lift-off , LLO );第二种为以研磨方式( Polish )将衬底薄化结合干式蚀刻如 ICP 蚀刻之乃至完全移除;第三种为在衬底与底层材料之间插入一相对脆弱之材料,再施以机械应力破坏此层从而将衬底分离,称之为机械剥离( mechanical lift-off );第四种为先成长一牺牲层 (Sacrificial Layer) 于衬底与底层材料之间,此牺牲层与衬底具有高蚀刻选择比之特性,藉由蚀刻液将此牺牲层湿蚀刻至其与衬底分离,称之为化学剥离( chemical lift-off )。
发明内容
本发明的目的之一在于提供一能以低成本且快速分离衬底之方法,其在倒置金字塔锥体阵列上( Reverse Pyramid Stripe Array )上生长发光二级管外延层( LED Epitaxy Structure ),将此结构置于可快速蚀刻此条状倒置金字塔锥体阵列材料的溶液里,藉由快速蚀刻此条状倒置金字塔锥之尖端而与原先衬底分离。
本发明的技术方案为:一种分离发光二级管衬底的方法,包括步骤:提供一生长衬底;在所述生长衬底上形成第一半导体层,其呈倒置金字塔锥体阵列分布,各个单元相互分离;在所述第一半导体层之上形成发光外延层;湿法蚀刻所述呈倒置金字塔锥体阵列分布的第一半导体层,从而分离生长衬底。
更具体地,可以通过横向生长所述发光外延层,从而在所述生长衬底与发光外延层之间形成一贯穿第一半导体层的空气锥形体,其顶部位于所述发光外延层。当去除所述生长衬底后,其露出的发光外延层的表层具有图案,其可直接用于取光结构,增强聚光效率。
在本发明的一些实施例中,在所述第一半导体层中,各个倒置金字塔锥体的尖端与所述生长衬底横截面接触的几何长度小于或等于 1um 。
在本发明的一些实施例中,在所述第一半导体层中,各个倒置金字塔锥体侧壁与衬底形成的角底为 20~70 °。
所述第一半导体层与生长衬底的材料彼此间具有高蚀刻选择比,优选地,其蚀刻选择比大于或等于 10 : 1 。
所述第一半导体层与发光外延层的材料彼此间同样具有高蚀刻选择比,优选地,其蚀刻选择比大于或等于 4 : 1 。
在一些实施例中,所述第一半导体层的材料可为 AlN 、 ZnO 或 GaO 等材料。
前述倒置金字塔锥体阵列通过下面方法实现:在所述生长衬底上外延生长第一半导体层;在所述第一半导体层上形成一掩膜层,图形化所述掩膜层;采用干法蚀刻和湿法蚀刻相结合的方式,蚀刻所述第一半导体层,从而获得倒置金字塔锥体阵列。其中,所述图形化的掩膜层呈条状或块状阵列分布,各个单元之间的间隔为 1~10um 。
本发明所设计的倒置金字塔锥体阵列可以造成成长于上面的半导体层产生侧向外延,从而改善其晶体质量;藉由这样的几何设计,将衬底与其接触之面积最小化至仅剩其尖端部分,以蚀刻液蚀刻尖端部分而快速分离衬底。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 为本发明所公开的分离发光二极管衬底之方法的流程图。
图 2~ 图 11 为根据本发明实施的一种分离发光二极管衬底之方法的各个步骤的结构剖面图。
图 12为图形化掩膜层的图案。
图中各标号表示:
100 :蓝宝石衬底; 110 : AlN 层; 111 :倒置金字塔锥体 AlN 层; 120 : SiO2 掩膜层; 130 :空气锥形体; 131 :蚀刻道; 140 :发光外延层; 141 : n 型层; 142 :发光层; 143 : p 型层; 150 :键合层; 160 :支撑衬底。
具体实施方式
为了能彻底地了解本发明,将在下列的描述中提出详尽的步骤及其组成。显然地,本发明的施行并未限定于分离半导体及其基板之技艺者所熟习的特殊细节。另外,众所周知的组成或步骤并未描述于细节中,以避免造成本发明不必要之限制。本发明的较佳实施例会详细描述如下,然而除了这些详细描述之外,本发明还可以广泛地施行在其它的实施例中,且本发明的范围不受限定,以专利权利范围为准。
下面实施例公开了一种分离衬底的方法,其于倒置金字塔锥体阵列上生长发光二级管外延层,将此结构置于可快速蚀刻此条状倒置金字塔锥体阵列材料的溶液里,藉由快速蚀刻此条状倒置金字塔锥体的尖端而与生长衬底分离。
请参考图 1 ,前述方法主要包括下面步骤:步骤 S10 ,即选择生长衬底;步骤 S20 ,即生长第一半导体层,形成倒置金字塔锥体阵列;步骤 S30 ,即在倒置金字塔锥体阵列上外延生长发光外延层;步骤 S40 ,即将发光外延层倒置于支撑衬底上;步骤 S50 ,即湿法蚀刻倒置金字塔锥体阵列,移除生长衬底。
在步骤 S10 中,对于 GaN 基半导体发光二极管,可选用蓝宝石( Al2O3 )、硅片( Si )、碳化硅( SiC )等材料。
在步骤 S20 中,可先在衬底上形成第一半导体层,接着在其上形成图形化的掩膜层(如 SiO2 ),其图案可为块状阵列或条状阵列,然后采用干蚀刻的方式去除掩膜层未覆盖的第一半导体层,最后采用湿蚀刻的方式,蚀刻第一半导体层从而形成倒置金字塔锥体阵列。其中,可从以下方面进一步的提高后续移除生长衬底的效率: 1 )生长衬底与半导体层之材料彼此间具有高蚀刻选择比,方便使用湿蚀刻进行分离,其蚀刻选择比优选值为 1 : 10 以上。以蓝宝石生长衬底为例,可选用 AlN 、 ZnO 或 GaO 等材料; 2 )各个倒置金字塔锥体的尖端与所述生长衬底横截面接触的几何长度可控制在 1um 以内,具体可通过调整掩膜层的图案及蚀刻速率进行控制倒置金字塔锥体尖端的大小。为了保证发光外延层的完整性,半导体层与发光外延层之材料彼此间同样具有高蚀刻选择比,其蚀刻选择比优选值为 4 : 1 以上。
在步骤 S30 中,首先在各个相互分离的倒置金字塔锥体阵列上横向生长 n 型层,在生长衬底与 n 型层之间形成一贯穿第一半导体层的空气锥形体,其顶部位于 n 型层,接着继续生长发光层和 p 型层,构成发光外延层。对于发光外延层的材料,包含下列之一及其任意组合:氮化镓 (GaN) 、氮化铟镓 (GaInN) 、氮化铝镓 (AlGaN) 。
在步骤 S40 中,一般可在 p 型层上制作镜面结构,然后再采用金属键合的方式,将发光外延层反置安装于一散热性支撑衬底上。
下面结合附图 2~12 和实施例对本发明的实现做详细说明。
请参考图 2 ,在蓝宝石衬底 100 上沉积第一半导体层 110 ,其中第一半导体层与生长衬底的材料彼此间具有高蚀刻选择比,方便使用湿蚀刻进行分离。在本实施例中,选择 AlN 作为第一半导体层。
请参考图 3 ,在 AlN 材料层 110 上形成图形化的 SiO2 掩膜层 120 。 如图 12 所示,其具体的图案为呈条状分布(也可以呈块状阵列分布,附图未示出) , 各个单元之间的间隔可为 1~10um , 优选值为 3~5um 。在本实施例中,选用 3um 。
请参考图 4 ,采用干蚀刻的方式去除未被 SiO2 掩膜层 120 覆盖的 AlN 层,从而形成蚀刻道 131 。
请参考图 5 ,从蚀刻道 131 的侧壁开始,采用化学溶液蚀刻前述 AlN 层,控制蚀刻时间形成倒置金字塔锥体 111 ,其侧壁与衬底形成的角底为 20~70 °。在本实施例中,化学溶液可为磷硝酸混合液,其配比为 3 : 1 。
请参考图 6 ,去除 SiO2 掩膜层,最终获得 AlN 倒置金字塔锥体阵列,其尖端与所述生长衬底横截面接触的几何长度 i 小于或等于 1um ,在本实施例中,优选取 0.5~1um 。
请参考图 7 ,在倒置金字塔锥体 AlN 层上依次生长 n 型层 141 、发光层 142 和 p 型层 143 ,构成生长外延层 140 。其中,在蓝宝石衬底 100 与发光外延层 140 之间形成一贯穿 AlN 层 111 的空气锥形体 130 ,其顶部位于 n 型层 141 。
请参考图 8 ,在 p 型层上制作金属键合层 150 ,其可包含欧姆接触结构、金属镜面结构和电流阻挡结构等设计,然后再采用金属键合的方式,将发光外延层反置安装于散热性支撑衬底 160 上。
请参考图 9~11 ,采用化学溶液蚀刻倒置金字塔锥体 AlN 层 111 ,由于倒置金字塔锥体阵列已将衬底与其接触之面积最小化至仅剩其尖端部分,故可快速将蓝宝石衬底分离。继续蚀刻直接完全去除倒置金字塔锥体 AlN 层 111 ,露出 n 型层表面 141a 。

Claims (10)

  1. 一种分离发光二级管衬底的方法,包括步骤:
    提供一生长衬底;
    在所述生长衬底上形成第一半导体层,其呈倒置金字塔锥体阵列分布,各个单元相互分离;
    在所述第一半导体层之上形成发光外延层;
    湿法蚀刻所述呈倒置金字塔锥体阵列分布的第一半导体层,从而分离生长衬底。
  2. 根据权利要求 1 所述的一种分离发光二级管衬底的方法,其特征在于:
    通过侧向生长所述发光外延层,从而在所述生长衬底与发光外延层之间形成一贯穿第一半导体层的空气锥形体,其顶部位于所述发光外延层。
  3. 根据权利要求 1 或 2 所述的一种分离发光二级管衬底的方法,其特征在于:在所述第一半导体层中,各个倒置金字塔锥体的尖端与所述生长衬底横截面接触的几何长度小于或等于 1um 。
  4. 根据权利要求 1 或 2 所述的一种分离发光二级管衬底的方法,其特征在于:在所述第一半导体层中,各个倒置金字塔锥体侧壁与衬底形成的角度为 20~70 °。
  5. 根据权利要求 1 或 2 所述的一种分离发光二级管衬底的方法,其特征在于:所述第一半导体层与生长衬底的材料的蚀刻选择比大于或等于 10 : 1 。
  6. 根据权利要求 5 所述的一种分离发光二级管衬底的方法,其特征在于:所述第一半导体层为材料为 AlN 、 ZnO 或 GaO 。
  7. 根据权利要求 2 所述的一种分离发光二级管衬底的方法,其特征在于:所述第一半导体层与所述发光外延层的材料的蚀刻选择比大于或等于 4 : 1 。
  8. 根据权利要求 1 所述的一种分离发光二级管衬底的方法,其特征在于:所述倒置金字塔锥体阵列通过下面方法实现:
    在所述生长衬底上外延生长第一半导体层;
    在所述第一半导体层上形成一掩膜层,图形化所述掩膜层;
    采用干法蚀刻和湿法蚀刻相结合的方式,蚀刻所述第一半导体层,从而获得倒置金字塔锥体阵列。
  9. 根据权利要求 8 所述的一种分离发光二级管衬底的方法,其特征在于:所述图形化的掩膜层呈条状或块状阵列分布,各个单元之间的间隔为 1~10um 。
  10. 根据权利要求 1 所述的一种分离发光二级管衬底的方法,还包括步骤:提供一支撑衬底,将所述发光外延层反置安装在所述支撑衬底。
PCT/CN2013/086849 2012-11-12 2013-11-11 一种分离发光二极管衬底的方法 WO2014071879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210449638.4A CN103000774B (zh) 2012-11-12 2012-11-12 一种分离发光二极管衬底的方法
CN201210449638.4 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014071879A1 true WO2014071879A1 (zh) 2014-05-15

Family

ID=47929118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086849 WO2014071879A1 (zh) 2012-11-12 2013-11-11 一种分离发光二极管衬底的方法

Country Status (2)

Country Link
CN (1) CN103000774B (zh)
WO (1) WO2014071879A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000774B (zh) * 2012-11-12 2015-05-27 安徽三安光电有限公司 一种分离发光二极管衬底的方法
CN103730549A (zh) * 2014-01-07 2014-04-16 大连理工大学 一种基于SiC衬底的垂直结构GaN基紫外LED及其制备方法
CN107452840B (zh) * 2017-07-14 2019-03-01 华灿光电(浙江)有限公司 一种led面板及其制作方法
CN107403860B (zh) * 2017-08-08 2019-06-21 天津三安光电有限公司 牺牲层结构及采用该结构剥离材料层的方法
CN107611233B (zh) * 2017-08-24 2019-05-03 西安交通大学 基于复合转移衬底的垂直结构深紫外led器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764185A (zh) * 2008-12-24 2010-06-30 斯坦雷电气株式会社 半导体器件以及半导体器件制造方法
CN102368526A (zh) * 2011-10-27 2012-03-07 华灿光电股份有限公司 一种近紫外led器件的制造方法
CN102723416A (zh) * 2012-07-05 2012-10-10 杭州士兰明芯科技有限公司 Led外延片及其制作方法
CN103000774A (zh) * 2012-11-12 2013-03-27 安徽三安光电有限公司 一种分离发光二极管衬底的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679869B2 (ja) * 2011-03-07 2015-03-04 スタンレー電気株式会社 光半導体素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764185A (zh) * 2008-12-24 2010-06-30 斯坦雷电气株式会社 半导体器件以及半导体器件制造方法
CN102368526A (zh) * 2011-10-27 2012-03-07 华灿光电股份有限公司 一种近紫外led器件的制造方法
CN102723416A (zh) * 2012-07-05 2012-10-10 杭州士兰明芯科技有限公司 Led外延片及其制作方法
CN103000774A (zh) * 2012-11-12 2013-03-27 安徽三安光电有限公司 一种分离发光二极管衬底的方法

Also Published As

Publication number Publication date
CN103000774A (zh) 2013-03-27
CN103000774B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
US8278125B2 (en) Group-III nitride epitaxial layer on silicon substrate
US8629534B2 (en) Semiconductor structure having low thermal stress
US8435820B2 (en) Patterned substrate for hetero-epitaxial growth of group-III nitride film
WO2014071879A1 (zh) 一种分离发光二极管衬底的方法
US8507357B2 (en) Method for lift-off of light-emitting diode substrate
WO2012093757A1 (ko) 템플레이트, 그 제조방법 및 이를 이용한 수직형 질화물 반도체 발광소자의 제조방법
JP2007053381A (ja) 垂直構造の窒化ガリウム系led素子の製造方法
US8278194B2 (en) Method for fabricating semiconductor devices and a semiconductor device made therefrom
WO2017150848A1 (ko) 나노 로드 제조방법 및 이에 의해 제조된 나노 로드
CN109950201A (zh) 光电器件外延结构的制造方法
TW201003981A (en) Substrate structure and method of removing the substrate structure
US8420418B2 (en) Light-emitting device and manufacturing method thereof
CN102569551B (zh) 具蚀刻停止层的磊晶结构及其制造方法
CN102280533A (zh) 氮化镓衬底材料制造方法
CN117219706A (zh) 制造微型元件的方法
KR20130075264A (ko) 발광 다이오드 제조 방법
JP2015129057A (ja) 凹凸構造を有する結晶基板
US11450747B2 (en) Semiconductor structure with an epitaxial layer
CN102683280A (zh) 半导体制程方法
TWI395847B (zh) 針對藍寶石基板之蝕刻方法及圖案化藍寶石基板
US20230068911A1 (en) Laser Lift-Off Processing System Including Metal Grid
WO2013083007A1 (zh) 衬底、衬底的制作方法和使用方法
KR20130034480A (ko) 에피층과 성장 기판 분리 방법
US8878210B2 (en) Light-emitting device
TWI804742B (zh) 發光元件、發光元件的模板及其製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853574

Country of ref document: EP

Kind code of ref document: A1