WO2014071563A1 - 终端定位方法及定位装置 - Google Patents

终端定位方法及定位装置 Download PDF

Info

Publication number
WO2014071563A1
WO2014071563A1 PCT/CN2012/084201 CN2012084201W WO2014071563A1 WO 2014071563 A1 WO2014071563 A1 WO 2014071563A1 CN 2012084201 W CN2012084201 W CN 2012084201W WO 2014071563 A1 WO2014071563 A1 WO 2014071563A1
Authority
WO
WIPO (PCT)
Prior art keywords
error compensation
terminal
positioning
arrival time
database
Prior art date
Application number
PCT/CN2012/084201
Other languages
English (en)
French (fr)
Inventor
陈德
罗新龙
肖登坤
崔杰
吴泳彤
张涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280074197.2A priority Critical patent/CN104396321B/zh
Priority to PCT/CN2012/084201 priority patent/WO2014071563A1/zh
Publication of WO2014071563A1 publication Critical patent/WO2014071563A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a terminal positioning method and a positioning device. Background technique
  • Observed Time Difference of Arrival is a common positioning technology.
  • the principle is that when there are three or more base stations in the system, the terminal can be determined according to the arrival time difference of the downlink transmission signals of different base stations. position.
  • the downlink transmission signal may be a reference signal or a synchronization signal.
  • the hyperbola a point where the difference between the two fixed point distances is a constant value constitutes a hyperbola. In the OTDOA positioning diagram shown in FIG.
  • the base station 0, the base station 1 and the base station 2 are present in the system, and the difference between the distance between the base station 0 and the base station 1 is _, forming a hyperbola, and the difference between the distance between the base station 1 and the base station 2 is - 4 constitutes another hyperbola, and the intersection of the two hyperbolas is the position of the terminal.
  • the accuracy of OTDOA positioning depends largely on the reception of the PRS signal and the estimation of the first path.
  • the signal propagation due to the surrounding buildings often does not reach the target end in a straight line, but through the reflection of the surrounding environment. Or the scattering reaches the receiving end.
  • TOA Time of Arrival
  • the time, according to this calculated distance is not a linear distance, so there is a large error in directly calculating the terminal coordinates with this distance.
  • the present invention provides a terminal positioning method to solve the problem that the measurement error of the OTDOA technology based on the channel arrival time measurement is large when the terminal is positioned, thereby causing poor positioning accuracy of the position estimation algorithm.
  • an embodiment of the present invention provides a terminal positioning method, where the method includes:
  • an embodiment of the present invention provides a terminal locating device, where the device includes: a receiving unit, configured to receive positioning measurement information reported by a user equipment;
  • a searching unit configured to search, in the error compensation database, an error compensation parameter corresponding to the positioning measurement information
  • a compensation unit configured to perform error compensation on the first measurement quantity in the positioning measurement information according to the error compensation parameter, to obtain a second measurement quantity value
  • an embodiment of the present invention provides a terminal positioning apparatus, where the apparatus includes: a network interface;
  • An application physically stored in the memory including instructions operable to cause the processor and the system to perform the following process:
  • the embodiment of the present invention provides a method for locating a terminal.
  • the method provides an error compensation database, and in the case of non-line-of-sight, the error caused by the occlusion problem of the building in the positioning measurement information reported by the user terminal, the search error compensation
  • the corresponding error compensation parameters in the database perform corresponding error compensation in the positioning measurement information, thereby achieving the purpose of improving the positioning accuracy of the terminal.
  • FIG. 2 is a flowchart of an embodiment of a terminal positioning method according to an embodiment of the present invention
  • FIG. 3 is a flowchart of an embodiment of constructing an error compensation database in a terminal positioning method according to an embodiment of the present invention
  • FIG. 4 is a flowchart of another embodiment of constructing an error compensation database in a terminal positioning method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another embodiment of constructing an error compensation database in a terminal positioning method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another embodiment of constructing an error compensation database in a terminal positioning method according to an embodiment of the present invention.
  • FIG. 7 is a structural reference of a cell grouping in a terminal positioning method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another embodiment of constructing an error compensation database in a terminal positioning method according to an embodiment of the present invention.
  • FIG. 9 is a state reference diagram of a cell sub-area in a terminal positioning method according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of an embodiment of a terminal positioning apparatus according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of another embodiment of a terminal positioning apparatus according to an embodiment of the present invention. detailed description
  • OTDOA is positioned as a technology for network-assisted terminal location.
  • the base station After the network side positioning server specifies the transmission and reception configuration of the positioning reference signal PRS for the base station and the mobile station, the base station downlinks a Positioning Reference Signal (PRS), and the mobile station receives the PRS from the plurality of positioning base stations, and identifies
  • PRS Positioning Reference Signal
  • the first path of each PRS can obtain the PRS arrival time difference between different base stations and report it to the positioning server.
  • the positioning server receives the signal time difference of different base stations through the mobile station, and can be mapped into the distance difference between the mobile station and the different base stations. Through the above mathematical calculation of the hyperbolic model, the positioning server can obtain the accurate position of the mobile station.
  • FIG. 2 is a flowchart of a terminal positioning method in the embodiment.
  • the execution body of the embodiment is a positioning server, which may be the positioning server in FIG.
  • the base station eNB that can have such a function is as shown in the figure.
  • the terminal positioning method includes:
  • Step 201 Receive positioning measurement information reported by the user equipment.
  • the positioning server may directly receive the positioning measurement information uploaded by the terminal, for example, the reference signal arrival time difference TOA, and the like, and carry the ID of the cell where the terminal is located or the ID of the base station of the cell in which the terminal is located, thereby Able to get the approximate user terminal Regional location.
  • Step 202 Find an error compensation parameter corresponding to the positioning measurement information in an error compensation database.
  • the location server obtains the location measurement information reported by the terminal, the location information of the terminal and the time difference of the reference signal arrival time acquired by the terminal are obtained, and the location server is located according to the area where the terminal is located and/or The reference signal acquired by the terminal reaches measurement information such as time difference, determines corresponding error compensation parameters and searches for error compensation parameters in the database.
  • Step 203 Perform error compensation on the first measured quantity value in the positioning measurement information according to the error compensation parameter, to obtain a second measured quantity value;
  • the positioning server adds or subtracts the found error compensation parameter to the parameter uploaded by the terminal, and obtains a more accurate second measurement value, for example, subtracting the time delay caused by the building occlusion in the TOA uploaded by the terminal. , get a more accurate TOA value.
  • Step 204 Acquire location information of the user equipment according to the second measured quantity.
  • the positioning server acquires the accurate position information of the user according to the set algorithm according to the second measured quantity after the error compensation.
  • the algorithm for example, based on the intersection of hyperbola formed by the distance difference between several different base stations, calculates the position of the terminal by calculating the hyperbolic intersection point, and achieves the purpose of positioning.
  • the terminal positioning method provided by the foregoing embodiment can detect the error caused by the occlusion problem of the building in the positioning measurement information reported by the user terminal in the non-line-of-sight condition, and find the corresponding error compensation parameter in the error compensation database.
  • the corresponding error compensation is performed in the measurement information, thereby achieving the purpose of improving the positioning accuracy of the terminal.
  • the positioning measurement information reported by the user equipment includes a measurement positioning reference signal arrival time difference TDOA between the user equipment and different base stations, and the step 202 specifically searches for the user in the error compensation database.
  • the reference signal reported by the device arrives at the TDOA error compensation parameter corresponding to the time difference TDOA.
  • an error compensation database needs to be established, and as shown in FIG. 3, the error compensation database is established by:
  • Step 301 Acquire real location information of the terminal, real location information of the multiple base stations, and actual measurement arrival time of the positioning reference signal sent by the terminal to each base station in the setting area; the setting area in this step
  • the setting area in this step
  • it may be a suburb of a city and an urban area, an administrative area.
  • it may be a cell covered by different base stations, three sectors of each cell, and a plurality of base stations covered by the terminal. Area, etc.
  • the real location information of the terminal can be obtained by means of actual measurement, GPS, etc., and the positioning reference signal sent by the terminal is obtained at the specific location where the terminal is located, and arrives at each base station, and after each base station The time difference of the positioning reference auxiliary signal returned after each base station processing arrives at the terminal.
  • Step 302 Acquire an actual measurement arrival time of the positioning reference signal sent by the terminal to each base station according to the real location information of the terminal and the real location information of each of the base stations;
  • the actual measured arrival time of the positioning reference signal sent by the terminal to a certain base station is obtained according to the real location information of the terminal and the real location information of the reference base station, if the coordinates of the terminal are (x UE , y UE ), the coordinates of a certain base station are (x eNB , y eNB ), for example, by the following formula:
  • the middle Q is the speed of light step 303, and the difference between the ideal arrival time between the terminal and each base station and the actual measured arrival time of the terminal is obtained. , establish an error compensation database.
  • the difference from the actual measured value reported by the terminal can be used as the TOA error, and the error compensation database is established by these errors.
  • the following describes the difference between the ideal arrival time between the acquisition terminal and each base station and the actual measurement arrival time of the terminal, and the specific manner of establishing an error compensation database, which is an embodiment shown in FIG. in: First, obtaining an average value of a difference between the ideal arrival time between the terminal and each base station in the set area and the actual measured arrival time of the terminal, as a global error of the set area Compensation value
  • Step 401 Obtain real location information of the terminal.
  • the location coordinates of the terminal (XuE, y UE ), of course, the terminal here may be a terminal of a different type of mobile phone, tablet computer or handheld computer, and the manner of obtaining the terminal positions may be through road test, It can be by satellite positioning.
  • Step 402 Acquire location information of a base station in a set area, and locate reference signal measurement information.
  • the location information of the base station is “XeNB 1 , YeNB 1 ), (XeNB2, y e NB2 ), .., ( ⁇ , ⁇ )), the positioning reference signal measurement measurement information is ((RTThRxTxi), (RTT 2 , RxTx 2 ) (RTTn, RxTxn)).
  • RTT is the loopback time
  • RxTx is the time difference of the base station processing the reference signal.
  • Step 403 obtaining an ideal TOA and measuring TOA
  • RxTx represents the transmission and reception time difference of the base station, and the TOA divides the difference between the loopback time and the RxTx by
  • Step 404 obtaining a TOA error value
  • the TOA error is calculated according to the formula (3).
  • TOA error ideal TOA - measured TOA (3)
  • Step 405 Obtain the TOA error mean of all the sample points, obtain the global error compensation value, and establish a global error compensation database.
  • the global error compensation value u is obtained by the following formula (4).
  • n the number of points in the set area.
  • the terminal reports the TOA measurement information to the base station, and the positioning server can know which setting area the terminal is in at that time. Then, according to the database we have built, the global TOA compensation value of the setting area corresponding to the current terminal is taken out, The TOA performs global compensation (for example, subtracting or adding a formula (4) based on the original measurement TOA), returns the compensated TOA, and then estimating the position of the terminal based on the input compensated TOA-based positioning algorithm.
  • global compensation for example, subtracting or adding a formula (4) based on the original measurement TOA
  • Step 501 Acquire Real location information of the terminal
  • the real location information of the terminal includes, in addition to the coordinates, the cell ID of the cell where the terminal is located, that is, the cell covered by a certain base station.
  • Step 502 Obtain location information of multiple base stations, and locate reference signal measurement information.
  • the location information of the base station in a certain area is ((XeNB 1 jYeNB 1 ), (XeNB2 ? ⁇ 2), ⁇ ⁇ ⁇ , ( X eN Bn, yeNBn ))
  • positioning reference signal measurement measurement information is ( ) ,
  • RTT is the loopback time
  • RxTx is the time difference between the base station processing the reference signal.
  • Step 503 obtaining an ideal TOA and measuring TOA
  • RxTx represents the transmission and reception time difference of the base station, and the TOA divides the difference between the loopback time and the RxTx by the difference.
  • Step 504 obtaining a TOA error value.
  • TOA error ideal TOA - measured TOA (3)
  • TOA error(i) of all drive test sample points can be obtained as statistical data.
  • Step 505 Acquire a TOA error value of all sampling points
  • Step 506 Calculate the TOA error average of different cells according to the cell ID. Specifically, the cell error compensation value u is obtained by using the following formula (4).
  • Step 507 according to the cell error compensation value corresponding to different cells, establish an error compensation database.
  • the format of the error compensation database can be referred to Table 1, each Different cells correspond to an error compensation value.
  • the terminal reports the TOA measurement information to the base station, and the positioning server can know which cell cell the terminal is in at that time. Then, according to the database we have built, the cell TOA compensation value of the current cell corresponding to the current terminal is taken out, and the TOA is compensated for error. (For example, subtracting or adding a formula (4) based on the original measured TOA, returning the compensated TOA.
  • the positioning server obtains, as a reference, a mean value of a difference between the ideal arrival time of the different cell corresponding to the terminal and the actual measured arrival time of the terminal, The cell error compensation value of the cell;
  • the error compensation database is established according to the cell error compensation value of different cells in the set area.
  • obtaining a difference between the ideal arrival time between the terminal and each base station and the actual measured arrival time of the terminal includes:
  • Step 601 Obtain real location information of the terminal.
  • the real location information of the terminal includes, in addition to the coordinates, the cell ID of the cell in which the terminal is located, that is, the cell covered by a certain base station.
  • Step 602 Obtain location information of multiple base stations, and locate reference signal measurement information.
  • the location information of the base station in a certain area is ((XeNB YeNB1), (XeNB2, y e NB2 ), ..., ( XeNBn, yeNBn)), positioning reference signal measurement measurement information is ( ) ,
  • RTT is the loopback time
  • RxTx is the time difference between the base station processing the reference signal.
  • Step 603 obtaining an ideal TOA and measuring TOA
  • RxTx represents the transmission and reception time difference of the base station, and the TOA divides the difference between the loopback time and the RxTx by
  • Step 604 obtaining a TOA error value
  • the TOA error is calculated according to the formula (3).
  • TOA error ideal TOA - measured TOA (3)
  • Step 605 Acquire a TOA error value of all the sample points
  • Step 606 According to the cell ID, divide the cell into different combinations and separately calculate the TOA error average value of each cell in the different group.
  • the combination of cells is grouped by three, and the number of cells participating in positioning is three or more.
  • the cell error compensation value u is obtained by the following formula (4).
  • n the number of points of a cell in a different packet.
  • Step 607 according to the participation positioning, the combination of the cells is matched with the cell combination constructed in the database;
  • the cell grouping state can refer to FIG. 7.
  • different terminals select different base stations as objects for transmitting positioning reference signals, and at this time, different cells can be grouped.
  • reference is made to the positioning reference signals of three different base stations, and the cells covered by the three base stations are grouped.
  • Step 608 Count the error mean of each cell in each combination to obtain a cell grouping error compensation value.
  • the database is constructed according to the format of Table 2, and the error compensation value based on the cell grouping is obtained ⁇ gr up x (u u , u n , u u ), group 2 (w 21 , " 22 , " 23 ),... group n ⁇ u nX , u n2 , u n3 ) ⁇
  • the terminal reports the TOA measurement information to the base station, and the positioning server can know which cell cell the terminal is in at that time. Then, according to the database we have built, the cell grouping error compensation value of the current terminal corresponding cell is taken out, and the error is performed on the TOA. Compensation (for example, subtracting or adding a formula (4) based on the original measured TOA) returns the compensated TOA.
  • the positioning server uses the cell group referenced when the terminal performs terminal positioning as a reference, and the cell that acquires different packets corresponds to the ideal arrival time of the terminal and the actual measurement arrival of the terminal.
  • the error compensation database is established based on cell grouping error compensation values of different groups in the set area.
  • obtaining a difference between the ideal arrival time between the terminal and each base station and the actual measured arrival time of the terminal includes:
  • Step 801 Obtain real location information of the terminal.
  • the real location information of the terminal includes, in addition to the coordinates, the cell ID of the cell where the terminal is located, that is, the cell covered by a certain base station.
  • Step 802 Obtain location information of multiple base stations, and locate reference signal measurement information.
  • the location information of the base station in a certain area is ((XeNB 1 jYeNB 1 ), (XeNB2 ? ⁇ 2), . . . , (XeNBn, yeNBn)), and the positioning reference signal measurement measurement information is ( ) ,
  • RTT is the loopback time
  • RxTx is the time difference between the base station processing the reference signal.
  • Step 803 obtaining an ideal TOA and measuring TOA
  • formula (2) Calculate the measured TOA according to formula (2), which is the actual measured TOA
  • RxTx represents the transmission and reception time difference of the base station, and the TOA divides the difference between the loopback time and the RxTx by
  • Step 804 obtaining a TOA error value
  • the TOA error is calculated according to the formula (3).
  • TOA error ideal TOA - measured TOA (3)
  • Step 805 Acquire a TOA error value of all the sample points
  • Step 806 The average value of the TOA error of different areas is respectively counted according to the cell ID of the terminal.
  • the different areas in the cell may be combined with the road condition information such as the actual terrain to divide the area into cells.
  • the error compensation value u of different regions is obtained by the following formula (4).
  • n the number of points in a region.
  • the status of the area can be referred to Figure 7.
  • the terminal is in a different area, there are different errors, so there are different error compensation values.
  • Step 807 the error mean value in each area is counted to obtain the sub-area error compensation value.
  • the terminal reports the TOA measurement information to the base station, and the positioning server can know which area of the cell in which the terminal is located. Then, according to the database we have built, the sub-area error compensation value corresponding to the current terminal is taken out, The TOA performs error compensation (for example, u obtained by subtracting or adding a formula (4) on the basis of the original measurement TOA), and returns the compensated TOA.
  • error compensation for example, u obtained by subtracting or adding a formula (4) on the basis of the original measurement TOA
  • the positioning server refers to the different area in which the terminal refers to when the terminal performs positioning, and obtains the ideal arrival time corresponding to the terminal when the terminal is in a different area, and the The average value of the difference between the actual measurement arrival times of the terminal as the sub-region error compensation value;
  • the error compensation database is established based on the regional error compensation value.
  • the embodiment of the present invention provides a terminal locating device, where the terminal locating device may be a positioning server or a base station having a terminal locating function, and the device includes: a receiving unit 1001, configured to receive Positioning measurement information reported by the user equipment;
  • the searching unit 1002 is configured to search, in the error compensation database, an error compensation parameter corresponding to the positioning measurement information;
  • the compensation unit 1003 is configured to perform error compensation on the first measurement quantity value in the positioning measurement information according to the error compensation parameter, to obtain a second measurement quantity value;
  • the processing unit 1004 is configured to acquire location information of the user equipment according to the second measured quantity.
  • FIG. 11 is a schematic diagram of a management control system according to an embodiment of the present invention.
  • the embodiment includes a network interface 61, a processor 62, and a memory 63.
  • the system bus 64 is used to connect the network interface 61, the processor 62, and the memory 63.
  • Network interface 61 is used to communicate with the terminal or base station.
  • the memory 63 may be a persistent storage such as a hard disk drive and a flash memory having a software module and a device driver.
  • the software modules are capable of executing the various functional modules of the above described method of the present invention; the device drivers can be network and interface drivers.
  • RAM random access memory
  • ROM read-only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • register hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明实施例提供了一种终端定位方法,所述方法包括:接收用户设备上报的定位测量信息;在误差补偿数据库中查找与所述定位测量信息对应的误差补偿参数;根据所述误差补偿参数对所述定位测量信息中的第一测量量值进行误差补偿,以获取第二测量量值;根据所述第二测量量值,获取所述用户设备的位置信息。本发明实施例提供一种终端定位方法,能够达到提高终端定位精度的目的。

Description

终端定位方法及定位装置 技术领域
本发明涉及移动通信领域, 具体涉及一种终端定位方法及定位装置。 背景技术
观察到达时间差 (Observed Time Difference of Arrival, OTDOA )是一种 常见的定位技术, 其原理是, 当系统中存在三个或三个以上基站时, 可以根 据不同基站下行传输信号的到达时间差确定终端的位置。 此下行传输信号可 以是参考信号, 也可以是同步信号。 由双曲线的定义知, 到两个定点距离之 差为恒定值的点构成一条双曲线。 如图 1所示的 OTDOA定位示意图中, 系 统中存在基站 0、 基站 1和基站 2, 到基站 0和基站 1距离之差为 _ 构成 一条双曲线, 到基站 1和基站 2距离之差为 -4构成另一条双曲线, 两条双 曲线的交点即为终端的位置。 当系统中存在的基站数量越多时, 确定的终端 位置越精确。
OTDOA 定位的精度很大程度上依赖于 PRS 信号的接收和首达径的估 计, 在实际网络中, 由于周边的建筑物导致信号的传播往往并不是直线到达 目标端, 而是通过周边环境的反射或者散射到达接收端, 这时通过直线距离 进行定位计算的方法会存在误差, 因为测量得到的信号到达时间 (Time of Arrival, TOA )值并不是直线到达的时间, 也就不是信号经历直线到达目标 的时间, 根据这个算出的距离也不是直线距离, 因此用这个距离直接计算终 端坐标会存在较大的误差。 发明内容
本发明提供一种终端定位方法, 以解决现有技术 OTDOA技术在终端定 位时基于信道到达时间测量的测量量误差较大, 从而导致位置估计算法的定 位精度较差的问题。
为实现上述目的, 本发明实施例一方面提供了一种终端定位方法, 所述 方法包括:
接收用户设备上报的定位测量信息;
在误差补偿数据库中查找与所述定位测量信息对应的误差补偿参数; 根据所述误差补偿参数对所述定位测量信息中的第一测量量值进行误差 补偿, 以获取第二测量量值;
根据所述第二测量量值, 获取所述用户设备的位置信息。
另一方面, 本发明实施例提供一种终端定位装置, 所述装置包括: 接收单元, 用于接收用户设备上报的定位测量信息;
查找单元, 用于在误差补偿数据库中查找与所述定位测量信息对应的误 差补偿参数;
补偿单元, 用于根据所述误差补偿参数对所述定位测量信息中的第一测 量量值进行误差补偿, 以获取第二测量量值;
处理单元,用于根据所述第二测量量值,获取所述用户设备的位置信息。 再一方面, 本发明实施例提供一种终端定位装置, 所述装置包括: 网络接口;
存储器;
处理器;
物理存储在所述存储器中的应用程序, 所述应用程序包括可用于使所述 处理器和所述系统执行以下过程的指令:
接收用户设备上报的定位测量信息; 在误差补偿数据库中查找与所述定位测量信息对应的误差补偿参数; 根据所述误差补偿参数对所述定位测量信息中的第一测量量值进行误差 补偿, 以获取第二测量量值;
根据所述第二测量量值, 获取所述用户设备的位置信息。
本发明实施例提供一种终端定位方法, 该方法通过建立误差补偿数据库 的方式, 在非视距情况下, 对用户终端上报的定位测量信息中由于建筑物等 遮挡问题造成的误差, 查找误差补偿数据库中相应的误差补偿参数, 在定位 测量信息中进行相应的误差补偿, 从而达到提高终端定位精度的目的。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
Figure imgf000005_0001
图 2是本发明实施例提供的终端定位方法一种实施例的流程图; 图 3是本发明实施例提供的终端定位方法中构建误差补偿数据库一种实 施例的流程图;
图 4是本发明实施例提供的终端定位方法中构建误差补偿数据库另一种 实施例的流程图;
图 5是本发明实施例提供的终端定位方法中构建误差补偿数据库另一种 实施例的流程图;
图 6是本发明实施例提供的终端定位方法中构建误差补偿数据库另一种 实施例的流程图;
图 7 是本发明实施例提供的终端定位方法中小区分组的一种架构参考 图;
图 8是本发明实施例提供的终端定位方法中构建误差补偿数据库另一种 实施例的流程图;
图 9是本发明实施例提供的终端定位方法中小区分区域的一种状态参考 图;
图 10本发明实施例提供的终端定位装置一种实施例的结构图;
图 11是本发明实施例提供的终端定位装置另一种实施例的结构图。 具体实施方式
在长期演进( LTE ) 中, OTDOA 定位作为一种网络辅助终端定位的技 术。 在网络侧定位服务器为基站和移动台指定定位参考信号 PRS的发送和接 收配置之后,基站下行发送定位参考信号( Positioning Reference Signal , PRS ), 移动台接收到来自多个定位基站的 PRS, 并识别每个 PRS的首达径位置, 可 以得到不同基站之间的 PRS到达时间差, 并将其上报至定位服务器。 定位服 务器通过移动台接收不同基站的信号时间差, 可以映射成移动台与不同基站 之间的距离差, 通过上述的双曲线模型数学计算, 定位服务器就可以得到移 动台的准确位置。
基于以上的系统, 本发明实施例提供一种终端定位方法, 图 2是该实施 例中终端定位方法的流程图, 该实施例的执行主体为定位服务器, 可以是图 1 中的定位服务器, 也可以具备这种功能的基站 eNB, 由图可见, 所述终端 定位方法包括:
步骤 201 , 接收用户设备上报的定位测量信息;
具体而言, 定位服务器可以通过基站或者直接接受终端上传的定位测量 信息, 例如, 参考信号到达时间差 TOA等, 同时携带终端所处的小区的 ID 或者的所处小区的基站的 ID等信息,从而能够获取到大概的用户终端所处的 区域位置。
步骤 202,在误差补偿数据库中查找与所述定位测量信息对应的误差补偿 参数;
具体而言, 定位服务器在获知到终端上报的定位测量信息之后, 即能够 获知终端所处的区域, 以及终端获取到的参考信号到达时间差等测量信息, 定位服务器根据终端所处的区域和 /或终端获取的参考信号达到时间差等测 量信息, 确定相应所需的误差补偿参数并在数据库中查找误差补偿参数。
步骤 203,根据所述误差补偿参数对所述定位测量信息中的第一测量量值 进行误差补偿, 以获取第二测量量值;
具体地说, 定位服务器在终端上传的参数中增加或者减去查找到的误差 补偿参数, 获得更加精确的第二测量量值, 例如在终端上传的 TOA中减去因 建筑物遮挡产生的时间延迟, 得到更为精确的 TOA值。
步骤 204, 根据所述第二测量量值, 获取所述用户设备的位置信息。 在步骤 204 中, 定位服务器根据误差补偿后的第二测量量值, 根据设定 的算法获取用户所处的准确位置信息。 其中的算法, 例如根据到达几个不同 基站的距离差形成的双曲线的交点, 通过计算双曲线交点的方法, 计算终端 的位置, 达到定位的目的。
通过上述实施例提供的终端定位方法, 能够在非视距情况下, 对用户终 端上报的定位测量信息中由于建筑物等遮挡问题造成的误差, 查找误差补偿 数据库中相应的误差补偿参数, 在定位测量信息中进行相应的误差补偿, 从 而达到提高终端定位精度的目的。
在前述实施例的步骤 202 中, 所述用户设备上报的定位测量信息包括用 户设备与不同基站之间的测量定位参考信号到达时间差 TDOA, 步骤 202的 具体为在误差补偿数据库中查找与所述用户设备上报的参考信号到达时间差 TDOA对应的 TDOA误差补偿参数。 在本发明的实施例中, 需要建立误差补偿数据库, 那么如图 3所示, 所 述误差补偿数据库通过以下方式建立:
步骤 301 , 在设定区域内, 获取终端的真实位置信息, 多个基站的真实位 置信息以及所述终端发送到每个基站的定位参考信号的实际测量到达时间; 在本步骤中的设定区域, 在粗略的情况下, 可以是城市的郊区和城区、 行政区, 在精细的情况下, 可以是不同基站覆盖的小区, 每个小区的三个扇 区以及终端定位时的若干个基站所覆盖的区域等;
在设定的区域中, 可以通过实测, GPS等方式, 获取终端的真实位置信 息, 并且在终端所处的具体位置进行实测获取终端发送的定位参考信号到达 每个基站, 并且经过每个基站之后, 在每个基站处理之后返回的定位参考辅 助信号到达所述终端的时间差。
步骤 302,根据所述终端的真实位置信息、每个所述基站的真实位置信息, 获取终端发送到每个基站的定位参考信号的实际测量到达时间;
在该步骤 302 中, 依据终端的真实位置信息和参考的基站的真实位置信 息获取终端发送到某个基站的定位参考信号的实际测量到达时间, 如果终端 所处的坐标为 (xUE,yUE ) , 某个基站的坐标为 (xeNB,yeNB ) 例如通过如下的公 式:
= XUE _ XeNB ) + (3½ _ yeNB ) 立中 Q为光速 步骤 303 ,获取终端与每个基站之间的所述理想到达时间和所述终端实际 测量到达时间之间的差值, 建立误差补偿数据库。
具体地说,在获取到理想的 TOA之后,与终端上报的实际测量值的差值, 即可作为 TOA误差, 通过这些误差建立误差补偿数据库。
以下介绍几种获取终端与每个基站之间的所述理想到达时间和所述终端 实际测量到达时间之间的差值, 建立误差补偿数据库的具体方式, 在图 4所 示的一种实施方式中: 首先, 获取所述终端与所述设定区域内的每个基站之间的所述理想到达 时间和所述终端实际测量到达时间之间的差值的均值, 作为所述设定区域的 全局误差补偿值;
之后, 根据不同设定区域的全局误差补偿值, 建立误差补偿数据库。 步骤 401, 获取终端的真实位置信息;
例如, 终端的位置坐标(XuE,yUE) , 当然, 此处的终端可以是不同制式 的手机、 平板电脑或者手持电脑等终端, 而获取该些终端位置的方式, 可以 是通过路测, 也可以是通过卫星定位等方式。
步骤 402, 获取设定区域的基站的位置信息, 和定位参考信号测量信息; 其中,基站的位置信息为" XeNB 1 ,YeNB 1 ) , ( XeNB2,yeNB2 ),·.., ( βΝΒη,ΥβΝΒη ) ) , 定位参考信号测量测量信息为( ( RTThRxTxi ) , ( RTT2,RxTx2 ) (RTTn,RxTxn) )。 RTT为环回时间, RxTx为基站处理参考信号的时间差。
步骤 403 , 获取理想 TOA和测量 TOA;
具体的, 根据公式(1)计算理想的 TOA, 也就是基站和终端之间直线 距离产生的 TOA; 理想 τοΑ=^υΕ _χ )2 +0½ -yemf 其中, c为光速。 根据公式(2)计算测量 TOA, 也就是实际测得的 TOA 实测 TOA = RTT~RxTx (2)
2
RxTx表示基站的收发时间差 , TOA通过环回时间与 RxTx的差值再除以
2得到。
步骤 404, 获取 TOA误差值;
具体的, 根据公式 (3 )计算 TOA error。
TOA error =理想 TOA—实测 TOA (3) 通过步骤 401-404, 可以获取所有路测釆样点的 TOA error(i), 作为统计 数据 。
步骤 405: 获取全部釆样点的 TOA误差均值, 得到全局误差补偿值, 建 立全局误差补偿数据库。
具体的, 全局误差补偿值 u 通过以下的公式 (4 ) 计算获取到。
n (4)
其中, n表示在设定的区域内的釆样的点数。
在实际定位时, 终端向基站上报 TOA测量信息, 定位服务器能够获知终 端此时处于哪个设定区域, 之后, 根据我们已经构建的数据库, 取出当前终 端对应的设定区域的全局 TOA补偿值, 对 TOA进行全局补偿(例如, 在原 有的测量 TOA基础上减去或者加上一个公式(4 )得到的 u ) , 返回补偿后 TOA, 再根据输入补偿后的基于 TOA的定位算法估计终端的位置。
在图 5所示的另一种获取终端与每个基站之间的所述理想到达时间和所 述终端实际测量到达时间之间的差值, 建立误差补偿数据库中, 具体包括: 步骤 501 , 获取终端的真实位置信息;
具体而言, 在该步骤中终端的真实位置信息除了坐标以外, 还包括终端 所处小区的小区 ID, 也就是某个基站所覆盖的小区 (cell ) 。
步骤 502: 获取多个的基站的位置信息, 和定位参考信号测量信息; 其中,在一定的区域内基站的位置信息为( ( XeNB 1 jYeNB 1 ) , ( XeNB2 ?ΥβΝΒ2 ) , · · · , ( XeNBn,yeNBn ) ) , 定位参考信号测量测量信息为( (
Figure imgf000010_0001
) ,
( RTT2,RxTx2 ) ,· .., ( RTTn,RxTxn ) )。 RTT为环回时间, RxTx为基站处理 参考信号的时间差。
步骤 503 , 获取理想 TOA和测量 TOA;
具体的, 根据公式(1 )计算理想的 TOA, 也就是基站和终端之间直线 距离产生的 TOA; 理想 TOA = UE X; (yuE )2 (1), 其中, C为光速。 根据公式(2 )计算测量 ΤΟΑ, 也就是实际测得的 TOA
实测 τοΑ = RTT - RxTx (2)
2
RxTx表示基站的收发时间差, TOA通过环回时间与 RxTx的差值再除以
2得到。
步骤 504, 获取 TOA误差值;
具体的, 根据公式( 3 )计算 TOA error
TOA error =理想 TOA -实测 TOA (3)
通过步骤 501-504, 可以获取所有路测采样点的 TOA error(i), 作为统计 数据 。
步骤 505, 获取全部采样点的 TOA误差值;
步骤 506, 以小区 ID为基准, 分别统计不同小区的 TOA error平均值; 具体的, 小区误差补偿值 u 通过以下的公式 (4 ) 计算获取到。
^ TOAerrort
"― I, 其中, n表示在一个小区内的采样的点数。 步骤 507, 按照不同小区对应的小区误差补偿值, 建立误差补偿数据库。 具体的, 误差补偿数据库的格式可参考表 1 , 每个不同的 cell, 对应一种 误差补偿值。
Figure imgf000011_0001
表 1 在实际定位时, 终端向基站上报 TOA测量信息, 定位服务器能够获知终 端此时处于哪个小区 cell, 之后, 根据我们已经构建的数据库, 取出当前终端 对应小区的小区 TOA补偿值, 对 TOA进行误差补偿(例如, 在原有的测量 TOA基础上减去或者加上一个公式(4)得到的 u) , 返回补偿后 TOA。
概括而言, 该实施方式中, 定位服务器是以小区 ID为基准, 获取不同小 区对应于所述终端的所述理想到达时间和所述终端实际测量到达时间之间的 差值的均值, 作为所述小区的小区误差补偿值;
之后, 根据所述设定区域内不同小区的小区误差补偿值, 建立所述误差 补偿数据库。
在图 6所示的另外一种实施方式中, 获取终端与每个基站之间的所述理 想到达时间和所述终端实际测量到达时间之间的差值, 建立误差补偿数据库 包括:
步骤 601, 获取终端的真实位置信息;
具体而言, 在该步骤中终端的真实位置信息除了坐标以外, 还包括终端 所处小区的小区 ID, 也就是某个基站所覆盖的小区 (cell) 。
步骤 602: 获取多个的基站的位置信息, 和定位参考信号测量信息; 其中,在一定的区域内基站的位置信息为(( XeNB YeNBl ), ( XeNB2,yeNB2 ),..., ( XeNBn,yeNBn ) ) , 定位参考信号测量测量信息为( (
Figure imgf000012_0001
) ,
( RTT2,RxTx2 ) ,·.., ( RTTn,RxTxn ) )。 RTT为环回时间, RxTx为基站处理 参考信号的时间差。
步骤 603 , 获取理想 TOA和测量 TOA;
具体的, 根据公式(1)计算理想的 TOA, 也就是基站和终端之间直线 距离产生的 TOA; 理想 τοΑ= υΕ _ + ½ -yem 其中, c为光速。 根据公式(2)计算测量 TOA, 也就是实际测得的 TOA 实测 TOA = K1 1 (2)
2
RxTx表示基站的收发时间差 , TOA通过环回时间与 RxTx的差值再除以
2得到。
步骤 604, 获取 TOA误差值;
具体的, 根据公式 ( 3 )计算 TOA error。
TOA error =理想 TOA—实测 TOA (3)
通过步骤 601-604, 可以获取所有路测釆样点的 TOA error(i), 作为统计 数据 。
步骤 605, 获取全部釆样点的 TOA误差值;
步骤 606, 根据小区 ID, 把小区分为不同的组合分别统计不同分组中各 小区的 TOA error平均值;
其中, 例如, 小区的组合以三个为一组, 参与定位的小区个数为三个或 三个以上。
具体的, 小区误差补偿值 u 通过以下的公式 (4 ) 计算获取到。
Figure imgf000013_0001
u
(4), 其中, n表示在不同分组中一个小区的釆样的点 数。
步骤 607,根据参与定位时, 小区的组合与数据库中构建的小区组合进行 匹配;
具体而言, 小区分组状态可参考图 7, 在定位时, 不同的终端会选取不同 的基站作为发送定位参考信号的对象, 此时, 可以将不同的小区分组。 例如, 通常终端定位时, 要参考三个不同基站的定位参考信号, 就以此三个基站覆 盖的小区作为一组。
步骤 608,统计每个组合中的各个小区的误差均值, 以获取小区分组误差 补偿值。 之后, 按照表 2 的格式构建数据库, 得到基于小区分组的误差补偿值 {gr upx (uu , un , uu), group2 (w21 , "22 , "23 ),… groupn {unX , un2 , un3)}
Figure imgf000014_0001
表 2
在实际定位时, 终端向基站上报 TOA测量信息, 定位服务器能够获知终 端此时处于哪个小区 cell, 之后, 根据我们已经构建的数据库, 取出当前终端 对应小区的小区分组误差补偿值, 对 TOA进行误差补偿(例如, 在原有的测 量 TOA基础上减去或者加上一个公式 (4 )得到的 u ) , 返回补偿后 TOA。
概括而言, 在该实施方式中, 定位服务器以所述终端进行终端定位时参 考的小区分组为基准, 获取不同分组的小区对应于所述终端的所述理想到达 时间和所述终端实际测量到达时间之间的差值的均值, 作为小区分组误差补 偿值;
根据所述设定区域内不同分组的小区分组误差补偿值, 建立所述误差补 偿数据库。
在图 8所示的另外一种实施方式中, 获取终端与每个基站之间的所述理 想到达时间和所述终端实际测量到达时间之间的差值, 建立误差补偿数据库 包括:
步骤 801, 获取终端的真实位置信息;
具体而言, 在该步骤中终端的真实位置信息除了坐标以外, 还包括终端 所处小区的小区 ID, 也就是某个基站所覆盖的小区 (cell ) 。
步骤 802: 获取多个的基站的位置信息, 和定位参考信号测量信息;
12
26 其中,在一定的区域内基站的位置信息为( ( XeNB 1 jYeNB 1 ) , ( XeNB2 ?ΥβΝΒ2 ),···, ( XeNBn,yeNBn ) ) , 定位参考信号测量测量信息为( (
Figure imgf000015_0001
) ,
( RTT2,RxTx2 ) ,·.., ( RTTn,RxTxn ) )。 RTT为环回时间, RxTx为基站处理 参考信号的时间差。
步骤 803, 获取理想 TOA和测量 TOA;
具体的, 根据公式(1)计算理想的 TOA, 也就是基站和终端之间直线 距离产生的 TOA; 理想 TOA=^UE _χ )2 + 0½ -yemf 其中, c为光速。 根据公式(2)计算测量 TOA, 也就是实际测得的 TOA
实测 (2)
Figure imgf000015_0002
RxTx表示基站的收发时间差 , TOA通过环回时间与 RxTx的差值再除以
2得到。
步骤 804, 获取 TOA误差值;
具体的, 根据公式 (3 )计算 TOA error。
TOA error =理想 TOA—实测 TOA (3)
通过步骤 801-803, 可以获取所有路测釆样点的 TOA error(i), 作为统计 数据 。
步骤 805, 获取全部釆样点的 TOA误差值;
步骤 806, 以终端所处的小区 ID为准, 分别统计不同区域的 TOA error 平均值;
其中, 小区中的不同区域, 可以结合实际地形等路况信息对小区划分区 域。
具体的, 不同区域的误差补偿值 u 通过以下的公式 (4) 计算获取到。
Figure imgf000016_0001
n (4), 其中, n表示在一个区域内的釆样的点数。
具体而言, 区域状态可参考图 7, 当终端处于不同的区域时, 存在不同的 误差, 因此存在不同的误差补偿值。
步骤 807, 统计每个区域中的误差均值, 以获取分区域误差补偿值。
在实际定位时, 终端向基站上报 TOA测量信息, 定位服务器能够获知终 端此时处于哪个小区 cell中的哪个区域, 之后, 根据我们已经构建的数据库, 取出当前终端对应的分区域误差补偿值, 对 TOA进行误差补偿(例如, 在原 有的测量 TOA基础上减去或者加上一个公式(4 )得到的 u ) , 返回补偿后 TOA, 小区所处的分区域状态可参考图 9。
概括而言, 在该实施方式中, 定位服务器以所述终端进行终端定位时参 考的所处的不同区域为基准, 获取终端处于不同区域时对应于所述终端的所 述理想到达时间和所述终端实际测量到达时间之间的差值的均值, 作为分区 域误差补偿值;
根据所述区域误差补偿值, 建立所述误差补偿数据库。
相应的, 如图 10所示, 本发明实施例提供一种终端定位装置, 所述终端 定位装置可以是定位服务器, 或者具备终端定位功能的基站, 所述装置包括: 接收单元 1001 , 用于接收用户设备上报的定位测量信息;
查找单元 1002, 用于在误差补偿数据库中查找与所述定位测量信息对应 的误差补偿参数;
补偿单元 1003 , 用于根据所述误差补偿参数对所述定位测量信息中的第 一测量量值进行误差补偿, 以获取第二测量量值;
处理单元 1004, 用于根据所述第二测量量值, 获取所述用户设备的位置 信息。
相应的, 如图 11所示, 本发明实施例提供一种终端定位装置, 所述终端 定位装置可以是定位服务器, 或者具备终端定位功能的基站, 图 11为本发明 实施例管理控制系统的示意图, 如图所示, 本实施例包括网络接口 61、 处理 器 62和存储器 63。 系统总线 64用于连接网络接口 61、 处理器 62和存储器 63。
网络接口 61用于与终端或基站通信。
存储器 63可以是永久存储器, 例如硬盘驱动器和闪存, 存储器 63中具 有软件模块和设备驱动程序。 软件模块能够执行本发明上述方法的各种功能 模块; 设备驱动程序可以是网络和接口驱动程序。
在启动时, 这些软件组件被加载到存储器 63中, 然后被处理器 62访问 并执行如下指令:
接收用户设备上报的定位测量信息;
在误差补偿数据库中查找与所述定位测量信息对应的误差补偿参数; 根据所述误差补偿参数对所述定位测量信息中的第一测量量值进行误差 补偿, 以获取第二测量量值;
根据所述第二测量量值, 获取所述用户设备的位置信息。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 ( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 ROM、 电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM, 或技术领域内所公知的任意 其它形式的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种终端定位方法, 其特征在于, 所述方法包括:
接收用户设备上报的定位测量信息;
在误差补偿数据库中查找与所述定位测量信息对应的误差补偿参数; 根据所述误差补偿参数对所述定位测量信息中的第一测量量值进行误差 补偿, 以获取第二测量量值;
根据所述第二测量量值, 获取所述用户设备的位置信息。
2、 如权利要求 1所述的终端定位方法, 其特征在于, 所述用户设备上报 的定位测量信息包括用户设备与不同基站之间的测量定位参考信号到达时间 差 TDOA;
所述在误差补偿数据库中查找与所述定位测量信息对应的误差补偿参数 具体包括:
在误差补偿数据库中查找与所述用户设备上报的参考信号到达时间差 TDOA对应的 TDOA误差补偿参数。
3、 如权利要求 2所述的终端定位方法, 其特征在于, 所述误差补偿数据 库通过以下方式建立:
在设定区域内, 获取终端的真实位置信息, 多个基站的真实位置信息以 及所述终端发送到每个基站的定位参考信号的实际测量到达时间;
根据所述终端的真实位置信息、 每个所述基站的真实位置信息, 获取终 端发送到每个基站的定位参考信号的实际测量到达时间;
获取终端与每个基站之间的所述理想到达时间和所述终端实际测量到达 时间之间的差值, 建立误差补偿数据库。
4、 如权利要求 3所述的终端定位方法, 其特征在于, 所述根获取终端与 每个基站之间的所述理想到达时间和所述终端实际测量到达时间之间的差 值, 建立误差补偿数据库, 具体为: 获取所述终端与所述设定区域内的每个基站之间的所述理想到达时间和 所述终端实际测量到达时间之间的差值的均值, 作为所述设定区域的全局误 差补偿值;
根据不同设定区域的全局误差补偿值, 建立误差补偿数据库。
5、 如权利要求 3所述的终端定位方法, 其特征在于, 所述获取终端与每 个基站之间的所述理想到达时间和所述终端实际测量到达时间之间的差值, 建立误差补偿数据库, 具体为:
以小区 ID为基准,获取不同小区对应于所述终端的所述理想到达时间和 所述终端实际测量到达时间之间的差值的均值, 作为所述小区的小区误差补 偿值;
根据所述设定区域内不同小区的小区误差补偿值, 建立所述误差补偿数 据库。
6、 如权利要求 3所述的终端定位方法, 其特征在于, 所述获取终端与每 个基站之间的所述理想到达时间和所述终端实际测量到达时间之间的差值, 建立误差补偿数据库, 具体为:
以所述终端进行终端定位时参考的小区分组为基准, 获取不同分组的小 区内对应于所述终端的所述理想到达时间和所述终端实际测量到达时间之间 的差值的均值, 作为小区分组误差补偿值;
根据所述设定区域内不同分组的小区分组误差补偿值, 建立所述误差补 偿数据库。
7、 如权利要求 3所述的终端定位方法, 其特征在于, 所述获取终端与每 个基站之间的所述理想到达时间和所述终端实际测量到达时间之间的差值, 建立误差补偿数据库, 具体为:
以所述终端进行终端定位时参考的所处的一个小区中不同区域为基准, 际测量到达时间之间的差值的均值, 作为区域误差补偿值;
根据所述区域误差补偿值, 建立所述误差补偿数据库。
8、 如权利要求 4所述的终端定位方法, 其特征在于, 所述在误差补偿数 据库中查找与所述用户设备上报的参考信号到达时间差 TDOA对应的 TDOA 误差补偿参数, 具体为:
在误差补偿数据库中查找与所述用户设备上报的参考信号到达时间差 TDOA对应的全局误差补偿值。
9、 如权利要求 5所述的终端定位方法, 其特征在于, 所述在误差补偿数 据库中查找与所述用户设备上报的参考信号到达时间差 TDOA对应的 TDOA 误差补偿参数, 具体为:
在误差补偿数据库中查找与所述用户设备上报的参考信号到达时间差
TDOA对应的小区误差补偿值。
10、 如权利要求 6所述的终端定位方法, 其特征在于, 所述在误差补偿 数据库中查找与所述用户设备上报的参考信号到达时间差 TDOA 对应的 TDOA误差补偿参数, 具体为:
在误差补偿数据库中查找与所述用户设备上报的参考信号到达时间差 TDOA对应的小区分组误差补偿值。
11、 如权利要求 7所述的终端定位方法, 其特征在于, 所述在误差补偿 数据库中查找与所述用户设备上报的参考信号到达时间差 TDOA 对应的 TDOA误差补偿参数, 具体为:
在误差补偿数据库中查找与所述用户设备上报的参考信号到达时间差 TDOA对应的区域误差补偿值。
12、 一种终端定位装置, 其特征在于, 包括:
接收单元, 用于接收用户设备上报的定位测量信息;
查找单元, 用于在误差补偿数据库中查找与所述定位测量信息对应的误 差补偿参数;
补偿单元, 用于根据所述误差补偿参数对所述定位测量信息中的第一测 量量值进行误差补偿, 以获取第二测量量值;
处理单元, 用于根据所述第二测量量值, 获取所述用户设备的位置信息。
13、 一种终端定位装置, 其特征在于, 所述装置包括:
网络接口;
存储器;
处理器;
物理存储在所述存储器中的应用程序, 所述应用程序包括可用于使所述 处理器和所述系统执行以下过程的指令:
接收用户设备上报的定位测量信息;
在误差补偿数据库中查找与所述定位测量信息对应的误差补偿参数; 根据所述误差补偿参数对所述定位测量信息中的第一测量量值进行误差 补偿, 以获取第二测量量值;
根据所述第二测量量值, 获取所述用户设备的位置信息。
PCT/CN2012/084201 2012-11-07 2012-11-07 终端定位方法及定位装置 WO2014071563A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280074197.2A CN104396321B (zh) 2012-11-07 2012-11-07 终端定位方法及定位装置
PCT/CN2012/084201 WO2014071563A1 (zh) 2012-11-07 2012-11-07 终端定位方法及定位装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/084201 WO2014071563A1 (zh) 2012-11-07 2012-11-07 终端定位方法及定位装置

Publications (1)

Publication Number Publication Date
WO2014071563A1 true WO2014071563A1 (zh) 2014-05-15

Family

ID=50683907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084201 WO2014071563A1 (zh) 2012-11-07 2012-11-07 终端定位方法及定位装置

Country Status (2)

Country Link
CN (1) CN104396321B (zh)
WO (1) WO2014071563A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455052A (zh) * 2016-09-29 2017-02-22 京信通信技术(广州)有限公司 一种定位方法及装置
WO2020164512A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 用于定位终端设备的方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316242A (zh) * 2020-02-26 2021-08-27 大唐移动通信设备有限公司 一种辅助ue进行定位方法和ue及网络侧设备
CN113543305A (zh) * 2020-04-22 2021-10-22 维沃移动通信有限公司 定位方法、通信设备和网络设备
CN113573229B (zh) * 2020-04-28 2022-10-21 大唐移动通信设备有限公司 一种定位校正方法及装置
CN113840226B (zh) * 2020-06-23 2023-10-03 维沃移动通信有限公司 信息传输方法、装置及通信设备
CN115119535A (zh) * 2021-01-22 2022-09-27 北京小米移动软件有限公司 定位测量信息确定方法和装置、同步误差发送方法和装置
CN115119256A (zh) * 2021-03-18 2022-09-27 维沃移动通信有限公司 时间误差组指示方法、装置、终端及网络侧设备
CN115915387A (zh) * 2021-08-06 2023-04-04 大唐移动通信设备有限公司 一种误差测量、补偿方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696731A (zh) * 1999-01-08 2005-11-16 真实定位公司 无线定位系统的校准
CN101232702A (zh) * 2007-01-26 2008-07-30 华为技术有限公司 一种定位流程中的处理方法、系统、基站及终端
CN102111871A (zh) * 2009-12-23 2011-06-29 中国移动通信集团公司 基于小区标识定位技术的终端定位方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696731A (zh) * 1999-01-08 2005-11-16 真实定位公司 无线定位系统的校准
CN101232702A (zh) * 2007-01-26 2008-07-30 华为技术有限公司 一种定位流程中的处理方法、系统、基站及终端
CN102111871A (zh) * 2009-12-23 2011-06-29 中国移动通信集团公司 基于小区标识定位技术的终端定位方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455052A (zh) * 2016-09-29 2017-02-22 京信通信技术(广州)有限公司 一种定位方法及装置
WO2020164512A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 用于定位终端设备的方法和装置

Also Published As

Publication number Publication date
CN104396321A (zh) 2015-03-04
CN104396321B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2014071563A1 (zh) 终端定位方法及定位装置
US8463292B2 (en) TDOA—based reconstruction of base station location data
EP2901737B1 (en) Method and communication node for determining positioning measurement uncertainty and position determination.
US9723585B2 (en) Method and apparatus for position determination in a cellular communications system
CN103068039B (zh) 一种基于WiFi信号的RSSI值的定位方法
US8369872B2 (en) Method and device for determination of the position of a terminal in a mobile communication network
US20100323723A1 (en) Base Station Mapping with Angle-of-Arrival and Timing Advance Measurements
CN107431995B (zh) 实现对移动装置的估计位置的验证
US10866303B2 (en) Determining the location of a mobile computing device
US20090096666A1 (en) Positioning system
US20100331012A1 (en) TDOA-Based Reconstruction of Base Station Location Data
US8504077B2 (en) System and method for monitoring and disseminating mobile device location information
CN1500357A (zh) 验证移动站位置方位的方法和系统
CN108353246A (zh) 移动网络中的定位方法、服务器、基站、移动终端和系统
EP2873281A1 (en) Method for performing measurements and positioning in a network based wlan positioning system
US20100238070A1 (en) System and method for concurrently determining locations of mobile device in wireless communication network
CN106998535B (zh) 移动终端定位校正方法和系统
US9479902B1 (en) Determining a propagation-time adjustment for a wireless coverage area, based on information provided by wireless terminals
WO2016180124A1 (zh) 一种基于定位数据的基站优化方法和装置
CN102550051A (zh) 用于其它蜂窝系统的lte指纹识别定位参考
EP3227710A1 (en) Improving accuracy when determining positions in a wireless network
US9088870B2 (en) Method and server for determining associations between pools of core network nodes and base stations
KR100524180B1 (ko) 기지국 위치정보와 이동전화로부터 수신된 전파특성정보및 기 측정된 전파특성정보를 이용한 이동전화 위치추정방법
KR101058098B1 (ko) 다른 단말기의 위치정보 및 그 위치정보의 신뢰도에 따라 자신의 위치를 측정하는 단말기 및 시스템 그리고 그 위치 측정 방법
CN107250831B (zh) 提供移动装置的前进方向的指示

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888196

Country of ref document: EP

Kind code of ref document: A1