WO2014069445A1 - 電力伝送システム - Google Patents

電力伝送システム Download PDF

Info

Publication number
WO2014069445A1
WO2014069445A1 PCT/JP2013/079236 JP2013079236W WO2014069445A1 WO 2014069445 A1 WO2014069445 A1 WO 2014069445A1 JP 2013079236 W JP2013079236 W JP 2013079236W WO 2014069445 A1 WO2014069445 A1 WO 2014069445A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
antenna
coil
transmission system
Prior art date
Application number
PCT/JP2013/079236
Other languages
English (en)
French (fr)
Inventor
山川 博幸
佐藤 健一郎
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to EP13850890.8A priority Critical patent/EP2916430B1/en
Priority to US14/433,771 priority patent/US10110067B2/en
Priority to CN201380056548.1A priority patent/CN104756361B/zh
Publication of WO2014069445A1 publication Critical patent/WO2014069445A1/ja

Links

Images

Classifications

    • H02J7/025
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/12Driver interactions by confirmation, e.g. of the input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a power transmission system that wirelessly transmits and receives power by a magnetic resonance method.
  • the magnetic resonance type wireless power transmission system uses an antenna having the same resonance frequency of the power transmission side antenna as that of the power reception side antenna and a high Q value (100 or more), so that the power transmission side antenna is changed to the power reception side antenna.
  • a high Q value 100 or more
  • one of the major features is that it efficiently transmits energy and that the power transmission distance can be several tens of centimeters to several meters.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-68657
  • one antenna is mounted on the bottom surface of a moving body such as an electric vehicle, and power is transmitted wirelessly from the other antenna provided on the ground. It is disclosed that the transmitted electric power is charged in a battery of an electric vehicle.
  • a magnetic resonance type power transmission system is used to supply power to a vehicle such as an electric vehicle (EV) or a hybrid electric vehicle (HEV)
  • the power transmission antenna is installed so as to be buried in the ground.
  • the power receiving antenna is laid out on the bottom surface of the vehicle.
  • the power transmission system is used in such a usage form, a certain amount of deviation may occur between the power transmitting antenna and the power receiving antenna depending on how the vehicle is parked.
  • the power transmission system is designed to be robust so that the power transmission efficiency does not drop significantly even if there is a slight deviation from the position of the transmitting antenna and the receiving antenna that give the highest transmission efficiency. It is preferable that
  • the conventional power transmission system does not consider such robustness, and there is a problem that the power transmission efficiency is greatly reduced when there is a deviation between the transmitting antenna and the receiving antenna. there were.
  • a power transmission system includes a power transmission antenna including a power transmission coil that is installed on the ground and wound, and a power reception coil that is disposed opposite to the power transmission antenna and wound.
  • a power receiving antenna that receives electrical energy from the power transmitting antenna via an electromagnetic field, and an area of a first projection plane in a vertical direction formed by the power transmission coil with respect to a horizontal plane is the power receiving level with respect to a horizontal plane. It is larger than the area of the 2nd projection surface of the perpendicular direction which a coil forms.
  • the power transmission system according to the present invention is inner distance between the power transmission coil in a predetermined direction T i, the outer edge distance of the power transmission coil is that T o, the inner edge distance between the power receiving coil R i When the distance between the outer edges of the power receiving coil is R o , a relationship of T i ⁇ R i ⁇ R o ⁇ T o is satisfied.
  • the predetermined direction is a direction perpendicular to a direction in which a positional deviation occurs between the power receiving antenna and the power transmitting antenna.
  • the power transmission system even if a slight deviation occurs between the positions of the power transmitting antenna and the power receiving antenna that give the highest transmission efficiency, the power transmission system should be robust so that the power transmission efficiency does not drop significantly. Therefore, even when there is a difference between the power transmitting antenna and the power receiving antenna, the power transmission efficiency is not significantly reduced.
  • FIG. 1 is a block diagram of a power transmission system according to an embodiment of the present invention. It is a figure which shows the inverter part of an electric power transmission system. It is a disassembled perspective view of the power transmission antenna 105 (power receiving antenna 201). 4 is a schematic cross-sectional view showing a state of power transmission by the power receiving antenna 201 and the power receiving antenna 201.
  • FIG. It is a figure which shows the equivalent circuit of the electric power transmission system 100 which concerns on embodiment of this invention. It is a figure explaining the spider coil used for the antenna which concerns on other embodiment of this invention. It is a figure which shows the structural example of the antenna which concerns on other embodiment of this invention.
  • FIG. 1 is a block diagram of a power transmission system according to an embodiment of the present invention.
  • the antenna according to the present invention can be applied to both a power receiving antenna and a power transmitting antenna constituting the power transmission system.
  • the antenna of the present invention is used as the power receiving antenna. The applied example will be described.
  • a system for charging a vehicle such as an electric vehicle (EV) or a hybrid electric vehicle (HEV) is assumed. Since the electric power transmission system transmits electric power to the vehicle as described above in a non-contact manner, the electric power transmission system is provided in a stop space where the vehicle can be stopped. A user of the vehicle stops the vehicle in a stop space where the power transmission system is provided, and makes the power reception antenna 201 mounted on the vehicle and the power transmission antenna 105 face each other to thereby generate power from the power transmission system. Receive power.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • the resonance frequency of the power transmission antenna 105 and the resonance frequency of the power reception antenna 201 are By making the same, energy transmission is efficiently performed from the power transmission side antenna to the power reception side antenna.
  • the AC / DC conversion unit 101 in the power transmission system 100 is a converter that converts input commercial power into a constant direct current.
  • the output from the AC / DC converter 101 is boosted to a predetermined voltage by the voltage controller 102.
  • Setting of the voltage generated by the voltage control unit 102 can be controlled from the main control unit 110.
  • the inverter unit 103 generates a predetermined AC voltage from the voltage supplied from the voltage control unit 102 and inputs it to the matching unit 104.
  • FIG. 2 is a diagram illustrating an inverter unit of the power transmission system.
  • the inverter unit 103 includes four field effect transistors (FETs) composed of Q A to Q D connected in a full bridge system.
  • FETs field effect transistors
  • connection portion T1 between the switching elements Q A and Q B connected in series and the connection portion T2 between the switching elements Q C and Q D connected in series It has a configuration in which the matching unit 104 is connected to, when the switching element Q a and the switching element Q D is turned on, the switching element Q B and the switching element Q C is turned off, the switching element Q B and the switching element Q When C is on, the switching element Q A and the switching element Q D are turned off, thereby generating a rectangular AC voltage between the connection portion T1 and the connection portion T2.
  • the frequency range of the rectangular wave generated by switching of each switching element is about 20 kHz to several 1000 kHz.
  • Drive signals for the switching elements Q A to Q D constituting the inverter unit 103 as described above are input from the main control unit 110.
  • the frequency for driving the inverter unit 103 can be controlled from the main control unit 110.
  • the matching unit 104 is composed of a passive element having a predetermined circuit constant, and an output from the inverter unit 103 is input thereto. The output from the matching unit 104 is supplied to the power transmission antenna 105.
  • the circuit constants of the passive elements constituting the matching unit 104 can be adjusted based on a command from the main control unit 110.
  • the main control unit 110 instructs the matching unit 104 so that the power transmitting antenna 105 and the power receiving antenna 201 resonate.
  • the matching unit 104 is not an essential configuration.
  • the power transmission antenna 105 is composed of a coil having an inductive reactance component, and resonates with the vehicle-mounted power reception antenna 201 arranged so as to face each other, so that the electric energy output from the power transmission antenna 105 is received by the power reception antenna. 201 can be sent.
  • the main control unit 110 of the power transmission system 100 is a general-purpose information processing unit that includes a CPU, a ROM that stores programs operating on the CPU, and a RAM that is a work area of the CPU.
  • the main control unit 110 operates in cooperation with the components connected to the main control unit 110 shown in the figure.
  • the communication unit 120 is configured to perform wireless communication with the vehicle-side communication unit 220 and to send and receive data to and from the vehicle. Data received by the communication unit 120 is transferred to the main control unit 110, and the main control unit 110 can transmit predetermined information to the vehicle side via the communication unit 120.
  • the power receiving antenna 201 receives electric energy output from the power transmitting antenna 105 by resonating with the power transmitting antenna 105.
  • Such a power receiving antenna 201 is adapted to be attached to the bottom portion of the vehicle.
  • the AC power received by the power receiving antenna 201 is rectified by the rectifying unit 202, and the rectified power is stored in the battery 204 through the charging control unit 203.
  • the charging control unit 203 controls the storage of the battery 204 based on a command from the main control unit 210. More specifically, the output from the rectifying unit 202 is stepped up or down to a predetermined voltage value in the charge control unit 203 and stored in the battery 204.
  • the charging control unit 203 is configured to be able to perform remaining amount management of the battery 204 and the like.
  • the main control unit 210 is a general-purpose information processing unit that includes a CPU, a ROM that stores programs that run on the CPU, and a RAM that is a work area of the CPU.
  • the main controller 210 operates in cooperation with the components connected to the main controller 210 shown in the figure.
  • the interface unit 230 is provided in the driver's seat of the vehicle and provides predetermined information to the user (driver) or accepts operation / input from the user.
  • a predetermined operation by the user is executed, it is sent as operation data from the interface unit 230 to the main control unit 210 and processed. Further, when providing predetermined information to the user, display instruction data for displaying the predetermined information is transmitted from the main control unit 210 to the interface unit 230.
  • vehicle-side communication unit 220 is configured to perform wireless communication with the power transmission-side communication unit 120 and to transmit and receive data to and from the power transmission-side system. Data received by the communication unit 220 is transferred to the main control unit 210, and the main control unit 210 can transmit predetermined information to the power transmission system side via the communication unit 220.
  • a user who wants to receive power inputs the information indicating that charging is executed from the interface unit 230 by stopping the vehicle in the stop space where the above-described power transmission system is provided.
  • the main control unit 210 obtains the remaining amount of the battery 204 from the charge control unit 203 and calculates the amount of power necessary for charging the battery 204.
  • the calculated amount of power and information to request power transmission are transmitted from the vehicle side communication unit 220 to the communication unit 120 of the power transmission side system.
  • the main control unit 110 of the power transmission side system that has received the information controls the voltage control unit 102, the inverter unit 103, and the matching unit 104 to transmit power to the vehicle side.
  • FIG. 3 is an exploded perspective view of the power transmitting antenna 105 (power receiving antenna 201) according to the embodiment of the present invention
  • FIG. 4 is a cross-sectional view showing a state of power transmission by the power transmitting antenna 105 and power receiving antenna 201 according to the embodiment of the present invention.
  • the arrows in FIG. 4 schematically show the lines of magnetic force.
  • the coil body 270 in the power transmitting antenna 105 and the power receiving antenna 201 is described as an example of a rectangular flat plate, but the antenna of the present invention is limited to such a coil. It is not a thing.
  • a circular flat plate or the like can be used as the coil body 270.
  • Such a coil body 270 functions as a magnetic resonance antenna unit in the power transmitting antenna 105 and the power receiving antenna 201.
  • This “magnetic resonance antenna section” includes not only the inductance component of the coil body 270 but also a capacitance component based on its floating capacity, or a capacitance component based on an intentionally added capacitor.
  • the circuit constant (inductance component, capacitance component) of the power transmitting antenna 105 and the circuit constant of the power receiving antenna 201 are differently configured to improve transmission efficiency. I try to let them.
  • the circuit constant of the power transmitting antenna 105 and the circuit constant of the power receiving antenna 201 are configured to be different, for example, this can be realized by using a coil body 270 having the same general shape and different dimensions. .
  • the case body 260 is used to accommodate the coil body 270 having the inductive reactance component of the power receiving antenna 201.
  • the case body 260 has a box shape having an opening made of a resin such as polycarbonate.
  • Side plate portions 262 are provided from the respective sides of the rectangular bottom plate portion 261 of the case body 260 so as to extend in a direction perpendicular to the bottom plate portion 261.
  • An upper opening 263 that is surrounded by the side plate 262 is formed above the case body 260.
  • the power receiving antenna 201 packaged in the case body 260 is attached to the vehicle main body on the upper opening 263 side.
  • any conventionally known method can be used.
  • a flange member or the like may be provided around the upper opening 263 in order to improve attachment to the vehicle main body.
  • the coil body 270 includes a rectangular flat plate-like base material 271 made of glass epoxy and a spiral conductive portion 272 formed on the base material 271.
  • a conductive line (not shown) is electrically connected to the first end portion 273 on the inner peripheral side and the second end portion 274 on the outer peripheral side of the spiral conductive portion 272.
  • Such a coil body 270 is placed on the rectangular bottom plate portion 216 of the case body 260 and fixed on the bottom plate portion 216 by an appropriate fixing means.
  • a ferrite base material 280 is disposed so as to be separated from the coil body 270 by the first distance d 1 .
  • the ferrite base material 280 one having a large specific resistance, a large magnetic permeability, and a small magnetic hysteresis is desirable.
  • the ferrite base material 280 is arranged with a space of the first distance d 1 above the coil body 270 by being fixed to the case body 260 by an appropriate means. With such a layout, the lines of magnetic force generated on the power transmission antenna 105 side have a high rate of transmission through the ferrite base material 280, and in power transmission from the power transmission antenna 105 to the power reception antenna 201, the metal lines constituting the vehicle main body are used. The effect on the magnetic field lines is minimal.
  • a rectangular flat aluminum substrate 290 that covers the upper opening 263 is disposed above the ferrite substrate 280 with a second distance d 2. It is like that.
  • a metal material used for such an aluminum base material 290 a metal other than aluminum can be used.
  • the aluminum base material 290 is arranged so as to cover the upper opening 263, so that the influence of the vehicle body metal part on the coil body 270 can be suppressed. It is possible to determine the characteristics of According to the present embodiment, since the characteristics of the antenna are fixed, it is possible to expect the same power transmission characteristics regardless of the vehicle type to which the receiving antenna 201 is attached, and the versatility as an antenna is expanded. Become.
  • the power receiving antenna 201 is attached to the vehicle main body portion using the vehicle body attachment portion 265 in the upper opening 263.
  • the vehicle body attachment portion 265 a conventionally known one can be used as appropriate.
  • a flange member or the like may be provided around the upper opening 263 in order to improve attachment to the vehicle main body.
  • the antenna of the present invention includes the coil body 270 in which the predetermined conductive portion 272 is formed on the insulating base material 271 having the main surface, and the coil body 270 and the first distance d on the coil body 270. 1 spaced by a ferrite substrate 280 which is arranged, an aluminum substrate 290 which is disposed between the ferrite substrate 280 is the second distance d 2 apart on a ferrite substrate 280, it is disposed on the aluminum substrate 290 A vehicle body attachment portion 265.
  • FIG. 5 is a diagram showing an equivalent circuit of the power transmission system 100 according to the embodiment of the present invention.
  • the inductance component of the power transmission antenna 105 is L 1
  • the capacitance component is C 1
  • the resistance component is Rt 1
  • the inductance component of the power receiving antenna 201 is L 2
  • the capacitance component is C 2
  • the resistance component is Rt 2 , indicating that the mutual inductance between the power transmitting antenna 105 and the power receiving antenna 201 is M.
  • R represents the internal resistance of the battery 204.
  • the coupling coefficient between the power transmission antenna 105 and the power reception antenna 201 is indicated by k.
  • the power transmitting antenna 105 is a series resonator having an inductance component L 1 and a capacitance component C 1
  • the power receiving antenna 201 is a series resonator having an inductance component L 2 and a capacitance component C 2 . Is considered to constitute.
  • the resonance frequency of the power transmission antenna 105 and the power reception antenna are determined.
  • the condition for this can be expressed by the following formula (1).
  • the impedance of the power transmission antenna 105 can be expressed by the following formula (3)
  • the impedance of the power receiving antenna 201 can be expressed by the following formula (4).
  • values defined by the following expressions (3) and (4) are defined as impedances of the respective antennas.
  • the power receiving antenna 201 on the power receiving side is preferably set to an impedance close to the input impedance corresponding to the charging power of the battery 204 in terms of efficiency.
  • the circuit constant of the power transmission antenna 105 and the circuit constant of the power reception antenna 201 satisfy the above formulas (2) and (6). Therefore, when the battery 204 is charged in the power receiving side system, efficient power transmission can be performed.
  • the inductance component in the circuit constant of the power transmitting antenna 105 and the circuit constant of the power receiving antenna 201 in order to establish each relationship as in the above formulas (2) and (6), it is formed on the base material 271.
  • the dimensions and layout of the spiral conductive portion 272 to be adjusted and adjustment of auxiliary members such as a magnetic material can be mentioned.
  • the conductive portion 272 of the power transmission antenna 105 is made conductive by making either the long side, the short side, or both larger than those of the power receiving antenna 201. It is conceivable to lengthen the entire length of the part 272, or to increase the number of turns of the conductive part 272 of the power transmission antenna 105, compared to that of the power receiving antenna 201, or to add a magnetic material such as ferrite at an appropriate position of the power transmission antenna 105 .
  • the impedance of the power receiving antenna 201 and the impedance of the battery 204 can be matched.
  • the impedance of the power receiving antenna 201 of the expression (4) and the impedance R of the battery 204 are
  • the antenna that can be used in the power transmission system 100 according to the present invention is not limited to that described above.
  • an antenna using a spider coil can be suitably used.
  • These antennas can be applied to both the power transmitting antenna 105 and the power receiving antenna 201.
  • An antenna that performs power transmission by the magnetic resonance method includes not only an inductance component of a coil but also a capacitance component based on its floating capacity or a capacitance component based on an intentionally added capacitor.
  • FIG. 6 is a view for explaining a spider coil used for an antenna according to another embodiment of the present invention
  • FIG. 6 (A) is a view showing a base material 600 used for shaping the spider coil
  • 6 (B) is a diagram illustrating an example of a pattern when the conductor wire 400 is wound around the base material 600
  • FIG. 6 (C) is a diagram illustrating a spider coil.
  • the base material 600 is described as an example of a substantially circular shape, but is not limited thereto.
  • the base material 600 is a substrate-like member having a first surface 601 and a second surface 602 that has a front and back relationship with the first surface 601, and may be configured using a material having a small dielectric loss tangent, such as polycarbonate or polypropylene. preferable.
  • the base material 600 includes a base 610 that forms a substantially circular flat plate portion, and a plurality of coil shaping protrusions 620 that extend radially from the base 610.
  • the coil shaping projecting piece 620 is used for passing the conductor wire 400 on one side of the first surface 601 or the second surface 602 and locking the conductor wire 400. Thereby, the shape of the spider coil is maintained by the conductor wire 400.
  • the conductor wire 400 it is preferable to use a stranded wire in which a plurality of conductor wires are assembled.
  • the arrows indicate the order in which the coil is wound.
  • the conductor wire 400 starts to be wound by locking the conductor wire 400 to the coil shaping protrusion 620 shown in FIG. 5A, first, the two coil shaping protrusions shown in FIG. To 620, the conductor wire 400 is locked on the first surface 601 side of the coil shaping protrusion 620.
  • the conductor wire 400 is locked on the second surface 602 side of the coil shaping projection piece 620 over the two coil shaping projection pieces 620 shown in FIG.
  • the winding pattern in which the surface on which the conductor wire 400 is locked is alternately changed from the first surface 601 side and the second surface 602 side to (c) ⁇ (D) ⁇ (e) ⁇ .
  • an antenna having a large inductance component L can be formed.
  • the surface on which the conductor wire 400 is locked for each of the coil shaping projection pieces 620 is the first surface 601 side and the second surface 602 side.
  • a winding pattern that alternates with is preferable.
  • FIG. 6C is a diagram showing a spider coil used for an antenna according to another embodiment of the present invention.
  • an antenna such an antenna as the power transmitting antenna 105 and the power receiving antenna 201, the present invention is realized. You can also.
  • the power transmission antenna 105 is installed so as to be buried in the ground.
  • the power receiving antenna 201 is assumed to be laid out on the bottom surface of the vehicle.
  • the design is robust so that the power transmission efficiency does not drop significantly. It is preferable that
  • the conventional power transmission system does not consider such robustness, and there is a problem that the power transmission efficiency is greatly reduced when there is a deviation between the power transmission antenna 105 and the power reception antenna 201. there were.
  • FIG. 7 is a diagram illustrating a configuration example of an antenna according to another embodiment of the present invention
  • FIG. 8 illustrates (A) a power transmission coil 650 and (B) a power reception coil 670 of the antenna according to another embodiment of the present invention. It is a top view.
  • FIG. 8C is a plan view of the power transmission coil 650 and the power reception coil 670 when there is no displacement between the power transmission antenna 105 and the power reception antenna 201.
  • FIG. 8D illustrates a plan view of the power transmission coil 650 and the power reception coil 670 when there is no positional deviation between the power transmission antenna 105 and the power reception antenna 201 when a racetrack coil is used for the power reception antenna 201.
  • FIG. 9 is a figure which shows the example of application of the antenna which concerns on other embodiment of this invention, has shown and extracted the power transmission coil 650 of the power transmission antenna installed in the ground, and is the power receiving antenna mounted in the vehicle.
  • the power receiving coil 670 is shown extracted.
  • FIG. 7 is a perspective view showing a state where the power transmitting antenna 105 and the power receiving antenna 201 are arranged to face each other during power transmission.
  • a racetrack-shaped power transmission coil 650 is used for the power transmission antenna 105, and an annular power reception coil 670 is used for the power reception antenna 201.
  • the shapes of the power transmitting coil 650 and the power receiving coil 670 are not limited to these.
  • the power receiving coil 670 also uses a racetrack-shaped coil. May be.
  • both the power transmission coil 650 and the power reception coil 670 can be annular coils.
  • the power transmission coil 650 in the power transmission antenna 105 is composed of a conductor wire 400 that is locked to a coil shaping protrusion 645 of a base material 640 having a first surface 641 and a second surface 642 that has a front and back relationship with the first surface 641. ing.
  • the power receiving coil 670 in the power receiving antenna 201 includes a conductor wire 400 locked to a coil shaping protrusion 665 of a base material 660 having a first surface 661 and a second surface 662 having a front and back relationship with the first surface 661. It is composed of
  • the conductor wire 400 can be wound so as to be denser, and when the coil is formed using the latter winding pattern. Can be wound so that the conductor wire 400 is more sparse.
  • the winding pattern is defined as a coil having a higher winding density as the winding pattern in which the conductor wire 400 becomes denser in the same space.
  • the “winding density” in the present embodiment exemplifies a case that is proportional to the number of turns per unit width (length), but the concept of “winding density” is proportional to the number of turns per unit area. Is also included.
  • FIG. 9 (A) shows a state in which the vehicle is parked in the charging facility installation space in the previous stage in which power is supplied to the vehicle by the power transmission system according to the present invention.
  • the wheel stopper prevents the positional deviation between the antennas in the vertical direction of the paper surface from occurring.
  • FIG. 9B shows the state of the positional relationship between the power transmission antenna 105 and the power receiving antenna 201 that gives the highest transmission efficiency after the vehicle is parked.
  • FIG. 9C shows the highest transmission efficiency after the vehicle is parked.
  • a state in which the positional relationship between the power transmitting antenna 105 and the power receiving antenna 201 is shifted is shown.
  • the wheel stopper as described above it is assumed that the positional relationship between the power transmitting antenna 105 and the power receiving antenna 201 is shifted by ⁇ d in the direction of the arrow in FIG.
  • the power transmission efficiency is robust so as not to drop significantly.
  • the area S 1 of the first projection surface in the vertical direction formed by the power transmission coil 650 with respect to the horizontal plane is formed, and the power receiving coil 670 is formed with respect to the horizontal plane. It is set to be larger than the area S 2 of the second projection plane in the vertical direction.
  • the direction perpendicular to the direction in which the positional deviation ⁇ d between the power transmitting antenna 105 and the power receiving antenna 201 occurs is defined as a predetermined direction.
  • the inner edge distance is T i of the power transmission antenna 105 in the predetermined direction
  • the outer edge distance of the power transmission antenna 105 at T o is R o
  • T i ⁇ R i ⁇ R o ⁇ T o is satisfied.
  • the power transmission system can be provided with robustness, as shown in FIG. The same applies to the case where both the coils 670 use racetrack coils.
  • the distance between the inner edges is defined as the maximum distance between the inner edges in the predetermined direction
  • “the distance between the outer edges” is defined as the maximum distance between the outer edges in the predetermined direction
  • the present invention is (1) the shape of the power transmission coil 650 and the power reception coil 670 is not similar, and (2) the average diameter of the power transmission coil 650 and the power reception coil 670 formed by the conductor wire 400 being circulated. (3) The inner diameter of the power transmission coil 650 is preferably as small as possible, but the resistance of the conductor wire 400 is not increased to the extent that the inductance component L 1 is increased. In addition, it is added that it has a feature point.
  • FIG. 10 is a plan view of a power transmission coil 650 of an antenna according to another embodiment of the present invention.
  • the present invention is applied to the power transmission coil 650 in the power transmission antenna 105.
  • the present invention is not limited thereto, and the present invention can also be applied to the power reception coil 670 of the power reception antenna 201.
  • the design is made robust so that the power transmission efficiency does not drop significantly. Therefore, the winding density is different between the inner peripheral portion 653 of the power transmission coil 650 and the outer peripheral portion 654 of the power transmission coil 650. More specifically, the winding density of the inner peripheral portion 653 of the power transmission coil 650 is made sparser than the winding density of the outer peripheral portion 654 of the power transmission coil 650.
  • the surface on which the conductor wire 400 is locked adopts a winding pattern that alternates in the order of first surface ⁇ second surface ⁇ first surface ⁇ ..., And is continuous at the outer peripheral portion 654 of the power transmission coil 650.
  • the surface on which the conductor wire 400 is locked by the two coil shaping protrusions 645 (or the coil shaping protrusion 665) alternately changes in the order of the first surface ⁇ the second surface ⁇ the first surface ⁇ .
  • the method of adopting a winding pattern can be mentioned, as long as the density of winding density can be imparted by the inner peripheral portion 653 and the outer peripheral portion 654 of the power transmission coil 650, it is not limited to such a method, You can adopt any method wear.
  • FIG. 11 is a plan view of a power transmission coil 650 of an antenna according to another embodiment of the present invention.
  • the present invention is applied to the power transmission coil 650 in the power transmission antenna 105.
  • the present invention is not limited thereto, and the present invention can also be applied to the power reception coil 670 of the power reception antenna 201.
  • the high permeability member 657 is arranged around the entire outer periphery of the power transmission coil 650 on the surface where the power transmission coil 650 is formed.
  • a ferrite material can be used.
  • the high magnetic permeability member 657 is arranged on the entire outer periphery of the power transmission coil 650, the same effect as that of the area of the power transmission coil 650 is substantially increased can be obtained. Even if there is a deviation from the above, the power transmission efficiency is not significantly reduced.
  • a pair of high magnetic permeability members 657 may be disposed on a part of the outer edge of the power transmission coil 650 that is wound substantially along a direction perpendicular to the direction in which the power generation may occur. According to the embodiment shown in FIG. 12 and FIG. 13, there is an advantage that the cost of the high magnetic permeability member 657 can be suppressed, together with the effect that the robustness is obtained.
  • the power transmission efficiency does not drop significantly. It is designed to have robustness, and even when there is a deviation between the power transmitting antenna 105 and the power receiving antenna 201, the power transmission efficiency is not significantly reduced.
  • the power transmission system of the present invention is suitable for use in a magnetic resonance wireless power transmission system for charging vehicles such as electric vehicles (EV) and hybrid electric vehicles (HEV), which are rapidly spreading in recent years. It is a thing. In such a usage form, in the power transmission system, depending on how the vehicle is parked, a certain amount of deviation may occur between the power transmitting antenna and the power receiving antenna.
  • the power transmission system is designed to be robust so that the power transmission efficiency does not drop significantly even if there is a slight deviation from the position of the transmitting antenna and the receiving antenna that give the highest transmission efficiency. It is preferable that However, the conventional power transmission system does not consider such robustness, and there is a problem that the power transmission efficiency is greatly reduced when there is a deviation between the transmitting antenna and the receiving antenna.
  • the power transmission system according to the present invention has a robust design so that the power transmission efficiency does not drop significantly even if there is a slight deviation from the position of the power transmitting antenna and the power receiving antenna. Therefore, even when there is a difference between the power transmitting antenna and the power receiving antenna, the power transmission efficiency is not significantly reduced, and the industrial utility is very large.
  • DESCRIPTION OF SYMBOLS 100 Electric power transmission system 101 ... AC / DC conversion part 102 ... Voltage control part 103 ... Inverter part 104 ... Matching device 105 ... Power transmission antenna 110 ... Main control part 120- ..Communication unit 201 ... Receiving antenna 202 ... Rectification unit 203 ... Charge control unit 204 ... Battery 210 ... Main control unit 220 ... Communication unit 230 ... Interface unit 260 ... Case body 216 ... Bottom plate portion 262 ... Side plate portion 263 ... (Upper) opening 265 ... Car body mounting portion 270 ... Coil body 271 ... Base material 272 ... Conductive portion 273 ... first end 274 ... second end 280 ...
  • ferrite substrate 290 ... aluminum substrate 400 ... conductor wire 600 ... substrate 601 ... first surface 602 ..Second surface 610 ⁇ Base 620 ⁇ Projection piece for coil shaping 640 ⁇ Base material 641 ⁇ First surface 642 ⁇ Second surface 645 ⁇ ⁇ ⁇ Projection piece for coil shaping 650 ⁇ Power transmission coil 653 ⁇ Inner peripheral part 654 ... outer peripheral part 657 ... high permeability member 660 ... base material 661 ... first surface 662 ... second surface 665 ... projecting piece 670 for coil shaping Power receiving coil

Abstract

【課題】送電アンテナと受電アンテナとのずれがある場合にも、大幅に電力伝送効率が低減してしまうようなことがない電力伝送システムを提供する。 【解決手段】本発明の電力伝送システム100は、地上に設置されて巻回された送電コイルを含む送電アンテナ105と、前記送電アンテナ105と対向配置され、巻回された受電コイルを含み、前記送電アンテナ105から電磁場を介して電気エネルギーを受電する受電アンテナ201と、を有し、水平面に対して前記送電コイルが形成する鉛直方向の第1の投影面の面積(S1)が、水平面に対して前記受電コイルが形成する鉛直方向の第2の投影面の面積(S2)より大きいことを特徴とする。

Description

電力伝送システム
 本発明は、磁気共鳴方式によってワイヤレスで電力の送受を行う電力伝送システムに関する。
 近年、電源コードなどを用いることなく、ワイヤレスで電力(電気エネルギー)を伝送する技術の開発が盛んとなっている。ワイヤレスで電力を伝送する方式の中でも、特に注目されている技術として、磁気共鳴方式と呼ばれるものがある。この磁気共鳴方式は2007年にマサチューセッツ工科大学の研究グループが提案したものであり、これに関連する技術は、例えば、特許文献1(特表2009-501510号公報)に開示されている。
 磁気共鳴方式のワイヤレス電力伝送システムは、送電側アンテナの共振周波数と、受電側アンテナの共振周波数とを同一とし高いQ値(100以上)のアンテナを用いることで、送電側アンテナから受電側アンテナに対し、効率的にエネルギー伝達を行うものであり、電力伝送距離を数十cm~数mとすることが可能であることが大きな特徴の一つである。
 上記のような磁気共鳴方式のワイヤレス電力伝送システムは、電気自動車(EV)やハイブリッド電気自動車(HEV)などの車両搭載電池への充電に応用することが検討されている。このようなワイヤレスなシステムを、上記のような車両に用いることで、車両への給電のために、電源コネクタや電源線などを取り扱う必要がなくなるからである。
 例えば、特許文献2(特開2010-68657号公報)には、一方のアンテナを電気自動車のような移動体の底面部に搭載し、地上に設けた他方のアンテナから、ワイヤレスで電力伝送を行い、伝送された電力を電気自動車の電池に充電することが開示されている。
特表2009-501510号公報 特開2010-68657号公報
 上記のように、磁気共鳴方式の電力伝送システムを電気自動車(EV)やハイブリッド電気自動車(HEV)などの車両に対する電力供給に用いる場合においては、送電用のアンテナは地中部に埋設されように設置され、また、受電用のアンテナは車両の底面部にレイアウトされることが想定されている。
 このような利用形態で電力伝送システムを用いると、車両の駐車のさせ方によっては、送電用アンテナと受電用アンテナとの間にはある程度のずれが生じることがある。電力伝送システムにおいては、最高の伝送効率を与える送電用アンテナと受電用アンテナの位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計とすることが好ましい。
 しかしながら、従来の電力伝送システムではこのようなロバスト性については考慮されておらず、送電用アンテナと受電用アンテナとのずれがある場合に、大幅に電力伝送効率が低減してしまう、という問題があった。
 上記問題を解決するために、本発明に係る電力伝送システムは、地上に設置されて巻回された送電コイルを含む送電アンテナと、前記送電アンテナと対向配置され、巻回された受電コイルを含み、前記送電アンテナから電磁場を介して電気エネルギーを受電する受電アンテナと、を有し、水平面に対して前記送電コイルが形成する鉛直方向の第1の投影面の面積が、水平面に対して前記受電コイルが形成する鉛直方向の第2の投影面の面積より大きいことを特徴とする。
 また、本発明に係る電力伝送システムは、所定方向における前記送電コイルの内縁間距離がTiであり、前記送電コイルの外縁間距離がToであり、前記受電コイルの内縁間距離がRiであり、前記受電コイルの外縁間距離がRoであるとき、Ti<Ri<Ro<Toの関係を有することを特徴とする。
また、本発明に係る電力伝送システムは、前記所定方向は、前記受電アンテナと前記送電アンテナと間の位置ずれが発生する方向に対して垂直方向であることを特徴とする。
 本発明に係る電力伝送システムにおいては、最高の伝送効率を与える送電アンテナと受電アンテナの位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計となっており、送電アンテナと受電アンテナとのずれがある場合にも、大幅に電力伝送効率が低減してしまうようなことがない。
本発明の実施形態に係る電力伝送システムのブロック図である。 電力伝送システムのインバーター部を示す図である。 送電アンテナ105(受電アンテナ201)の分解斜視図である。 受電アンテナ201・受電アンテナ201による電力伝送の様子を示す断面の模式図である。 本発明の実施形態に係る電力伝送システム100の等価回路を示す図である。 本発明の他の実施形態に係るアンテナに用いるスパイダーコイルを説明する図である。 本発明の他の実施形態に係るアンテナの構成例を示す図である。 本発明の他の実施形態に係るアンテナの送電コイル、受電コイルの平面図である。 本発明の他の実施形態に係るアンテナの応用例を示す図である。 本発明の他の実施形態に係るアンテナの送電コイルの平面図である。 本発明の他の実施形態に係るアンテナの送電コイルの平面図である。 本発明の他の実施形態に係るアンテナの送電コイルの平面図である。 本発明の他の実施形態に係るアンテナの送電コイルの平面図である。
 以下、本発明の実施形態を図面を参照しつつ説明する。図1は本発明の実施形態に係る電力伝送システムのブロック図である。なお、本発明に係るアンテナは、電力伝送システムを構成する受電側のアンテナと送電側のアンテナのいずれにも適用可能であるが、以下の実施形態においては受電側のアンテナに本発明のアンテナを適用した例につき説明する。
 本発明のアンテナが用いられる電力伝送システムとしては、例えば、電気自動車(EV)やハイブリッド電気自動車(HEV)などの車両への充電のためのシステムが想定されている。電力伝送システムは、上記のような車両に対して電力を非接触で伝送するため、当該車両を停車させることが可能な停車スペースに設けられる。車両のユーザーはこの電力伝送システムが設けられている停車スペースに車両を停車させて、車両に搭載されている受電アンテナ201と、前記送電アンテナ105とを対向させることによって電力伝送システムからの電力を受電する。
 電力伝送システムでは、電力伝送システム100側の送電アンテナ105から、受電側システム200側の受電アンテナ201へ効率的に電力を伝送する際、送電アンテナ105の共振周波数と、受電アンテナ201の共振周波数とを同一とすることで、送電側アンテナから受電側アンテナに対し、効率的にエネルギー伝達を行うようにする。
 電力伝送システム100におけるAC/DC変換部101は、入力される商用電源を一定の直流に変換するコンバータである。このAC/DC変換部101からの出力は電圧制御部102において、所定の電圧に昇圧されたりする。この電圧制御部102で生成される電圧の設定は主制御部110から制御可能となっている。
 インバーター部103は、電圧制御部102から供給される電圧から所定の交流電圧を生成して、整合器104に入力する。図2は電力伝送システムのインバーター部を示す図である。インバーター部103は、例えば図2に示すように、フルブリッジ方式で接続されたQA乃至QDからなる4つの電界効果トランジスタ(FET)によって構成されている。
 本実施形態においては、直列接続されたスイッチング素子QAとスイッチング素子QBの間の接続部T1と、直列接続されたスイッチング素子QCとスイッチング素子QDとの間の接続部T2との間に整合器104が接続される構成となっており、スイッチング素子QAとスイッチング素子QDがオンのとき、スイッチング素子QBとスイッチング素子QCがオフとされ、スイッチング素子QBとスイッチング素子QCがオンのとき、スイッチング素子QAとスイッチング素子QDがオフとされることで、接続部T1と接続部T2との間に矩形波の交流電圧を発生させる。なお、本実施形態においては、各スイッチング素子のスイッチングによって生成される矩形波の周波数の範囲は20kHz~数1000kHz程度である。
 上記のようなインバーター部103を構成するスイッチング素子QA乃至QDに対する駆動信号は主制御部110から入力されるようになっている。また、インバーター部103を駆動させるための周波数は主制御部110から制御することができるようになっている。
 整合器104は、所定の回路定数を有する受動素子から構成され、インバーター部103からの出力が入力される。そして、整合器104からの出力は送電アンテナ105に供給される。整合器104を構成する受動素子の回路定数は、主制御部110からの指令に基づいて調整することができるようになっている。主制御部110は、送電アンテナ105と受電アンテナ201とが共振するように整合器104に対する指令を行う。なお、整合器104は必須の構成ではない。
 送電アンテナ105は、誘導性リアクタンス成分を有するコイルから構成されており、対向するようにして配置される車両搭載の受電アンテナ201と共鳴することで、送電アンテナ105から出力される電気エネルギーを受電アンテナ201に送ることができるようになっている。
 電力伝送システム100の主制御部110はCPUとCPU上で動作するプログラムを保持するROMとCPUのワークエリアであるRAMなどからなる汎用の情報処理部である。この主制御部110は、図示されている主制御部110と接続される各構成と協働するように動作する。
 また、通信部120は車両側の通信部220と無線通信を行い、車両との間でデータの送受を可能にする構成である。通信部120によって受信したデータは主制御部110に転送され、また、主制御部110は所定情報を通信部120を介して車両側に送信することができるようになっている。
 次に、車両側に設けられている構成について説明する。車両の受電側のシステムにおいて、受電アンテナ201は、送電アンテナ105と共鳴することによって、送電アンテナ105から出力される電気エネルギーを受電するものである。このような受電アンテナ201は、車両の底面部に取り付けられるようになっている。
 受電アンテナ201で受電された交流電力は、整流部202において整流され、整流された電力は充電制御部203を通して電池204に蓄電されるようになっている。充電制御部203は主制御部210からの指令に基づいて電池204の蓄電を制御する。より具体的には、整流部202からの出力は充電制御部203において、所定の電圧値に昇圧又は降圧されて、電池204に蓄電されるようになっている。また、充電制御部203は電池204の残量管理なども行い得るように構成される。
 主制御部210はCPUとCPU上で動作するプログラムを保持するROMとCPUのワークエリアであるRAMなどからなる汎用の情報処理部である。この主制御部210は、図示されている主制御部210と接続される各構成と協働するように動作する。
 インターフェイス部230は、車両の運転席部に設けられ、ユーザー(運転者)に対し所定の情報などを提供したり、或いは、ユーザーからの操作・入力を受け付けたりするものであり、表示装置、ボタン類、タッチパネル、スピーカーなどで構成されるものである。ユーザーによる所定の操作が実行されると、インターフェイス部230から操作データとして主制御部210に送られ処理される。また、ユーザーに所定の情報を提供する際には、主制御部210からインターフェイス部230に対して、所定情報を表示するための表示指示データが送信される。
 また、車両側の通信部220は送電側の通信部120と無線通信を行い、送電側のシステムとの間でデータの送受を可能にする構成である。通信部220によって受信したデータは主制御部210に転送され、また、主制御部210は所定情報を通信部220を介して送電システム側に送信することができるようになっている。
 電力伝送システムで、電力を受電しようとするユーザーは、上記のような送電側のシステムが設けられている停車スペースに車両を停車させ、インターフェイス部230から充電を実行する旨の入力を行う。これを受けた主制御部210は、充電制御部203からの電池204の残量を取得し、電池204の充電に必要な電力量を算出する。算出された電力量と送電を依頼する旨の情報は、車両側の通信部220から送電側のシステムの通信部120に送信される。これを受信した送電側システムの主制御部110は電圧制御部102、インバーター部103、整合器104を制御することで、車両側に電力を伝送するようになっている。
 次に、以上のように構成される電力伝送システム100で用いるアンテナの具体的な構成について説明する。以下、受電アンテナ201に本発明の構成を採用した例について説明するが、本発明のアンテナは送電アンテナ105に対しても適用し得るものである。
 図3は本発明の実施形態に係る送電アンテナ105(受電アンテナ201)の分解斜視図であり、図4は本発明の実施形態に係る送電アンテナ105・受電アンテナ201による電力伝送の様子を示す断面の模式図であり、図4における矢印は磁力線を模式的に示している。
 なお、以下の実施形態では、送電アンテナ105・受電アンテナ201におけるコイル体270が矩形平板状のものであることを例に説明するが、本発明のアンテナはこのような形状のコイルに限定されるものではない。例えば、コイル体270として円形平板状のものなども利用し得る。このようなコイル体270は、送電アンテナ105・受電アンテナ201における磁気共鳴アンテナ部として機能する。この「磁気共鳴アンテナ部」は、コイル体270のインダクタンス成分のみならず、その浮游容量に基づくキャパシタンス成分、或いは意図的に追加したコンデンサに基づくキャパシタンス成分をも含むものである。
 なお、本発明に係る電力伝送システム100においては、送電アンテナ105の回路定数(インダクタンス成分、キャパシタンス成分)と、受電アンテナ201の回路定数とは、あえて異なるように構成することで、伝送効率を向上させるようにしている。送電アンテナ105の回路定数及び受電アンテナ201の回路定数を異なるように構成する場合、例えば、コイル体270などの概略の形状は同一で、寸法が異なるものを用いることでこれを実現することができる。
 ケース体260は、受電アンテナ201の誘導性リアクタンス成分を有するコイル体270を収容するために用いられるものである。このケース体260は、例えばポリカーボネートなどの樹脂により構成される開口を有する箱体の形状をなしている。ケース体260の矩形状の底板部261の各辺からは側板部262が、前記底板部261に対して垂直方向に延在するようにして設けられている。そして、ケース体260の上方においては、側板部262に囲まれるような上方開口部263が構成されている。ケース体260にパッケージされた受電アンテナ201はこの上方開口部263側で車両本体部に取り付けられる。ケース体260を車両本体部に取り付けるためには、従来周知の任意の方法を用いることができる。なお、上方開口部263の周囲には、車両本体部への取り付け性を向上するために、フランジ部材などを設けるようにしても良い。
 コイル体270は、ガラスエポキシ製の矩形平板状の基材271と、この基材271上に形成される渦巻き状の導電部272とから構成されている。渦巻き状をなす導電部272の内周側の第1端部273、及び外周側の第2端部274には不図示の導電線路が電気接続される。これにより、受電アンテナ201によって受電した電力を整流部202へと導けるようになっている。このようなコイル体270はケース体260の矩形状の底板部216上に載置され、適当な固着手段によって底板部216上に固着される。
 コイル体270上には、コイル体270と第1距離d1離間されてフェライト基材280が配されている。フェライト基材280としては、比抵抗が大きく、透磁率が大きく、磁気ヒステリシスが小さいものが望ましい。フェライト基材280は、ケース体260に対して適当な手段により固着されることで、コイル体270の上方に第1距離d1の空間を空けて配されるようになっている。このようなレイアウトにより、送電アンテナ105側で発生する磁力線は、フェライト基材280を透過する率が高くなり、送電アンテナ105から受電アンテナ201への電力伝送において、車両本体部を構成する金属物による磁力線への影響が軽微となる。
 また、ケース体260の上方開口部263においては、前記上方開口部263を覆うような矩形平板状のアルミニウム基材290が、フェライト基材280の上方に第2距離d2をおいて配されるようになっている。このようなアルミニウム基材290に用いる金属材料としてはアルミニウム以外の金属を用いることも可能である。
 本実施形態においては、アルミニウム基材290が前記上方開口部263を覆うように配されることで、コイル体270に対する車両本体金属部の影響を抑制することが可能となり、受信アンテナ201のアンテナとしての特性を確定することが可能となる。本実施形態によれば、アンテナの特性が確定しているために、受信アンテナ201を取り付ける車種に関わりなく、同様の電力伝送特性を期待することが可能となり、アンテナとしての汎用性が広がることとなる。
 また、本実施形態においては、受電アンテナ201は上方開口部263にある車体取り付け部265を利用して車両本体部に取り付けられる。このような車体取り付け部265の構造は従来周知のものを適宜用いることができる。なお、上方開口部263の周囲には、車両本体部への取り付け性を向上するために、フランジ部材などを設けるようにしても良い。
 以上のように本発明のアンテナは、主面を有する絶縁性の基材271上に所定の導電部272が形成されてなるコイル体270と、コイル体270上にコイル体270と第1距離d1離間されて配されるフェライト基材280と、フェライト基材280上にフェライト基材280と第2距離d2離間されて配されるアルミニウム基材290と、アルミニウム基材290上に配される車体取り付け部265と、を有している。
 次ぎに、以上のように構成される送電アンテナ105・受電アンテナ201それぞれの回路定数(インダクタンス成分、キャパシタンス成分)について説明する。図5は本発明の実施形態に係る電力伝送システム100の等価回路を示す図である。
 図5に示す等価回路において、送電アンテナ105のインダクタンス成分がL1、キャパシタンス成分がC1、抵抗成分がRt1であり、受電アンテナ201のインダクタンス成分がL2、キャパシタンス成分がC2、抵抗成分がRt2であり、送電アンテナ105と受電アンテナ201との間の相互インダクタンスがMであることを示している。また、Rは電池204の内部抵抗を示している。また、送電アンテナ105と受電アンテナ201との間の結合係数はkによって示される。
 また、本実施形態においては、送電アンテナ105は、インダクタンス成分L1、キャパシタンス成分C1である直列共振器を、また、受電アンテナ201は、インダクタンス成分L2、キャパシタンス成分C2である直列共振器を構成するものと考える。
 まず、磁気共鳴方式の電力伝送では、電力伝送システム100側の送電アンテナ105から、受電側システム200側の受電アンテナ201へ効率的に電力を伝送する際、送電アンテナ105の共振周波数と、受電アンテナ201の共振周波数とを同一とすることで、送電側アンテナから受電側アンテナに対し、効率的にエネルギー伝達を行うようにしている。このための条件は、下式(1)によって表すことができる。
Figure JPOXMLDOC01-appb-M000001
 これを、インダクタンス成分がL1、キャパシタンス成分がC1、インダクタンス成分がL2、キャパシタンス成分がC2のみの関係で示すと、下式(2)に要約することができる。
Figure JPOXMLDOC01-appb-M000002
 また、送電アンテナ105のインピーダンスは下式(3)により、また、受電アンテナ201のインピーダンスは下式(4)により、表すことができる。なお、本明細書においては、下式(3)及び下式(4)によって定義される値をそれぞれのアンテナのインピーダンスとして定義する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 磁気共鳴方式の電力伝送システム100の受電側システムにおいて、電池204が定電圧充電モードに移行すると、電池204の電圧が一定なので、充電電力によって入力インピーダンスが変化する。電池204への充電電力が大きければ入力インピーダンスは低く、充電電力が小さければ入力インピーダンスは高くなる。受電側における受電アンテナ201は、効率の面から、電池204の充電電力に応じた入力インピーダンスに近いインピーダンスに設定することが望ましい。
 一方、送電側における電源から見た送電アンテナ105への入力インピーダンスは、効率の面から高ければ高いほどよい。これは電源の内部抵抗分により電流の2乗比例でロスが発生するためである。
 以上のことから、(3)式で示される送電アンテナ105のインピーダンスと、(4)式で示される受電アンテナ201のインピーダンスとの間には、下式(5)の関係が満たされることが望ましい。
Figure JPOXMLDOC01-appb-M000005
これを、インダクタンス成分がL1、キャパシタンス成分がC1、インダクタンス成分がL2、キャパシタンス成分がC2のみの関係で示すと、下式(6)に要約することができる。
Figure JPOXMLDOC01-appb-M000006
 以上のように、本発明に係る電力伝送システム100においては、送電アンテナ105の回路定数と、受電アンテナ201の回路定数とが上記の式(2)及び式(6)を満たすようにされているために、受電側システムで電池204の充電を行う場合に、効率的な電力伝送を行うことが可能となる。
 送電アンテナ105の回路定数と、受電アンテナ201の回路定数におけるインダクタンス成分の観点から、上記の式(2)及び式(6)のような各関係を成立させるためには、基材271上に形成される渦巻き状の導電部272の寸法、レイアウト、及び、磁性体など補助部材の調整を行うことを挙げることができる。
 より具体的には、図3に示す導電部272のパターンで説明すると、送電アンテナ105の導電部272の長辺、短辺のいずれか、あるいは両方を受電アンテナ201のそれらよりも大きくして導電部272の全長を長くする、或いは、送電アンテナ105の導電部272の巻き数を受電アンテナ201のそれよりも多くする、送電アンテナ105の適所にフェライト等の磁性体を追加する、等が考えられる。
 さらに電池204の内部インピーダンスとの関係についても言及する。受電側システムにおいて、電池204に対して効率的に充電が行える条件として、受電アンテナ201のインピーダンスと、電池204のインピーダンスとが整合していることを挙げることができる。
 すなわち、本実施形態では、式(2)及び式(6)の条件に加えて、さらに、式(4)の受電アンテナ201のインピーダンスと電池204のインピーダンスRとの間に、
Figure JPOXMLDOC01-appb-M000007
の関係を持たせることで、受電側システムで電池204の充電を行う場合、システム全体として、効率的な電力伝送を行うことを可能としている。
 本発明に係る電力伝送システム100で用い得るアンテナは、これまでに説明したようなものに限定されるものではない。
 例えば、本発明に係る電力伝送システム100においては、スパイダーコイルを用いたアンテナも好適に利用することができる。以下、このようなアンテナの具体的な構成について説明する。これらのアンテナは、送電アンテナ105及び受電アンテナ201の双方に適用し得るものである。なお、磁気共鳴方式で電力伝送を行うアンテナは、コイルのインダクタンス成分のみならず、その浮游容量に基づくキャパシタンス成分、或いは意図的に追加したコンデンサに基づくキャパシタンス成分をも含むものである。
 図6は本発明の他の実施形態に係るアンテナに用いるスパイダーコイルを説明する図であり、図6(A)はスパイダーコイルを造形するために利用される基材600を示す図であり、図6(B)は基材600に導体線400を巻回する際のパターンの1例を示す図であり、図6(C)はスパイダーコイルを示す図である。
 図6(A)に示す図では、基材600としては略円形であるものを例にとり説明するが、これに限定されるものではない。
 基材600は、第1面601と、これと表裏の関係にある第2面602とを有する基板状の部材であり、例えばポリカーボネートやポリプロピレンなどの誘電正接が小さい材料を用いて構成することが好ましい。
 この基材600は、略円形の平板部をなす基部610と、この基部610から放射状に延出する複数のコイル造形用突片620とから構成されている。
 コイル造形用突片620は、第1面601又は第2面602のいずれか一方側に導体線400が通され、導体線400を係止するために利用される。これにより、導体線400でスパイダーコイルの形状が維持される。
 次に、以上のような基材600で造形する際の導体線400の巻回パターンの1例について図6(B)を参照して説明する。導体線400としては、複数の導体素線を集合させた撚り線を用いることが好ましい。
 図6(B)において、矢印はコイルを巻回する際の順序を示している。例えば、図中(a)に示すコイル造形用突片620に導体線400を係止することにより、導体線400を巻回し始めたとすると、まず、(a)に示す2つのコイル造形用突片620にかけては、コイル造形用突片620の第1面601側において、導体線400を係止させる。
 続いて、(b)に示す2つのコイル造形用突片620にかけては、コイル造形用突片620の第2面602側において、導体線400を係止させる。
 逆に、(c)に示す2つのコイル造形用突片620にかけては、コイル造形用突片620の第1面601側において、導体線400を係止させる。
 以上のように、2つのコイル造形用突片620毎に、導体線400を係止させる面を、第1面601側、第2面602側と交互に変える巻回パターンにより、(c)→(d)→(e)→・・・と順次巻回する。このような巻回パターンとすることにより、インダクタンス成分Lが大きいアンテナを形成することが可能となる。
 逆に、インダクタンス成分Lが大きいアンテナを形成する場合には、1つ1つのコイル造形用突片620毎に、導体線400を係止させる面を、第1面601側、第2面602側と交互に変える巻回パターンが好ましい。
 図6(C)は本発明の他の実施形態に係るアンテナに用いるスパイダーコイルを示す図であるが、このようなアンテナを送電アンテナ105、受電アンテナ201として用いることで、本発明を実現することもできる。
 これまで説明したように、電力伝送システムを電気自動車(EV)やハイブリッド電気自動車(HEV)などの車両に対する電力供給に用いる場合においては、送電アンテナ105は地中部に埋設されように設置され、また、受電アンテナ201は車両の底面部にレイアウトされることが想定される。
 このような利用形態で電力伝送システムを用いると、車両の駐車のさせ方によっては、送電アンテナ105と受電アンテナ201との間にはある程度のずれが生じることがある。電力伝送システムにおいては、最高の伝送効率を与える送電アンテナ105と受電アンテナ201の位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計とすることが好ましい。
 しかしながら、従来の電力伝送システムではこのようなロバスト性については考慮されておらず、送電アンテナ105と受電アンテナ201とのずれがある場合に、大幅に電力伝送効率が低減してしまう、という問題があった。
 そこで、本実施形態では、送電アンテナ105と受電アンテナ201の位置ずれに伴う電力伝送効率の低下を抑止する構成について提案する。
 図7は本発明の他の実施形態に係るアンテナの構成例を示す図であり、図8は本発明の他の実施形態に係るアンテナの(A)送電コイル650、(B)受電コイル670の平面図である。
 また、図8(C)は送電アンテナ105と受電アンテナ201との間に位置ずれがない場合の送電コイル650と受電コイル670の平面図である。
 また、図8(D)は受電アンテナ201においてもレーストラック状のコイルを用いたときにおける、送電アンテナ105と受電アンテナ201との間に位置ずれがない場合の送電コイル650と受電コイル670の平面図である。
 また、図9は本発明の他の実施形態に係るアンテナの応用例を示す図であり、地上に設置された送電アンテナの送電コイル650を抜き出して示しており、車両に搭載された受電アンテナの受電コイル670を抜き出して示している。
 図7、図8において、斜線部はアンテナのコイルが形成されている部分を示している。また、図7は送電アンテナ105と受電アンテナ201とが電力伝送時に対向配置されたときの状態を斜視的に示している。
 本実施形態においては送電アンテナ105にはレーストラック状の送電コイル650が、また、受電アンテナ201には環状の受電コイル670が用いられている。ただし、本発明においては、送電コイル650、受電コイル670の形状は、これらに限定されるものではなく、例えば、図8(D)に示すように、受電コイル670もレーストラック状のコイルを用いてもよい。また、送電コイル650、受電コイル670の双方とも、環状のコイルを用いることもできる。
 送電アンテナ105における送電コイル650は、第1面641とこれと表裏の関係にある第2面642とを有する基材640のコイル造形用突片645に係止された導体線400とから構成されている。
 同様に、受電アンテナ201における受電コイル670は、第1面661とこれと表裏の関係にある第2面662とを有する基材660のコイル造形用突片665に係止された導体線400とから構成されている。
 上記のような基材640、基材660に導体線400を巻き付けて、コイルを造形する際には、図6で説明した方法を用いることができる。
 ただし、図6で説明したスパイダーコイルにおいては、導体線400をコイル造形用突片645(又はコイル造形用突片665)に巻き付けていく際、連続した2つのコイル造形用突片645(又はコイル造形用突片665)で導体線400が係止される面が、第1面→第2面→第1面→・・・というように交互に変わる巻回パターンについて説明した。これに限らず、1つのコイル造形用突片645(又はコイル造形用突片665)毎に、導体線400が係止される面が、第1面→第2面→第1面→・・・というように交互に変わる巻回パターンを採用することもできる。
 一般的に前者の巻回パターンを用いてコイルを造形した場合には、導体線400がより密となるように巻回することができ、後者の巻回パターンを用いてコイルを造形した場合には、導体線400がより疎となるように巻回することができる。なお、本明細書では、同じスペースで導体線400がより密となる巻回パターンであればなるほど、巻き密度が高いコイルであるものとして定義する。また、本実施形態における「巻き密度」は、単位幅(長さ)当たりの巻き数に比例する場合を例示しているが、「巻き密度」の概念は単位面積当たりの巻き数に比例する場合も含むものである。
 図9(A)は本発明の本発明に係る電力伝送システムによって、車両に給電を行う前段において車両を充電設備設置スペースに駐車する様子を示している。本例では、車輪止めにより紙面の上下方向についてのアンテナ間の位置ずれについては発生しないようになっている。図9(B)は車両駐車後、最高の伝送効率を与える送電アンテナ105と受電アンテナ201の位置関係となって様子を示しており、図9(C)は車両駐車後、最高の伝送効率を与える送電アンテナ105と受電アンテナ201の位置関係からずれた様子を示している。本例では、上記のような車輪止めが設けられているため、送電アンテナ105と受電アンテナ201の位置関係は図9(C)の矢印の方向にΔd位置ずれを起こすことが想定される。
 ここで、上記のような電力伝送システムにおいて、最高の伝送効率を与える送電アンテナ105と受電アンテナ201の位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計とするために、本実施形態においては、水平面に対して送電コイル650が形成する鉛直方向の第1の投影面の面積S1が、水平面に対して受電コイル670が形成する鉛直方向の第2の投影面の面積S2より大きくなるように設定している。このような設定であると、図9(C)に示すように、送電アンテナ105と受電アンテナ201とのずれがある場合にも、大幅に電力伝送効率が低減してしまうようなことがないことを確認している。
 本発明においては、上記のような第1の投影面の面積S1と第2の投影面の面積S2の関係性に加え、さらに以下のような関係を有することがより好ましい。送電アンテナ105と受電アンテナ201と間の位置ずれΔdが発生する方向に対して垂直方向である方向を、所定方向とする。この所定方向における送電アンテナ105の内縁間距離がTiで、送電アンテナ105の外縁間距離がToで、受電アンテナ201の内縁間距離がRiで、受電アンテナ201の外縁間距離がRoであるとき、Ti<Ri<Ro<Toの関係を有することが好ましい。このような設定であると、送電アンテナ105と受電アンテナ201とのずれがある場合にも、大幅に電力伝送効率が低減してしまうようなことがない。また、上記のTi<Ri<Ro<Toの関係により、電力伝送システムにロバスト性を持たせることができるのは、図8(D)に示すように、送電コイル650、及び受電コイル670が共にレーストラック状のコイルを用いる場合でも同様である。
 なお、「内縁間距離」は所定方向の内縁間の距離のうち最大のものとして定義され、「外縁間距離」は、所定方向の外縁間の距離のうち最大のものとして定義される。
 また、本発明は、(1)送電コイル650、受電コイル670の形状が相似形ではない点、(2)導体線400が周回されることで形成される送電コイル650、受電コイル670の平均径が異なる点、(3)送電コイル650の内径はできるだけ小さい方が良いが、インダクタンス成分L1が大きくなる効果以上に、導体線400の抵抗が大きくならない程度に留められている点、の3点においても特徴点を有するものであることを付記しておく。
 次に、本発明の他の実施形態について説明する。図10は本発明の他の実施形態に係るアンテナの送電コイル650の平面図である。なお、以下の実施形態では、送電アンテナ105における送電コイル650に本発明を適用した例について説明するが、これに限らず本発明は、受電アンテナ201の受電コイル670にも適用することができる。
 本実施形態においては、最高の伝送効率を与える送電アンテナ105と受電アンテナ201の位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計とするために、送電コイル650の内周部653と、送電コイル650の外周部654とでは巻き密度が異なるようにされている。より具体的には、送電コイル650の内周部653の巻き密度は、送電コイル650の外周部654の巻き密度より疎あるようにされている。
 ここで、送電コイル650の内周部653と外周部654とで巻き密度の疎密を付与する1つの方法として、送電コイル650の内周部653では、1つのコイル造形用突片645毎に、導体線400が係止される面が、第1面→第2面→第1面→・・・というように交互に変わる巻回パターンを採用し、送電コイル650の外周部654では、連続した2つのコイル造形用突片645(又はコイル造形用突片665)で導体線400が係止される面が、第1面→第2面→第1面→・・・というように交互に変わる巻回パターンを採用する方法を挙げることができるが、送電コイル650の内周部653と外周部654とで巻き密度の疎密を付与することができれば、このような方法に限定されることなく、如何なる方法も採用することができる。
 上記のように、送電コイル650の内周部653の巻き密度を、送電コイル650の外周部654の巻き密度よりも疎とすることで、平準化された磁界を発生することが可能となり、図9(C)に示すように、送電アンテナ105と受電アンテナ201とのずれがある場合にも、大幅に電力伝送効率が低減してしまうようなことがないことを確認している。
 次に、本発明の他の実施形態について説明する。図11は本発明の他の実施形態に係るアンテナの送電コイル650の平面図である。なお、以下の実施形態では、送電アンテナ105における送電コイル650に本発明を適用した例について説明するが、これに限らず本発明は、受電アンテナ201の受電コイル670にも適用することができる。
 本実施形態においては、最高の伝送効率を与える送電アンテナ105と受電アンテナ201の位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計とするために、送電コイル650が形成される面における、送電コイル650の外縁全周に高透磁率部材657を配した構成としている。このような高透磁率部材657としてはフェライト材を用いることができる。このように、送電コイル650の外縁全周に高透磁率部材657を配すると、送電コイル650の面積が実質的に大きくなることと同様の効果を得ることができ、送電アンテナ105と受電アンテナ201とのずれがある場合にも、大幅に電力伝送効率が低減してしまうようなことがない。
 ここで、図9(C)に示すように、紙面の横方向にのみ、送電アンテナ105と受電アンテナ201のずれが生じる可能性がある場合には、図12や図13に示すように、ずれが生じる可能性がある方向と垂直な方向に略沿って巻回されている、送電コイル650の外縁の一部に一対、高透磁率部材657を配するようにしてもよい。図12や図13に示す実施形態によれば、ロバスト性が得られるという効果と共に、高透磁率部材657のコストを抑制することができる、というメリットがある。
 以上、本発明に係る電力伝送システム100においては、最高の伝送効率を与える送電アンテナ105と受電アンテナ201の位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計となっており、送電アンテナ105と受電アンテナ201とのずれがある場合にも、大幅に電力伝送効率が低減してしまうようなことがない。
産業上の利用性
 本発明の電力伝送システムは、近年、急速に普及しつつある電気自動車(EV)やハイブリッド電気自動車(HEV)などの車両への充電のための磁気共鳴方式のワイヤレス電力伝送システムに用いるのに好適なものである。このような利用形態で電力伝送システムにおいては、車両の駐車のさせ方によっては、送電用アンテナと受電用アンテナとの間にはある程度のずれが生じることがある。電力伝送システムにおいては、最高の伝送効率を与える送電用アンテナと受電用アンテナの位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計とすることが好ましい。しかしながら、従来の電力伝送システムではこのようなロバスト性については考慮されておらず、送電用アンテナと受電用アンテナとのずれがある場合に、大幅に電力伝送効率が低減してしまう、という問題があった。これに対して、本発明に係る電力伝送システムでは、送電アンテナと受電アンテナの位置から多少のずれが生じたとしても、電力伝送効率が大幅に落ちることがないようにロバスト性を持たせた設計となっており、送電アンテナと受電アンテナとのずれがある場合にも、大幅に電力伝送効率が低減してしまうようなことがなく、産業上の利用性が非常に大きい。
100・・・電力伝送システム
101・・・AC/DC変換部
102・・・電圧制御部
103・・・インバーター部
104・・・整合器
105・・・送電アンテナ
110・・・主制御部
120・・・通信部
201・・・受電アンテナ
202・・・整流部
203・・・充電制御部
204・・・電池
210・・・主制御部
220・・・通信部
230・・・インターフェイス部
260・・・ケース体
216・・・底板部
262・・・側板部
263・・・(上方)開口部
265・・・車体取り付け部
270・・・コイル体
271・・・基材
272・・・導電部
273・・・第1端部
274・・・第2端部
280・・・フェライト基材
290・・・アルミニウム基材
400・・・導体線
600・・・基材
601・・・第1面
602・・・第2面
610・・・基部
620・・・コイル造形用突片
640・・・基材
641・・・第1面
642・・・第2面
645・・・コイル造形用突片
650・・・送電コイル
653・・・内周部
654・・・外周部
657・・・高透磁率部材
660・・・基材
661・・・第1面
662・・・第2面
665・・・コイル造形用突片
670・・・受電コイル

Claims (3)

  1. 地上に設置されて巻回された送電コイルを含む送電アンテナと、
    前記送電アンテナと対向配置され、巻回された受電コイルを含み、前記送電アンテナから電磁場を介して電気エネルギーを受電する受電アンテナと、を有し、
    水平面に対して前記送電コイルが形成する鉛直方向の第1の投影面の面積が、
    水平面に対して前記受電コイルが形成する鉛直方向の第2の投影面の面積より大きいことを特徴とする電力伝送システム。
  2. 所定方向における前記送電コイルの内縁間距離がTiであり、前記送電コイルの外縁間距離がToであり、前記受電コイルの内縁間距離がRiであり、前記受電コイルの外縁間距離がRoであるとき、
    i<Ri<Ro<To
    の関係を有することを特徴とする請求項1に記載の電力伝送システム。
  3. 前記所定方向は、前記受電アンテナと前記送電アンテナと間の位置ずれが発生する方向に対して垂直方向であることを特徴とする請求項2に記載の電力伝送システム。
PCT/JP2013/079236 2012-10-31 2013-10-29 電力伝送システム WO2014069445A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13850890.8A EP2916430B1 (en) 2012-10-31 2013-10-29 Power transmission system
US14/433,771 US10110067B2 (en) 2012-10-31 2013-10-29 Power transmission system
CN201380056548.1A CN104756361B (zh) 2012-10-31 2013-10-29 电力传输系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-241147 2012-10-31
JP2012241147A JP5924496B2 (ja) 2012-10-31 2012-10-31 電力伝送システム

Publications (1)

Publication Number Publication Date
WO2014069445A1 true WO2014069445A1 (ja) 2014-05-08

Family

ID=50627349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079236 WO2014069445A1 (ja) 2012-10-31 2013-10-29 電力伝送システム

Country Status (5)

Country Link
US (1) US10110067B2 (ja)
EP (1) EP2916430B1 (ja)
JP (1) JP5924496B2 (ja)
CN (1) CN104756361B (ja)
WO (1) WO2014069445A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927826B2 (ja) 2011-09-28 2016-06-01 日産自動車株式会社 非接触給電装置
CN104271384B (zh) 2012-05-09 2017-10-10 丰田自动车株式会社 车辆
WO2014021085A1 (ja) * 2012-07-30 2014-02-06 日産自動車株式会社 非接触給電装置
JP5613268B2 (ja) * 2013-01-10 2014-10-22 昭和電線デバイステクノロジー株式会社 非接触給電システム
JP6458466B2 (ja) * 2014-11-28 2019-01-30 トヨタ自動車株式会社 コイルユニット
JP6330637B2 (ja) * 2014-11-28 2018-05-30 トヨタ自動車株式会社 受電装置
CN105050372B (zh) * 2015-09-09 2019-05-17 宁波微鹅电子科技有限公司 一种电磁屏蔽层及具有电磁屏蔽层的无线电能传输装置
CN106183883A (zh) * 2016-09-23 2016-12-07 中惠创智无线供电技术有限公司 一种免对位无线充电系统
JP2018121036A (ja) * 2017-01-27 2018-08-02 京セラ株式会社 非接触型電力伝送装置
CN109435716B (zh) * 2018-12-17 2020-04-24 哈尔滨工业大学 一种应用于轨道交通无线供电系统的三极型磁耦合机构
CN111064285B (zh) * 2019-12-06 2021-06-29 深圳市勃望初芯半导体科技有限公司 一种用于植入式设备的无线能量信号传输系统
JP7443825B2 (ja) 2020-03-02 2024-03-06 Tdk株式会社 コイル部品
WO2022182828A1 (en) * 2021-02-24 2022-09-01 Medtronic, Inc. Directional control of multi-coil array for applications in recharge systems
JP2023114514A (ja) 2022-02-07 2023-08-18 Tdk株式会社 コイル部品及びこれを備えるワイヤレス電力伝送デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501510A (ja) 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジー 無線非放射型エネルギー転送
JP2010068657A (ja) 2008-09-11 2010-03-25 Yazaki Corp ワイヤレス電力送信装置及び共鳴周波数調整方法
JP2010098257A (ja) * 2008-10-20 2010-04-30 Toyota Central R&D Labs Inc 給電システム
JP2011524729A (ja) * 2008-05-13 2011-09-01 クゥアルコム・インコーポレイテッド ワイヤレス電力伝達の強調のためのリピータ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266665B2 (ja) * 2007-05-16 2013-08-21 セイコーエプソン株式会社 電子機器、充電器および充電システム
JP4872973B2 (ja) * 2008-06-25 2012-02-08 セイコーエプソン株式会社 送電制御装置、送電装置、受電制御装置、受電装置及び電子機器
JP4725664B2 (ja) * 2008-06-25 2011-07-13 セイコーエプソン株式会社 送電制御装置、送電装置、受電制御装置、受電装置、電子機器、送電制御方法、及び受電制御方法
US8482158B2 (en) * 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
DE102009013694A1 (de) 2009-03-20 2010-09-23 Paul Vahle Gmbh & Co. Kg Energieübertragungssystem mit mehreren Primärspulen
JP5909714B2 (ja) * 2009-11-13 2016-04-27 パナソニックIpマネジメント株式会社 車両用充給電システム
JP2011258807A (ja) * 2010-06-10 2011-12-22 Showa Aircraft Ind Co Ltd 非接触給電装置
EP2428969B1 (en) 2010-08-09 2016-10-19 Parspour, Nejila Coil arrangement for an inductive charging device
JP5838562B2 (ja) * 2011-02-17 2016-01-06 富士通株式会社 ワイヤレス送電装置及びワイヤレス送電システム
US10685780B2 (en) * 2011-03-29 2020-06-16 Sony Corporation Electric power feed apparatus, electric power feed system, and electronic apparatus
JP2012210118A (ja) 2011-03-30 2012-10-25 Equos Research Co Ltd アンテナ
US10090885B2 (en) * 2011-04-13 2018-10-02 Qualcomm Incorporated Antenna alignment and vehicle guidance for wireless charging of electric vehicles
JP2014057429A (ja) * 2012-09-12 2014-03-27 Panasonic Corp 非接触電力伝送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501510A (ja) 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジー 無線非放射型エネルギー転送
JP2011524729A (ja) * 2008-05-13 2011-09-01 クゥアルコム・インコーポレイテッド ワイヤレス電力伝達の強調のためのリピータ
JP2010068657A (ja) 2008-09-11 2010-03-25 Yazaki Corp ワイヤレス電力送信装置及び共鳴周波数調整方法
JP2010098257A (ja) * 2008-10-20 2010-04-30 Toyota Central R&D Labs Inc 給電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2916430A4

Also Published As

Publication number Publication date
EP2916430B1 (en) 2019-12-04
JP5924496B2 (ja) 2016-05-25
EP2916430A1 (en) 2015-09-09
CN104756361B (zh) 2017-11-28
CN104756361A (zh) 2015-07-01
US10110067B2 (en) 2018-10-23
EP2916430A4 (en) 2016-07-13
JP2014093795A (ja) 2014-05-19
US20150280445A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5924496B2 (ja) 電力伝送システム
JP5988210B2 (ja) 電力伝送システム
US9697952B2 (en) Non-contact electric power reception device, non-contact electric power transmission device, and non-contact electric power transmission and reception system
JP5988211B2 (ja) 電力伝送システム
JP5915857B2 (ja) アンテナ
JPWO2013099221A1 (ja) 非接触充電装置
JP2013135491A (ja) アンテナ
JP2013038893A (ja) 電力伝送システム
JP2014197757A (ja) アンテナコイル
JP5930182B2 (ja) アンテナ
JP2014093320A (ja) 電力伝送システム
JP2014093797A (ja) 電力伝送システム
JP6216966B2 (ja) 電力伝送システム
JP5888504B2 (ja) アンテナ
JP2014093322A (ja) 電力伝送システム
JP2013074683A (ja) アンテナ
JP2014093321A (ja) 電力伝送システム
JP2014093798A (ja) 電力伝送システム
JP2014197935A (ja) 電力伝送システム
JP6085817B2 (ja) 電力伝送システム
JP2013254852A (ja) アンテナ
WO2020122017A1 (ja) 受電機器
JP2013051867A (ja) アンテナ
JP2012178960A (ja) アンテナ
JP2013074684A (ja) アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14433771

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013850890

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE