WO2014069012A1 - 印刷方法および印刷装置 - Google Patents

印刷方法および印刷装置 Download PDF

Info

Publication number
WO2014069012A1
WO2014069012A1 PCT/JP2013/057424 JP2013057424W WO2014069012A1 WO 2014069012 A1 WO2014069012 A1 WO 2014069012A1 JP 2013057424 W JP2013057424 W JP 2013057424W WO 2014069012 A1 WO2014069012 A1 WO 2014069012A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
depression
plate
suction
printing material
Prior art date
Application number
PCT/JP2013/057424
Other languages
English (en)
French (fr)
Inventor
陽一郎 西本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014544333A priority Critical patent/JP5836500B2/ja
Priority to TW102136691A priority patent/TWI586553B/zh
Publication of WO2014069012A1 publication Critical patent/WO2014069012A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F16/00Transfer printing apparatus
    • B41F16/0006Transfer printing apparatus for printing from an inked or preprinted foil or band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F16/00Transfer printing apparatus
    • B41F16/0006Transfer printing apparatus for printing from an inked or preprinted foil or band
    • B41F16/0073Transfer printing apparatus for printing from an inked or preprinted foil or band with means for printing on specific materials or products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/10Intaglio printing ; Gravure printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells

Definitions

  • the present invention relates to a printing method and a printing apparatus.
  • the structure of a general crystalline Si solar cell is a structure in which an antireflection film is formed on a photoelectric conversion part in which a pn junction is formed, and a comb-shaped surface electrode and an entire back surface electrode are arranged.
  • the front and back electrodes are formed by printing and baking a metal paste. Since the irradiation light is blocked by the surface electrode, the region covered with the surface electrode does not contribute to power generation. The loss of irradiation light by the surface electrode is generally called shadow loss.
  • the resistance loss increases because the electrode resistance increases, leading to a decrease in fill factor (FF). Therefore, the conversion efficiency cannot be increased by simply reducing the electrode area. If the electrode area is reduced, it is necessary to reduce the resistance loss by increasing the thickness of the electrode.
  • the ratio of the electrode thickness to the electrode width is called the aspect ratio.
  • the resistance loss can be reduced without changing the shadow loss, so that the conversion efficiency of the solar cell is improved.
  • the resistance loss is inversely proportional to the electrode cross-sectional area represented by the product of the electrode width and the electrode thickness. Therefore, by reducing the electrode width and increasing the electrode thickness so as to make the electrode cross-sectional area constant, the shadow loss can be reduced without changing the resistance loss, so the conversion efficiency of the solar cell is also improved. . That is, in order to increase the conversion efficiency of the solar cell, it is desirable to form a high aspect ratio electrode.
  • Patent Document 1 As an electrode formation with a high aspect ratio, multiple printing by screen printing is disclosed in Patent Document 1, but it is difficult to form a sharp electrode by screen printing, and multiple printing using intaglio offset printing is performed. It is disclosed in Patent Document 2.
  • intaglio offset printing and gravure printing which is a printing method using intaglio as well as offset printing, a problem has been pointed out that the transfer rate of paste from intaglio (gravure printing) and blanket (offset printing) is poor. Yes. (See Patent Document 3).
  • JP 11-103084 A (see paragraph 0009) JP 2007-44974 (see paragraph 0010) JP 2010-123815 (see paragraph 0003)
  • a printing method using an intaglio like conventional gravure printing or offset printing has a problem that the transfer rate of the paste used as a printing material is poor.
  • the present invention has been made to solve the above-described problems, and aims to improve the transfer rate of the printing material from the intaglio in the printing method using the intaglio.
  • the stretch film provided facing the printing plate having the first depression corresponding to the printing shape is sucked from the first depression, and the extension / contraction is performed along the first depression.
  • the printing apparatus of the present invention is provided with a printing plate having a first depression corresponding to a printing shape, facing the first depression, and suctioning from the first depression, the first depression. And a stretchable film in which a second depression is formed along the depression.
  • the printing material or the printing apparatus as described above pushes the printing material out of the recess by restoring the stretch film, even if the recess of the stretch film is deepened, the printing material is pushed out of the recess by the restoration of the stretch film. Since the contact area between the printing material and the printing material is smaller than the contact area between the printing material and the printing material, printing can be performed without reducing the transfer rate.
  • FIG. 1 is a cross-sectional view (pressurized state) of the printing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view (suction state) of the printing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a bottom view of the printing plate according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the printing principle of the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating the printing material filling method according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of conventional gravure printing and offset printing.
  • FIG. 7 is a schematic diagram of the printing method of the present invention.
  • FIG. 8 is a schematic diagram of the printing principle of the second embodiment of the present invention.
  • FIG. 9 is a perspective view of a printing plate according to the second embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a printing plate according to the third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the printing apparatus according to the fourth embodiment of the present invention.
  • FIG. 12 is a bottom view of the fixed shaft according to the fourth embodiment of the present invention.
  • FIG. 13 is a perspective view of a printing plate according to the fourth embodiment of the present invention.
  • FIG. 14 is a perspective view of a printing plate according to the fifth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of the bus electrode pattern according to the fifth embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the grid electrode pattern according to the fifth embodiment of the present invention.
  • Embodiment 1 FIG.
  • the printing apparatus according to the first embodiment will be described with reference to FIGS. 1, 2, and 3. 1 and 2 are cross-sectional views taken along line AA in FIG. A configuration of the printing apparatus according to the first embodiment will be described.
  • the printing apparatus is provided with a printing plate 11 provided with a plurality of first depressions 15a, 15b, 15c, and 15d corresponding to the printing shape, and in contact with the printing plate 11 facing the first depressions 15a to 15d.
  • the stretchable film 12 is provided.
  • the printing plate is hereinafter referred to as a plate.
  • the printed shape is a desired pattern to be printed.
  • the plate 11 having the first depressions 15a to 15d corresponding to the printing shape corresponds to the intaglio plate.
  • the plate 11 has a flat plate shape.
  • the first depressions 15a to 15d are provided so as to be less than the plate thickness of the plate 11.
  • the plate 11 is provided with a plurality of suction holes 14a, 14b, 14c and 14d (suction holes 14a to 14d) communicating with the plurality of first recesses 15a to 15d, respectively, from the suction holes 14a to 14d.
  • the inside of the first recesses 15a to 15d is sucked by suction.
  • a suction space 51 for sucking the plurality of suction holes 14 a to 14 d together is provided inside the plate 11, and the suction holes 14 a to 14 d are connected to the suction space 51, respectively.
  • a suction pipe 53 for sucking the suction space 51 is connected to the suction space 51.
  • the suction pipe 53 is connected to a vacuum pump (not shown) via a suction valve 52 (FIGS. 1 and 2) for opening and closing the suction pipe 53. It is connected.
  • FIG. 1 shows a state where the suction valve 52 is closed
  • FIG. 2 shows a state where the suction valve 52 is open.
  • a pressurization pipe 55 for pressurizing the suction space 51 to an atmospheric pressure state is connected to the suction space 51.
  • the pressurization pipe 55 is connected via a pressurization valve 54 (FIGS. 1 and 2) that opens and closes the pressurization pipe 55. It is in communication with the atmosphere outside the printing device.
  • FIG. 1 shows a state where the pressurization valve 54 is open
  • FIG. 2 shows a state where the pressurization valve 54 is closed.
  • the pressurizing tube 55 may be connected to a compressor so that a gas having a pressure higher than the atmospheric pressure flows into the suction space 51 to shorten the time for pressurization to the atmospheric pressure state.
  • FIG. 1 shows a state in which the suction valve 52 is closed and the pressure valve 54 is opened.
  • the suction space 51 is pressurized to the atmospheric pressure state through the pressure tube 55, and the interiors of the first recesses 15a to 15d are also pressurized to the atmospheric pressure state.
  • FIG. 2 shows a state in which the suction valve 52 is open and the pressurization valve 54 is closed.
  • the suction space 51 is sucked through the suction pipe 53, and the pressure inside the suction space 51 and the first depressions 15a to 15d is reduced from the atmospheric pressure.
  • the stretchable film 12 is recessed along the shape of the first recesses 15a to 15d, and second recesses 18a, 18b, 18c, and 18d (second recesses 18a to 18d) are formed. That is, the first depressions 15a to 15d are depressions formed in the plate 11, and the second depressions 18a to 18d are depressions formed in the stretchable film 12.
  • FIG. 3 is a bottom view illustrating an example of a printing shape provided on the plate 11.
  • the plate 11 is provided with a first recess 15 corresponding to a printing shape and a suction hole 14 for sucking the inside of the first recess 15.
  • a large number of suction holes 14 are provided over the entire surface of the first recess 15.
  • the plate 11 is a schematic diagram of a plate for a front silver electrode of a solar battery cell.
  • the first recess 15 has a grid electrode pattern 62a to 62j that collects the photocurrent and a bus electrode pattern 61a that collects the grid electrode current and solders the tabs to interconnect the adjacent solar cells. , 61b.
  • the grid electrode patterns 62a to 62j correspond to the first recesses 15a to 15d in FIG.
  • the suction holes 14 provided in the grid electrode patterns 62a to 62j in FIG. 3 correspond to the suction holes 14a to 14d in FIG.
  • the grid electrodes are made as narrow as possible in order to reduce shadow loss, and the number of grid electrodes is increased in order to reduce resistance loss.
  • the bus electrode needs to have a certain thickness in order to solder the tab.
  • the bus electrode patterns 61a and 61b in which the width of the first recess 15 is large, and the grid having a small width.
  • the electrode patterns 62a to 62j are mixed.
  • the bus electrode patterns 61a and 61b having a large width of the first recess 15 include a plurality of suction holes 14 in the width direction. What is necessary is just to arrange.
  • a plate 11 used for manufacturing a solar battery cell and a printing method thereof will be described.
  • the present invention is not limited to printing for solar battery cells, and the printing material needs to be raised. Application to printed matter is also possible.
  • FIG. 4 shows the printing method of the first embodiment in time series in the order of (A), (B), (C), and (D).
  • the printing apparatus includes a plate 11 having a first dent 15 corresponding to a printing shape and a suction hole 14 for sucking the inside of the first dent 15, and a stretchable film 12 facing the first dent 15.
  • FIG. 4A shows an initial process which is an initial state.
  • An elastic film 12 is provided in contact with the surface of the plate 11 having the first recess 15.
  • the stretchable film 12 is provided flat along the opening surface of the recess 15. In the region X where the stretch film 12 is in contact with the plate 11, the stretch film 12 is fixed to the plate 11.
  • FIG. 4B shows a suction process in which the inside of the first recess 15 is sucked from the suction hole 14.
  • a suction space exists above the plate 11, that is, on the opposite side of the stretchable film 12 across the plate 11, and when the air in this space is sucked, the pressure of the first recess 15 is increased. Since the pressure is lower than the atmospheric pressure, the stretchable film 12 is pushed and extended by the air on the lower surface side and is recessed along the shape of the first recess 15, and the second recess 18 is formed in the stretchable film 12.
  • FIG. 4C shows a printing material filling process for filling the printing material 13 in the second depression 18.
  • an electrode paste is used as the printing material 13.
  • ink may be used for the printing material 13.
  • the printing material 13 may be filled by spreading the printing material 13 on the stretchable film 12 and scraping with a blade (not shown) in FIG. By doing so, it is possible to remove the printing material 13 that has protruded to places other than the second depressions 18, so that the printing material 13 can be molded into a desired printing shape. Further, the end surface on the opening surface side of the printing material 13 becomes flat, and the printing material 13 is easily printed on the substrate in the next step.
  • FIG. 4D shows a suction release process in which the suction from the suction hole 14 is released.
  • the stretchable film 12 is fixed to the plate 11 in the area X, only the stretchable film 12 in the area facing the first recess 15 extends in the suction process and is restored in the suction process. Therefore, it is possible to form a printed matter having a print shape corresponding to the first recess 15. If the plate 11 and the stretchable film 12 are not fixed in the area X, the stretchable film 12 in the area X part is also sucked, and when releasing the suction, the printing material 13 is pushed out while extending to the area X part. Therefore, the stretchable film 12 is preferably fixed to the plate 11 in the region X.
  • the stretchable film 12 may be fixed to the plate 11 outside the region where the first recess 15 is formed.
  • the suction space 14 is pressurized and the suction hole 14 is pressurized to apply pressure to the first depression 15.
  • the second depression 18 may be pushed out of the first depression 15 by the above.
  • a material having thixotropy in which the viscosity decreases when the printing pressure is increased may be used.
  • the viscosity of the printing material 13 is lowered by pressurizing the suction space and increasing the printing pressure, so that the printing material 13 can be easily removed from the second depression 18.
  • the pressurization speed speed at which suction is released
  • the pressurization speed can be adjusted according to the thixotropy of the printing material 13.
  • FIG. 5 is a view showing in detail the filling method of the printing material 13 of FIG.
  • FIG. 5 shows the filling method of the printing material 13 in time series in the order of (A), (B), and (C).
  • FIG. 5A shows a printing material application process in which the printing material 13 is spread on the stretchable film 12. The printing material 13 is spread on the entire lower surface of the stretch film 12 and filled in the second depression 18.
  • 5B and 5C show a printing material molding process in which the printing material 13 is molded into a desired printing shape.
  • the blade 19 is pressed against the stretch film 12 and moved along the plane on the lower surface side of the stretch film 12 to remove the printing material 13 that has protruded beyond the second recess 18, so that the printing material 13 can be printed as desired.
  • the end surface on the opening surface side of the printing material 13 becomes flat, the printing material 13 can be easily printed on the substrate in the next step. Thereby, the yield of to-be-printed material can be improved.
  • FIG. 6 is a schematic diagram of conventional gravure printing and offset printing.
  • the printing material 23 filled in the depression provided in the plate 21 is transferred to the printing object 22 by being pulled out of the depression by the adhesive force between the printing object 22 and the printing material 23. .
  • the adhesive force between the inner wall 25 of the depression and the printing material 23 ⁇ the relationship between the substrate 22 and the printing material 23.
  • the surface area of the inner wall 25 of the dent is inevitably increased, so the transfer rate is lowered. Therefore, in order to form a printed matter with a high aspect ratio, multiple printing must be performed instead of deepening the recesses.
  • FIG. 7 is a schematic diagram of the printing method of the present invention.
  • the printing material 22 is arranged with a gap corresponding to the height of the printing material 13.
  • the printing material 13 is brought into close contact with the printed material 22, and is attached to the printed material 22.
  • a substrate is used for solar cell applications.
  • paper may be used for the substrate 22 for printing applications such as books and magazines.
  • the present invention is characterized in that the printing material 13 is extruded from the second depression 18 by restoring the stretchable film 12. Assuming that the printing material 13 retains its shape as in the conventional example, as shown in FIG.
  • the contact portion 36 between the printing material 13 and the stretchable film 12 is a dot in this cross section immediately before printing. 7, when the printing shape in the vertical direction in FIG. 7 is linear, the entire printing surface is line contact, and “the contact area between the stretchable film 12 and the printing material 13 ⁇ the printed material 22 and the printing material 13 and Therefore, the transfer rate of the printing material 13 is higher than that of conventional gravure printing or offset printing.
  • the conventional gravure printing or offset printing requires multiple printing.
  • the first depression 15 provided in the plate 11 is deepened to form the stretchable film 12. What is necessary is just to make the 2nd hollow 18 made deep, and to fill with the printing material 13. FIG. Even if the second depression 18 is deep, the printing material 13 is pushed out of the second depression 18 by the restoration of the stretchable film 12, so that printing can be performed without reducing the transfer rate. Therefore, a printing material with a high aspect ratio can be formed by one printing.
  • the printing material is pushed out from the second depression by restoring the stretch film, so that the contact area of the printing material with the print material becomes the stretch film and the print material. Therefore, the transfer rate of the printing material can be increased.
  • the conventional printing method (screen printing, gravure printing, offset printing) requires multiple printing, but in the present invention, the depth of the first recess is increased and the recess of the stretch film (first It is only necessary to deepen the recesses 2 and fill the printing material. Even if the second depression is deep, the printing material is pushed out from the second depression by the restoration of the stretchable film, so that printing can be performed without reducing the transfer rate. Therefore, a high aspect ratio printed matter can be formed by one printing.
  • FIG. 8 illustrates a second embodiment in which the depth of the first depression 115 of the plate 111 is equal to the plate thickness of the plate 111.
  • FIG. 8 shows the printing method of the second embodiment in time series in the order of (A), (B), (C), and (D).
  • the printing apparatus includes a plate 111 having a first recess 115 corresponding to a printing shape, and a stretchable film 112 facing the first recess 115.
  • the lower surface side of the stretchable film 112 is the printing surface side.
  • the depth of the first recess 115 is equal to the plate thickness of the plate 111
  • the first recess 115 is on the opposite side of the stretchable film 112, and is connected to a suction space not shown in FIG. . That is, the first dent 115 passes through the plate 111, and the first dent 115 is a combination of the first dent 15 and the suction hole 14 described in the first embodiment. It may be considered that the suction hole 14 of the first embodiment has the same shape as the first recess 115.
  • FIG. 8A shows an initial process which is an initial state.
  • An elastic film 112 is provided in contact with the surface of the plate 111 having the first depression 115. In the region X where the stretch film 112 is in contact with the plate 111, the stretch film 112 is fixed to the plate 111.
  • FIG. 8B shows a suction process in which the inside of the first depression 115 is sucked.
  • a suction space exists on the upper side of the plate 111 and on the side opposite to the stretchable film 112, and when the air in this space is sucked, the pressure of the suction space and the first depression 115 is higher than the atmospheric pressure. Therefore, the stretchable film 112 is recessed along the shape of the first recess 115, and the second recess 118 is formed.
  • the stretchable film 112 since the first dent 115 is connected to the suction space, the stretchable film 112 extends to a depth at which the restoring force of the stretchable film 112 and the suction force of the suction space can be balanced. That is, the depth of the second recess 118 can be changed by changing the suction force of the suction space.
  • FIG. 8C shows a printing material filling process in which the printing material 113 is filled in the second depression 118.
  • the printing material 113 may be filled by spreading the printing material 113 on the stretchable film 112 and scraping it off with a blade (not shown) in FIG.
  • FIG. 8D shows a suction release process in which suction from the first depression 115 is released.
  • the stretch film 112 is fixed to the plate 111 in the region X, only the stretch film 112 in the region facing the first depression 115 is stretched in the suction process and restored in the suction process. Therefore, a printed matter having a printing shape corresponding to the first depression 115 can be formed. If the plate 111 and the stretchable film 112 are not fixed in the area X, the stretchable film 112 in the area X portion is also sucked, and when releasing the suction, the printing material 113 is pushed out while extending to the area X portion. Therefore, the stretchable film 112 is desirably fixed to the plate 111 in the region X.
  • the stretch film 112 does not need to be fixed to the plate 111 in the region X in applications where the width of the printed material may be widened. In this case, the stretchable film 112 may be fixed to the plate 111 outside the region where the first depression 115 is formed.
  • the printing method of the second embodiment can change the depth of the second depression 118 by changing the suction force of the suction space. This point is different from the printing method of the first embodiment. The rest is common.
  • FIG. 9 illustrates a three-dimensional configuration example of the plate when the depth of the first depression 135 of the plate 131 is equal to the plate thickness of the plate 131.
  • the lower surface side in FIG. 9 is the printing surface side.
  • the depth of the first depression 135 is equal to the plate thickness of the plate 131, depending on the shape of the first depression 135, a part of the plate 131 may be surrounded by the first depression 135 and cannot be held.
  • a configuration example of the plate 131 in that case will be described.
  • the first recess 135 has a bus electrode pattern 135a and a grid electrode pattern 135b.
  • the plate 131 includes plate pieces 131a, 131b, 131c, and 131d having a shape surrounded by the bus electrode pattern 135a and the grid electrode pattern 135b.
  • the plate piece 131a and the plate piece 131b are connected by a rib 132a at a part of the bus electrode pattern 135a.
  • the rib 132a connects the plate pieces 131a and 131b at a part of the recess 135 opposite to the printing surface so as not to disturb the printed shape of the bus electrode pattern 135a.
  • the rib 132b is a part of the bus electrode pattern 135a and connects the plate piece 131c and the plate piece 131d.
  • the plate pieces 131a, 131b, 131c, and 131d are connected to another plate piece on the outside in the same configuration.
  • the first pattern having an arbitrary pattern can be obtained.
  • One recess 135 can be formed.
  • the printing material is pushed out of the depression by the restoration of the stretch film, so that the contact area between the print material and the print material is the contact area between the stretch film and the print material. Therefore, the transfer rate of the printing material can be increased.
  • the depth of the second recess may be increased by increasing the suction force of the suction space, and the printing material may be filled. Even if the second depression is deep, the printing material is pushed out from the second depression by the restoration of the stretchable film, so that printing can be performed without reducing the transfer rate. Therefore, a high aspect ratio printed matter can be formed by one printing. Further, the depth of the second depression can be changed by changing the suction force of the suction space. Thereby, the height of printed matter can be changed.
  • FIG. 10 shows a plate 121 in which a first depression 115 equal to the plate thickness of the plate and a first depression 15 less than the plate thickness are mixed.
  • a stretch film (not shown in FIG. 10) is provided on the surface of the plate 121, and the back surface of the plate 121 is connected to a suction space (not shown in FIG. 10).
  • the air pressure in the suction space By sucking the air in the suction space, the first dent 115 and the first dent 15 becomes lower than the atmospheric pressure, so that the first dent 115 has a depth corresponding to the suction force.
  • a second recess having the same depth as that of the first recess 15 is formed in the first recess 15.
  • a solar battery cell in which electrodes having locally different thicknesses are formed in the same plane can be obtained. For example, by increasing only the grid electrode portion, it is possible to reduce only the resistance of the grid electrode that greatly contributes to the resistance loss.
  • the height of the printed material can be changed depending on the position by changing the depth of the first recess 15 according to the position of the pattern. For example, by changing the thickness of the grid electrode according to the distance from the bus electrode, the grid electrode is thick at a position near the bus electrode, and the grid electrode is thinned in proportion to the distance from the bus electrode as the distance from the bus electrode is increased. The amount of silver paste used as the electrode material can be reduced without increasing the resistance loss.
  • the printing material is extruded from the second depression by restoring the stretch film, so that the contact area of the printing material with the print material is reduced between the stretch film and the print material. Therefore, the transfer rate of the printing material can be increased. Further, by mixing the first dent equal to the plate thickness of the plate and the first dent less than the plate thickness of the plate, or by changing the depth of the first dent depending on the position of the pattern, the height of the printed matter is increased. The height can be changed depending on the position. As a result, it is possible to form a printed material having different heights depending on the position of the pattern.
  • Embodiment 4 FIG.
  • a flat plate is used, but by using a cylindrical plate that rotates like gravure printing and offset printing, a function of high productivity that is an advantage of gravure printing and offset printing is used. Can be given.
  • a printing apparatus according to a fourth embodiment using a rotating cylindrical plate will be described with reference to FIG. The configuration of the printing apparatus according to the fourth embodiment will be described.
  • the printing apparatus includes a cylindrical plate 211 provided with a plurality of first depressions 215a, 215b, 215c, 215d, and 215e corresponding to the printing shape, and first depressions 215a, 215b, 215c, 215d, And a cylindrical stretchable film 221 provided so as to face the outer peripheral side of the plate 211 so as to face 215e. In the region where the stretch film 221 is in contact with the plate 211, the stretch film 221 is fixed to the plate 211.
  • the plate 211 is provided with a plurality of suction holes 214a, 214b, 214c, 214d, and 214e that suck the inside of the recesses with respect to the plurality of first recesses 215a, 215b, 215c, 215d, and 215e, respectively.
  • the plurality of suction holes 214 a, 214 b, 214 c, 214 d, 214 e communicate with the inner peripheral side of the plate 211.
  • the suction space 251 for sucking the first recesses 215a, 215b, 215c, 215d, and 215e and the first recesses 215a, 215b, 215c, 215d, and 215e are pressurized.
  • a fixed shaft 241 having a pressurizing space 261 is provided.
  • the inner and outer peripheries of the plate 211 and the outer periphery of the fixed shaft 241 are formed in a coaxial cylindrical shape, and a suction cylinder surrounded by the inner periphery of the plate 211 and the outer periphery of the fixed shaft 241 between the plate 211 and the fixed shaft 241.
  • a space 253 is formed.
  • a pressurizing part seal 271 that isolates a part of the lower portion of the suction cylindrical space 253 is provided, and is surrounded by the inner periphery of the plate 211, the outer periphery of the fixed shaft 241, and the pressurizing part seal 271.
  • a pressurized cylindrical space 263 is formed.
  • the pressurizing cylindrical space 263 is separated from the suction cylindrical space 253 by the pressurizing part seal 271, and the pressurizing cylindrical space 263 and the suction cylindrical space 253 can have different atmospheric pressures.
  • the suction cylindrical space 253 communicates with the suction space 251 through a suction cylindrical space suction hole 252, and the suction space 251 is connected to a vacuum pump (not shown in FIG. 11) at the end of the fixed shaft 241.
  • the pressure cylinder space 263 communicates with the pressure space 261 through the pressure cylinder space pressure hole 262, and the pressure space 261 communicates with the atmosphere outside the printing apparatus at the end of the fixed shaft 241.
  • the stretch film 221 has the second recesses 222a, 222b, 222c and 222e are formed.
  • the suction hole 214d communicates with the pressurized cylindrical space 263, and the first depression 215d is in an atmospheric pressure state. Since no suction force acts on the stretch film 221 facing the first recess 215d, the stretch film 221 is in a flat state.
  • FIG. 12 is a bottom view of the fixed shaft 241 shown in FIG.
  • the fixed shaft 241 is provided with a pressurizing cylindrical space pressurizing hole 262 that allows the pressurizing space 261 and the pressurizing cylindrical space 263 to communicate with each other, and a pressurizing portion seal 271 is provided around the pressurizing cylindrical space pressurizing hole 262.
  • the pressurizing unit seal 271 surrounds the pressurizing cylindrical space 263 with a width wider than the width 282 of the substrate 281 that is a printing object, and is disposed so as to contact the outer periphery of the fixed shaft 241 and the inner periphery of the plate 211. .
  • the fixed shaft 241 is provided with a suction cylindrical space suction hole 252 that allows the suction space 251 and the suction cylindrical space 253 to communicate with each other.
  • a first suction portion seal 291 for forming a suction cylindrical space 253 is provided on the cylindrical surface near the upper end of the fixed shaft 241.
  • the first suction part seal 291 is disposed so as to be in contact with the outer periphery of the fixed shaft 241 and the inner periphery of the plate 211 and to isolate the suction cylindrical space 253 and the space outside the printing apparatus.
  • a second suction portion seal 292 for forming a suction cylindrical space 253 is provided on the cylindrical surface near the lower end of the fixed shaft 241.
  • the second suction portion seal 292 is disposed so as to be in contact with the outer periphery of the fixed shaft 241 and the inner periphery of the plate 211 and to isolate the suction cylindrical space 253 and the space outside the printing apparatus.
  • the pressurizing cylindrical space 263 is formed by a space surrounded by the outer periphery of the fixed shaft 241, the inner periphery of the plate 211, and the inner periphery 271 a of the pressurizing part seal 271.
  • the suction hole 214d and the first recess 215d communicated with the pressurizing cylindrical space 263 are pressurized.
  • the suction cylindrical space 253 is surrounded by the outer periphery of the fixed shaft 241, the inner periphery of the plate 211, the outer periphery 271 b of the pressure unit seal 271, the first suction unit seal 291, and the second suction unit seal 292. Formed in the space.
  • the suction holes 214a, 214b, 214c, 214e and the first recesses 215a, 215b, 215c, 215e communicated with the suction cylindrical space 253 are sucked.
  • FIG. 13 shows a perspective view of the plate 211.
  • the plate 211 is a schematic diagram of a plate for a front silver electrode of a solar battery cell.
  • a first depression 215 corresponding to the printing shape is provided on the outer peripheral surface of the cylindrical plate 211.
  • the first depression 215 in FIG. 13 corresponds to the first depressions 215a, 215b, 215c, 215d, and 215e in FIG.
  • the first recess 215 includes grid electrode patterns 217a to 217g that collect photocurrents, and bus electrode patterns 216 that collect grid electrode currents and solder tabs to interconnect with adjacent solar cells. Is done.
  • the 1st hollow 215 is formed in the shape which rounded the printing shape on the plane of a to-be-printed object on the cylindrical surface.
  • the suction space 251 is connected to a vacuum pump via a suction pipe 255 at the end of the fixed shaft 241.
  • the pressurizing space 261 is communicated with the atmosphere outside the printing apparatus via the pressurizing pipe 265 at the end of the fixed shaft 241.
  • the plate 211 has a cylindrical shape, and rotates in the direction of the rotation direction 212 around the cylindrical axis.
  • the fixed shaft 241 is fixed and does not rotate.
  • the pressurizing part seal 271 provided on the fixed shaft 241 also does not rotate.
  • a printing material 231 a is supplied onto the stretchable film 221 from a printing material supply unit 232 provided near the upper end of the plate 211.
  • a blade 233 is provided on the downstream side in the rotation direction 212 of the printing material supply unit 232 in contact with the stretch film 221, and scrapes the print material 231 a along the outer periphery of the stretch film 221.
  • the printing material 231b is filled in the second depression 222b, and the printing material 231a protruding outside the second depression 222b is removed.
  • FIG. 11 shows a state in which the suction hole 214 d has an inner peripheral side opening that communicates with the pressurized cylindrical space 263. Accordingly, since the suction hole 214d is changed from the suction state to the atmospheric pressure state, the first depression 215d is also in the atmospheric pressure state, the stretchable film 221 is restored, and the printing material 231d is pushed out.
  • a substrate 281 that is a printing material is disposed with a gap corresponding to the height of the printing material 231d.
  • the printing material 231d is in close contact with the substrate 281 and is attached to the substrate 281. Transcribed.
  • the substrate 281 travels in the traveling direction 282 at a traveling speed equal to the outer peripheral speed of the plate 211.
  • first depressions 215a, 215b, 215c, 215d, and 215e corresponding to the printing shape are provided, and the second depressions 215a, 215b, 215c, and 215e are sucked into the stretchable film 221 by suction.
  • the depressions 222a, 222b, 222c, and 222e are formed.
  • the printing materials 231a, 231b, and 231c filled in the second depressions 222a, 222b, and 222c are sequentially transferred onto the substrate 281 by the rotation of the plate 211 and the progress of the substrate 281, and the printed material having the printed shape is printed on the substrate 281. Is formed.
  • the length in the traveling direction of the substrate 281 is W
  • the gap between the substrates that are continuously fed is G
  • the radius on the outer peripheral side that is the printing surface of the plate 211 is R.
  • the stretchable film is restored and the printing material is pushed out from the second depression formed in the stretchable film, so that the contact area of the printing material with the printing material is the contact between the stretchable film and the printing material. Since the area is larger than the area, the transfer rate of the printing material can be increased.
  • the conventional printing method requires multiple printing, but in the present embodiment, the second depression formed in the stretchable film may be deepened. Even if the second depression formed in the stretch film is deep, the printing material is pushed out from the second depression formed in the stretch film by the restoration of the stretch film, so that the printing can be performed without reducing the transfer rate. Therefore, a high aspect ratio printed matter can be formed by one printing. Also, by using a cylindrical plate, continuous printing can be performed, and printing productivity can be improved.
  • FIG. 14 is a perspective view of the plate according to the fifth embodiment as viewed from the first hollow side.
  • the upper side of FIG. 14 is the printing surface side.
  • the plate 401 is provided with a wide bus electrode pattern 410 and a narrow grid electrode pattern 420.
  • the bus electrode pattern 410 and the grid electrode pattern 420 constitute a first depression.
  • Bus pattern edges 411, 412, 413, and 414 are formed on the sides where the upper printing surface of the plate 401 and the bus electrode pattern 410 intersect.
  • Grid pattern edges 421, 422, 423, and 424 are formed on the sides where the upper printing surface of the plate 401 and the grid electrode pattern 420 intersect.
  • Pattern corners 431, 432, 433, and 434 are formed at points where the upper printing surface of the plate 401 intersects with the bus electrode pattern 410 and the grid electrode pattern 420.
  • a stretchable film is provided in contact with the upper printing surface of the plate 401.
  • the productivity of the printing method of the present invention is directly related to the life of the stretch film. Since the bus pattern edges 411, 412, 413, 414 and the grid pattern edges 421, 422, 423, 424 come into contact with the stretch film when the stretch film expands and contracts, if this is sharp, the force is partially applied when the stretch film expands and contracts In addition to this, the stretch membrane is damaged, the life of the stretch membrane is shortened, and the productivity is deteriorated. This tendency is particularly strong at the pattern corners 431, 432, 433, and 434.
  • bus pattern edges 411, 412, 413, 414, the grid pattern edges 421, 422, 423, 424 and the pattern corners 431, 432, 433, 434 in a round shape. Since the contact area between the plate and the stretchable film sometimes increases, the force applied to the stretchable film is reduced, the life of the stretchable film is extended, and the productivity can be increased.
  • FIG. 15 is a sectional view taken along line BB in FIG.
  • FIG. 15 is a cross-sectional view showing a cross section of the bus electrode pattern 410.
  • the upper side of FIG. 15 is the printing surface side.
  • a stretch film (not shown in FIG. 15) is provided on the plate 401 in contact with the plate 401, and the stretch film is sucked along the bus electrode pattern 410 by suction from the bus electrode pattern 410.
  • the stretchable film is not damaged when the stretchable film expands and contracts, thereby extending the life of the stretchable film and increasing the productivity.
  • FIG. 16 is a sectional view taken along the line CC of FIG.
  • FIG. 16 is a cross-sectional view showing a cross section of the grid electrode pattern 420.
  • the upper side of FIG. 16 is the printing surface side.
  • a stretch film (not shown in FIG. 16) is provided on the plate 401 in contact with the plate 401, and the stretch film is sucked along the grid electrode pattern 420 by suction from the grid electrode pattern 420.
  • the stretchable film is not damaged when the stretchable film expands and contracts, thereby extending the life of the stretchable film and increasing the productivity.
  • the stretchable film is not damaged, the life of the stretchable film is extended, and the productivity can be increased.
  • the contact area between the bus pattern edge, the grid pattern edge and the pattern corner, which is the corner of the plate depression, and the stretch film increases, so that the force applied to the stretch film is reduced and the life of the stretch film is extended. It becomes possible to increase productivity.
  • the printing method and the printing apparatus according to the present invention are useful in that a printed matter having a high aspect ratio can be formed without reducing the transfer rate, and in particular, a silver paste used as a surface silver electrode of a solar battery cell. Suitable for printing on a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Printing Methods (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 印刷形状に相当する第1の窪み(15)を有する印刷版(11)に面して設けられた伸縮膜(12)を、第1の窪み(15)より吸引して、第1の窪み(15)に沿って伸縮膜(12)に第2の窪み(18)を形成する工程と、第2の窪み(18)に印刷材料(13)を充填する工程と、伸縮膜(12)の吸引を解除し伸縮膜(12)を復元させて第2の窪み(18)に充填された印刷材料(13)を押し出して被印刷物に転写する工程と、を有する。

Description

印刷方法および印刷装置
 本発明は、印刷方法および印刷装置に関するものである。
 一般的な結晶系Si太陽電池の構造は、pn接合を形成した光電変換部の上に反射防止膜を成膜し、櫛型の表面電極と全面の裏面電極とを配した構造である。表裏面電極は金属ペーストを印刷し、焼成して形成している。表面電極により照射光は遮られるため、表面電極で覆われた領域は発電に寄与しない。表面電極による照射光の損失は、一般的にシャドーロスと呼ばれる。
 電極面積を減らすことでシャドーロスを減らすことは可能だが、電極の抵抗は増えるため抵抗損失が増加し、曲線因子(Fill Factor, FF)の低下を招く。そのため単純に電極面積を減らすだけでは変換効率を上げることはできず、電極面積を減らすのであれば、その分、電極を厚くするといった抵抗損失の低減策が必要となる。
 電極幅に対する電極厚さの割合をアスペクト比と呼ぶ。電極幅を変えずに電極厚さを厚くすると、シャドーロスを変えずに抵抗損失を減らすことができるので、太陽電池の変換効率は改善する。また、抵抗損失は、電極幅と電極厚さとの積で表される電極断面積に反比例する。したがって、電極幅を細くして、電極断面積を一定にするように電極厚さを厚くすれば、抵抗損失を変えずにシャドーロスを減らすことができるので、やはり太陽電池の変換効率は改善する。すなわち、太陽電池の変換効率を上げるためには、高アスペクト比の電極を形成することが望ましい。
 高アスペクト比の電極形成としては、スクリーン印刷による多重印刷が特許文献1に開示されているが、スクリーン印刷ではエッジが滲んでしまいシャープな電極が形成できないとして、凹版オフセット印刷を用いた多重印刷が特許文献2に開示されている。
 一方、凹版オフセット印刷や、オフセット印刷と同様に凹版を用いた印刷方法であるグラビア印刷に関して、凹版(グラビア印刷)やブランケット(オフセット印刷)からのペーストの転写率が悪いという問題点が指摘されている。(特許文献3参照)。
特開平11-103084号公報(0009段落参照) 特開2007-44974号公報(0010段落参照) 特開2010-123815号公報(0003段落参照)
 以上のように、従来のグラビア印刷やオフセット印刷のように凹版を用いた印刷方法では、印刷材料として用いるペーストの転写率が悪いという課題があった。
 本発明は上記のような問題点を解消するためになされたもので、凹版を用いた印刷方法での、凹版からの印刷材料の転写率を改善することを目的としている。
 本発明の印刷方法は、印刷形状に相当する第1の窪みを有する印刷版に面して設けられた伸縮膜を、前記第1の窪みより吸引し、前記第1の窪みに沿って前記伸縮膜に第2の窪みを形成する工程と、前記第2の窪みに印刷材料を充填する工程と、前記吸引を解除し前記伸縮膜を復元させて前記第2の窪みに充填された前記印刷材料を押し出して被印刷物に転写する工程と、を有することを特徴とするものである。また、本発明の印刷装置は、印刷形状に相当する第1の窪みを有する印刷版と、前記第1の窪みに面して設けられ、前記第1の窪みより吸引することで前記第1の窪みに沿って第2の窪みが形成される伸縮膜と、を有することを特徴とするものである。
 上記のような印刷方法又は印刷装置により、伸縮膜の復元により印刷材料を窪みから押し出すので、伸縮膜の窪みを深くしても、伸縮膜の復元によって印刷材料が窪みから押し出されるため、伸縮膜と印刷材料との接触面積が被印刷物と印刷材料との接触面積よりも小さくなり、転写率を落とさずに印刷できる。
図1は、本発明の実施の形態1の印刷装置の断面図(加圧状態)である。 図2は、本発明の実施の形態1の印刷装置の断面図(吸引状態)である。 図3は、本発明の実施の形態1の印刷版の下面図である。 図4は、本発明の実施の形態1の印刷原理の模式図である。 図5は、本発明の実施の形態1の印刷材料の充填方法を示す模式図である。 図6は、従来のグラビア印刷、オフセット印刷の模式図である。 図7は、本発明の印刷方法の模式図である。 図8は、本発明の実施の形態2の印刷原理の模式図である。 図9は、本発明の実施の形態2の印刷版の斜視図である。 図10は、本発明の実施の形態3の印刷版の構成図である。 図11は、本発明の実施の形態4の印刷装置の断面図である。 図12は、本発明の実施の形態4の固定軸の下面図である。 図13は、本発明の実施の形態4の印刷版の斜視図である。 図14は、本発明の実施の形態5の印刷版の斜視図である。 図15は、本発明の実施の形態5のバス電極パターンの断面図である。 図16は、本発明の実施の形態5のグリッド電極パターンの断面図である。
 以下に、本発明にかかる印刷方法及び印刷装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1、図2、図3を用いて、実施の形態1の印刷装置について説明する。なお、図1、図2は図3のA-A断面図である。
 実施の形態1の印刷装置の構成について説明する。
 印刷装置は、印刷形状に相当する複数の第1の窪み15a、15b、15c、15dが設けられた印刷版11と、第1の窪み15a~15dに面して印刷版11に接するように設けられた伸縮膜12とを有する。
 なお、本明細書では、これ以降、印刷版を版と記述する。
 印刷形状とは、印刷しようとする所望のパターンのことであり、例えば太陽電池セルへの用途では、グリッド電極とバス電極とで構成された表銀電極のパターンのことである。
 印刷形状に相当する第1の窪み15a~15dを有する版11が凹版に相当する。
 版11は平板形状である。第1の窪み15a~15dは版11の板厚未満となるように設けられている。
 版11には、複数の第1の窪み15a~15dのそれぞれに連通する複数の吸引孔14a、14b、14c、14d(吸引孔14a~14d)が設けられており、吸引孔14a~14dからの吸引により、第1の窪み15a~15dの内部を吸引するように構成されている。
 版11の内部には、複数の吸引孔14a~14dをまとめて吸引するための吸引空間51が設けられており、吸引孔14a~14dは、それぞれ吸引空間51に繋がっている。
 吸引空間51には、吸引空間51を吸引するための吸引管53が繋がっており、吸引管53は吸引管53を開閉させる吸引バルブ52(図1、図2)を介して図示しない真空ポンプに接続されている。
 図1は、吸引バルブ52が閉の状態を示し、図2は、吸引バルブ52が開の状態を示す。
 吸引空間51には、吸引空間51を大気圧状態に加圧するための加圧管55が繋がっており、加圧管55は加圧管55を開閉させる加圧バルブ54(図1、図2)を介して印刷装置の外側の大気に連通されている。
 図1は、加圧バルブ54が開の状態を示し、図2は、加圧バルブ54が閉の状態を示す。
 なお、加圧管55を圧縮機に接続し、吸引空間51に大気圧よりも高い圧力を持つ気体を流入させ、大気圧状態にまで加圧する時間を短縮させても良い。
 図1は、吸引バルブ52が閉、加圧バルブ54が開の状態を示している。
 吸引バルブ52を閉、加圧バルブ54を開とすることにより、吸引空間51は加圧管55を通して大気圧状態まで加圧され、第1の窪み15a~15dの内部も大気圧状態まで加圧される。よって、第1の窪み15a~15dの内部が大気圧になる。
 伸縮膜12は、上面側、下面側のいずれもが大気圧状態となるので、伸縮膜12を伸縮させる力は働かず、伸縮膜12は平らな形状となる。
 図2は、吸引バルブ52が開、加圧バルブ54が閉の状態を示している。
 吸引バルブ52を開、加圧バルブ54を閉とすることにより、吸引空間51は吸引管53を通して吸引され、吸引空間51の内部及び第1の窪み15a~15dの気圧が大気圧より低下するため、第1の窪み15a~15dの形状に沿って伸縮膜12が窪み、第2の窪み18a、18b、18c、18d(第2の窪み18a~18d)が形成される。つまり、第1の窪み15a~15dは版11に形成された窪みであって、第2の窪み18a~18dは伸縮膜12に形成される窪みである。
 図3は、版11に設けられた印刷形状の一例を表す下面図である。
 版11には、印刷形状に相当する第1の窪み15と、第1の窪み15内を吸引する吸引孔14とが設けられている。吸引孔14は、第1の窪み15の全面に渡って多数設けられている。このように多数の吸引孔14を設けることにより、版11の第1の窪み15に沿って伸縮膜12が窪み、印刷形状に相当する第2の窪み18が形成されることになる。
 なお、版11は、太陽電池セルの表銀電極用の版の模式図である。
 第1の窪み15は、光電流を集めるグリッド電極用パターン62a~62jと、グリッド電極の電流を集め、タブを半田付けして隣り合う太陽電池セルとの相互接続に用いられるバス電極用パターン61a,61bとで構成される。グリッド電極用パターン62a~62jは、図1における第1の窪み15a~15dに相当する。また、図3においてグリッド電極用パターン62a~62jの中に設けられている吸引孔14は、図1における吸引孔14a~14dに相当する。
 グリッド電極は、シャドーロスを減らすためになるべく幅を細くし、抵抗損失を減らすために本数を増やすのが一般的な構成である。一方、バス電極は、タブを半田付けするためにある程度の太さが必要である。
 このように、太陽電池セルの表銀電極のパターンでは、位置によって太さが異なる形状が必要であるので、第1の窪み15の幅が太いバス電極用パターン61a、61bと、幅が細いグリッド電極用パターン62a~62jとが混在する。窪みの太さに係らずに第1の窪み15を均一に吸引するためには、第1の窪み15の幅が太いバス電極用パターン61a、61bでは吸引孔14は幅方向に対しても複数配置すればよい。
 実施の形態1では、太陽電池セルの製造に用いる版11やその印刷方法について説明するが、本願発明は太陽電池セル用途の印刷に限定されるものではなく、印刷材料を盛り上げる必要性がある他の印刷物への適用も可能である。
 次に実施の形態1の印刷方法について、上述した印刷装置を用いて説明する。図4は、実施の形態1の印刷方法を、(A)、(B)、(C)、(D)の順での時系列的に示している。
 印刷装置は、印刷形状に相当する第1の窪み15と第1の窪み15内を吸引する吸引孔14とを有する版11と、第1の窪み15に面する伸縮膜12とを有する。
 図4(A)は、初期的な状態である初期工程を示している。
 版11の第1の窪み15を有する面に接して伸縮膜12が設けられている。
 伸縮膜12は窪み15の開口面に沿って平らに設けられている。
 伸縮膜12が版11と接触している領域Xでは、伸縮膜12は版11に固定されている。
 図4(B)は、第1の窪み15内が吸引孔14から吸引された吸引工程を示している。
 図4では省略しているが、版11の上側、つまり版11を挟んで伸縮膜12の反対側には吸引空間が存在し、この空間内の空気を吸引すると第1の窪み15の気圧が大気圧よりも低くなるため、伸縮膜12が下面側の大気に押されて伸びて第1の窪み15の形状に沿って窪み、伸縮膜12に第2の窪み18が形成される。
 図4(C)は、第2の窪み18内に印刷材料13を充填する印刷材料充填工程を示している。
 太陽電池セルの電極印刷の用途では、印刷材料13には電極ペーストを使用する。
 なお、書籍や雑誌などの印刷の用途では、印刷材料13にはインクを使用しても良い。
 印刷材料13の充填方法は伸縮膜12に印刷材料13を塗り広げ、図4(C)には図示しないブレードで掻き取れば良い。そうすることにより第2の窪み18以外の箇所にはみ出した印刷材料13を除去することができるので、印刷材料13を所望の印刷形状に成型することができる。また、印刷材料13の開口面側の端面が平坦になり、次の工程にて印刷材料13が被印刷物へ印刷され易くなる。
 図4(D)は、吸引孔14からの吸引が解除された吸引解除工程を示している。
 被印刷物の正面に版11をセットし、吸引空間の吸引を解除すると、伸縮膜12の復元力により伸縮膜12が復元されて、第2の窪み18に充填されていた印刷材料13が押し出され、被印刷物に印刷される。
 伸縮膜12は領域Xで版11に固定されているので、第1の窪み15に面する領域の伸縮膜12のみが吸引工程で伸びて吸引工程で復元される。従って、第1の窪み15に相当する印刷形状を有する印刷物を形成することができる。
 領域Xで版11と伸縮膜12とが固定されていないと、領域X部分の伸縮膜12も吸引され、吸引解除の際、領域X部分に伸びながら印刷材料13が押し出されるため、印刷物の幅が広がる可能性が有るので、伸縮膜12は領域Xで版11に固定されていることが望ましい。
 なお、印刷物の幅が広がっても構わない用途では、伸縮膜12を領域Xで版11に固定する必要はない。この場合、伸縮膜12は第1の窪み15が形成された領域の外側で版11に固定されていれば良い。
 なお、吸引空間の吸引を解除しただけでは印刷材料13が第2の窪み18から押し出されない場合は、吸引空間を加圧し、吸引孔14を加圧して第1の窪み15に圧力を加えることにより第2の窪み18を第1の窪み15から押し出してもよい。
 吸引空間を加圧し、吸引孔14を加圧することで、吸引を解除する速度を可変にすることができる。これにより、印刷の速度を上げて、生産性を改善することができる。
 また、太陽電池セルの用途で印刷材料13として用いられる電極ペーストの場合、印刷圧力を高くすると粘度が下がるチクソ性を示す材料を使用することがある。このような、チクソ性を示す材料の印刷をする場合、吸引空間を加圧して印刷圧力を高くすることにより、印刷材料13の粘度が下がるので、印刷材料13を第2の窪み18から容易に押し出すことができる。また、例えば加圧バルブ(図1、図2参照)を開ける速度を調整することによって、印刷材料13のチクソ性に応じて加圧速度(吸引を解除する速度)を調整することもできる。
 図5は、図4(C)の印刷材料13の充填方法を詳細に示した図である。
 図5は、印刷材料13の充填方法を、(A)、(B)、(C)の順での時系列的に示している。
 図5(A)は、伸縮膜12に印刷材料13を塗り広げた印刷材料塗布工程を示している。
 印刷材料13を、伸縮膜12の下側の全面に塗り広げ、第2の窪み18の中に充填する。
 図5(B)、図5(C)は、印刷材料13を所望の印刷形状に成型する印刷材料成型工程を示している。
 ブレード19を伸縮膜12に押し当て、伸縮膜12の下面側の平面に沿って動かすことにより、第2の窪み18以外の箇所にはみ出した印刷材料13を除去し、印刷材料13を所望の印刷形状に成型することができる。また、印刷材料13の開口面側の端面が平坦になるので、次の工程にて印刷材料13が被印刷物へ印刷され易くなる。これにより、被印刷物の歩留まりを向上させることができる。
 図6、図7で、従来のグラビア印刷やオフセット印刷と、本願発明の印刷方法との違いについて、模式図を用いて説明する。
 図6は、従来のグラビア印刷、オフセット印刷の模式図である。
 従来のグラビア印刷やオフセット印刷では、版21に設けられた窪みに充填された印刷材料23は、被印刷物22と印刷材料23の粘着力により窪みから引っ張り出されることで被印刷物22に転写される。このため、充填された印刷材料23は形状を保持したままであると仮定すると、印刷されるためには「窪みの内壁25と印刷材料23との粘着力<被印刷物22と印刷材料23との粘着力」でなければならないが、図6に示すように「被印刷物22と印刷材料23との接触面24の面積<窪みの内壁25と印刷材料23との接触面積(=窪みの内壁25の表面積)」であり、これが転写率を落とす要因であると考えられる。
 高アスペクト比の印刷物を形成するために窪みを深くすれば、窪みの内壁25の表面積は必然的に増えるため、転写率は低くなる。よって高アスペクト比の印刷物を形成するためには、窪みを深くするのではなく、多重印刷を行わなければならない。
 図7は、本願発明の印刷方法の模式図である。
 伸縮膜12の下方には、印刷材料13の高さ分の間隔を開けて被印刷物22が配置され、伸縮膜12が復元されると印刷材料13が被印刷物22に密着され、被印刷物22に転写される。
 被印刷物22としては、太陽電池用途では基板が用いられる。
 なお、書籍や雑誌などの印刷の用途では、被印刷物22には紙を使用しても良い。
 本願発明では伸縮膜12の復元により印刷材料13を第2の窪み18から押し出すことを特徴としている。従来例と同様に印刷材料13は形状を保持したままであると仮定した場合、印刷される間際では、図7に示すように印刷材料13と伸縮膜12の接触部36は、この断面では点接触となり、図7に垂直方向の印刷形状が線状であった場合は印刷面全体では線接触となって、「伸縮膜12と印刷材料13との接触面積<被印刷物22と印刷材料13との接触面24の面積」という関係が成り立つため、印刷材料13の転写率が従来のグラビア印刷やオフセット印刷よりも高くなる。
 また、印刷物の厚さを厚くしたい場合、従来のグラビア印刷やオフセット印刷では多重印刷を要するが、本願発明では、版11に設けられた第1の窪み15を深くして、伸縮膜12に形成される第2の窪み18を深くし、印刷材料13を充填すれば良い。第2の窪み18が深くても伸縮膜12の復元によって印刷材料13は第2の窪み18から押し出されるため、転写率を落とさずに印刷できる。そのため、1回の印刷で高アスペクト比の印刷材料が形成できる。
 以上説明したように、実施の形態1の印刷方法によれば、伸縮膜の復元により印刷材料を第2の窪みから押し出すことにより、被印刷物の印刷材料との接触面積が伸縮膜と印刷材料との接触面積よりも大きくなるため、印刷材料の転写率を上げることができる。
 また、印刷物の厚みを増やす場合、従来の印刷方法(スクリーン印刷、グラビア印刷、オフセット印刷)では多重印刷を要するが、本発明では第1の窪みの深さを深くし、伸縮膜の窪み(第2の窪み)を深くして、印刷材料を充填すれば良い。第2の窪みが深くとも伸縮膜の復元によって印刷材料は第2の窪みから押し出されるため、転写率を落とさずに印刷できる。そのため1回の印刷で高アスペクト比の印刷物が形成できる。
実施の形態2.
 図8に、版111の第1の窪み115の深さが版111の板厚と等しい場合の実施の形態2について説明する。
 図8は、実施の形態2の印刷方法を(A)、(B)、(C)、(D)の順での時系列的に示している。
 印刷装置は、印刷形状に相当する第1の窪み115を有する版111と、第1の窪み115に面する伸縮膜112とを有する。
 伸縮膜112の下面側が印刷面側である。
 実施の形態2では、第1の窪み115の深さが版111の板厚と等しく、第1の窪み115が伸縮膜112と反対側にあって図8には図示しない吸引空間と繋がっている。つまり、第1の窪み115は、版111を貫通しており、第1の窪み115は実施の形態1で説明した第1の窪み15と吸引孔14とが一体となったものである。
 実施の形態1の吸引孔14が第1の窪み115と同じ形状であると考えても良い。
 図8(A)は、初期的な状態である初期工程を示している。
 版111の第1の窪み115を有する面に接して伸縮膜112が設けられている。
 伸縮膜112が版111と接触している領域Xでは、伸縮膜112は版111に固定されている。
 図8(B)、は第1の窪み115内が吸引された吸引工程を示している。
 図では省略しているが、版111の上側、伸縮膜112とは反対側には吸引空間が存在し、この空間内の空気を吸引すると吸引空間および第1の窪み115の気圧が大気圧よりも低くなるため、第1の窪み115の形状に沿って伸縮膜112が窪み、第2の窪み118が形成される。
 ここで、第1の窪み115は吸引空間に繋がっているため、伸縮膜112は、伸縮膜112の復元力と吸引空間の吸引力とのバランスが取れる深さまで伸びることになる。
 即ち、吸引空間の吸引力を変えることにより、第2の窪み118の深さを変えることができる。
 図8(C)は、第2の窪み118内に印刷材料113が充填された印刷材料充填工程を示している。
 印刷材料113の充填方法は伸縮膜112に印刷材料113を塗り広げ、図8(C)には図示しないブレードで掻き取れば良い。
 図8(D)は、第1の窪み115からの吸引が解除された吸引解除工程を示している。
 被印刷物の正面に版をセットし、吸引空間の吸引を解除すると、伸縮膜112の復元力により伸縮膜112が復元されて、第2の窪み118に充填されていた印刷材料113が押し出され、被印刷物に印刷される。
 伸縮膜112は領域Xで版111に固定されているので、第1の窪み115に面する領域の伸縮膜112のみが吸引工程で伸びて吸引工程で復元される。従って、第1の窪み115に相当する印刷形状を有する印刷物が形成することができる。
 領域Xで版111と伸縮膜112とが固定されていないと、領域X部分の伸縮膜112も吸引され、吸引解除の際、領域X部分に伸びながら印刷材料113が押し出されるため、印刷物の幅が広がる可能性が有るので、伸縮膜112は領域Xで版111に固定されていることが望ましい。
 なお、印刷物の幅が広がっても構わない用途では、伸縮膜112を領域Xで版111に固定する必要はない。この場合、伸縮膜112は第1の窪み115が形成された領域の外側で版111に固定されていれば良い。
 以上のように、実施の形態2の印刷方法は、吸引空間の吸引力を変えることにより第2の窪み118の深さを変えることができる。この点が実施の形態1の印刷方法と異なる。それ以外は共通である。
 図9に、版131の第1の窪み135の深さが版131の板厚と等しい場合の版の立体的な構成例について説明する。
 図9の下面側が印刷面側である。
 第1の窪み135の深さが版131の板厚と等しい場合、第1の窪み135の形状によっては、版131の一部が第1の窪み135に囲まれて保持できない場合がある。その場合の版131の構成例について説明する。
 第1の窪み135はバス電極用パターン135aとグリッド電極用パターン135bを有する。
 版131はバス電極用パターン135aとグリッド電極用パターン135bに囲まれた形状の版片131a,131b,131c,131dを有する。
 版片131aと版片131bとは、バス電極用パターン135aの一部でリブ132aにより連結されている。
 リブ132aは、バス電極用パターン135aの印刷形状を妨げないように、窪み135の中の、印刷面と反対側の一部で、版片131aと131bとを連結している。
 同様に、リブ132bは、バス電極用パターン135aの一部で、版片131cと版片131dとを連結している。
 図示しないが、版片131a,131b,131c,131dはさらに外側の別の版片とも同様の構成で連結されている。
 このように、リブ132a,132bを設け、版片131a,131b,131c,131dを連結することにより、第1の窪み135の深さが版131の板厚と等しい場合でも、任意のパターンの第1の窪み135を形成することができる。
 以上説明したように、実施の形態2の印刷方法によれば、伸縮膜の復元により印刷材料を窪みから押し出すことにより、被印刷物の印刷材料との接触面積が伸縮膜と印刷材料との接触面積よりも大きくなるため、印刷材料の転写率を上げることができる。
 また、印刷物の厚みを増やす場合、実施の形態2では吸引空間の吸引力を強くすることにより第2の窪みの深さを深くし、印刷材料を充填すれば良い。第2の窪みが深くとも伸縮膜の復元によって印刷材料は第2の窪みから押し出されるため、転写率を落とさずに印刷できる。そのため1回の印刷で高アスペクト比の印刷物が形成できる。
 また、吸引空間の吸引力を変えることにより、第2の窪みの深さを変えることができる。これにより印刷物の高さを変えることができる。
実施の形態3.
 図10に、版の板厚と等しい第1の窪み115と版の板厚未満の第1の窪み15とを混在させた版121を示す。版121の表面には図10では不図示の伸縮膜が設置され、版121の裏面は、図10には図示しない吸引空間と繋がっている。吸引空間の空気を吸引することにより、吸引空間、第1の窪み115及び第1の窪み15の気圧が大気圧よりも低くなるため、第1の窪み115の部分には吸引力に応じた深さの第2の窪みが形成され、第1の窪み15の部分には、第1の窪み15と同じ深さの第2の窪みが形成される。
 このように構成された版121を用いることにより、局所的に厚さの異なる電極を同一平面内に形成した太陽電池セルを得ることができる。
 例えば、グリッド電極部のみを厚くすることにより、抵抗損失に大きく寄与するグリッド電極の抵抗のみを下げることができる。
 あるいは、パターンの位置によって第1の窪み15の深さを変えることにより、印刷物の高さを位置によって変えることができる。
 例えば、グリッド電極の厚さをバス電極からの距離で変化させ、バス電極から近い位置ではグリッド電極を厚く、バス電極から離れるほどバス電極からの距離に比例してグリッド電極を薄くすることにより、抵抗損失を増やさずに、電極材料である銀ペーストの使用量を減らすことができる。
 被印刷物の正面に版121をセットし、吸引空間の吸引を解除すると、伸縮膜の復元力により伸縮膜が復元されて、第2の窪みに充填されていた印刷材料が押し出され、被印刷物に印刷される。
 印刷物の高さを位置によって変える場合、印刷時は、まず被印刷物を伸縮膜に押し当て、吸引の解除とともに被印刷物と伸縮膜との間隔を広げて、印刷材料の最大の高さまで間隔を広げることで、高さの異なる印刷材料を被印刷物に転写することができる。
 以上説明したように、実施の形態3の印刷方法によれば、伸縮膜の復元により印刷材料を第2の窪みから押し出すことにより、被印刷物の印刷材料との接触面積が伸縮膜と印刷材料との接触面積よりも大きくなるため、印刷材料の転写率を上げることができる。
 また、版の板厚と等しい第1の窪みと版の板厚未満の第1の窪みとを混在させることにより、あるいはパターンの位置によって第1の窪みの深さを変えることにより、印刷物の高さを位置によって変えることができる。これによりパターンの位置によって印刷物の高さが異なる印刷物を形成することができる。
実施の形態4.
 実施の形態1では平板型の版を利用していたが、グラビア印刷、オフセット印刷のように回転する円筒型の版を利用することで、グラビア印刷、オフセット印刷のメリットである高生産性という機能を持たせることができる。
 図11を用いて、回転する円筒型の版を利用した実施の形態4の印刷装置について説明する。
 実施の形態4の印刷装置の構成について説明する。
 印刷装置は、印刷形状に相当する複数の第1の窪み215a,215b,215c,215d,215eが外周側に設けられた円筒形状の版211と、第1の窪み215a,215b,215c,215d,215eに面して版211の外周側に接するように設けられた円筒形状の伸縮膜221とを有する。
 伸縮膜221が版211と接触している領域では、伸縮膜221は版211に固定されている。
 版211には、複数の第1の窪み215a,215b,215c,215d,215eのそれぞれに対して窪みの内部を吸引する複数の吸引孔214a,214b,214c,214d,214eが設けられている。複数の吸引孔214a,214b,214c,214d,214eは版211の内周側に連通している。
 版211の内周の内側には、第1の窪み215a,215b,215c,215d,215eを吸引するための吸引空間251と、第1の窪み215a,215b,215c,215d,215eを加圧するための加圧空間261とを有する固定軸241が設けられている。
 版211の内外周及び固定軸241の外周は同軸の円筒形状で構成され、版211と固定軸241との間には、版211の内周と固定軸241の外周とで囲まれた吸引円筒空間253が形成される。固定軸241の外周には、吸引円筒空間253の下方の一部を隔離する加圧部シール271が設けられ、版211の内周と固定軸241の外周と加圧部シール271とで囲まれた加圧円筒空間263が形成される。加圧円筒空間263は吸引円筒空間253とは加圧部シール271で隔離されており、加圧円筒空間263と吸引円筒空間253とをそれぞれ異なる気圧にすることができる。
 吸引円筒空間253は吸引円筒空間吸引孔252で吸引空間251に連通され、吸引空間251は固定軸241の端部で図11には図示しない真空ポンプに接続されている。
 加圧円筒空間263は加圧円筒空間加圧孔262で加圧空間261に連通され、加圧空間261は固定軸241の端部で印刷装置の外側の大気に連通されている。
 吸引孔214a,214b,214c,214eは吸引円筒空間253に連通されており、第1の窪み215a,215b,215c,215eは吸引されるため、伸縮膜221には第2の窪み222a,222b,222c,222eが形成される。
 吸引孔214dは加圧円筒空間263に連通されており、第1の窪み215dは大気圧状態となる。第1の窪み215dに面する伸縮膜221には吸引力が働かないため、伸縮膜221は平らな状態である。
 図12に、図11の固定軸241の下面図を示す。
 固定軸241には、加圧空間261と加圧円筒空間263とを連通する加圧円筒空間加圧孔262が設けられており、その周囲に加圧部シール271が設けられている。
 加圧部シール271は、被印刷物である基板281の幅282よりも広い幅で加圧円筒空間263を囲み、固定軸241の外周と、版211の内周とに接するように配置されている。
 固定軸241には、吸引空間251と吸引円筒空間253とを連通する吸引円筒空間吸引孔252が設けられている。
 固定軸241の上端付近の円筒面には、吸引円筒空間253を形成するための第1の吸引部シール291が設けられている。
 第1の吸引部シール291は、固定軸241の外周と、版211の内周とに接し、吸引円筒空間253と印刷装置の外側の空間とを隔離するように配置されている。
 固定軸241の下端付近の円筒面には、吸引円筒空間253を形成するための第2の吸引部シール292が設けられている。
 第2の吸引部シール292は、固定軸241の外周と、版211の内周とに接し、吸引円筒空間253と印刷装置の外側の空間とを隔離するように配置されている。
 加圧円筒空間263は、固定軸241の外周と、版211の内周と、加圧部シール271の内周271aとで囲まれた空間で形成される。加圧円筒空間加圧孔262からの加圧により、加圧円筒空間263に連通された吸引孔214dおよび第1の窪み215dが加圧される。
 吸引円筒空間253は、固定軸241の外周と、版211の内周と、加圧部シール271の外周271bと、第1の吸引部シール291と、第2の吸引部シール292とで囲まれた空間で形成される。吸引円筒空間吸引孔252からの吸引により、吸引円筒空間253に連通された吸引孔214a,214b,214c,214eおよび第1の窪み215a,215b,215c,215eが吸引される。
 図13に版211の斜視図を示す。
 版211は、太陽電池セルの表銀電極用の版の模式図である。
 円筒状の版211の外周表面には、印刷形状に相当する第1の窪み215が設けられている。なお、図13における第1の窪み215は、図11における第1の窪み215a,215b,215c,215d,215eに相当する。
 第1の窪み215は、光電流を集めるグリッド電極用パターン217a~217gと、グリッド電極の電流を集め、タブを半田付けして隣り合う太陽電池セルと相互接続するバス電極用パターン216とで構成される。
 ここで、第1の窪み215は、被印刷物の平面上の印刷形状を、円筒面上に丸めた形状で形成される。
 吸引空間251は固定軸241の端部で吸引管255を介して真空ポンプに接続されている。
 加圧空間261は固定軸241の端部で加圧管265を介して印刷装置の外側の大気に連通されている。
 図11に基づいて、実施の形態4の動作について説明する。
 版211は、円筒形状で構成され、円筒軸を中心に回転方向212の方向に回転する。
 固定軸241は固定されており、回転しない。
 固定軸241に設けられた加圧部シール271も回転しない。
 版211の上端部付近に設けられた印刷材料供給部232より、伸縮膜221上に印刷材料231aが供給される。
 印刷材料供給部232の回転方向212の下流側に伸縮膜221に接してブレード233が設けられ、印刷材料231aを伸縮膜221の外周に沿って掻き取る。
 これにより、第2の窪み222bでは、印刷材料231bは、第2の窪み222b内に充填され、第2の窪み222bの外側にはみ出した印刷材料231aは除去される。
 版211が回転すると、吸引孔214の内周側開口部が吸引円筒空間253から加圧部シール271の内側に入って加圧円筒空間263に連通するようになる。
 図11は、吸引孔214dが、内周側開口部が加圧円筒空間263に連通した状態である。
 これにより、吸引孔214dが吸引状態から大気圧状態に変わるため、第1の窪み215dも大気圧状態となり、伸縮膜221が復元されて印刷材料231dが押し出される。
 版211の下方には、印刷材料231dの高さ分の間隔を開けて被印刷物である基板281が配置され、伸縮膜221が復元されると印刷材料231dが基板281に密着され、基板281に転写される。
 基板281は、版211の回転に伴い、版211の外周の速度と等しい進行速度で進行方向282の方向に進行する。
 版211の外周には、印刷形状に相当する第1の窪み215a,215b,215c,215d,215eが設けられ、第1の窪み215a,215b,215c,215eの吸引により、伸縮膜221に第2の窪み222a,222b,222c,222eが形成される。第2の窪み222a,222b,222cに充填された印刷材料231a,231b,231cが、版211の回転と基板281の進行とにより、順に基板281上に転写され、基板281上に印刷形状の印刷物が形成される。
 基板281を連続的に印刷する場合、基板281の進行方向の長さをW、連続的に投入される基板と基板との隙間をG、版211の印刷面である外周側の半径をRとすると、基板投入ピッチ(W+G)が版211の外周長2πRと等しくなるように版211を構成し、版211が回転する際の外周の速度と等しい進行速度で基板281を進行させれば、複数の基板281を連続的に印刷することができる。
 以上のように構成することにより、伸縮膜を復元させて印刷材料を伸縮膜に形成された第2の窪みから押し出すので、被印刷物の印刷材料との接触面積が伸縮膜と印刷材料との接触面積よりも大きくなるため、印刷材料の転写率を上げることができる。
 また、印刷材料の厚みを増やす場合、従来の印刷方法では多重印刷を要するが、本実施例では伸縮膜に形成された第2の窪みを深くすれば良い。伸縮膜に形成された第2の窪みが深くとも伸縮膜の復元によって印刷材料は伸縮膜に形成された第2の窪みから押し出されるため、転写率を落とさずに印刷できる。そのため1回の印刷で高アスペクト比の印刷物が形成できる。
 また、円筒型の版を用いることにより、連続的な印刷ができるようになり、印刷の生産性を向上させることができる。
実施の形態5.
 図14に実施の形態5の版を第1の窪み側から見た斜視図を示す。
 図14の上側が印刷面側である。
 版401には幅の広いバス電極用パターン410と、幅の狭いグリッド電極用パターン420とが設けられている。バス電極用パターン410とグリッド電極用パターン420とにより第1の窪みが構成される。
 版401の上側の印刷面とバス電極パターン410とが交差する辺には、バスパターンエッジ411,412,413,414が形成される。
 版401の上側の印刷面とグリッド電極パターン420とが交差する辺には、グリッドパターンエッジ421,422,423,424が形成される。
 版401の上側の印刷面とバス電極パターン410とグリッド電極パターン420とが交差する点には、パターンコーナー431,432,433,434が形成される。
 図14には図示しないが、版401の上側の印刷面に接して、伸縮膜が設けられる。
 本発明の印刷方法の生産性は伸縮膜の寿命と直結している。バスパターンエッジ411,412,413,414およびグリッドパターンエッジ421,422,423,424は伸縮膜が伸縮した時に伸縮膜と接触するため、ここが鋭利だと伸縮膜が伸縮した時に力が部分的に加わって伸縮膜を傷つけてしまい、伸縮膜の寿命が短くなって、生産性が悪化する。パターンコーナー431,432,433,434では、特にこの傾向は強くなる。このため、バスパターンエッジ411,412,413,414およびグリッドパターンエッジ421,422,423,424およびパターンコーナー431,432,433,434を丸く形成することが必要で、これにより伸縮膜が伸縮したときに版と伸縮膜との接触面積が増えるので、伸縮膜にかかる力が減り、伸縮膜の寿命を延ばし、生産性を上げることができる。
 図15に図14のB-B断面図を示す。図15はバス電極パターン410の断面を示す断面図である。図15の上側が印刷面側である。版401の上には版401に接して図15には図示しない伸縮膜が設けられ、伸縮膜は、バス電極パターン410からの吸引により、バス電極パターン410に沿って吸引される。
 バスパターンエッジ411,412を丸く形成することにより、伸縮膜が伸縮した時に伸縮膜を傷つけることが無くなり、伸縮膜の寿命を延ばし、生産性を上げることができる。
 図16に図14のC-C断面図を示す。図16はグリッド電極パターン420の断面を示す断面図である。図16の上側が印刷面側である。版401の上には版401に接して図16には図示しない伸縮膜が設けられ、伸縮膜は、グリッド電極パターン420からの吸引により、グリッド電極パターン420に沿って吸引される。
 グリッドパターンエッジ421,422を丸く形成することにより、伸縮膜が伸縮した時に伸縮膜を傷つけることが無くなり、伸縮膜の寿命を延ばし、生産性を上げることができる。
 同様に、パターンコーナー431,432,433,434を丸く形成することにより、伸縮膜を傷つけることが無くなり、伸縮膜の寿命を延ばし、生産性を上げることができる。
 実施の形態5によれば、版の窪みの角であるバスパターンエッジ、グリッドパターンエッジおよびパターンコーナーと伸縮膜との接触面積が増えるので、伸縮膜にかかる力が減り、伸縮膜の寿命が延び、生産性を上げることが可能となる。
 以上のように、本発明にかかる印刷方法および印刷装置は、転写率を落とさずに高アスペクト比の印刷物を形成できる点で有用であり、特に、太陽電池セルの表銀電極とする銀ペーストを基板に印刷するのに適している。
 11,21,111,121,131,211,401 版(印刷版)、12,112,221 伸縮膜、13,23,113,231a,231b,231c,231d 印刷材料、14,14a,14b,14c,14d,214a,214b,214c,214d,214e 吸引孔、15,15a,15b,15c,15d,115,135,215a,215b,215c,215d,215e 第1の窪み、18,18a,18b,18c,18d,118,222a,222b,222c,222e 第2の窪み、19 ブレード、22 被印刷物、24 接触面、25 窪みの内壁、36 接触部、51,251 吸引空間、52 吸引バルブ、53,255 吸引管、54 加圧バルブ、55,265 加圧管、61a,61b,135a,216,410 バス電極用パターン、62a,62b,62c,62d,62e,62f,62g,62h,62i,62j,135b,217a,217b,217c,217d,217e,217f,217g,420 グリッド電極用パターン、131a,131b,131c,131d 版片、132a,132b リブ、241 固定軸、252 吸引円筒空間吸引孔、253 吸引円筒空間、261 加圧空間、262 加圧円筒空間加圧孔、263 加圧円筒空間、271 加圧部シール、271a 加圧部シールの内周、271b 加圧部シールの外周、281 基板、291 第1の吸引部シール、292 第2の吸引部シール、411,412,413,414 バスパターンエッジ、421,422,423,424 グリッドパターンエッジ、431,432,433,434 パターンコーナー。

Claims (9)

  1.  印刷形状に相当する第1の窪みを有する印刷版に面して設けられた伸縮膜を、前記第1の窪みより吸引し、前記第1の窪みに沿って前記伸縮膜に第2の窪みを形成する工程と、
     前記第2の窪みに印刷材料を充填する工程と、
     前記吸引を解除し前記伸縮膜を復元させて前記第2の窪みに充填された前記印刷材料を押し出して被印刷物に転写する工程と、
     を有する印刷方法。
  2.  印刷形状に相当する第1の窪みを有する印刷版と、
     前記第1の窪みに面して設けられ、前記第1の窪みより吸引することで前記第1の窪みに沿って第2の窪みが形成される伸縮膜と、
     を有する印刷装置。
  3.  前記伸縮膜は、
    前記第2の窪みに印刷材料が充填された後、前記吸引の解除によって前記第2の窪みを復元させて前記第2の窪みに充填された前記印刷材料を押し出して被印刷物に転写することを特徴とする
     請求項2に記載の印刷装置。
  4.  前記印刷版が平板であることを特徴とする
     請求項2または請求項3に記載の印刷装置。
  5.  前記印刷版が円筒型であり、前記円筒型の印刷版が回転しながら前記印刷材料を押し出して前記被印刷物に転写することを特徴とする
     請求項2または請求項3に記載の印刷装置。
  6.  前記第1の窪みの深さが前記印刷版の板厚未満であることを特徴とする請求項2または請求項3に記載の印刷装置。
  7.  前記第1の窪みの深さが前記印刷版の板厚と等しいことを特徴とする請求項2または請求項3に記載の印刷装置。
  8.  前記第1の窪みの角が丸く形成されていることを特徴とする請求項2または請求項3に記載の印刷装置。
  9.  前記印刷版の内周の内側に前記版と同軸に設けられた固定軸と、
     前記印刷版の内周と前記固定軸の外周で形成された空間を印刷面側である下側の加圧円筒空間と上側の吸引円筒空間とに隔離する加圧部シールと、
     を有し、
     前記吸引円筒空間と連通すると前記第1の窪みが吸引されて前記第2の窪みが形成され、
     前記印刷版が回転して前記第1の窪みが前記加圧円筒空間と連通すると前記第1の窪みの吸引が解除されて前記第2の窪みが復元されて、
     前記第2の窪みに充填された前記印刷材料を押し出して被印刷物に転写することを特徴とする
     請求項5に記載の印刷装置。
PCT/JP2013/057424 2012-10-30 2013-03-15 印刷方法および印刷装置 WO2014069012A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014544333A JP5836500B2 (ja) 2012-10-30 2013-03-15 印刷装置
TW102136691A TWI586553B (zh) 2012-10-30 2013-10-11 Printing method and printing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-238773 2012-10-30
JP2012238773 2012-10-30

Publications (1)

Publication Number Publication Date
WO2014069012A1 true WO2014069012A1 (ja) 2014-05-08

Family

ID=50626950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057424 WO2014069012A1 (ja) 2012-10-30 2013-03-15 印刷方法および印刷装置

Country Status (3)

Country Link
JP (1) JP5836500B2 (ja)
TW (1) TWI586553B (ja)
WO (1) WO2014069012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188859A (zh) * 2022-07-14 2022-10-14 通威太阳能(成都)有限公司 一种印刷涂层的方法及太阳电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201563A (ja) * 1990-11-30 1992-07-22 Dainippon Printing Co Ltd グラビア印刷版
JPH0848086A (ja) * 1994-08-05 1996-02-20 Matsushita Electric Ind Co Ltd ガラス系脆性基体印刷凹版およびその作製方法
WO2002051639A2 (en) * 2000-12-27 2002-07-04 Mizur Technology, Ltd. Digital printing device and method
JP2004111729A (ja) * 2002-09-19 2004-04-08 Murata Mfg Co Ltd 積層セラミック電子部品の製造方法およびそれに用いるグラビア印刷版
JP2005169773A (ja) * 2003-12-10 2005-06-30 Toppan Printing Co Ltd 2層構造を有する凹版およびそれを用いたパターニング方法
JP2008149727A (ja) * 2006-12-19 2008-07-03 Palo Alto Research Center Inc 印刷版
JP2008149729A (ja) * 2006-12-19 2008-07-03 Palo Alto Research Center Inc 印刷方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616323B2 (ja) * 2007-11-14 2011-01-19 住友ゴム工業株式会社 印刷装置および印刷方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201563A (ja) * 1990-11-30 1992-07-22 Dainippon Printing Co Ltd グラビア印刷版
JPH0848086A (ja) * 1994-08-05 1996-02-20 Matsushita Electric Ind Co Ltd ガラス系脆性基体印刷凹版およびその作製方法
WO2002051639A2 (en) * 2000-12-27 2002-07-04 Mizur Technology, Ltd. Digital printing device and method
JP2004111729A (ja) * 2002-09-19 2004-04-08 Murata Mfg Co Ltd 積層セラミック電子部品の製造方法およびそれに用いるグラビア印刷版
JP2005169773A (ja) * 2003-12-10 2005-06-30 Toppan Printing Co Ltd 2層構造を有する凹版およびそれを用いたパターニング方法
JP2008149727A (ja) * 2006-12-19 2008-07-03 Palo Alto Research Center Inc 印刷版
JP2008149729A (ja) * 2006-12-19 2008-07-03 Palo Alto Research Center Inc 印刷方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188859A (zh) * 2022-07-14 2022-10-14 通威太阳能(成都)有限公司 一种印刷涂层的方法及太阳电池
CN115188859B (zh) * 2022-07-14 2024-03-29 通威太阳能(成都)有限公司 一种印刷涂层的方法及太阳电池

Also Published As

Publication number Publication date
JP5836500B2 (ja) 2015-12-24
TWI586553B (zh) 2017-06-11
JPWO2014069012A1 (ja) 2016-09-08
TW201433466A (zh) 2014-09-01

Similar Documents

Publication Publication Date Title
JP4981020B2 (ja) 集積型薄膜太陽電池、その製造方法と集積型薄膜太陽電池用透明電極の加工方法、その構造及びその透明電極が形成された透明基板
EP3401094B1 (en) Film peeling device and method
JP3957641B2 (ja) プラズマディスプレイパネル、その製造方法及び転写フィルム
CN108054184A (zh) 一种阵列基板及制备方法、显示装置
CN110992841A (zh) 显示装置及显示装置的制作方法
JP5836500B2 (ja) 印刷装置
CN104681742A (zh) 有机发光二极管的制备方法
KR20040090900A (ko) 그라비어 인쇄기 및 적층 세라믹 전자 부품의 제조 방법
WO2014102904A1 (ja) 印刷方法、印刷装置及びこれを用いた太陽電池の製造方法
JP2003218373A (ja) 太陽電池、その製造方法および製造器具
JP5432304B2 (ja) インクジェット装置
EP1783797A3 (en) Lower plate of PDP and method for manufacturing the same
JP2010010546A (ja) 電極付き基板の製造方法、太陽電池素子の製造方法及びスクリーン印刷装置
CN110203746A (zh) 一种防堆叠型转印膜裁切装置
CN103192619B (zh) 一种太阳能电池片的印刷方法
JP5901800B2 (ja) 印刷方法および印刷装置、太陽電池の製造方法
CN109817692B (zh) 像素界定层、彩色滤光膜及制造方法、自发光显示面板
WO2013094033A1 (ja) 太陽電池の製造方法
JP2010232078A (ja) 色素増感太陽電池、色素増感太陽電池の製造方法、および、色素増感太陽電池の製造装置
CN218702244U (zh) 一种打印平台调整机构
WO2011111192A1 (ja) 太陽電池セルの電極形成方法及び太陽電池セル
JP4807380B2 (ja) 機能膜の製造装置
CN108859250A (zh) 一种纸袋快速折边装置及方法
EP1760750A1 (en) Master mold for offset process and pattern formation method using the same
CN210100912U (zh) 一种用于压制网纹膜的网纹轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850110

Country of ref document: EP

Kind code of ref document: A1