WO2014064794A1 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
WO2014064794A1
WO2014064794A1 PCT/JP2012/077562 JP2012077562W WO2014064794A1 WO 2014064794 A1 WO2014064794 A1 WO 2014064794A1 JP 2012077562 W JP2012077562 W JP 2012077562W WO 2014064794 A1 WO2014064794 A1 WO 2014064794A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage device
electric
ehc
charger
Prior art date
Application number
PCT/JP2012/077562
Other languages
English (en)
French (fr)
Inventor
慶太 橋元
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/077562 priority Critical patent/WO2014064794A1/ja
Priority to US14/422,311 priority patent/US9834093B2/en
Priority to CN201280076485.1A priority patent/CN104736366B/zh
Priority to JP2014543070A priority patent/JP6020585B2/ja
Priority to EP12887239.7A priority patent/EP2913213B1/en
Publication of WO2014064794A1 publication Critical patent/WO2014064794A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/06Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line using only one supply
    • B60L1/08Methods and devices for control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/474Catalyst warm up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/21External power supplies
    • B60Y2400/214External power supplies by power from domestic supply, e.g. plug in supplies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an electric vehicle equipped with an internal combustion engine and a motor for driving the vehicle, and in particular, an electrically heated catalyst device (hereinafter also referred to as “EHC: Electrical Heated Catalyst”) is provided in the exhaust passage of the internal combustion engine, and
  • EHC Electrical Heated Catalyst
  • the present invention relates to an electric vehicle capable of charging an in-vehicle power storage device from a power source outside the vehicle.
  • Patent Document 1 discloses an EHC in a hybrid vehicle that is a typical example of an electric vehicle that can be charged from a power source outside the vehicle (hereinafter also referred to as “external power source”).
  • EHC raises the catalyst temperature by generating heat when energized during operation.
  • the charging of the in-vehicle power storage device by the external power source is also simply referred to as “external charging”.
  • Patent Document 1 discloses a configuration of an electric system for energizing an EHC using a charger for external charging. Specifically, a configuration in which an EHC is connected in parallel to a primary winding or a secondary winding of a transformer in a charger configured with an insulated power converter including a transformer is disclosed. As a result, the EHC can be operated by the AC voltage generated in the transformer winding.
  • the EHC is energized by an insulated power source incorporating a transformer or the like.
  • Patent Document 1 it is possible to supply power to the EHC during both external charging and traveling by sharing the voltage conversion unit of the external charging charger configured in an insulating type.
  • Patent Document 1 since a high-frequency AC voltage is applied to the EHC, it is basically difficult to control the energization power of the EHC configured by a resistor. In particular, during external charging, there is a concern that it is difficult to control the energized power of the EHC while being compatible with the control of the charging power of the power storage device.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide an externally chargeable electric vehicle equipped with an EHC by using an insulated charger for external charging. Power is supplied to the EHC so that the energized power can be easily controlled.
  • an electric vehicle equipped with an internal combustion engine and an electric motor for traveling the vehicle, an electric storage device that stores electric power supplied to the electric motor, and electric power supplied from a power source (external power source) outside the vehicle.
  • the power receiving unit includes a power receiving unit, a charger for performing AC / DC power conversion for converting power received by the power receiving unit into charging power for the power storage device, and an electrically heated catalyst device.
  • the charger has an insulation mechanism configured to transmit electrical energy after electrically insulating a primary side electrically connected to the power receiving unit and a secondary side electrically connected to the power storage device.
  • AC / DC power conversion is executed by a power conversion path that passes through.
  • the charger has first and second power lines that output a DC voltage between the lines.
  • the first and second power lines are electrically connected to the primary side of the insulation mechanism in the middle of the power conversion path.
  • the electrically heated catalyst device is electrically connected to the first and second power lines, and is configured to electrically heat a catalyst that purifies exhaust gas discharged from the internal combustion engine.
  • the charger is configured to be able to convert the power from the power storage device into a DC voltage that is output to the first and second power lines by partial reverse conversion of AC / DC power conversion.
  • the charger controls the electric power supplied to the electrically heated catalyst device by controlling the DC voltage between the first and second power lines when the electrically heated catalyst device is operated when the power storage device is charged by the power source.
  • the charging power of the power storage device is controlled by controlling DC power conversion between the first and second power lines and the power storage device.
  • the charger performs reverse conversion when the electric heating type catalyst device is operated when no power is supplied from the power source, and converts the electric power from the power storage device into a DC voltage to convert the first and second Output to the power line.
  • an electric vehicle including an internal combustion engine and a motor for driving the vehicle, the power storage device storing electric power supplied to the electric motor, and a power source (external power source) outside the vehicle.
  • a power receiving unit that receives power, a charger for converting the power received by the power receiving unit into charging power for the power storage device when power is supplied from an external power source, and an electrically heated catalyst device.
  • the charger has first and second power conversion units.
  • the first power conversion unit is configured to convert AC power received by the power receiving unit into DC power and output the DC power between the first and second power lines.
  • the second power conversion unit transmits electrical energy after electrically insulating the primary side electrically connected to the first and second power lines and the secondary side electrically connected to the power storage device.
  • Bidirectional power conversion is performed between the power storage device and the first and second power lines by the power conversion path that passes through the insulating mechanism configured to do so.
  • the electrically heated catalyst device is electrically connected to the first and second power lines, and is configured to electrically heat a catalyst that purifies exhaust gas discharged from the internal combustion engine.
  • the battery charger operates the electrically heated catalyst device by controlling the DC voltage between the first and second power lines by the first power converter when the electrically heated catalyst device is operated when the power storage device is charged by the power source.
  • the power supplied to the device is controlled, and the charging power of the power storage device is controlled by the second power conversion unit.
  • the electric vehicle includes a first shut-off mechanism disposed between the first power line and the electrically heated catalyst device, and a first interrupt mechanism disposed between the second power line and the electrically heated catalyst device. And 2 shut-off mechanisms.
  • an electrically chargeable vehicle equipped with an EHC it is possible to supply power to the EHC so that the energized power of the EHC can be easily controlled using an insulated charger for external charging.
  • FIG. 1 is an overall block diagram of a hybrid vehicle shown as a representative example of an externally chargeable electric vehicle according to an embodiment of the present invention. It is an alignment chart of a power split device. It is a circuit diagram which shows the structural example of the charger shown in FIG. 4 is a flowchart for explaining energization control of EHC in the circuit of FIG. 3.
  • FIG. 1 is an overall block diagram of a hybrid vehicle shown as a representative example of an externally chargeable electric vehicle according to an embodiment of the present invention.
  • hybrid vehicle 1 includes an engine 10, a first MG (Motor Generator) 20, a second MG 30, a power split device 40, a speed reducer 50, a motor drive device 60, and a power storage device 70. And driving wheels 80.
  • the hybrid vehicle 1 further includes an exhaust passage 130, an EHC 140, and an ECU (Electronic Control Unit) 150.
  • Engine 10, first MG 20 and second MG 30 are connected to power split device 40.
  • Hybrid vehicle 1 travels by driving force output from at least one of engine 10 and second MG 30.
  • the power generated by the engine 10 is divided into two paths by the power split device 40. That is, one is a path that is transmitted to the drive wheels 80 via the speed reducer 50, and the other is a path that is transmitted to the first MG 20.
  • the engine 10 is configured to output vehicle driving force by energy obtained by fuel combustion.
  • the EHC 140 is provided in the exhaust passage 130 of the engine 10 and is configured to electrically heat a catalyst that purifies the exhaust gas discharged from the engine 10. During operation, the EHC 140 raises the catalyst temperature by heat generated by energization.
  • Various known EHCs can be applied to the EHC 140.
  • 1st MG20 and 2nd MG30 are AC motors, for example, are constituted by a three-phase AC synchronous motor.
  • Motor drive device 60 controls outputs (rotation speed and / or torque) of first MG 20 and second MG 30 by performing bidirectional power conversion between power storage device 70 and first MG 20 and second MG 30.
  • the first MG 20 generates power using the power of the engine 10 divided by the power split device 40.
  • the electric power generated by first MG 20 is converted from alternating current to direct current by motor drive device 60 and stored in power storage device 70.
  • Second MG 30 generates driving force using at least one of the electric power stored in power storage device 70 and the electric power generated by first MG 20. Then, the driving force of the second MG 30 is transmitted to the driving wheels 80 via the speed reducer 50.
  • the driving wheel 80 is shown as a front wheel, but the rear wheel may be driven by the second MG 30 instead of or together with the front wheel.
  • the second MG 30 When the vehicle is braked, the second MG 30 is driven by the drive wheels 80 via the speed reducer 50, and the second MG 30 operates as a generator. Thereby, 2nd MG30 functions also as a regenerative brake which converts kinetic energy of vehicles into electric power.
  • the electric power generated by second MG 30 is stored in power storage device 70.
  • the power split device 40 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 10.
  • the sun gear is connected to the rotation shaft of the first MG 20.
  • the ring gear is connected to the rotation shaft of second MG 30 and speed reducer 50.
  • the engine 10, the first MG 20 and the second MG 30 are connected via a power split device 40 composed of planetary gears, so that the rotational speeds of the engine 10, the first MG 20 and the second MG 30 are the same as shown in FIG. In the diagram, the relationship is a straight line.
  • motor drive device 60 receives electric power from power storage device 70 and drives first MG 20 and second MG 30 based on a control signal from ECU 150. Further, motor drive device 60 converts AC power generated by first MG 20 and / or second MG 30 into DC power based on a control signal from ECU 150 and outputs the DC power to power storage device 70.
  • the power storage device 70 is a rechargeable DC power source, and is composed of, for example, a secondary battery such as nickel metal hydride or lithium ion.
  • the voltage of power storage device 70 is, for example, about 200V.
  • power storage device 70 stores power supplied from external power supply 210, as will be described later. Note that a large-capacity capacitor can also be employed as the power storage device 70.
  • the hybrid vehicle 1 further includes a charging port 110 and a charger 120 as a configuration for external charging.
  • the charging port 110 is a power interface for receiving power from the external power source 210.
  • a charging cable connector 200 for supplying power from the external power source 210 to the vehicle is connected to the charging port 110.
  • the charging port 110 can be configured to supply electric power from an external power source by electromagnetically coupling the external power source and the vehicle in a non-contact manner in addition to electrical connection by a cable. is there. That is, in the hybrid vehicle 1, the aspect of the power supply from the external power source 210 to the charging port 110 is not particularly limited, and will be described in a confirming manner.
  • Charger 120 is electrically connected to charging port 110, power storage device 70, and EHC 140 (described later). Charger 120 is configured to convert electric power supplied from external power supply 210 into charging electric power for power storage device 70 based on a control signal from ECU 150 during external charging. Furthermore, in the present embodiment, charger 120 is configured to supply power to EHC 140 at each time of external charging and when power is not supplied from an external power source including when the vehicle is running. The configuration example and operation of the charger 120 will be described in detail later.
  • the ECU 150 includes a CPU (Central Processing Unit) and a memory (not shown), and is configured to perform arithmetic processing using detection values from each sensor based on a map and a program stored in the memory. Alternatively, at least a part of the ECU 150 may be configured to execute predetermined numerical / logical operation processing by hardware such as an electronic circuit.
  • a CPU Central Processing Unit
  • memory not shown
  • predetermined numerical / logical operation processing by hardware such as an electronic circuit.
  • ECU 150 generates a control signal for driving motor drive device 60 and charger 120, and outputs the generated control signal to motor drive device 60 and charger 120.
  • FIG. 3 is a circuit diagram illustrating a configuration example of the charger 120 illustrated in FIG. 1.
  • charger 120 includes an AC / DC converter 310, a DC / DC converter 320, an insulation transformer 330, a relay 380, voltage sensors 370, 376, 378, a current sensor 372, and 374.
  • the relay 380 is disposed between the charging port 110 and the AC / DC converter 310, and is turned on / off according to a control signal SE1 from the ECU 150.
  • AC power is input to the power line 351 from the external power supply 210 via the relay 380 and the charging port 110.
  • AC voltage Vac and AC current Iac of power line 351 are detected by voltage sensor 370 and current sensor 372, respectively. Detection values of voltage sensor 370 and current sensor 372 are output to ECU 150.
  • the AC / DC conversion unit 310 includes a single-phase full bridge circuit.
  • the DC / DC conversion unit 320 includes voltage conversion units 340 and 350 each formed of a single-phase full bridge circuit, and an insulating transformer 330.
  • the AC / DC conversion unit 310 converts AC power of the power line 351 into DC power based on the control signal PWMC1 from the ECU 150 during external charging, and outputs the DC power between the power lines 352p and 352g.
  • a capacitor C2 is connected between the power lines 352p and 352g.
  • DC voltage Vdc between power lines 352p and 352g is detected by voltage sensor 376.
  • a value detected by voltage sensor 376 is output to ECU 150.
  • the AC / DC converter 310 controls the passing current of the reactor inserted and connected to the power line 351 by turning on and off the switching elements constituting the full bridge. At this time, AC / DC converter 310 outputs a direct current to power line 352p by controlling the reactor current so that the current waveform (phase and amplitude) of alternating current Iac matches the target current waveform. Furthermore, the power factor of the input power from the external power supply 210 can be increased by matching the phase of the target current waveform with the phase of the AC voltage Vac. In addition, the DC voltage Vdc can be controlled to the target value by adjusting the amplitude of the target current waveform in accordance with the deviation between the detected value of the DC voltage Vdc and the target value.
  • the voltage converter 340 of the DC / DC converter 320 converts the DC power output from the AC / DC converter 310 to the power lines 352p and 352g into high-frequency AC power based on the control signal PWMC2 from the ECU 150 during external charging. The data is converted and output to the power line 353.
  • Power line 353 is connected to primary coil 332 of insulating transformer 330.
  • the insulating transformer 330 has a core made of a magnetic material, and a primary coil 332 and a secondary coil 334 wound around the core.
  • the primary coil 332 and the secondary coil 334 are electrically insulated from each other.
  • isolation transformer 330 the voltage level is converted between the AC voltage of primary coil 332 and the AC voltage of secondary coil 334 in accordance with the turn ratio of primary coil 332 and secondary coil 334.
  • Secondary coil 334 of insulation transformer 330 is connected to power line 354.
  • the voltage conversion unit 350 converts the AC power of the power line 354 to DC power based on the control signal PWMC3 from the ECU 150 and outputs it between the power lines 355p and 355g during external charging.
  • Power lines 355p and 355g are electrically connected to the positive electrode and the negative electrode of power storage device 70, respectively.
  • Power storage device 70 is provided with voltage sensor 381 and current sensor 382 for detecting voltage Vb and current Ib. The detected voltage Vb and current Ib of power storage device 70 are output to ECU 150.
  • a capacitor C1 is connected between the power lines 355p and 355g. Between power lines 355p, 355g and power storage device 70, a charging relay 430 that is turned on / off in response to a control signal SE4 from ECU 150 may be provided.
  • a current sensor 374 and a voltage sensor 378 for detecting the DC current Ic and the DC voltage Vc are arranged on the power lines 355p and 355g. Detection values of current sensor 374 and voltage sensor 378 are output to ECU 150.
  • the charging power (voltage Vc and current Ic) of the power storage device 70 can be controlled by turning on and off the switching elements that constitute the voltage conversion units 340 and 350. That is, the DC / DC conversion unit 320 configured by the voltage conversion units 340 and 350 and the insulating transformer 330 converts the DC power of the power lines 355p and 355g into the charging power of the power storage device 70 through the power conversion path passing through the insulating transformer 330. Convert to
  • the DC / DC conversion unit 320 can perform reverse conversion of power conversion during external charging during non-external charging including when the vehicle is running.
  • the DC power from the power storage device 70 can be converted into DC power output to the power lines 352p and 352g by the power conversion path passing through the insulating transformer 330.
  • the DC voltage Vdc of the power lines 352p and 352g can be controlled to the target value by turning on and off the switching elements constituting the voltage conversion units 340 and 350.
  • DC / DC conversion unit 320 is configured to perform bidirectional DC power conversion between power storage device 70 and power lines 352p and 352g.
  • the EHC 140 is electrically connected to the power lines 352p and 352g in the middle of the power conversion path by the charger 120.
  • Power lines 352p and 352g are electrically insulated from power storage device 70 by insulating transformer 330.
  • an EHC relay 410 is provided between the EHC 120 and the power line 352p
  • an EHC relay 420 is provided between the EHC 120 and the power line 352g.
  • EHC relays 410 and 420 are turned on / off in response to control signals SE2 and SE3 from ECU 150.
  • any switch capable of controlling on / off can be applied as the “breaking mechanism” in place of the relay.
  • EHC relays 410 and 420 By turning on EHC relays 410 and 420, DC voltage Vdc between power lines 352p and 352g is supplied to EHC 140.
  • the electrical resistance value of the EHC 140 is R
  • the energization power of the EHC 140 is (Vdc) 2 / R. That is, it is possible to control the energization power that determines the amount of heat generated by the EHC 140 by controlling the DC voltage Vdc.
  • FIG. 4 shows a flowchart for explaining energization control of the EHC 140. A series of processing shown in FIG. 4 is executed by ECU 150.
  • ECU 150 determines in step S100 whether the operating condition of EHC 140 is satisfied. For example, when the vehicle is traveling, the operating condition of the EHC 140 is established when the catalyst temperature is lower than a predetermined temperature. Alternatively, the operating condition of the EHC 140 can be set in advance so that the catalyst is warmed up in advance in preparation for vehicle operation after completion of external charging during external charging.
  • step S180 When the operating condition of the EHC 140 is not satisfied (NO determination in S100), the process ends without energizing the EHC 140 (step S180).
  • the ECU 150 determines whether or not it is during external charging (step S110).
  • the ECU 150 When the ECU 150 is requested to operate the EHC 140 during external charging (YES in S110), the ECU 150 sufficiently sets the target value of the DC voltage Vdc to the AC / DC converter 310 in the charger 120 in step S120. Set to a voltage value that corresponds to the appropriate energized power that demonstrates the function. Thereby, in the power conversion from the charging port 110 to the power storage device 70 by the charger 120, the EHC 140 can be energized by the DC voltage Vdc output between the power lines 352p and 352g. As a result, the EHC 140 can be supplied with power from the external power supply 210 (step S130). The AC / DC converter 310 controls the DC voltage Vdc to the target value, so that the energization power of the EHC 140 can be easily controlled.
  • DC voltage Vdc suitable for energization of EHC 140 is converted into charging voltage Vc and charging current Ic for appropriately charging power storage device 70.
  • the charger 120 can be shared and power can be supplied in parallel to both the EHC 140 and the power storage device 70, and the power supplied to both can be supplied by the AC / DC converter 310 and the DC / DC converter 320, respectively. Can be controlled.
  • the charger It is also possible to supply power to the EHC 140 by the electric power from the external power supply 210 by operating only the AC / DC converter 310 of 120.
  • ECU 150 When the operation of EHC 140 is requested at the time of non-external charging (NO determination in S110), ECU 150 turns on charging relay 430 and operates at least DC / DC conversion unit 320 of charger 120 in step S150.
  • the DC / DC conversion unit 320 converts the DC power output from the power storage device 70 into a DC voltage Vdc for energizing the EHC 140, and outputs the DC voltage Vdc between the power lines 352p and 352g.
  • the EHC 140 can be energized by the electric power of the power storage device 70 (step S160).
  • the target value of the DC voltage Vdc can be set to a voltage value corresponding to an appropriate energization power that allows the EHC 140 to sufficiently function.
  • power is supplied to EHC 140 by power conversion from power storage device 70 to power lines 352p and 352g, which is part of the reverse conversion of power conversion from charging port 110 to power storage device 70 during external charging. can do.
  • AC / DC converter 310 during non-external charging and non-running, the DC voltage between power lines 352p and 352g is converted into AC power equivalent to that of external power supply 210 (for example, commercial power supply). It is also possible to operate. In this way, by connecting the cable to the charging port 110, it is possible to supply power to the outside of the vehicle by the stored power of the power storage device 70.
  • external power supply 210 for example, commercial power supply
  • power storage device 70 and EHC 140 are electrically insulated by insulating transformer 330. Therefore, even if an electrical abnormality such as leakage occurs in the EHC 140 during the operation of the EHC 140 by the electric power of the power storage device 70, the traveling system (motor drive shown in FIG. 1) that is electrically connected to the power storage device 70 The device 60, the first MG 20, the second MG 30, etc.) and the EHC 140 are electrically insulated.
  • the EHC 140 can be electrically disconnected from both the power lines 352p and 352g. Therefore, even if an electrical abnormality such as leakage occurs in the EHC 140, the EHC 140 can be electrically insulated from the power conversion path in the charger 120.
  • the hybrid vehicle electric vehicle
  • a DC voltage can be supplied to the EHC 140.
  • the energization power of the EHC 140 can be easily controlled so that the EHC 140 can sufficiently function.
  • the power storage device 70 and the EHC 140 can be supplied with electric power to the EHC 140 by a configuration in which the power storage device 70 and the EHC 140 are electrically insulated by the insulation transformer 330 of the charger 120, even if an electrical abnormality such as leakage occurs in the EHC 140, It is possible to prevent adverse effects on the electrically connected traveling system.
  • EHC relays 410 and 420 interrupt mechanism
  • EHC relays 410 and 420 interrupt mechanism
  • a converter AC / DC converter 310 that outputs DC voltage Vdc supplied to EHC 140
  • a converter DC / DC converter
  • 320 can be controlled independently, and power can be supplied to both the EHC 140 and the power storage device 70 in parallel after controlling the power supplied to the EHC 140 and the charging power of the power storage device 70, respectively.
  • the series / parallel type hybrid vehicle has been described in which the power of the engine 10 is divided by the power split device 40 and can be transmitted to the drive wheels 80 and the first MG 20, but the application of the present invention is implemented. It is not limited to the illustration in the form.
  • the electric vehicle to which the present invention is applied comprehensively includes a vehicle capable of generating a vehicle driving force by electric energy. If the electric vehicle is an externally chargeable electric vehicle equipped with an internal combustion engine and an EHC, the drive system The present invention can be similarly applied without limiting the configuration.
  • the present invention can be applied to a so-called parallel type hybrid vehicle in which wheels are driven by an engine and a motor without a power split device, and a series type hybrid vehicle in which the engine is used only for power generation. .
  • the charger 120 shown in the present embodiment corresponds to an example of the “charger” in the present invention.
  • the configuration of the charger 120 is not limited to the configuration example of FIG. 3, and the power conversion is performed after the power storage device 70 and the charging port 110 are electrically insulated using an insulating mechanism (transformer). Any circuit configuration can be applied as long as it is executed.
  • the EHC 140 is insulated from the power storage device 70 by an insulation mechanism and electrically connected to a power line from which a DC voltage is output, thereby supplying the energized power of the EHC 140 as in the present embodiment. be able to.
  • engine 10 corresponds to an embodiment of “internal combustion engine” in the present invention
  • second MG 30 corresponds to an embodiment of “electric motor” in the present invention
  • Charging port 110 corresponds to an embodiment of “power receiving unit” in the present invention
  • EHC 140 corresponds to an embodiment of “electrically heated catalyst device” in the present invention
  • EHC relays 410 and 420 correspond to one embodiment of the “first cutoff mechanism” and the “second cutoff mechanism” in the present invention, respectively.
  • power lines 352p and 352g correspond to one example of the “first power line” and the “second power line” in the present invention, respectively, and insulation transformer 330 is an “insulation mechanism” in the present invention. This corresponds to one embodiment.
  • AC / DC conversion section 310 corresponds to an example of “first power conversion section” in the present invention
  • DC / DC conversion section 320 is one of “second power conversion section” in the present invention. This corresponds to the embodiment.
  • the present invention can be applied to an electric vehicle equipped with an internal combustion engine and an electric motor for traveling of the vehicle and provided with an electrically heated catalyst device.

Abstract

 EHC(140)は、通電時に、電動車両に搭載された内燃機関の排気経路にから排出される排気ガスを浄化する触媒を電気加熱するように構成される。充電器(120)は、外部電源(210)から充電ポートに供給された交流電力を、絶縁トランス(330)を含む電力変換経路によって、蓄電装置(70)の充電電力に変換する。EHC(140)は、当該電力変換経路上の絶縁トランス(330)の一次側に設けられた、直流電圧が出力される電力線(352p,352g)と電気的に接続される。充電器(120)は、車両走行時にEHC(140)を作動する場合には、外部充電の際の電力変換の一部の逆変換によって、蓄電装置(70)からの電力を、EHC(140)と接続された電力線(352p,352g)に出力される直流電圧に変換する。

Description

電動車両
 この発明は、内燃機関および車両走行用の電動機を搭載する電動車両に関し、特に、内燃機関の排気通路に電気加熱式触媒装置(以下、「EHC:Electrical Heated Catalyst」とも称する)が設けられ、かつ、車両外部の電源から車載の蓄電装置を充電可能な電動車両に関する。
 特開2009-274479号公報(特許文献1)には、車載蓄電装置を車両外部の電源(以下、「外部電源」とも称する。)から充電可能な電動車両の代表例であるハイブリッド車に、EHCを備えた排気ガス浄化装置を搭載した場合の電気システムの構成が開示される。EHCは、作動時には、通電によって発熱することによって触媒温度を上昇させる。以下では、外部電源による車載蓄電装置の充電を、単に「外部充電」とも称する。
 特許文献1には、外部充電用の充電器を用いてEHCに通電するための電気システムの構成が開示されている。具体的には、トランスを含む絶縁型の電力変換器で構成された充電器において、トランスの一次巻線または二次巻線に並列にEHCを接続する構成が開示される。この結果、トランス巻線に生じた交流電圧によってEHCを作動することができる。
特開2009-274479号公報 特開2009-274470号公報 特開2009-286337号公報 特開2009-274471号公報 特開平8-61048号公報
 EHCは、煤や水に晒されるため、絶縁抵抗の低下による電気的な異常の発生が懸念される。このため、EHCは、トランス等を内蔵した絶縁型の電源によって通電されることが好ましい。特許文献1では、絶縁型で構成された外部充電用の充電器の電圧変換部を共用して、外部充電時および走行時の両方において、EHCに電力を供給することができる。
 しかしながら、特許文献1の構成では、EHCに高周波の交流電圧が印加されるため、基本的には抵抗体で構成されるEHCの通電電力の制御が困難となる。特に、外部充電時に、蓄電装置の充電電力の制御と両立して、EHCの通電電力を制御することの困難性が懸念される。
 この発明は、このような課題を解決するためになされたものであり、その目的は、EHCを搭載した外部充電可能な電動車両において、外部充電用の絶縁型の充電器を用いて、EHCの通電電力を容易に制御できるようにEHCに給電することである。
 この発明のある局面では、内燃機関および車両走行用の電動機を搭載する電動車両であって、電動機へ供給される電力を蓄える蓄電装置と、車両外部の電源(外部電源)から供給される電力を受ける受電部と、外部電源からの給電時に、受電部が受けた電力を蓄電装置の充電電力に変換する交流/直流電力変換を実行するための充電器と、電気加熱式触媒装置とを含む。充電器は、受電部と電気的に接続された一次側と蓄電装置と電気的に接続された二次側とを電気的に絶縁した上で電気エネルギを伝達するように構成された絶縁機構を経由する電力変換経路によって、交流/直流電力変換を実行する。充電器は、線間に直流電圧が出力される第1および第2の電力線を有する。第1および第2の電力線は、電力変換経路の途中で絶縁機構の一次側と電気的に接続される。電気加熱式触媒装置は、第1および第2の電力線と電気的に接続されて、内燃機関から排出される排気ガスを浄化する触媒を電気加熱するように構成される。充電器は、交流/直流電力変換の一部の逆変換によって、蓄電装置からの電力を第1および第2の電力線に出力される直流電圧に変換できるように構成される。
 好ましくは、充電器は、電源による蓄電装置の充電時に電気加熱式触媒装置を作動する場合に、第1および第2の電力線間の直流電圧の制御によって電気加熱式触媒装置への給電電力を制御するとともに、第1および第2の電力線と蓄電装置との間の直流電力変換の制御によって蓄電装置の充電電力を制御する。
 また好ましくは、充電器は、電源からの非給電時において電気加熱式触媒装置を作動する場合に、逆変換を実行して、蓄電装置からの電力を直流電圧に変換して第1および第2の電力線に出力する。
 この発明の他のある局面では、内燃機関および車両走行用の電動機を搭載する電動車両であって、電動機へ供給される電力を蓄える蓄電装置と、車両外部の電源(外部電源)から供給される電力を受ける受電部と、外部電源からの給電時に、受電部が受けた電力を蓄電装置の充電電力に変換するための充電器と、電気加熱式触媒装置とを含む。充電器は、第1および第2の電力変換部を有する。第1の電力変換部は、受電部が受けた交流電力を直流電力に変換して第1および第2の電力線間に出力するように構成される。第2の電力変換部は、第1および第2の電力線と電気的に接続された一次側と蓄電装置と電気的に接続された二次側とを電気的に絶縁した上で電気エネルギを伝達するように構成された絶縁機構を経由する電力変換経路によって、蓄電装置と第1および第2の電力線との間で双方向の電力変換を行うように構成される。電気加熱式触媒装置は、第1および第2の電力線と電気的に接続されて、内燃機関から排出される排気ガスを浄化する触媒を電気加熱するように構成される。
 好ましくは、充電器は、電源による蓄電装置の充電時に電気加熱式触媒装置を作動する場合に、第1の電力変換部による第1および第2の電力線間の直流電圧の制御によって電気加熱式触媒装置への給電電力を制御するとともに、第2の電力変換部によって蓄電装置の充電電力を制御する。
 また好ましくは、電動車両は、第1の電力線と電気加熱式触媒装置との間に配置された第1の遮断機構と、第2の電力線と電気加熱式触媒装置との間に配置された第2の遮断機構とをさらに含む。
 この発明によれば、EHCを搭載した外部充電可能な電動車両において、外部充電用の絶縁型の充電器を用いて、EHCの通電電力を容易に制御できるようにEHCに給電することができる。
この発明の実施の形態による外部充電可能な電動車両の代表例として示されるハイブリッド車の全体ブロック図である。 動力分割装置の共線図である。 図1に示す充電器の構成例を示す回路図である。 図3の回路におけるEHCの通電制御を説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、この発明の実施の形態による外部充電可能な電動車両の代表例として示されるハイブリッド車の全体ブロック図である。
 図1を参照して、ハイブリッド車1は、エンジン10と、第1MG(Motor Generator)20と、第2MG30と、動力分割装置40と、減速機50と、モータ駆動装置60と、蓄電装置70と、駆動輪80とを備える。また、ハイブリッド車1は、排気通路130と、EHC140と、ECU(Electronic Control Unit)150とをさらに備える。エンジン10、第1MG20および第2MG30は、動力分割装置40に連結される。
 ハイブリッド車1は、エンジン10および第2MG30の少なくとも一方から出力される駆動力によって走行する。エンジン10が発生する動力は、動力分割装置40によって2経路に分割される。すなわち、一方は減速機50を介して駆動輪80へ伝達される経路であり、もう一方は第1MG20へ伝達される経路である。
 エンジン10は、燃料の燃焼で得られたエネルギによって車両駆動力を出力するように構成される。EHC140は、エンジン10の排気通路130に設けられて、エンジン10から排出される排気ガスを浄化する触媒を、電気加熱するように構成される。EHC140は、作動時には、通電による発熱によって触媒温度を上昇させる。なお、EHC140には、種々の公知のEHCを適用することができる。
 第1MG20および第2MG30は、交流電動機であり、たとえば、三相交流同期電動機によって構成される。モータ駆動装置60は、蓄電装置70と、第1MG20および第2MG30との間で双方向の電力変換を行なうことによって、第1MG20および第2MG30の出力(回転数および/またはトルク)を制御する。
 第1MG20は、動力分割装置40によって分割されたエンジン10の動力を用いて発電する。第1MG20によって発電された電力は、モータ駆動装置60により交流から直流に変換され、蓄電装置70に蓄えられる。
 第2MG30は、蓄電装置70に蓄えられた電力および第1MG20により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、第2MG30の駆動力は、減速機50を介して駆動輪80に伝達される。なお、図1では、駆動輪80は前輪として示されているが、前輪に代えて、または前輪とともに、第2MG30によって後輪を駆動してもよい。
 なお、車両の制動時等には、減速機50を介して駆動輪80により第2MG30が駆動され、第2MG30が発電機として動作する。これにより、第2MG30は、車両の運動エネルギーを電力に変換する回生ブレーキとしても機能する。そして、第2MG30により発電された電力は、蓄電装置70に蓄えられる。
 動力分割装置40は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン10のクランクシャフトに連結される。サンギヤは、第1MG20の回転軸に連結される。リングギヤは第2MG30の回転軸および減速機50に連結される。
 そして、エンジン10、第1MG20および第2MG30が、遊星歯車から成る動力分割装置40を介して連結されることによって、図2に示すように、エンジン10、第1MG20および第2MG30の回転数は、共線図において直線で結ばれる関係になる。
 再び図1を参照して、モータ駆動装置60は、蓄電装置70から電力を受け、ECU150からの制御信号に基づいて第1MG20および第2MG30を駆動する。また、モータ駆動装置60は、ECU150からの制御信号に基づいて、第1MG20および/または第2MG30によって発電される交流電力を直流電力に変換して蓄電装置70へ出力する。
 蓄電装置70は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。蓄電装置70の電圧は、たとえば200V程度である。蓄電装置70には、第1MG20および第2MG30によって発電される電力の他、後述のように、外部電源210から供給される電力が蓄えられる。なお、蓄電装置70として、大容量のキャパシタも採用可能である。
 ハイブリッド車1は、さらに、外部充電のための構成として、充電ポート110および充電器120を備える。
 充電ポート110は、外部電源210から受電するための電力インターフェースである。外部充電時、充電ポート110には、外部電源210から車両へ電力を供給するための充電ケーブルのコネクタ200が接続される。なお、充電ポート110に対しては、ケーブルによる電気的接続の他、外部電源と車両とを非接触のまま電磁的に結合することによって、外部電源から電力を供給する構成とすることも可能である。すなわち、ハイブリッド車1において、外部電源210から充電ポート110への電力供給の態様は特に限定されるものではない点について、確認的に記載する。
 充電器120は、充電ポート110、蓄電装置70およびEHC140(後述)と電気的に接続される。充電器120は、外部充電時には、ECU150からの制御信号に基づいて、外部電源210から供給される電力を蓄電装置70の充電電力に変換するように構成される。さらに、本実施の形態では、充電器120は、外部充電時と、車両走行時を含む外部電源からの非給電時との各々において、EHC140に電力を供給するように構成される。なお、充電器120の構成例および動作については、後程詳細に説明する。
 ECU150は、図示しない、CPU(Central Processing Unit)およびメモリを内蔵し、当該メモリに記憶されたマップおよびプログラムに基づいて、各センサによる検出値を用いた演算処理を行なうように構成される。あるいは、ECU150の少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。
 ECU150は、モータ駆動装置60および充電器120を駆動するための制御信号を生成し、その生成した制御信号をモータ駆動装置60および充電器120へ出力する。
 図3は、図1に示した充電器120の構成例を示す回路図である。
 図3を参照して、充電器120は、AC/DC変換部310と、DC/DC変換部320と、絶縁トランス330と、リレー380と、電圧センサ370,376,378と、電流センサ372,374とを含む。
 リレー380は、充電ポート110とAC/DC変換部310との間に配設され、ECU150からの制御信号SE1に応じてオン/オフされる。外部充電時に、電力線351には、リレー380および充電ポート110を経由して、外部電源210から交流電力が入力される。電力線351の交流電圧Vacおよび交流電流Iacは、電圧センサ370および電流センサ372によってそれぞれ検出される。電圧センサ370および電流センサ372の検出値は、ECU150ヘ出力される。
 AC/DC変換部310は、単相フルブリッジ回路から成る。DC/DC変換部320は、各々が単相フルブリッジ回路により構成された電圧変換部340,350と、絶縁トランス330とを有する。
 AC/DC変換部310は、外部充電時に、ECU150からの制御信号PWMC1に基づいて、電力線351の交流電力を直流電力に変換して、電力線352p,352g間に出力する。電力線352p,352g間には、キャパシタC2が接続される。電力線352p,352g間の直流電圧Vdcは、電圧センサ376によって検出される。電圧センサ376による検出値は、ECU150ヘ出力される。
 たとえば、AC/DC変換部310は、フルブリッジを構成するスイッチング素子のオンオフによって、電力線351に介挿接続されたリアクトルの通過電流を制御する。この際に、AC/DC変換部310は、交流電流Iacの電流波形(位相および振幅)を目標電流波形と一致させるように、リアクトル電流を制御することを通じて、電力線352pへ直流電流を出力する。さらに、当該目標電流波形の位相を、交流電圧Vacの位相と一致させることにより、外部電源210からの入力電力の力率を高めることができる。また、直流電圧Vdcの検出値と目標値との偏差に応じて、目標電流波形の振幅を調整することによって、直流電圧Vdcを目標値に制御することができる。
 DC/DC変換部320の電圧変換部340は、外部充電時に、ECU150からの制御信号PWMC2に基づいて、AC/DC変換部310から電力線352p,352gへ出力された直流電力を高周波の交流電力に変換して、電力線353へ出力する。電力線353は、絶縁トランス330の一次コイル332と接続される。
 絶縁トランス330は、磁性材から成るコアと、コアに巻回された一次コイル332および二次コイル334とを有する。一次コイル332および二次コイル334は、互いに電気的に絶縁されている。そして、絶縁トランス330では、一次コイル332および二次コイル334の巻数比に応じて、一次コイル332の交流電圧と、二次コイル334の交流電圧との間で電圧レベルが変換される。絶縁トランス330の二次コイル334は、電力線354と接続される。
 電圧変換部350は、外部充電時には、ECU150からの制御信号PWMC3に基づいて、電力線354の交流電力を直流電力に変換して、電力線355p,355g間へ出力する。電力線355pおよび355gは、蓄電装置70の正極および負極とそれぞれ電気的に接続される。蓄電装置70には、電圧Vbおよび電流Ibを検出するための電圧センサ381および電流センサ382が配置される。検出された蓄電装置70の電圧Vbおよび電流Ibは、ECU150へ出力される。
 電力線355p,355g間には、キャパシタC1が接続される。電力線355p,355gと蓄電装置70との間には、ECU150からの制御信号SE4に応じてオンオフされる充電リレー430が設けられてもよい。
 電力線355p,355gには、直流電流Icおよび直流電圧Vcを検出するための電流センサ374および電圧センサ378が配置される。電流センサ374および電圧センサ378の検出値は、ECU150へ出力される。
 外部充電時には、電圧変換部340,350を構成するスイッチング素子のオンオフによって、蓄電装置70の充電電力(電圧Vcおよび電流Ic)を制御することができる。すなわち、電圧変換部340,350および絶縁トランス330によって構成されるDC/DC変換部320は、絶縁トランス330を経由する電力変換経路によって、電力線355p,355gの直流電力を、蓄電装置70の充電電力に変換する。
 電圧変換部340,350を双方向に電力変換可能なフルブリッジ回路で構成することにより、DC/DC変換部320は、車両走行中を含む非外部充電時に、外部充電時における電力変換の逆変換により、絶縁トランス330を経由する電力変換経路によって、蓄電装置70からの直流電力を、電力線352p,352gに出力される直流電力に変換することができる。この際に、電圧変換部340,350を構成するスイッチング素子のオンオフによって、電力線352p,352gの直流電圧Vdcを目標値に制御することができる。このように、DC/DC変換部320は、蓄電装置70と、電力線352p,352gとの間で、双方向の直流電力変換を実行するように構成される。
 EHC140は、充電器120による電力変換経路の途中の電力線352p,352gと電気的に接続される。電力線352p,352gは、絶縁トランス330によって、蓄電装置70とは電気的に絶縁されている。
 さらに、EHC120と電力線352pとの間には、EHCリレー410が設けられ、EHC120と電力線352gとの間には、EHCリレー420が設けられる。EHCリレー410,420は、ECU150からの制御信号SE2,SE3に応じてオンオフされる。なお、EHCリレー410,420としては、リレーに代えて、オンオフを制御可能な任意の開閉器を「遮断機構」として適用可能である。
 EHCリレー410および420をオンすることにより、電力線352p,352g間の直流電圧Vdcが、EHC140に供給される。EHC140の電気抵抗値をRとすると、EHC140の通電電力は、(Vdc)2/Rとなる。すなわち、直流電圧Vdcを制御することにより、EHC140の発熱量を決める通電電力を制御することが可能である。
 図4には、EHC140の通電制御を説明するためのフローチャートが示される。図4に示す一連の処理は、ECU150によって実行される。
 図4を参照して、ECU150は、ステップS100により、EHC140の作動条件が成立しているか否かを判定する。たとえば、車両走行中には、触媒温度が所定温度よりも低いときに、EHC140の作動条件が成立する。あるいは、外部充電時に、外部充電完了後の車両運転に備えて予め触媒を暖機するように、EHC140の作動条件を設定することも可能である。
 EHC140の作動条件が成立しないとき(S100のNO判定時)には、EHC140に通電することなく(ステップS180)、処理は終了される。
 EHC140の作動条件が成立したとき(S100のYES判定時)には、ECU150は、外部充電時であるか否かを判定する(ステップS110)。
 ECU150は、外部充電時にEHC140の作動が要求されると(S110のYES判定時)、ステップS120により、充電器120におけるAC/DC変換部310への直流電圧Vdcの目標値を、EHC140が十分に機能を発揮するような適切な通電電力に対応した電圧値に設定する。これにより、充電器120による充電ポート110から蓄電装置70への電力変換において、電力線352p,352g間に出力される直流電圧Vdcによって、EHC140に通電することができる。これにより、外部電源210からの電力によってEHC140に給電することができる(ステップS130)。AC/DC変換部310が直流電圧Vdcを目標値に制御することによって、EHC140の通電電力は容易に制御できる。
 さらに、DC/DC変換部320による直流電力変換を制御することによって、EHC140の通電に適した直流電圧Vdcを、蓄電装置70を適切に充電するための充電電圧Vcおよび充電電流Icに変換することができる。すなわち、外部充電時には、充電器120を共用して、EHC140および蓄電装置70の両方に並列に給電できるとともに、両者への給電電力をAC/DC変換部310およびDC/DC変換部320によって、それぞれ制御することができる。
 なお、蓄電装置70の充電完了後に、充電ポート110に対して外部電源210からの電力が入力されている状態(たとえば、コネクタ200が充電ポート110に接続されたままの状態)のときには、充電器120のうちのAC/DC変換部310のみを動作させることにより、外部電源210からの電力によってEHC140に給電することも可能である。
 ECU150は、非外部充電時にEHC140の作動が要求されると(S110のNO判定時)、ステップS150により、充電リレー430をオンするとともに、充電器120のうちの少なくともDC/DC変換部320を動作させる。
 DC/DC変換部320は、蓄電装置70から出力された直流電力を、EHC140に通電するための直流電圧Vdcに変換して、電力線352p,352g間に出力する。この結果、外部電源210からの電力が使用できない場合(代表的には、車両走行中)にも、蓄電装置70の電力によってEHC140に通電できる(ステップS160)。この際に、DC/DC変換部320によって直流電圧Vdcを制御することによって、EHC140の通電電力は容易に制御できる。直流電圧Vdcの目標値は、EHC140が十分に機能を発揮するような適切な通電電力に対応した電圧値に設定することができる。
 このように、非外部充電時には、外部充電時における充電ポート110から蓄電装置70への電力変換の逆変換の一部である、蓄電装置70から電力線352p,352gへの電力変換によって、EHC140に給電することができる。
 なお、AC/DC変換部310については、非外部充電時、かつ、非走行時において、電力線352p,352g間の直流電圧を、外部電源210(たとえば、商用系統電源)と同等の交流電力に変換するように動作することも可能である。このようにすると、充電ポート110にケーブルを接続することによって、蓄電装置70の蓄積電力によって、車両外部に対して電力を供給することが可能となる。
 再び図3を参照して、蓄電装置70およびEHC140の間は、絶縁トランス330によって電気的に絶縁されている。したがって、蓄電装置70の電力によるEHC140の作動中に、EHC140に漏電等の電気的な異常が発生しても、蓄電装置70と電気的に接続された走行系システム(図1に示したモータ駆動装置60、第1MG20および、第2MG30等)とEHC140との電気的な絶縁が確保される。
 また、EHCリレー410および420をオフすることにより、EHC140は、電力線352p,352gの両方から電気的に切り離すことができる。したがって、仮に、EHC140に漏電等の電気的な異常が発生しても、充電器120における電力変換経路からEHC140を電気的に絶縁することができる。
 このように、本実施の形態によるハイブリッド車(電動車両)では、外部充電のための充電器120を用いて、外部充電と車両走行中を含む非外部充電時とのいずれにおいても、制御可能な直流電圧を、EHC140へ供給することができる。このため、EHC140が十分に機能を発揮できるように、EHC140の通電電力を容易に制御できる。また、蓄電装置70およびEHC140が充電器120の絶縁トランス330によって電気的に絶縁されている構成によってEHC140に給電できるので、EHC140に漏電等の電気的な異常が発生しても、蓄電装置70と電気的に接続された走行系システムに悪影響が及ぶことを防止できる。
 さらに、EHC140の正極側および負極側の両方にEHCリレー410,420(遮断機構)を設けることにより、EHC140に漏電等の電気的な異常が発生しても、外部充電に悪影響が及ぶことを防止できる。また、外部充電時には、EHC140へ供給される直流電圧Vdcを出力する変換器(AC/DC変換部310)と、直流電圧Vdcを蓄電装置70の充電電力に変換する変換器(DC/DC変換部320)とが独立に制御されるので、EHC140への給電電力および蓄電装置70の充電電力をそれぞれ制御した上で、EHC140および蓄電装置70の両方に並列に給電することができる。
 なお、本実施の形態では、動力分割装置40によりエンジン10の動力を分割して駆動輪80と第1MG20とに伝達可能なシリーズ/パラレル型のハイブリッド車について説明したが、本発明の適用は実施の形態での例示に限定されるものではない。本発明が適用される電動車両は、電気エネルギによって車両駆動力を発生可能である車両を包括的に含むものであり、内燃機関およびEHCを搭載する外部充電可能な電動車両であれば、駆動系の構成を限定することなく、本願発明を同様に適用することができる。たとえば、動力分割装置を備えることなくエンジンとモータとによって車輪を駆動する、いわゆるパラレル型のハイブリッド車や、エンジンを発電のみに用いるシリーズ型のハイブリッド車に対しても、本発明を適用可能である。
 本実施の形態に示した充電器120は、この発明における「充電器」の一実施例に対応する。充電器120の構成は、図3の構成例に限定されるものではなく、絶縁機構(トランス)を用いて、蓄電装置70と充電ポート110との間を電気的に絶縁した上で電力変換を実行するものであれば、任意の回路構成を適用することができる。この場合にも、EHC140を、絶縁機構によって蓄電装置70から絶縁し、かつ、直流電圧が出力される電力線と電気的に接続することによって、本実施の形態と同様にEHC140の通電電力を供給することができる。
 上記において、エンジン10は、この発明における「内燃機関」の一実施例に対応し、第2MG30は、この発明における「電動機」の一実施例に対応する。また、充電ポート110は、この発明における「受電部」の一実施例に対応し、EHC140は、この発明における「電気加熱式触媒装置」の一実施例に対応する。EHCリレー410,420は、この発明における「第1の遮断機構」および「第2の遮断機構」の一実施例にそれぞれ対応する。
 また、充電器120において、電力線352pおよび352gは、この発明における「第1の電力線」および「第2の電力線」の一実施例にそれぞれ対応し、絶縁トランス330は、この発明における「絶縁機構」の一実施例に対応する。さらに、AC/DC変換部310は、この発明における「第1の電力変換部」の一実施例に対応し、DC/DC変換部320は、この発明における「第2の電力変換部」の一実施例に対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 この発明は、内燃機関および車両走行用の電動機を搭載し、かつ、電気加熱式触媒装置を備えた電動車両に適用することができる。
 1 ハイブリッド車、10 エンジン、20 第1MG、30 第2MG、40 動力分割装置、50 減速機、60 モータ駆動装置、70 蓄電装置、80 駆動輪、110 充電ポート、120 充電器、130 排気通路、140 EHC、150 ECU、200 コネクタ、210 外部電源、310 AC/DC変換部、320 DC/DC変換部、330 絶縁トランス、332 一次コイル、334 二次コイル、340,350 電圧変換部、351,352g,352p,353,354,355p,355g 電力線、370,376,378,381 電圧センサ、372,374,374,382 電流センサ、380 リレー、410,420 EHCリレー、430 充電リレー、2009 特開、C1,C2 キャパシタ、Ib 電流(蓄電装置)、Ic 直流電流(充電電流)、PWMC1,PWMC2,PWMC3,SE1~SE4 制御信号、Vb 電圧(蓄電装置)、Vc 直流電圧(充電電圧)。

Claims (6)

  1.  内燃機関(10)および車両走行用の電動機(30)を搭載する電動車両であって、
     前記電動機へ供給される電力を蓄える蓄電装置(70)と、
     車両外部の電源(210)から供給される電力を受ける受電部(110)と、
     前記受電部と電気的に接続された一次側と前記蓄電装置と電気的に接続された二次側とを電気的に絶縁した上で電気エネルギを伝達するように構成された絶縁機構(330)を経由する電力変換経路によって、前記電源からの給電時に、前記受電部が受けた電力を前記蓄電装置の充電電力に変換する交流/直流電力変換を実行するための充電器(120)とを備え、
     前記充電器は、前記電力変換経路上で前記絶縁機構の一次側と電気的に接続された、線間に直流電圧が出力される第1および第2の電力線(157p,157g)を有し、
     前記電動車両は、
     前記第1および第2の電力線と電気的に接続されて、前記内燃機関から排出される排気ガスを浄化する触媒を電気加熱するための電気加熱式触媒装置(140)をさらに備え、
     前記充電器は、前記交流/直流電力変換の一部の逆変換によって、前記蓄電装置からの電力を前記第1および第2の電力線に出力される直流電圧に変換できるように構成される、電動車両。
  2.  前記充電器は、前記電源による前記蓄電装置の充電時に前記電気加熱式触媒装置を作動する場合に、前記第1および第2の電力線間の前記直流電圧の制御によって前記電気加熱式触媒装置への給電電力を制御するとともに、前記前記第1および第2の電力線と前記蓄電装置との間の直流電力変換の制御によって前記蓄電装置の充電電力を制御する、請求項1記載の電動車両。
  3.  前記充電器は、前記電源からの非給電時において前記電気加熱式触媒装置を作動する場合に、前記逆変換によって、前記蓄電装置からの電力を前記直流電圧に変換して前記第1および第2の電力線に出力する、請求項1記載の電動車両。
  4.  内燃機関(10)および車両走行用の電動機(30)を搭載する電動車両であって、
     前記電動機へ供給される電力を蓄える蓄電装置(70)と、
     車両外部の電源(210)から供給される電力を受ける受電部(110)と、
     前記電源からの給電時に、前記受電部が受けた電力を前記蓄電装置の充電電力に変換するための充電器(120)とを備え、
     前記充電器は、
     前記受電部が受けた交流電力を直流電力に変換して第1および第2の電力線間に出力するための第1の電力変換部(310)と、
     前記第1および第2の電力線と電気的に接続された一次側と前記蓄電装置と電気的に接続された二次側とを電気的に絶縁した上で電気エネルギを伝達するように構成された絶縁機構(330)を経由する電力変換経路によって、前記蓄電装置と前記第1および第2の電力線との間で双方向の電力変換を行うための第2の電力変換部(320)とを含み、
     前記電動車両は、
     前記第1および第2の電力線と電気的に接続されて、前記内燃機関から排出される排気ガスを浄化する触媒を電気加熱するための電気加熱式触媒装置(140)をさらに備える、電動車両。
  5.  前記充電器は、前記電源による前記蓄電装置の充電時に前記電気加熱式触媒装置を作動する場合に、前記第1の電力変換部による前記第1および第2の電力線間の直流電圧の制御によって前記電気加熱式触媒装置への給電電力を制御するとともに、前記第2の電力変換部によって前記蓄電装置の充電電力を制御する、請求項4記載の電動車両。
  6.  前記第1の電力線と前記電気加熱式触媒装置(140)との間に配置された第1の遮断機構(410)と、
     前記第2の電力線と前記電気加熱式触媒装置(140)との間に配置された第2の遮断機構(410)とをさらに備える、請求項1~5のいずれか1項に記載の電動車両。
PCT/JP2012/077562 2012-10-25 2012-10-25 電動車両 WO2014064794A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/077562 WO2014064794A1 (ja) 2012-10-25 2012-10-25 電動車両
US14/422,311 US9834093B2 (en) 2012-10-25 2012-10-25 Electrically-powered vehicle
CN201280076485.1A CN104736366B (zh) 2012-10-25 2012-10-25 电动车辆
JP2014543070A JP6020585B2 (ja) 2012-10-25 2012-10-25 電動車両
EP12887239.7A EP2913213B1 (en) 2012-10-25 2012-10-25 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077562 WO2014064794A1 (ja) 2012-10-25 2012-10-25 電動車両

Publications (1)

Publication Number Publication Date
WO2014064794A1 true WO2014064794A1 (ja) 2014-05-01

Family

ID=50544192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077562 WO2014064794A1 (ja) 2012-10-25 2012-10-25 電動車両

Country Status (5)

Country Link
US (1) US9834093B2 (ja)
EP (1) EP2913213B1 (ja)
JP (1) JP6020585B2 (ja)
CN (1) CN104736366B (ja)
WO (1) WO2014064794A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019298A (ja) * 2014-07-04 2016-02-01 日産自動車株式会社 電力変換装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068883A1 (ja) * 2012-10-29 2014-05-08 三洋電機株式会社 車両用電源装置
JP5741962B2 (ja) * 2012-11-30 2015-07-01 株式会社デンソー 非接触給電装置
DE102014222359A1 (de) * 2014-11-03 2016-05-04 Bayerische Motoren Werke Aktiengesellschaft Hybridantriebssystem
DE102016105542A1 (de) * 2016-03-24 2017-09-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines elektrischen Netzes
CN107117059B (zh) * 2017-06-05 2020-10-23 上海蔚来汽车有限公司 电动汽车车载端充电装置、电动汽车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861048A (ja) 1994-08-22 1996-03-05 Honda Motor Co Ltd 電気加熱式触媒制御装置
JP2009274479A (ja) 2008-05-12 2009-11-26 Toyota Motor Corp ハイブリッド車両
JP2009274470A (ja) 2008-05-12 2009-11-26 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の電力制御方法
JP2009274471A (ja) 2008-05-12 2009-11-26 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法
JP2009286337A (ja) 2008-05-30 2009-12-10 Toyota Motor Corp ハイブリッド車両
WO2011111176A1 (ja) * 2010-03-10 2011-09-15 トヨタ自動車株式会社 車両および触媒装置に通電する方法
WO2012111102A1 (ja) * 2011-02-16 2012-08-23 トヨタ自動車株式会社 ハイブリッド車両の排気浄化システムおよびその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900410B2 (ja) * 2009-03-25 2012-03-21 トヨタ自動車株式会社 車両の制御装置
WO2011114417A1 (ja) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 車両
WO2011114451A1 (ja) * 2010-03-17 2011-09-22 トヨタ自動車株式会社 車両の制御装置
JP5626309B2 (ja) * 2012-10-23 2014-11-19 トヨタ自動車株式会社 ハイブリッド車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861048A (ja) 1994-08-22 1996-03-05 Honda Motor Co Ltd 電気加熱式触媒制御装置
JP2009274479A (ja) 2008-05-12 2009-11-26 Toyota Motor Corp ハイブリッド車両
JP2009274470A (ja) 2008-05-12 2009-11-26 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の電力制御方法
JP2009274471A (ja) 2008-05-12 2009-11-26 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法
JP2009286337A (ja) 2008-05-30 2009-12-10 Toyota Motor Corp ハイブリッド車両
WO2011111176A1 (ja) * 2010-03-10 2011-09-15 トヨタ自動車株式会社 車両および触媒装置に通電する方法
WO2012111102A1 (ja) * 2011-02-16 2012-08-23 トヨタ自動車株式会社 ハイブリッド車両の排気浄化システムおよびその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019298A (ja) * 2014-07-04 2016-02-01 日産自動車株式会社 電力変換装置

Also Published As

Publication number Publication date
JPWO2014064794A1 (ja) 2016-09-05
EP2913213A4 (en) 2016-03-30
CN104736366A (zh) 2015-06-24
US9834093B2 (en) 2017-12-05
US20150224878A1 (en) 2015-08-13
EP2913213A1 (en) 2015-09-02
EP2913213B1 (en) 2019-11-20
CN104736366B (zh) 2017-08-11
JP6020585B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
JP4483976B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP5626309B2 (ja) ハイブリッド車両
JP4325728B1 (ja) ハイブリッド車両およびハイブリッド車両の電力制御方法
JP6521920B2 (ja) 車両およびその制御方法
JP5459408B2 (ja) 電動車両の電源システムおよびその制御方法ならびに電動車両
JP2009274479A (ja) ハイブリッド車両
JP5327235B2 (ja) 車両の充電システムおよび充電システムの制御方法
JP5093293B2 (ja) 車両の制御装置
JP5321695B2 (ja) 車両
JP6020585B2 (ja) 電動車両
JP5660104B2 (ja) 車両
WO2013061443A1 (ja) 電力供給システムおよび車両
WO2012111103A1 (ja) 車両および車両の制御方法
WO2013061442A1 (ja) 電力供給システムおよび給電装置
JP5630419B2 (ja) 電力供給システムおよび車両
WO2012066665A1 (ja) 車両および車両の制御方法
JP5625715B2 (ja) 車両の制御装置および制御方法
US10464550B2 (en) Abnormality detection of current sensor for electrically heated catalyst device in hybrid vehicle
WO2012081101A1 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14422311

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014543070

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012887239

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE