WO2014061898A1 - 탄화규소 분말 및 그의 제조 방법 - Google Patents

탄화규소 분말 및 그의 제조 방법 Download PDF

Info

Publication number
WO2014061898A1
WO2014061898A1 PCT/KR2013/006163 KR2013006163W WO2014061898A1 WO 2014061898 A1 WO2014061898 A1 WO 2014061898A1 KR 2013006163 W KR2013006163 W KR 2013006163W WO 2014061898 A1 WO2014061898 A1 WO 2014061898A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
carbide powder
phase
particle size
powder
Prior art date
Application number
PCT/KR2013/006163
Other languages
English (en)
French (fr)
Inventor
김병숙
신동근
한정은
민경석
Original Assignee
엘지이노텍 주식회사
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사, 성균관대학교산학협력단 filed Critical 엘지이노텍 주식회사
Priority to CN201380054592.9A priority Critical patent/CN104755421A/zh
Priority to US14/408,151 priority patent/US9440859B2/en
Publication of WO2014061898A1 publication Critical patent/WO2014061898A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/977Preparation from organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a silicon carbide powder and a method for producing the same, and more particularly, to a method for producing granular silicon carbide powder using fine silicon carbide powder.
  • Silicon carbide has high temperature strength, and is excellent in wear resistance, oxidation resistance, corrosion resistance, creep resistance, and the like. Silicon carbide has a ⁇ phase having a cubic crystal structure and an ⁇ phase having a hexagonal crystal structure. The ⁇ phase is stable at a temperature range of 1400-1800 ° C., and the ⁇ phase is stable at 2000 ° C. or higher.
  • Silicon carbide is widely used as an industrial structural material, and has recently been applied to the semiconductor industry. For this purpose, silicon carbide powder of high purity stable at high temperature is required.
  • Silicon carbide powder can be produced by, for example, the Acheson method, carbon heat reduction method, CVD (Chemical Vapor Deposition) method and the like.
  • the silicon carbide powder can be obtained by thermal carbon reduction of the silicon source and the carbon source at a high temperature (for example, 2200 ° C to 2400 ° C).
  • the silicon carbide powder prepared according to this is low in purity and requires a separate high purity treatment.
  • the ⁇ -phase silicon carbide has a lower vapor pressure than the ⁇ -phase silicon carbide. Therefore, when the ⁇ phase silicon carbide powder is heat-treated at a high temperature, the ⁇ phase silicon carbide evaporates and condenses into the ⁇ phase silicon carbide powder. At this time, if the heat treatment time is short, there is a problem that the ⁇ phase and ⁇ phase is mixed, and if the heat treatment time is long, high purity silicon carbide powder of ⁇ phase can be obtained, but there is a problem of overgrowth to a particle size of several hundred ⁇ m or more.
  • the technical problem to be achieved by the present invention is to provide a high-purity silicon carbide powder stable at high temperatures and a method for producing the same.
  • Another object of the present invention is to provide a method for producing silicon carbide powder of various particle sizes.
  • Silicon carbide powder production method includes the step of adding a seed to the beta-phase silicon carbide powder, and the step of heat-treating the beta-phase silicon carbide powder to form an alpha-phase silicon carbide powder.
  • the heat treatment may be performed at 2000 ° C. to 2200 ° C. for at least 4 hours.
  • the particle size of the alpha phase silicon carbide powder can be adjusted according to the amount of seed added.
  • the amount of seed added may be 1wt% to 7wt% with respect to the beta-phase silicon carbide powder.
  • the seed added may be alpha phase silicon carbide.
  • the silicon carbide powder according to another embodiment of the present invention includes an alpha phase silicon carbide powder having a particle size (D50) of 45 ⁇ m to 110 ⁇ m and containing impurities of 10 ppm or less.
  • the silicon carbide powder according to another embodiment of the present invention includes an alpha phase silicon carbide powder having a particle size (D50) of greater than 0 ⁇ m and less than or equal to 45 ⁇ m, and includes a first group containing impurities of 10 ppm or less, and having a particle size of greater than 45 ⁇ m and greater than 75
  • a second group containing alpha-phase silicon carbide powder having a particle size of less than or equal to ⁇ m, including a second group containing impurities of 10 ppm or less, and a third group containing an alpha phase silicon carbide powder having a particle size of greater than 75 ⁇ m and less than 110 ⁇ m, and containing impurities of 10 ppm or less At least one group selected from:
  • the first group, the second group, and the third group may be divided according to the amount of seeds added in the preparation of the alpha-phase silicon carbide powder.
  • high purity silicon carbide powder stable at high temperature can be obtained.
  • the particle size of the silicon carbide powder obtained can be adjusted by adjusting the heat treatment conditions and the ratio of seeds.
  • FIG. 1 is a flowchart illustrating a method of manufacturing silicon carbide powder according to an embodiment of the present invention.
  • FIG. 2 shows the results of Comparative Example 1
  • FIG. 3 shows the results of Comparative Example 2
  • FIG. 4 shows the results of Comparative Example 3
  • FIG. 5 is a graph showing the particle size distribution according to Comparative Example 3.
  • FIG. 6 shows the results of Example 1
  • FIG. 7 shows the results of Example 2
  • FIG. 8 shows the results of Example 3
  • FIG. 9 shows the results of Example 4.
  • FIG. 10 is a graph showing a particle size distribution of Example 1
  • FIG. 11 is a graph showing a particle size distribution of Example 2
  • FIG. 12 is a graph showing a particle size distribution of Example 3
  • FIG. 13 is a particle size of Example 4 Graph showing the distribution.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • high purity ⁇ phase silicon carbide powder When the high purity ⁇ phase silicon carbide powder is heat-treated at high temperature, high purity ⁇ phase silicon carbide powder can be obtained.
  • the process of evaporating silicon carbide of the ⁇ phase and condensation into the silicon carbide of the ⁇ phase there is a section in which the silicon carbide of the ⁇ phase and the silicon carbide of the ⁇ phase are mixed. Therefore, in order to obtain high purity ⁇ -phase silicon carbide powder, it is necessary to maintain the heat treatment for a predetermined time. By the way, if heat treatment is maintained for a predetermined time, ⁇ phase silicon carbide of excessive granules (eg, 150 ⁇ m or more) is obtained.
  • excessive granules eg, 150 ⁇ m or more
  • the ⁇ -phase silicon carbide powder is heat-treated at a high temperature to obtain stable ⁇ -phase silicon carbide powder at high temperature.
  • a seed is added to the silicon carbide of the ⁇ -phase.
  • FIG. 1 is a flowchart showing a method for producing the silicon carbide powder of the present invention.
  • the silicon carbide powder on ⁇ may be obtained by mixing a silicon source and a carbon source, and then heat treating the mixed powder.
  • Silicon sources are one of various materials that can provide silicon.
  • the silicon source may be, for example, one or more selected from the group consisting of fumed silica, fine silica, silica sol, silica gel, quartz powder and mixtures thereof.
  • the carbon source may be a solid carbon source or an organic carbon compound.
  • the solid carbon source may be, for example, one or more selected from the group consisting of graphite, carbon black, carbon nanotubes (CNTs), fullerenes, and mixtures thereof.
  • the organic carbon compound is phenol resin, franc resin, xylene resin, polyimide, polyurethane, polyvinyl alcohol, polyacrylonitrile It may be at least one selected from the group consisting of polyvinyl acetate, cellulose and mixtures thereof.
  • the silicon source and the carbon source may be mixed wet or dry.
  • the silicon source and the carbon source may be mixed using, for example, a ball mill, an attention mill, a 3 roll mill, or the like.
  • the mixed powder can be recovered, for example, using a sieve.
  • the heat treatment of the mixed powder may be divided into a carbonization process and a synthesis process.
  • the carbonization process is performed, for example, under the conditions of 600 ° C. to 1000 ° C.
  • the synthesis process may be performed for a predetermined time (eg, 3 hours) under the conditions of 1300 ° C. to 1700 ° C., for example.
  • the process of preparing the ⁇ -phase silicon carbide powder described above is merely an example, and the ⁇ -phase silicon carbide powder may be manufactured according to various methods.
  • the silicon carbide powder of ⁇ phase is added to the silicon carbide powder of ⁇ phase as a seed (S110), and then heat-treated to form a silicon carbide powder of granules (S120).
  • the heat treatment may be performed at a high temperature of 2000 ° C. or higher (eg, 2000 ° C. to 2200 ° C.).
  • a high temperature of 2000 ° C. or higher (eg, 2000 ° C. to 2200 ° C.).
  • evaporation-condensation may occur due to the high vapor pressure difference between silicon carbide of ⁇ phase and silicon carbide of ⁇ phase, and particles may grow rapidly by recrystallization.
  • the silicon carbide phase transition of the ⁇ phase silicon carbide there is a section in which the ⁇ carbide silicon phase and the ⁇ phase silicon carbide are mixed. In order to obtain only the ⁇ phase silicon carbide, the heat treatment can be maintained for 4 hours or more.
  • the silicon carbide powder of ⁇ phase added as a seed plays a role of nucleation. That is, silicon carbide on ⁇ evaporates at a high temperature and condenses on the surface of the silicon carbide powder on ⁇ added as a seed.
  • the size of the particles of silicon carbide powder formed may vary. For example, the larger the amount of the silicon carbide powder on ⁇ added to the seed, the smaller the size of the formed particles. Therefore, the amount of the silicon carbide powder in the ⁇ phase added to the seed can be adjusted according to the desired particle size.
  • the first group includes an alpha phase silicon carbide powder having a particle size (D50) of greater than 0 ⁇ m and less than or equal to 45 ⁇ m, and an agent comprising an alpha phase silicon carbide powder having a particle size of more than 45 ⁇ m and less than 75 ⁇ m.
  • Silicon carbide powder comprising at least one group selected from two groups and a third group containing alpha-phase silicon carbide powder having a particle size larger than 75 ⁇ m and not larger than 110 ⁇ m can be obtained.
  • the particle size can be adjusted without the grinding process, it is possible to obtain an alpha phase silicon carbide powder having impurities of 10 ppm or less (purity of 99.999%).
  • the impurity may mean oxygen or nitrogen contained in the alpha phase silicon carbide powder.
  • ⁇ -phase silicon carbide powder having an average particle size of 1.7 ⁇ m was placed in a graphite crucible, raised to 1450 ° C. in a vacuum atmosphere, raised to 2150 ° C. in an argon atmosphere, maintained for 1 hour, and naturally cooled.
  • ⁇ -phase silicon carbide powder having an average particle size of 1.7 ⁇ m was placed in a graphite crucible, raised to 1450 ° C. in a vacuum atmosphere, raised to 2150 ° C. in an argon atmosphere, maintained for 3 hours, and naturally cooled.
  • ⁇ -phase silicon carbide powder having an average particle size of 1.7 ⁇ m was placed in a graphite crucible, raised to 1450 ° C. in a vacuum atmosphere, raised to 2150 ° C. in an argon atmosphere, maintained for 5 hours, and naturally cooled.
  • FIG. 2 shows the results of Comparative Example 1
  • FIG. 3 shows the results of Comparative Example 2
  • FIG. 4 shows the results of Comparative Example 3
  • FIG. 5 is a graph showing the particle size distribution according to Comparative Example 3.
  • ⁇ -phase silicon carbide powder 1wt% was added to ⁇ -phase silicon carbide powder having an average particle size of 1.7 ⁇ m and placed in a graphite crucible, which was heated up to 1450 ° C. in a vacuum atmosphere, raised to 2150 ° C. in an argon atmosphere, and maintained for 5 hours. And naturally cooled.
  • 3wt% of ⁇ -phase silicon carbide powder was added to ⁇ -phase silicon carbide powder having an average particle size of 1.7 ⁇ m, placed in a graphite crucible, heated to 1450 ° C. in a vacuum atmosphere, and raised to 2150 ° C. in an argon atmosphere, and then maintained for 5 hours. And naturally cooled.
  • ⁇ -phase silicon carbide powder 5wt% was added to ⁇ -phase silicon carbide powder having an average particle size of 1.7 ⁇ m, placed in a graphite crucible, heated to 1450 ° C. in a vacuum atmosphere, raised to 2150 ° C. in an argon atmosphere, and maintained for 5 hours. And naturally cooled.
  • ⁇ -phase silicon carbide powder 7 wt% of ⁇ -phase silicon carbide powder was added to ⁇ -phase silicon carbide powder having an average particle size of 1.7 ⁇ m, put in a graphite crucible, and heated to 1450 ° C. in a vacuum atmosphere, and raised to 2150 ° C. in an argon atmosphere, and then maintained for 5 hours. And naturally cooled.
  • FIG. 6 shows the results of Example 1
  • FIG. 7 shows the results of Example 2
  • FIG. 8 shows the results of Example 3
  • FIG. 9 shows the results of Example 4.
  • FIG. 10 is a graph showing a particle size distribution of Example 1
  • FIG. 11 is a graph showing a particle size distribution of Example 2
  • FIG. 12 is a graph showing a particle size distribution of Example 3
  • FIG. 13 is a fourth example It is a graph showing the particle size distribution of.
  • the ratio of the powder having a particle size of 45 ⁇ m to 75 ⁇ m in the final powder was the highest.
  • the proportion of the powder having a particle size of 45 ⁇ m or less in the final powder was the highest. This is because the grain size decreases as the size of the seed used for nucleation increases.
  • the high purity ⁇ -phase silicon carbide powder may be heat-treated at a high temperature to obtain high purity ⁇ -phase silicon carbide powder.
  • the quality of the alpha phase silicon carbide powder obtained by lengthening the heat processing time can be improved.
  • the particle size of the ⁇ -phase silicon carbide powder obtained can be adjusted using the amount of the seed added. Accordingly, the market demand for ⁇ -phase silicon carbide powder having various particle sizes can be satisfied, and since the grinding process is not performed to control the particle size, the purity of the material can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명의 한 실시예에 따른 탄화규소 분말 제조 방법은 베타상의 탄화규소 분말에 시드를 첨가하는 단계, 그리고 상기 베타상의 탄화규소 분말을 열처리하여 알파상의 탄화규소 분말을 형성하는 단계를 포함한다.

Description

탄화규소 분말 및 그의 제조 방법
본 발명은 탄화규소 분말 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 미립의 탄화규소 분말을 이용하여 과립의 탄화규소 분말을 제조하는 방법에 관한 것이다.
탄화규소(SiC)는 고온강도가 높고, 내마모성, 내산화성, 내식성, 크립저항성 등이 우수하다. 탄화규소는 입방 정(cubic) 결정 구조를 갖는 β 상과 육방정(hexagonal) 결정구조를 갖는 α상이 존재한다. β 상은 1400-1800℃의 온도 범위에서 안정하고, α상은 2000℃ 이상에서 안정하다.
탄화규소는 산업체 구조용 재료로 널리 이용되고 있으며, 최근에는 반도체 산업에도 적용되고 있다. 이를 위하여, 고온에서 안정한 고순도의 탄화규소 분말이 요구되고 있다.
탄화규소 분말은, 예를 들면 에치슨(Acheson) 공법, 탄소열 환원법, CVD(Chemical Vapor Deposition) 공법 등에 의하여 제조될 수 있다. 에치슨 공법에 따르면, 규소원과 탄소원을 고온(예, 2200℃ 내지 2400℃)에서 열탄소 환원하여 α상의 탄화규소 분말을 얻을 수 있다. 다만, 이에 따라 제조된 탄화규소 분말은 순도가 낮아 별도의 고순도화 처리가 요구된다.
반면, 정제된 원료를 상대적으로 저온에서 합성하면, 고순도의 탄화규소 분말을 얻을 수 있다. 다만, 저온에서는 β상의 미립의 탄화규소 분말을 얻기 쉬우며, 이는 고온에서 불안정한 문제가 있다.
한편, β상의 탄화규소는 α상의 탄화규소보다 증기압이 낮다. 따라서, β상의 탄화규소 분말을 고온에서 열처리하면 β상의 탄화규소가 증발하여 α상의 탄화규소 분말로 응축된다. 이때, 열처리 시간이 짧으면 β상과 α상이 혼재하는 문제가 있고, 열처리 시간이 길면 고순도의 α상의 탄화규소 분말을 얻을 수는 있으나 수백 ㎛이상의 입도로 과성장하는 문제가 있다.
본 발명이 이루고자 하는 기술적 과제는 고온에서 안정한 고순도의 탄화규소 분말 및 그의 제조 방법을 제공하는 데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는 다양한 입도의 탄화규소 분말을 제조하는 방법을 제공하는 데 있다.
본 발명의 일 양태에 따른 탄화규소 분말 제조 방법은 베타상의 탄화규소 분말에 시드를 첨가하는 단계, 그리고 상기 베타상의 탄화규소 분말을 열처리하여 알파상의 탄화규소 분말을 형성하는 단계를 포함한다.
상기 열처리는 2000℃ 내지 2200℃에서 4시간 이상 행해질 수 있다.
첨가되는 시드의 양에 따라 상기 알파상의 탄화규소 분말의 입도를 조절할 수 있다.
첨가되는 시드의 양은 상기 베타상의 탄화규소 분말에 대하여 1wt% 내지 7wt%일 수 있다.
첨가되는 시드는 알파상의 탄화규소일 수 있다.
본 발명의 다른 양태에 따른 탄화규소 분말은 입도(D50)가 45㎛ 내지 110㎛이고, 불순물이 10ppm이하로 함유된 알파상의 탄화규소 분체를 포함한다.
본 발명의 다른 양태에 따른 탄화규소 분말은 입도(D50)가 0㎛보다 크고 45㎛이하인 알파상의 탄화규소 분체를 포함하며, 불순물이 10ppm이하로 함유된 제1 그룹, 입도가 45㎛보다 크고 75㎛이하인 알파상의 탄화규소 분체를 포함하며, 불순물이 10ppm이하로 함유된 제2 그룹 및 입도가 75㎛보다 크고 110㎛이하인 알파상의 탄화규소 분체를 포함하며, 불순물이 10ppm이하로 함유된 제3 그룹으로부터 선택된 적어도 하나의 그룹을 포함한다.
상기 제1 그룹, 제2 그룹 및 제3 그룹은 알파상의 탄화규소 분체 제조 시에 첨가되는 시드의 양에 따라 구분될 수 있다.
본 발명의 실시예에 따르면, 고온에서 안정한 고순도의 탄화규소 분말을 얻을 수 있다. 또한, 열처리 조건 및 시드(seed)의 비율 등을 조절하여, 얻어지는 탄화규소 분말의 입도를 조절할 수 있다.
도 1은 본 발명의 실시예에 따른 탄화규소 분말을 제조하는 방법을 나타내는 순서도이다.
도 2는 비교예 1의 결과를 나타내고, 도 3은 비교예 2의 결과를 나타내며, 도 4는 비교예 3의 결과를 나타내며, 도 5는 비교예 3에 따른 입도 분포를 나타내는 그래프이다.
도6은 실시예 1의 결과를 나타내고, 도 7은 실시예 2의 결과를 나타내며, 도 8은 실시예 3의 결과를 나타내고, 도 9는 실시예 4의 결과를 나타낸다.
도 10은 실시예 1의 입도 분포를 나타내는 그래프이고, 도 11은 실시예 2의 입도 분포를 나타내는 그래프이며, 도 12는 실시예 3의 입도 분포를 나타내는 그래프이고, 도 13은 실시예 4의 입도 분포를 나타내는 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
고순도의 β 상의 탄화규소 분말을 고온에서 열처리하면 고순도의 α상의 탄화규소 분말을 얻을 수 있다. 다만, β 상의 탄화규소가 증발하여 α상의 탄화규소로 응축하는 과정에서, β 상의 탄화규소와 α상의 탄화규소가 혼재하는 구간이 있다. 따라서, 고순도의 α상의 탄화규소 분말을 얻기 위하여, 열처리를 소정 시간 동안 유지할 필요가 있다. 그런데, 열처리를 소정 시간 동안 유지하면, 과대 과립(예, 150㎛이상)의 α상의 탄화규소가 얻어진다.
한편, 시장에서는 다양한 입도(예, 수십 ㎛)를 가지는 α상의 탄화규소 분말에 대한 요구가 커지고 있다.
본 발명의 한 실시예에 따르면, 고온에서 안정한 α상의 탄화규소 분말을 얻기 위하여, β 상의 탄화규소 분말을 고온에서 열처리한다. 이때, 형성되는 α상의 탄화규소 분말의 입도를 조절하기 위하여, β 상의 탄화규소에 시드(seed)를 첨가한다.
도 1은 본 발명의 탄화규소 분말을 제조하는 방법을 나타내는 순서도이다.
도 1을 참조하면, 먼저, β 상의 탄화규소 분말을 준비한다(S100). β 상의 탄화규소 분말은 규소원(Si source)과 탄소원(C source)을 혼합한 후, 혼합 분말을 열처리하여 얻어질 수 있다.
규소원은 규소를 제공할 수 있는 다양한 물질 중 하나이다. 규소원은, 예를 들면 건식 실리카(fumed silica), 미세 실리카(silica), 실리카솔(silica sol), 실리카겔(silica gel), 석영 분말 및 그들의 혼합물로 구성된 그룹에서 선택된 하나 이상일 수 있다.
탄소원은 고체 탄소원 또는 유기 탄소 화합물일 수 있다. 고체 탄소원은, 예를 들면 흑연(graphite), 카본 블랙(carbon black), 탄소 나노 튜브(Carbon Nano Tube, CNT), 풀러렌(fullerene) 및 그들의 혼합물로 구성된 그룹에서 선택된 하나 이상일 수 있다. 유기 탄소 화합물은 페놀(phenol) 수지, 프랑(franc) 수지, 자일렌(xylene) 수지, 폴리이미드(polyimide), 폴리우레탄(polyurethane), 폴리비닐알콜(polyvinyl alcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐아세테이트(polyvinyl acetate), 셀룰로오스(cellulose) 및 그들의 혼합물로 구성된 그룹에서 선택된 하나 이상일 수 있다.
규소원과 탄소원은 습식 또는 건식으로 혼합될 수 있다. 규소원과 탄소원은, 예를 들면 볼 밀(ball mill), 어트리션 밀(attrition mill), 3롤 밀(3roll mill) 등을 이용하여 혼합될 수 있다. 혼합 분말은, 예를 들면 체(sieve)를 이용하여 회수될 수 있다.
혼합 분말을 열처리하는 과정은 탄화(carbonization) 공정 및 합성(synthesis) 공정으로 나뉠 수 있다. 탄화 공정은, 예를 들어 600℃ 내지 1000℃의 조건에서 행해지고, 합성 공정은, 예를 들어 1300℃ 내지 1700℃의 조건에서 소정 시간(예, 3시간) 동안 행해질 수 있다.
이상에서 설명한 β 상의 탄화규소 분말을 준비하는 과정은 예시에 불과하며, 다양한 방법에 따라 β 상의 탄화규소 분말을 제조할 수 있다.
다음으로, β 상의 탄화규소 분말에 α 상의 탄화규소 분말을 시드(seed)로 첨가하고(S110), 이를 열처리하여 과립의 탄화규소 분말을 형성한다(S120).
열처리는, 2000℃ 이상(예, 2000℃ 내지 2200℃)의 고온에서 행해질 수 있다. β 상의 탄화규소 분말을 고온에서 열처리하면, β 상의 탄화규소와 α상의 탄화규소 간의 높은 증기압 차로 인하여 증발-응축이 일어나고, 재결정화에 의하여 입자가 급격하게 성장할 수 있다. 한편, β 상의 탄화규소가 α상의 탄화규소 상전이하는 과정에서, β 상의 탄화규소와 α상의 탄화규소가 혼재하는 구간이 있다. α상의 탄화규소만을 얻기 위하여, 열처리는 4시간 이상 유지될 수 있다.
다만, β 상의 탄화규소를 4시간 이상 유지하면, 입도(D50)가 150㎛이상인 과대 과립의 탄화규소 분말이 얻어질 수 있다. 따라서, 탄화규소 분말의 입도를 조절하기 위하여, β 상의 탄화규소를 열처리하기 전에 시드를 첨가할 수 있다.
이때, 시드로 첨가되는 α 상의 탄화규소 분말은 핵 생성의 역할을 한다. 즉, β 상의 탄화규소가 고온에서 증발하며, 시드로 첨가된 α 상의 탄화규소 분말 표면에 응축된다. 핵 생성의 역할을 하는 시드의 양에 따라, 형성되는 탄화규소 분말의 입자의 크기가 달라질 수 있다. 예를 들어, 시드로 첨가되는 α 상의 탄화규소 분말의 양이 많을수록 형성되는 입자의 크기는 작아진다. 따라서, 원하는 입자의 크기에 따라 시드로 첨가되는 α 상의 탄화규소 분말의 양을 조절할 수 있다.
이에 따라, 고순도의 α 상의 탄화규소 분말을 얻기 위하여 β 상의 탄화규소를 4시간 이상 유지하더라도, 과대 과립의 탄화규소 분말의 생성을 방지할 수 있다.
본 발명의 한 실시예에 따르면 입도(D50)가 0㎛보다 크고 45㎛이하인 알파상의 탄화규소 분체를 포함하는 제1 그룹, 입도가 45㎛보다 크고 75㎛이하인 알파상의 탄화규소 분체를 포함하는 제2 그룹 및 입도가 75㎛보다 크고 110㎛이하인 알파상의 탄화규소 분체를 포함하는 제3 그룹으로부터 선택된 적어도 하나의 그룹을 포함하는 탄화규소 분말을 얻을 수 있다. 또한, 본 발명의 한 실시예에 따르면, 분쇄 공정 없이도 입도를 조절할 수 있으므로, 불순물이 10ppm 이하(99.999%의 순도)인 알파상의 탄화규소 분말을 얻을 수 있다. 여기서, 불순물은 알파상의 탄화규소 분말 내에 함유된 산소 또는 질소 등을 의미할 수 있다.
이하, 본 발명의 한 실시예에 따른 탄화규소 분말의 제조 방법을 비교예 및 실시예에 따라 구체적으로 설명한다.
표 1
Seed 양(wt%) 열처리 온도(℃) 열처리 시간(시간) 입도(D50) 결정상
비교예 1 0 2150 1 - β+α
비교예 2 0 2150 3 - β+α
비교예 3 0 2150 5 150㎛ α
실시예 1 1 2150 5 110㎛ α
실시예 2 3 2150 5 60㎛ α
실시예 3 5 2150 5 45㎛ α
실시예 4 7 2150 5 45㎛ α
<비교예 1>
평균 입자 크기가 1.7㎛인 β 상의 탄화규소 분말을 흑연 도가니에 넣고 진공 분위기에서 1450℃까지 올리고, 아르곤 분위기로 바꾸어 2150℃까지 올린 후, 1시간 동안 유지하고, 자연냉각하였다.
<비교예 2>
평균 입자 크기가 1.7㎛인 β 상의 탄화규소 분말을 흑연 도가니에 넣고 진공 분위기에서 1450℃까지 올리고, 아르곤 분위기로 바꾸어 2150℃까지 올린 후, 3시간 동안 유지하고, 자연냉각하였다.
<비교예 3>
평균 입자 크기가 1.7㎛인 β 상의 탄화규소 분말을 흑연 도가니에 넣고 진공 분위기에서 1450℃까지 올리고, 아르곤 분위기로 바꾸어 2150℃까지 올린 후, 5시간 동안 유지하고, 자연냉각하였다.
도 2는 비교예 1의 결과를 나타내고, 도 3은 비교예 2의 결과를 나타내며, 도 4는 비교예 3의 결과를 나타내며, 도 5는 비교예 3에 따른 입도 분포를 나타내는 그래프이다.
표 1 및 도 2 내지 도 4를 참조하면, 열처리 시의 유지 시간이 짧을수록 β 상의 탄화규소와 α상의 탄화규소가 혼재하지만, 열처리 시의 유지 시간이 길수록 α상의 탄화규소의 비율이 높아지는 것을 알 수 있다.
다만, 도 5에서 도시된 바와 같이, 열처리 시의 유지 시간이 길어지면, 입도(D50)가 150㎛이상으로 매우 커진다. 따라서, 150㎛이하의 입도를 가지는 고순도의 α상의 탄화규소를 얻기 위하여, β 상의 탄화규소 분말에 α상의 탄화규소 분말을 시드로 첨가할 수 있다.
<실시예 1>
평균 입자 크기가 1.7㎛인 β 상의 탄화규소 분말에 1wt%의 α상의 탄화규소 분말을 첨가하여 흑연 도가니에 넣고 진공 분위기에서 1450℃까지 올리고, 아르곤 분위기로 바꾸어 2150℃까지 올린 후, 5시간 동안 유지하고, 자연냉각하였다.
<실시예 2>
평균 입자 크기가 1.7㎛인 β 상의 탄화규소 분말에 3wt%의 α상의 탄화규소 분말을 첨가하여 흑연 도가니에 넣고 진공 분위기에서 1450℃까지 올리고, 아르곤 분위기로 바꾸어 2150℃까지 올린 후, 5시간 동안 유지하고, 자연냉각하였다.
<실시예 3>
평균 입자 크기가 1.7㎛인 β 상의 탄화규소 분말에 5wt%의 α상의 탄화규소 분말을 첨가하여 흑연 도가니에 넣고 진공 분위기에서 1450℃까지 올리고, 아르곤 분위기로 바꾸어 2150℃까지 올린 후, 5시간 동안 유지하고, 자연냉각하였다.
<실시예 4>
평균 입자 크기가 1.7㎛인 β 상의 탄화규소 분말에 7wt%의 α상의 탄화규소 분말을 첨가하여 흑연 도가니에 넣고 진공 분위기에서 1450℃까지 올리고, 아르곤 분위기로 바꾸어 2150℃까지 올린 후, 5시간 동안 유지하고, 자연냉각하였다.
도6은 실시예 1의 결과를 나타내고, 도 7는 실시예 2의 결과를 나타내며, 도 8은 실시예 3의 결과를 나타내고, 도 9는 실시예 4의 결과를 나타낸다. 그리고, 도 10은 실시예 1의 입도 분포를 나타내는 그래프이고, 도 11은 실시예 2의 입도 분포를 나타내는 그래프이며, 도 12는 실시예 3의 입도 분포를 나타내는 그래프이고, 도 13은 실시예 4의 입도 분포를 나타내는 그래프이다.
표 1 및 도 6 내지 도 13을 참조하면, 첨가되는 α상의 탄화규소 분말의 양이 많을수록 입자 크기가 작아지는 것을 알 수 있다. 즉, β상의 탄화규소 분말에 대한 α상의 탄화규소 분말의 양이 1wt% 인 경우, 최종 분말 내에 75㎛ 내지 150㎛의 입자 크기를 가지는 분말의 비율이 가장 높았다. 이에 비해, β상의 탄화규소 분말에 대한 α상의 탄화규소 분말의 양이 3wt% 인 경우, 최종 분말 내에 45㎛ 내지 75㎛의 입자 크기를 가지는 분말의 비율이 가장 높았으며, β상의 탄화규소 분말에 대한 α상의 탄화규소 분말의 양이 5wt% 이상인 경우, 최종 분말 내에 45㎛ 이하의 입자 크기를 가지는 분말의 비율이 가장 높았다. 이는 핵 생성에 이용되는 시드의 크기가 많아질수록 입도가 작아지기 때문이다.
본 발명의 한 실시예에 따르면, 고순도의 β상의 탄화규소 분말을 고온에서 열처리하여 고순도의 α상의 탄화규소 분말을 얻을 수 있다. 이때, 열처리 시간을 길게 하여 얻어지는 α상의 탄화규소 분말의 품질을 높일 수 있다. 또한, 첨가되는 시드의 양을 이용하여 얻어지는 α상의 탄화규소 분말의 입도를 조절할 수 있다. 이에 따라, 다양한 입도를 가지는 α상의 탄화규소 분말에 대한 시장 요구를 만족시킬 수 있으며, 입도를 조절하기 위하여 분쇄 공정을 거치지 않으므로 물질의 순도를 높일 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (2)

  1. 입도(D50)가 0㎛보다 크고 45㎛이하인 알파상의 탄화규소 분체를 포함하며, 불순물이 10ppm이하로 함유된 제1 그룹, 입도가 45㎛보다 크고 75㎛이하인 알파상의 탄화규소 분체를 포함하며, 불순물이 10ppm이하로 함유된 제2 그룹 및 입도가 75㎛보다 크고 110㎛이하인 알파상의 탄화규소 분체를 포함하며, 불순물이 10ppm이하로 함유된 제3 그룹으로부터 선택된 적어도 하나의 그룹을 포함하는 탄화규소 분말.
  2. 제1항에 있어서,
    상기 제1 그룹, 상기 제2 그룹 및 상기 제3 그룹은 알파상의 탄화규소 분체 제조 시에 첨가되는 시드의 양에 따라 구분되는 탄화규소 분말.
PCT/KR2013/006163 2012-10-18 2013-07-10 탄화규소 분말 및 그의 제조 방법 WO2014061898A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380054592.9A CN104755421A (zh) 2012-10-18 2013-07-10 碳化硅粉末和其制备方法
US14/408,151 US9440859B2 (en) 2012-10-18 2013-07-10 Silicon carbide powder comprising alpha phase silicon carbide granules of trimodal particle size distribution and low impurities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120115736A KR102024190B1 (ko) 2012-10-18 2012-10-18 탄화규소 분말의 제조 방법
KR10-2012-0115736 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014061898A1 true WO2014061898A1 (ko) 2014-04-24

Family

ID=50488426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006163 WO2014061898A1 (ko) 2012-10-18 2013-07-10 탄화규소 분말 및 그의 제조 방법

Country Status (4)

Country Link
US (1) US9440859B2 (ko)
KR (1) KR102024190B1 (ko)
CN (1) CN104755421A (ko)
WO (1) WO2014061898A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106423B2 (en) 2015-09-14 2018-10-23 Korea Institute Of Science And Technology Method for preparing ultrahigh-purity silicon carbide powder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007358B1 (ko) * 2012-09-28 2019-08-05 엘지이노텍 주식회사 탄화규소 분말 및 이의 제조 방법
CN107848902A (zh) * 2015-07-31 2018-03-27 电化株式会社 铝‑碳化硅质复合体及其制造方法
CN106431414A (zh) * 2016-09-29 2017-02-22 连云港东渡碳化硅有限公司 一种无压烧结碳化硅陶瓷的制备方法
JP7442288B2 (ja) * 2019-09-30 2024-03-04 株式会社フジミインコーポレーテッド セラミックス粉末
TWI698397B (zh) * 2019-11-11 2020-07-11 財團法人工業技術研究院 碳化矽粉體的純化方法
CN112725895B (zh) * 2021-01-29 2022-09-30 北京利宝生科技有限公司 一种碳化硅单晶体的生长方法
CN114032607B (zh) * 2021-11-02 2024-01-09 西北工业大学 一种采用碳化锆籽晶制备碳化锆晶须的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123286A (en) * 1976-12-27 1978-10-31 The Carborundum Company Silicon carbide powder compositions
US6627169B1 (en) * 1999-06-10 2003-09-30 Bridgestone Corporation Silicon carbide powder and production method thereof
KR20050063482A (ko) * 2003-12-22 2005-06-28 재단법인 포항산업과학연구원 다공체 탄화규소 세라믹스 제조방법
KR20110022424A (ko) * 2009-08-27 2011-03-07 엘지이노텍 주식회사 고효율 탄화규소 분체 제조 방법
KR20110073872A (ko) * 2009-12-24 2011-06-30 엘지이노텍 주식회사 탄화규소 분체 제조용 도가니 및 이를 이용한 탄화규소 분체 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69131247T2 (de) * 1990-11-20 1999-09-23 Asahi Glass Co. Ltd., Tokio/Tokyo Wärmebehandlungsapparate für Halbleiter und hochreine Siliciumcarbidteile für die Apparate und Verfahren zu ihrer Herstellung
US5863325A (en) 1995-05-31 1999-01-26 Bridgestone Corporation Process for producing high purity silicon carbide powder for preparation of a silicon carbide single crystal and single crystal
US6514338B2 (en) * 1999-12-27 2003-02-04 Showa Denko Kabushiki Kaisha Method and apparatus for producing silicon carbide single crystal
US6780243B1 (en) * 2001-11-01 2004-08-24 Dow Corning Enterprises, Inc. Method of silicon carbide monocrystalline boule growth
US8470279B2 (en) * 2004-04-13 2013-06-25 Si Options, Llc High purity silicon-containing products and method of manufacture
WO2012046897A1 (ko) * 2010-10-08 2012-04-12 성균관대학교 산학협력단 다공질 탄화규소 세라믹스의 제조방법
JP5706671B2 (ja) 2010-11-15 2015-04-22 独立行政法人産業技術総合研究所 昇華再結晶法による炭化ケイ素単結晶製造用炭化ケイ素粉体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123286A (en) * 1976-12-27 1978-10-31 The Carborundum Company Silicon carbide powder compositions
US6627169B1 (en) * 1999-06-10 2003-09-30 Bridgestone Corporation Silicon carbide powder and production method thereof
KR20050063482A (ko) * 2003-12-22 2005-06-28 재단법인 포항산업과학연구원 다공체 탄화규소 세라믹스 제조방법
KR20110022424A (ko) * 2009-08-27 2011-03-07 엘지이노텍 주식회사 고효율 탄화규소 분체 제조 방법
KR20110073872A (ko) * 2009-12-24 2011-06-30 엘지이노텍 주식회사 탄화규소 분체 제조용 도가니 및 이를 이용한 탄화규소 분체 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106423B2 (en) 2015-09-14 2018-10-23 Korea Institute Of Science And Technology Method for preparing ultrahigh-purity silicon carbide powder

Also Published As

Publication number Publication date
US20150218005A1 (en) 2015-08-06
KR20140049663A (ko) 2014-04-28
CN104755421A (zh) 2015-07-01
KR102024190B1 (ko) 2019-09-23
US9440859B2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
WO2014061898A1 (ko) 탄화규소 분말 및 그의 제조 방법
WO2014061899A1 (ko) 탄화규소 분말 및 이의 제조 방법
WO2013109105A1 (en) Silicon carbide powder and method for manufacturing the same
EP2470473A2 (en) System and method for manufacturing silicon carbide pulverulent body
KR101538021B1 (ko) 직접탄화법을 이용한 고순도 탄화규소 분말의 합성방법 및 이에 의하여 제조된 고순도 탄화규소 분말
WO2012015262A2 (en) Silicon carbide and method for manufacturing the same
WO2012015208A2 (en) Silicon carbide and method for manufacturing the same
WO2016080801A1 (ko) 질화규소 나노섬유의 제조방법
KR102082935B1 (ko) 탄화규소 혼합 분말
KR20120012345A (ko) 탄화 규소 및 이의 제조 방법
US9399583B2 (en) Silicon carbide powder production method
KR102154060B1 (ko) 탄화규소 분말
KR101210218B1 (ko) 탄화 규소 및 이의 제조 방법
WO2011025117A1 (ko) 규소의 입도분포 조절을 이용한 반응소결 질화규소 및 그 제조방법
KR102272431B1 (ko) 탄화규소 분말, 이의 제조방법 및 탄화규소 단결정
US20140127512A1 (en) Method of fabricating silicon carbide powder
KR20120086207A (ko) 탄소-탄화규소 혼합물 및 이의 제조 방법, 그리고 탄화규소 소결체의 제조 방법
KR102092280B1 (ko) 탄화규소 분말
KR102413929B1 (ko) 탄화규소 분말, 이의 제조방법 및 탄화규소 단결정
CN1594216A (zh) 一种煤系高岭土合成高纯赛隆材料的方法
WO2012177098A2 (en) Method of fabricating silicon carbide powder
KR102105565B1 (ko) 탄화규소 분말
KR101567492B1 (ko) 탄화규소 분말
CN117229065A (zh) 一种氮化硅粉体的制备方法
KR102318521B1 (ko) 탄화규소 분말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14408151

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 24-08-2015 )

122 Ep: pct application non-entry in european phase

Ref document number: 13846263

Country of ref document: EP

Kind code of ref document: A1