WO2014061636A1 - 検査チップ - Google Patents

検査チップ Download PDF

Info

Publication number
WO2014061636A1
WO2014061636A1 PCT/JP2013/077911 JP2013077911W WO2014061636A1 WO 2014061636 A1 WO2014061636 A1 WO 2014061636A1 JP 2013077911 W JP2013077911 W JP 2013077911W WO 2014061636 A1 WO2014061636 A1 WO 2014061636A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
reagent
sample
angle
guide
Prior art date
Application number
PCT/JP2013/077911
Other languages
English (en)
French (fr)
Inventor
由美子 大鹿
千里 吉村
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Priority to AU2013332956A priority Critical patent/AU2013332956A1/en
Publication of WO2014061636A1 publication Critical patent/WO2014061636A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Definitions

  • the present invention relates to an inspection chip for performing a chemical, medical, or biological inspection of an inspection object.
  • an inspection chip for inspecting a specimen such as a biological substance or a chemical substance
  • the inspection chip disclosed in Patent Document 1 includes a V-shaped quantification unit as viewed from the front.
  • a specimen or a reagent is injected into the quantification unit by applying a centrifugal force to the entrance direction of the V-shaped quantification unit.
  • the sample or reagent is quantified in the quantification unit without changing the direction of the centrifugal force.
  • the specimen or reagent quantified by changing the direction of the centrifugal force is used for the examination.
  • the quantification unit of the test chip disclosed in Patent Document 1 there is a quantification surface that is a virtual surface from which a specimen or reagent overflows from the quantification unit.
  • the volume of the specimen or reagent up to the quantification surface is quantified.
  • the sample or reagent scatters to a place other than the quantification unit due to an impact during injection.
  • the injection is completed, there is a possibility that the sample or reagent injected into the quantification unit is less than the fixed amount. Therefore, there is a problem that the quantitative accuracy is lowered.
  • An object of the present invention is to provide an inspection chip that improves quantitative accuracy.
  • a liquid specimen and reagent are injected, and a centrifugal force is applied by rotating around a predetermined first axis, and the second axis is different from the first axis.
  • a test chip in which the direction of the centrifugal force is changed by being rotated, a quantification unit that quantifies the sample or reagent, a supply unit that supplies the sample or the reagent to the quantification unit, and the sample And a first guide part for guiding the specimen or the reagent toward the mixing part side where the reagent and the reagent are mixed, and a surplus part side for accommodating the specimen or the reagent made redundant in the quantification part
  • a second connection unit that guides the specimen or the reagent, a first connection unit that is a connection point of the first guide unit that communicates with the mixing unit, and a surplus unit in the quantification unit With the second guide part communicating with A second connecting portion that is a connecting portion, a direction parallel to a fixed surface connecting the
  • the centrifugal force in the direction in which the second connection side becomes an acute angle out of the angle formed by the quantification surface and the centrifugal force toward the quantification surface When the is applied to the quantitative surface, more specimen or reagent can be injected than the capacity of the quantitative part.
  • the sample or reagent overflowing from the quantification unit during the movement of the sample or reagent in the test chip is transferred from the first guide unit to the mixing unit. Without flowing in toward the side, it can flow in from the second guide part toward the surplus part side. Further, even if the liquid level is once depressed at the time of quantification, since the specimen or reagent is injected earlier than the capacity of the quantification unit, the quantification accuracy can be improved.
  • a third guide part is provided for connecting the supply part and the metering part, and a tip of the wall surface on the first guide part side of the third guide part is located at the first guide part from a position facing the second connection part. It may be on the side.
  • the tip of the wall surface on the first guide unit side of the third guide unit is on the first guide unit side from the position facing the second connection unit. Can be prevented from flowing from the third guide part to the second guide part side, and can be reliably injected into the fixed quantity part. Therefore, it is possible to prevent the sample or reagent injected into the quantification unit from becoming less than the quantification amount and improve the quantification accuracy.
  • a holding unit that is connected to the supply unit and holds the sample or the reagent supplied to the test chip; and a tip of a wall surface of the holding unit that separates the supply unit and the holding unit from the third guide unit You may make it locate in the said 1st guide part side in the direction parallel to the said fixed_quantity
  • the tip of the wall surface of the holding unit is located on the first guide unit side in a direction parallel to the fixed surface from the third guide unit, the third sample is moved when the specimen or reagent is moved from the supply unit to the holding unit. It is possible to prevent the sample or reagent from flowing into the guide unit and flowing into the quantitative unit.
  • the fourth angle formed by the direction parallel to the fixed surface and the extending direction of the holding unit wall surface may be larger than the first angle.
  • the second angle may be larger than the fourth angle.
  • a step may be formed on the bottom surface of the flow path between the third guide portion and the quantitative portion.
  • the liquid is smoothly guided to the quantification unit by the step. Therefore, it is possible to prevent the sample or reagent to be injected from spreading and blocking the entrance of the quantification unit, and bubbles from being mixed into the quantification unit. Therefore, the shortage of the quantified specimen or reagent can be prevented and the quantification accuracy can be improved.
  • the depth of the third guide unit may be shallower than the depth of the quantification unit and the depth of the flow path between the third guide unit and the quantification unit.
  • a constricted portion with a varying depth may be formed between the flow path between the third guide portion and the quantitative portion and the quantitative portion.
  • FIG. 2 It is a rear view of the inspection apparatus 1 in which the inspection chip 2 is in a steady state. It is a rear view of the test
  • FIG. It is a front view of the test
  • FIG. 7 is a cross-sectional view seen from the direction of the arrow in the YY line of FIG. 6. It is a front view of the test
  • FIG. 10 is an enlarged front view of the specimen quantitative unit 114 of the test chip 2 revolved at a rotation angle of 85 degrees in FIG. 9 and its surroundings. It is a front view of the test
  • the inspection system 3 of the first embodiment includes an inspection chip 2 that can store a specimen and a reagent that are liquids, and an inspection apparatus 1 that performs an inspection using the inspection chip 2.
  • the inspection apparatus 1 can apply a centrifugal force to the inspection chip 2 by rotation about a vertical axis separated from the inspection chip 2.
  • the inspection apparatus 1 can switch the centrifugal direction that is the direction of the centrifugal force applied to the inspection chip 2 by rotating the inspection chip 2 about the horizontal axis.
  • FIGS. 1 and 2 show the upper housing 30 with a virtual line
  • FIG. 3 shows a state in which the top plate of the upper housing 30 is removed.
  • the inspection apparatus 1 includes an upper housing 30, a lower housing 31, a turntable 33, an angle changing mechanism 34, and a control device 90.
  • the turntable 33 is a disk-shaped rotating body provided on the upper surface side of the lower housing 31.
  • the inspection chip 2 is held above the turntable 33.
  • the angle changing mechanism 34 is a drive mechanism provided on the turntable 33. This drive mechanism rotates the inspection chip 2 around the horizontal axis.
  • the upper housing 30 is fixed to the upper side of the lower housing 31, and the measurement unit 7 that performs optical measurement on the inspection chip 2 is provided inside.
  • the control device 90 is a controller that controls various processes of the inspection device 1.
  • the lower housing 31 has a box-shaped frame structure which combined the frame member.
  • An upper plate 32 that is a rectangular plate material is provided on the upper surface of the lower housing 31.
  • a turntable 33 is rotatably provided above the upper plate 32.
  • a drive mechanism for rotating the turntable 33 around the vertical axis is provided in the lower housing 31 as follows.
  • a spindle motor 35 that supplies a driving force for rotating the turntable 33 is installed on the left side of the lower housing 31.
  • a shaft 36 of the main shaft motor 35 protrudes upward, and a pulley 37 is fixed.
  • a vertical main shaft 57 extending upward from the inside of the lower housing 31 is provided at the center of the lower housing 31.
  • the main shaft 57 passes through the upper plate 32 and protrudes above the lower housing 31.
  • the upper end portion of the main shaft 57 is connected to the center portion of the turntable 33.
  • the main shaft 57 is rotatably held by a support member 53 provided immediately below the upper plate 32.
  • a pulley 38 is fixed to the main shaft 57 below the support member 53.
  • a belt 39 is stretched over the pulleys 37 and 38.
  • a guide rail 56 extending in the vertical direction inside the lower housing 31 is provided on the right side in the lower housing 31.
  • the T-shaped plate 48 is movable in the vertical direction in the lower housing 31 along the guide rail 56.
  • a groove 80 that is long in the left-right direction is formed on the front side of the T-shaped plate 48, that is, on the back side in FIG. 1 and FIG.
  • the above-described main shaft 57 is a hollow cylindrical body.
  • the inner shaft 40 is a shaft that can move in the vertical direction inside the main shaft 57.
  • An upper end portion of the inner shaft 40 passes through the main shaft 57 and is connected to a rack gear 43 described later.
  • a bearing 41 is provided at the left end of the T-shaped plate 48. Inside the bearing 41, the lower end portion of the inner shaft 40 is rotatably held.
  • a stepping motor 51 for moving the T-shaped plate 48 up and down is fixed in front of the T-shaped plate 48.
  • the shaft 58 of the stepping motor 51 protrudes rearward, that is, toward the front side of the page in FIGS.
  • a disc-shaped cam plate 59 is fixed to the tip of the shaft 58.
  • a cylindrical projection 70 is provided on the rear surface of the cam plate 59. The tip of the protrusion 70 is inserted into the groove 80 described above. The protrusion 70 can slide in the groove 80.
  • the stepping motor 51 rotates the shaft 58, the projection 70 moves up and down in conjunction with the rotation of the cam plate 59.
  • the T-shaped plate 48 moves up and down along the guide rail 56 in conjunction with the protrusion 70 inserted in the groove 80.
  • the angle changing mechanism 34 has a pair of L-shaped plates 60 fixed to the upper surface of the turntable 33. Each L-shaped plate 60 extends upward from a base portion fixed in the vicinity of the center of the turntable 33, and its upper end portion extends outward in the radial direction of the turntable 33.
  • a rack gear 43 fixed to the inner shaft 40 is provided between the pair of L-shaped plates 60.
  • the rack gear 43 is a metal plate-like member that is long in the vertical direction, and gears are respectively carved on both end faces.
  • a horizontal support shaft 46 having a gear 45 is rotatably supported at the distal end side in the extending direction of each L-shaped plate 60.
  • the support shaft 46 is fixed to the inspection chip 2 via a mounting holder (not shown). For this reason, the inspection chip 2 also rotates around the support shaft 46 in conjunction with the rotation of the gear 45.
  • a pinion gear 44 supported by an L-shaped plate 60 so as to be rotatable about a horizontal axis is interposed.
  • the pinion gear 44 meshes with the gear 45 and the rack gear 43, respectively. In conjunction with the vertical movement of the rack gear 43, the pinion gear 44 and the gear 45 are driven to rotate, and the inspection chip 2 rotates about the support shaft 46.
  • the inspection chip 2 rotates around the main shaft 57, which is a vertical axis, and centrifugal force is applied to the inspection chip 2.
  • the rotation around the vertical axis of the inspection chip 2 is called revolution.
  • the inspection chip 2 rotates around the support shaft 46 which is a horizontal axis, and the direction of the centrifugal force acting on the inspection chip 2 changes relatively. .
  • the rotation around the horizontal axis of the inspection chip 2 is called rotation.
  • the rack gear 43 is also lowered to the lowermost end of the movable range.
  • the inspection chip 2 is in a steady state where the rotation angle is 0 degree.
  • the rack gear 43 is also raised to the uppermost end of the movable range.
  • inspection chip 2 will be in the state rotated 180 degree
  • the upper housing 30 has a box-like frame structure in which frame members are combined, and is installed on the upper left side of the upper plate 32. More specifically, the upper housing 30 is provided outside the range in which the inspection chip 2 is rotated as viewed from the main shaft 57 at the rotation center of the turntable 33.
  • the measurement unit 7 provided in the upper housing 30 includes a light source 71 that emits measurement light, and an optical sensor 72 that detects the measurement light emitted from the light source 71.
  • the light source 71 and the optical sensor 72 are disposed on both the front and rear sides of the turntable 33 outside the rotation range of the inspection chip 2.
  • the position on the left side of the main shaft 57 in the reciprocable range of the inspection chip 2 is the measurement position at which the inspection chip 2 is irradiated with the measurement light.
  • the measurement light connecting the light source 71 and the optical sensor 72 intersects the front and rear surfaces of the inspection chip 2 substantially perpendicularly.
  • FIG. 4 The detailed structure of the test chip 2 according to the first embodiment will be described with reference to FIGS.
  • the upper, lower, lower left, upper right, lower right, and upper left in FIG. 4 are the upper, lower, front, rear, right, and left of the test chip 2, respectively.
  • 5 to 7 show front views of the inspection chip 2 with the sheet 29 removed. The same applies to FIGS. 8 to 16 described later.
  • the inspection chip 2 has a square shape when viewed from the front as an example, and mainly includes a transparent synthetic resin plate material 20 having a predetermined thickness.
  • the front surface of the plate member 20 is sealed with a sheet 29 made of a transparent synthetic resin thin plate.
  • a liquid flow path 25 is formed through which the liquid sealed in the inspection chip 2 can flow.
  • the liquid flow path 25 is a recess formed on the front side of the plate member 20 with a predetermined depth, and extends in a direction orthogonal to the front-rear direction, which is the thickness direction of the plate member 20. That is, the sheet 29 seals the flow path forming surface of the plate material 20.
  • the liquid channel 25 includes a sample holding unit 111, a sample quantification unit 114, a sample surplus unit 116, a reagent holding unit 131, a reagent quantification unit 134, a reagent surplus unit 136, a reagent holding unit 151, a reagent quantification unit 154, and a reagent surplus unit 156. , And a mixing unit 170.
  • the specimen holding unit 111 is a part where the specimen 10 is injected and stored.
  • the sample holding part 111 is a recess formed between the left side part 23 and the holding part wall surface 118 extending obliquely upward to the right from the left side part 23 and opening upward.
  • the specimen 10 of this embodiment is blood, for example.
  • the reagent holding part 131 is a part where the first reagent 11 is injected and stored.
  • the reagent holding part 131 is a recess formed between a partition wall 125 to be described later and a holding part wall surface 138 extending obliquely upward from the partition wall 125 and opening upward.
  • the reagent holding part 151 is a part where the second reagent 12 is injected and stored.
  • the reagent holding part 151 is a recess formed between a partition wall 145 described later and a holding part wall surface 158 extending obliquely upward from the partition wall 145 and opening upward.
  • the sample holding unit 111, the reagent holding unit 131, and the reagent holding unit 151 are arranged in the left-right direction on the front surface of the plate member 20 along the upper side portion 21 that is the upper wall surface of the test chip 2. Is formed.
  • the sample holding unit 111 is closest to the left side portion 23 that is the left wall surface of the test chip 2.
  • the reagent holding part 151 is closest to the right side part 22 which is the right wall surface of the test chip 2.
  • the reagent holding unit 131 is located between the sample holding unit 111 and the reagent holding unit 151.
  • the lower wall surface of the inspection chip 2 is the lower side portion 24.
  • the sheet 29 is formed with a specimen injection hole for injecting the specimen 10 into the specimen holder 111.
  • the specimen 10 accommodated in an instrument may be injected from the specimen injection hole by a user operation.
  • the specimen 10 may be injected into the specimen holder 111 through the reagent injection hole using a known technique.
  • the sheet 29 is formed with a reagent injection hole for injecting the first reagent 11 into the reagent holding part 131 and a reagent injection hole for injecting the second reagent 12 into the reagent holding part 151. ing.
  • These injection holes may have a shape in which, for example, the upper side portion 21 is open.
  • the sample supply unit 112 is a supply channel for the sample 10 that extends downward from the upper right portion of the sample holding unit 111.
  • the lower end of the sample supply unit 112 is connected to a sample guide unit 113 having a narrow channel.
  • a partition 125 extending downward from the upper side portion 21 is formed between the sample supply unit 112 and the reagent holding unit 131.
  • a specimen supply unit wall surface 119 is formed from the partition wall 125 obliquely downward to the left.
  • a sample quantitative unit 114 is provided below the sample guide unit 113.
  • the specimen quantification unit 114 is a part that quantifies the specimen 10, and is a recess that opens upward.
  • the first passage 117 extends in the right direction and the second passage 115 extends in the left direction from a portion where the sample guide unit 113 and the sample determination unit 114 communicate with each other.
  • the second passage 115 extends to the sample surplus part 116 provided at the lower left of the sample determination unit 114. That is, the second passage 115 is bent when viewed from the front so that the flow path forming direction changes.
  • the sample quantification unit 114 includes two quantification end portions 121 and a quantification end portion 123 where the liquid surface of the sample 10 is formed when the liquid amount of the sample 10 is quantified.
  • the quantitative end 121 is a connection point between the specimen quantitative unit 114 and the first passage 117.
  • the quantitative end portion 123 is a connection point between the sample quantitative portion 114 and the second passage 115.
  • a surface connecting the quantitative end portion 121 and the quantitative end portion 123 is a quantitative surface T shown in FIG.
  • a first passage wall surface 120 that forms the first passage 117 obliquely upward to the right is provided from the fixed amount end portion 121.
  • a second passage wall surface 122 that forms the second passage 115 is provided from the fixed end portion 123 in a diagonally downward left direction.
  • the specimen surplus part 116 is a part where the specimen 10 overflowing from the specimen quantification part 114 is stored, and is a concave part extending rightward from the lower end part of the second passage 115.
  • the first passage 117 extends to a later-described mixing unit 170 provided on the lower right side of the sample determination unit 114. That is, in the first passage 117, the flow path formation direction is changed for the same reason as the second passage 115.
  • the reagent supply unit 132 is a supply channel for the first reagent 11 that extends downward from the upper right part of the reagent holding unit 131.
  • the lower end of the reagent supply unit 132 is connected to a reagent guide unit 133 having a narrow channel.
  • a partition wall 145 extending downward from the upper side portion 21 is formed between the reagent supply unit 132 and the reagent holding unit 151.
  • a reagent supply wall surface 139 is formed from the partition wall 145 in a diagonally downward left direction.
  • a reagent quantitative unit 134 is provided below the reagent guide unit 133.
  • the reagent quantification unit 134 is a part for quantifying the first reagent 11 and is a recess opened upward.
  • the same amount of the first reagent 11 as the volume inside the concave part of the reagent quantitative part 134 is quantified.
  • the third passage 137 extends to the right and the fourth passage 135 extends to the left from the portion where the reagent guide 133 and the reagent quantitative unit 134 communicate.
  • the third passage 137 is connected to a later-described mixing unit 170 provided on the lower right side of the reagent quantitative unit 134. That is, in the third passage 137, the flow path formation direction changes for the same reason as the first passage 117.
  • the fourth passage 135 extends to the reagent surplus portion 136 provided on the lower left side of the reagent fixed amount portion 134. That is, the flow path formation direction of the fourth passage 135 changes for the same reason as the second passage 115.
  • the reagent surplus portion 136 is a portion in which the first reagent 11 overflowing from the reagent quantitative portion 134 is stored, and is a concave portion extending rightward from the lower end portion of the fourth passage 135.
  • the reagent quantification unit 134 includes two quantification end portions 141 and quantification end portions 143 where the liquid surface of the first reagent 11 is formed when the liquid amount is quantified.
  • the fixed amount end portion 141 is a connection point between the reagent fixed amount portion 134 and the third passage 137.
  • the fixed amount end portion 143 is a connection point between the reagent fixed amount portion 134 and the fourth passage 135.
  • a surface connecting the fixed amount end portion 141 and the fixed amount end portion 143 is a fixed amount surface.
  • a centrifugal force from the reagent guide part 133 toward the inside of the concave part of the reagent quantitative part 134 By applying a centrifugal force from the reagent guide part 133 toward the inside of the concave part of the reagent quantitative part 134, the same amount of the first reagent 11 as the volume inside the concave part of the reagent quantitative part 134 is quantified.
  • a third passage wall surface 140 is provided that forms a third passage 137 obliquely upward to the right.
  • a fourth passage wall surface 142 forming the fourth passage 135 is provided from the fixed end portion 143 toward the diagonally downward left direction.
  • the reagent supply unit 152 is a supply channel for the second reagent 12 that extends downward from the upper right portion of the reagent holding unit 151.
  • the lower end of the reagent supply unit 152 is connected to a reagent guide unit 153 having a narrow channel.
  • a reagent quantitative unit 154 is provided below the reagent guide unit 153.
  • a reagent supply wall surface 159 is formed from the right side 22 in a diagonally downward left direction.
  • the reagent quantification unit 154 is a part that quantifies the second reagent 12, and is a recess that opens upward.
  • the same amount of the second reagent 12 as the volume inside the recess of the reagent quantification unit 154 is quantified.
  • the fifth passage 157 extends in the right direction and the sixth passage 155 extends in the left direction from the part where the reagent guide unit 153 and the reagent quantitative unit 154 communicate with each other.
  • the sixth passage 155 extends to the reagent surplus portion 156 provided on the lower left side of the reagent fixed amount portion 154. That is, in the sixth passage 155, the flow path formation direction is changed for the same reason as the second passage 115.
  • the reagent surplus portion 156 is a portion in which the second reagent 12 overflowing from the reagent quantitative portion 154 is stored, and is a concave portion extending rightward from the lower end portion of the sixth passage 155.
  • the fifth passage 157 extends to a later-described mixing unit 170 provided on the lower right side of the reagent quantitative unit 154. That is, the flow path formation direction of the fifth passage 157 changes for the same reason as the second passage 115.
  • the reagent quantification unit 154 includes two quantification end portions 161 and a quantification end portion 163 where the liquid surface of the second reagent 12 is formed when the liquid amount is quantified.
  • the fixed amount end portion 161 is a connection point between the reagent fixed amount portion 154 and the fifth passage 157.
  • the fixed amount end portion 163 is a connection point between the reagent fixed amount portion 154 and the sixth passage 155.
  • the plane connecting the fixed end 161 and the fixed end 163 is a fixed plane.
  • a centrifugal force from the reagent guide unit 153 toward the inside of the recess of the reagent quantification unit 154 By applying a centrifugal force from the reagent guide unit 153 toward the inside of the recess of the reagent quantification unit 154, the same amount of the second reagent 12 as the volume inside the recess of the reagent quantification unit 154 is quantified.
  • a fifth passage wall surface 160 that forms the fifth passage 157 obliquely upward to the right is provided from the fixed amount end portion 163 toward the lower left diagonal direction.
  • the mixing unit 170 is a rectangular recess provided on the upper right side provided in the lower right portion of the inspection chip 2.
  • the mixing unit 170 the specimen 10 flowing from the first passage 117, the first reagent 11 flowing from the third passage 137, and the second reagent 12 flowing from the fifth passage 157 are mixed, and the mixing shown in FIG. Liquid 13 is produced.
  • the generated mixed liquid 13 is optically measured by measurement light passing through the mixing unit 170.
  • the angle A is an angle formed by a virtual surface H1 parallel to the fixed surface T and the specimen supply unit wall surface 119.
  • the angle B is an angle formed by a virtual surface H2 parallel to the fixed surface T and the first passage wall surface 120.
  • the angle C is an angle formed by the virtual surface H3 parallel to the fixed surface T and the second passage wall surface 122.
  • the angle D is an angle formed by the virtual surface H4 parallel to the fixed surface T and the holding unit wall surface 118.
  • the inspection chip 2 satisfies the following relationship. Angle A ⁇ angle B ⁇ angle C Angle A ⁇ angle D Angle D ⁇ Angle B
  • the specimen supply unit wall surface 119 and the first passage wall surface 120 are formed so that the angle A ⁇ the angle B. Due to this angle relationship, the inclination angle of the first passage wall surface 120 with respect to the virtual surface H2 parallel to the quantitative surface T becomes larger than the inclination angle of the specimen supply unit wall surface 119 with respect to the virtual surface H1 parallel to the quantitative surface T1. Accordingly, when the sample 10 is poured from the sample supply unit 112 into the sample guide unit 113 and the sample 10 is injected into the sample determination unit 114, the direction of the centrifugal force and the sample supply unit wall surface 119 are used when the sample 10 is injected by centrifugal force. Is larger than the angle formed between the direction of the centrifugal force and the first passage wall surface 120.
  • the specimen 10 can be prevented from flowing into the mixing unit 170 along the first passage wall surface 120.
  • the angle formed between the direction of gravity and the specimen supply unit wall surface 119 is larger than the angle formed between the direction of gravity and the first passage wall surface 120. Therefore, the specimen 10 can be prevented from flowing into the mixing unit 170 along the first passage wall surface 120.
  • the relationship between the inclination angle between the reagent supply unit wall surface 139 and the third passage wall surface 140 and the relationship between the inclination angle between the reagent supply unit wall surface 159 and the fifth passage wall surface 160 are the same as described above.
  • first passage wall surface 120 and the second passage wall surface 122 are formed so that the angle B ⁇ the angle C. Due to this angle relationship, the inclination angle of the second passage wall surface 122 with respect to the virtual surface H3 parallel to the quantitative surface T is larger than the inclination angle of the first passage wall surface 120 relative to the virtual surface H2 parallel to the quantitative surface T. Therefore, when injecting by centrifugal force, the angle formed between the direction of the centrifugal force and the second passage wall surface 122 is larger than the angle formed between the direction of the centrifugal force and the first passage wall surface 120.
  • the sample 10 overflowing from the sample determination unit 114 does not flow into the mixing unit 170 through the first passage wall surface 120 but flows into the sample surplus unit 116 through the second passage wall 122 through the second passage wall surface 122.
  • the angle formed between the direction of gravity and the second passage wall surface 122 is larger than the angle formed between the direction of gravity and the first passage wall surface 120. Therefore, the sample 10 overflowing from the sample determination unit 114 does not flow into the mixing unit 170 through the first passage wall surface 120 but flows into the sample surplus unit 116 through the second passage wall 122 through the second passage wall surface 122.
  • the relationship between the inclination angle between the third passage wall surface 140 and the fourth passage wall surface 142 and the effect thereof are also the same as described above.
  • the relationship between the inclination angle of the fifth passage wall surface 160 and the sixth passage wall surface 162 and the effect thereof are also the same as described above.
  • the holding unit wall surface 118 and the specimen supply unit wall surface 119 are formed so that the angle A ⁇ the angle D. Due to this angle relationship, the inclination angle of the holding unit wall surface 118 with respect to the virtual surface H4 parallel to the fixed surface T is larger than the inclination angle of the specimen supply unit wall surface 119 with respect to the virtual surface H1 parallel to the fixed surface T.
  • the angle formed between the direction of the centrifugal force and the holding unit wall surface 118 is greater than the angle formed between the direction of the centrifugal force and the sample supply unit wall surface 119. Is also big.
  • the sample 10 when the sample 10 is moved from the sample holding unit 111 to the sample supply unit 112, the sample 10 can be prevented from flowing into the sample guide unit 113.
  • the angle formed between the direction of gravity and the holding section wall surface 118 is greater than the angle formed between the direction of gravity and the specimen supply section wall surface 119. large. Therefore, when the sample 10 is moved from the sample holding unit 111 to the sample supply unit 112, the sample 10 can be prevented from flowing into the sample guide unit 113.
  • the relationship between the inclination angles of the holding unit wall surface 138 and the reagent supply unit wall surface 139 is the same as described above.
  • the relationship between the inclination angle of the holding unit wall surface 158 and the reagent supply unit wall surface 159 and the effect thereof are also the same as described above.
  • the holding unit wall surface 118 and the first passage wall surface 120 are formed so that the angle D ⁇ the angle B. Due to this angle relationship, the inclination angle of the first passage wall surface 120 with respect to the virtual surface H2 parallel to the quantitative surface T becomes larger than the inclination angle of the holding unit wall surface 118 with respect to the virtual surface H4 parallel to the quantitative surface T.
  • the angle formed between the direction of the centrifugal force and the first passage wall surface 120 is greater than the angle formed between the direction of the centrifugal force and the wall surface 118 of the holder. Is also big.
  • the sample 10 when the sample 10 is moved from the sample holding unit 111 to the sample supply unit 112, even if the sample 10 flows into the sample guide unit 113 and leaks into the first passage, the sample 10 travels along the first passage wall surface 120. Thus, it is possible to prevent the flow toward the mixing unit 170.
  • the angle formed between the direction of gravity and the first passage wall surface 120 is greater than the angle formed between the direction of gravity and the wall surface 118 of the holder. large.
  • the sample 10 when the sample 10 is moved from the sample holding unit 111 to the sample supply unit 112, even if the sample 10 flows into the sample guide unit 113 and leaks into the first passage, the sample 10 travels along the first passage wall surface 120. Thus, it is possible to prevent the flow toward the mixing unit 170.
  • the relationship between the inclination angle between the holding portion wall surface 138 and the third passage wall surface 140 and the effect thereof are the same as the above.
  • the relationship between the inclination angle of the holding unit wall surface 158 and the fifth passage wall surface 160 and the effect thereof are also the same as described above.
  • the front end 113 ⁇ / b> A of the wall surface on the first passage 117 side of the sample guiding portion 113 is in a virtual plane direction parallel to the quantitative surface T rather than the position facing the quantitative end portion 123. It is formed on the first passage 117 side in the left-right direction. Therefore, it is possible to prevent the sample 10 injected from the sample guide unit 113 into the sample determination unit 114 from flowing into the second passage 115 without entering the sample determination unit 114.
  • bubbles accumulated in the specimen quantification unit 114 on the second passage 115 side cannot be removed, and the quantification accuracy is deteriorated.
  • the reagent guide part 133 and the reagent guide part 153 have the same structure as described above, and the same effect as described above can be obtained.
  • the front end 118 ⁇ / b> A of the holding unit wall surface 118 is located closer to the first passage 117 in the left-right direction than the sample guide unit 113. Therefore, when the specimen 10 is moved from the specimen holding section 111 to the specimen supply section 112 by applying the centrifugal force X in the direction of the arrow shown in FIG. Therefore, it is possible to prevent the sample 10 from flowing into the sample guide unit 113 and flowing into the sample determination unit 114.
  • a bottom surface 124A of the flow path 124 between the sample guide unit 113 and the sample determination unit 114 is a plane having the same depth as the bottom surface 114A of the sample determination unit 114.
  • the depth L1 of the sample guide 113 is shallower than the depth L2 of the bottom surface 124A of the channel 124.
  • the support shaft 46 extending from the L-shaped plate 60 is vertically connected to the center of the rear surface of the plate member 20 via a mounting holder (not shown). As the support shaft 46 rotates, the inspection chip 2 rotates around the support shaft 46.
  • the inspection chip 2 is in the steady state shown in FIGS. 4 to 6, the upper side 21 and the lower side 24 are orthogonal to the direction of the gravity G, the right side 22 and the left side 23 are parallel to the direction of the gravity G, and The left side portion 23 is disposed closer to the main shaft 57 than the right side portion 22.
  • the inspection chip 2 in the steady state is disposed at the measurement position, the measurement light connecting the light source 71 and the optical sensor 72 passes vertically through the mixing unit 170 as viewed from above.
  • Example of inspection method> An inspection method using the inspection apparatus 1 and the inspection chip 2 will be described with reference to FIGS. 5 to 15 and FIG. Note that the rotation, revolution, and rotation speed of the inspection chip 2 shown in FIG. 18 are controlled by whether or not the times T1 to T5 have elapsed. Information of times T1 to T5 is stored in advance in a storage device (not shown) of the control device 90. When the user attaches the inspection chip 2 to the support shaft 46 and inputs a processing start command to the control device 90, the following measurement operation is executed. The time when the process start command is input is time T0 in the timing chart shown in FIG.
  • the inspection apparatus 1 can inspect two inspection chips 2 at the same time, but the procedure for inspecting one inspection chip 2 will be described below for convenience of explanation.
  • rotation angle 90 degrees the stationary state of the inspection chip 2 shown in FIG. A state in which the rotation angle is further rotated by 5 degrees counterclockwise from 85 degrees.
  • the spindle motor 35 starts driving the turntable 33 based on an instruction from the control device 90.
  • the inspection chip 2 having a rotation angle of 0 degrees revolves.
  • the spindle motor 35 increases the rotation speed of the turntable 33 based on an instruction from the control device 90.
  • the rotation speed reaches 3000 rpm, the spindle motor 35 maintains this rotation speed.
  • high-speed driving a state in which the turntable 33 is rotating at a rotation speed of 3000 rpm is referred to as high-speed driving.
  • the rotational speed at the time of high-speed driving is not limited to 3000 rpm, but may be other rotational speeds. From time T0 to time T1, as shown in FIG.
  • the centrifugal force X acts on the test chip 2 from the left side portion 23 toward the right side portion 22.
  • the specimen 10 moves from the specimen holding unit 111 to the specimen supply unit 112 by the action of the centrifugal force X.
  • the first reagent 11 moves from the reagent holding unit 131 to the reagent supply unit 132.
  • the second reagent 12 moves from the reagent holding unit 151 to the reagent supply unit 152.
  • the time T1 is stored in advance in a storage device (not shown) of the control device 90 as a time sufficient for the specimen 10, the first reagent 11, and the second reagent 12 to perform the movement described above.
  • the test chip 2 that is revolving by high-speed driving is rotated by 85 degrees counterclockwise as viewed from the front as shown in FIG.
  • inspection chip 2 changes to 85 degree
  • the centrifugal force X1 acts on the test chip 2 so that the angle formed by the upper side portion 21 and the direction of the centrifugal force is 85 degrees.
  • the angle E on the quantitative end 123 side is an acute angle
  • the angle F adjacent to the angle E is an obtuse angle.
  • the angle E is 85 degrees.
  • the sample 10 flows into the sample quantitative unit 114 via the sample guide unit 113 by the action of the centrifugal force X1.
  • the first reagent 11 flows into the reagent quantitative unit 134 via the reagent guide unit 133.
  • the second reagent 12 flows into the reagent quantitative unit 154 via the reagent guide unit 153.
  • the spindle motor 35 reduces the rotation speed of the turntable 33 based on an instruction from the control device 90.
  • the rotational speed reaches 1000 rpm
  • the spindle motor 35 maintains this rotational speed.
  • the state where the turntable 33 is rotating at a rotation speed of 1000 rpm is hereinafter referred to as low speed driving.
  • the rotational speed at the time of low speed driving is not limited to 1000 rpm as long as it is slower than the rotational speed at the time of high speed driving, and may be other rotational speeds.
  • Centrifugal force X during low-speed driving is weaker than centrifugal force X during high-speed driving.
  • the centrifugal force X at time T2 is weaker than the centrifugal force X at the start of injection of each liquid into the specimen quantification unit 114, the reagent quantification unit 134, and the reagent quantification unit 154.
  • each liquid is efficiently injected by strong centrifugal force, and bubbles are mixed by weakening the centrifugal force at the end of injection. , And the depression of the liquid level of each liquid can be suppressed.
  • the time T2 is stored in advance in a storage device (not shown) of the control device 90 as a time sufficient for the specimen 10, the first reagent 11, and the second reagent 12 to move to each quantification unit.
  • the sample guide unit 113 guides and supplies the sample 10 toward the sample quantification unit 114.
  • the first passage 117 may be positioned in the direction of the centrifugal force X1 at the tip 113A on the downstream side of the sample guide 113.
  • the angle K on the sample determination unit 114 side is an acute angle.
  • the sample 10 exceeding a predetermined amount overflows in the second passage 115 in the sample quantifying unit 114 and is stored in the sample surplus unit 116.
  • the centrifugal force X1 acts so that the angle E on the quantitative end 123 side becomes an acute angle
  • the specimen 10 has the quantitative end 121 on the volume of the specimen quantitative portion 114 and the first passage wall surface 120 side. It becomes the total amount with the amount overflowing beyond.
  • the reagent quantification unit 134 and the reagent quantification unit 154 that is, during the time T1 to T2 shown in FIG. 18, the spindle motor 35 drives the turntable 33 at a low speed so that the centrifugal force is weaker than the centrifugal force at the time of high-speed driving. This is because the liquid volume of the sample 10 in the total amount is reduced.
  • the test chip 2 that is revolving by low speed rotation is rotated five times counterclockwise when viewed from the front.
  • inspection chip 2 changes to 90 degree
  • the centrifugal force X2 acting on the fixed surface T has an angle G of 90 degrees on the fixed end portion 123 side, and an angle H adjacent to the angle G is also 90 degrees. Yes. Therefore, as shown in FIG. 13, the specimen 10 that has overflowed beyond the quantitative end surface 121 to the first passage wall surface 120 side beyond the quantitative surface T overflows into the second passage 115.
  • the overflowing specimen 10 is stored in the specimen surplus part 116.
  • a predetermined amount of the specimen 10 is accurately quantified.
  • the volume surrounded by the quantitative surface T and the wall forming the specimen quantitative unit 114 is a desired quantitative amount.
  • the volume of the specimen 10 quantified by the specimen quantification unit 114 is mixed with the first reagent 11 and the second reagent 12 to form a mixed solution. This liquid mixture is optically measured. If the volume quantified in the specimen quantification unit 114 deviates from a desired volume, the inspection accuracy based on the optical measurement decreases. Similarly, the first reagent 11 exceeding a predetermined amount overflows into the fourth passage 135.
  • the overflowed first reagent 11 is stored in the reagent surplus part 136.
  • the predetermined amount of the first reagent 11 is accurately quantified.
  • the second reagent 12 exceeding a predetermined amount overflows into the sixth passage 155.
  • the overflowing second reagent 12 is stored in the reagent surplus portion 156.
  • the predetermined amount of the second reagent 12 is accurately quantified.
  • the spindle motor 35 drives the turntable 33 at high speed based on an instruction from the control device 90.
  • the inspection chip 2 whose rotation angle is 90 degrees revolves.
  • the time T3 is stored in advance in a storage device (not shown) of the control device 90 as a time sufficient for the specimen 10, the first reagent 11, and the second reagent 12 to be quantified in each quantification unit.
  • the revolving inspection chip 2 is rotated 90 degrees clockwise as viewed from the front.
  • the rotation angle of the inspection chip 2 returns to 0 degrees, and the centrifugal force X acts on the inspection chip 2 from the left side portion 23 toward the right side portion 22. Due to the action of the centrifugal force X, the specimen 10 quantified in the specimen quantification unit 114 moves to the first passage 117.
  • the specimen surplus portion 116 is a concave portion that closes in the right direction, the surplus specimen 10 remains in the specimen surplus portion 116.
  • the first reagent 11 quantified in the reagent quantification unit 134 moves to the fourth passage 135.
  • the reagent surplus portion 136 is a recess that closes in the right direction
  • the surplus first reagent 11 remains in the reagent surplus portion 136.
  • the second reagent 12 quantified by the reagent quantification unit 154 moves to the fifth passage 157.
  • the reagent surplus portion 156 is a recess that closes in the right direction, the surplus second reagent 12 remains in the reagent surplus portion 156.
  • the rotating test chip 2 rotates 90 degrees counterclockwise when viewed from the front.
  • the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts on the inspection chip 2 from the upper side portion 21 toward the lower side portion 24. Due to the action of the centrifugal force X, the specimen 10 flows from the first passage 117 into the mixing unit 170.
  • the first reagent 11 flows from the third passage 137 into the mixing unit 170.
  • the second reagent 12 flows from the fifth passage 157 into the mixing unit 170.
  • the surplus specimen 10, the first reagent 11, and the second reagent 12 remain in the specimen surplus part 116, the reagent surplus part 136, and the reagent surplus part 156 as described above.
  • the specimen 10, the first reagent 11, and the second reagent 12 that have flowed into the mixing unit 170 are mixed by the action of the centrifugal force X, and the mixed liquid 13 is generated.
  • the test chip 2 that is revolving is rotated 90 degrees clockwise as viewed from the front by the drive control of the stepping motor 51 based on the instruction of the control device 90.
  • inspection chip 2 changes to 0 degree
  • the spindle motor 35 is decelerated and driven by the drive control of the spindle motor 35, and the spindle motor 35 stops. Therefore, the revolution of the inspection chip 2 is completed.
  • the inspection chip 2 is rotated to the angle of the measurement position by driving control of the spindle motor 35.
  • the light source 71 emits light
  • the measurement light passes through the mixed solution 13 stored in the mixing unit 170.
  • optical measurement of the liquid mixture 13 is performed, and measurement data is acquired.
  • the measurement result of the specimen 10 is calculated based on the acquired measurement data.
  • the test result of the specimen 10 based on the measurement result is displayed. Thereafter, the main process is terminated.
  • the test apparatus 1 uses the test chip 2 into which the specimen 10, the first reagent 11, and the second reagent 12 are injected. Is possible.
  • the sample quantitative unit 114 can store a predetermined amount of the sample 10 introduced into the test chip 2. The specimen 10 exceeding the predetermined amount overflows from the specimen quantification unit 114, moves through the second passage 115, and is stored in the specimen surplus part 116.
  • the rotation angle of the test chip 2 is set to 85 degrees, and the centrifugal force X acting on the quantification surface T is such that the angle E on the quantification end 123 side is an acute angle of 85 degrees. It is acting on. Therefore, since centrifugal force is not applied in the direction orthogonal to the fixed surface T, it is possible to prevent the liquid surface from being recessed when the specimen or reagent is injected.
  • the specimen 10 has a total amount of the volume of the specimen quantification unit 114 and the amount overflowing beyond the quantification end 121 on the first passage wall surface 120 side. Therefore, it is possible to inject more specimens or reagents than the capacity of the specimen quantification unit 114.
  • the turntable 33 rotates at a rotational speed of 3000 rpm, and a stronger centrifugal force is applied to the quantification surface T than when the sample injection into the sample quantification unit 114 is started.
  • quantification is performed with a strong centrifugal force at the time of quantification, and the quantification accuracy does not deteriorate even if the liquid level is once recessed.
  • the revolution controller (not shown) The number of rotations of 35 is controlled. Therefore, since the amount of the sample or reagent excessively injected into the quantification unit changes depending on the difference in the angle of the centrifugal force, the quantification can be performed in a short time by applying a strong centrifugal force according to the excessive amount injected. it can.
  • the revolution controller (not shown) drives the spindle motor 35 at a high speed and then drives at a lower speed than the high speed drive, so that the injection time can be reduced and the injection can be shortened.
  • the revolution controller (not shown) drives the spindle motor 35 at a high speed and then drives at a lower speed than the high speed drive, so that the injection time can be reduced and the injection can be shortened.
  • the first passage 117 is located on the direction side toward which the centrifugal force X1 is directed at the distal end 113A on the downstream side of the sample guide unit 113 that supplies the sample or the reagent toward the sample quantification unit 114.
  • the angle K of the sample quantitative unit 114 is an acute angle.
  • the depth L2 of the flow path 124 between the sample guide unit 113 and the sample quantitative unit 114 is equal to the depth L3 of the sample quantitative unit 114 and the sample guide unit 113. It is deeper than the depth L1.
  • the depth L1 of the sample guide 113 is the shallowest.
  • a step 126 which is an inclined surface is formed from the bottom surface 124A of the flow path 124 toward the bottom surface 114A of the sample quantitative unit 114.
  • a constricted portion 127 whose depth changes is formed between the bottom surface 124 ⁇ / b> A of the flow path 124 and the step 126.
  • a step 146 is also formed between the reagent guide 133 and the reagent quantitative unit 134.
  • a step 166 is also formed at a portion between the reagent guide unit 153 and the reagent quantitative unit 154.
  • the depth L1 of the sample guide 113 is greater than the depth L2 of the flow path 124 between the sample guide 113 and the sample quantitative unit 114 and the depth L3 of the sample quantitative unit 114. It is shallow. Accordingly, since the sample flows from the sample guide 113 having the shallow channel into the channel 124 and the sample quantifying unit 114 having a deep channel, the sample is injected from the sample guide 113 into the sample quantifying unit 114. It is possible to prevent the liquid from spreading and blocking the entrance of the specimen quantification unit 114 and mixing bubbles into the quantification unit.
  • the test chip 102 since the constricted portion 127 whose depth changes is formed between the bottom surface 124A of the flow path 124 and the step 126, the direction in which the sample smoothly flows to the sample quantitative portion 114 is changed. Can flow in. In addition, the same operation and effect can be achieved in the flow path between the reagent guide unit 133 and the reagent quantitative unit 134 and the flow path between the reagent guide unit 153 and the reagent quantitative unit 154.
  • the sample holding unit 111, the reagent holding unit 131, and the reagent holding unit 151 are examples of the “holding unit” of the present disclosure.
  • Each of the holding unit wall surface 118, the holding unit wall surface 138, and the holding unit wall surface 158 is an example of the “holding unit wall surface” of the present disclosure.
  • the sample supply unit 112, the reagent supply unit 132, and the reagent supply unit 152 are examples of the “supply unit” of the present disclosure.
  • the sample quantification unit 114, the reagent quantification unit 134, and the reagent quantification unit 154 are each examples of the “quantification unit” of the present disclosure.
  • the first passage 117, the third passage 137, and the fifth passage 157 are examples of the “first guide portion” of the present disclosure.
  • Each of the second passage 115, the fourth passage 135, and the sixth passage 155 is an example of the “second guide portion” of the present disclosure.
  • Each of the sample guide 113, the reagent guide 133, and the reagent guide 153 is an example of the “third guide” in the present disclosure.
  • the sample surplus part 116, the reagent surplus part 136, and the reagent surplus part 156 are examples of the “surplus part” of the present disclosure.
  • the mixing unit 170 is an example of the “mixing unit” in the present disclosure.
  • the fixed amount end portion 121, the fixed amount end portion 141, and the fixed amount end portion 161 are each an example of the “first connection portion” in the present disclosure.
  • the fixed amount end portion 123, the fixed amount end portion 143, and the fixed amount end portion 163 are each an example of the “second connection portion” of the present disclosure.
  • the quantitative surface T is an example of the “quantitative surface” of the present disclosure.
  • the step 126, the step 146, and the step 166 are examples of the “step” in the present disclosure.
  • the constricted portion 127 is an example of the “constricted portion” of the present disclosure.
  • Angle A is an example of the “first angle” of the present disclosure.
  • the angle B is an example of the “second angle” in the present disclosure.
  • the angle C is an example of the “third angle” in the present disclosure.
  • the angle D is an example of the “fourth angle” in the present disclosure.
  • the sample 10 is an example of the “sample” of the present disclosure.
  • the first reagent 11 and the second reagent 12 are examples of the “reagent” of the present disclosure.
  • the present disclosure is not limited to the above-described embodiment, and various modifications are possible.
  • the inspection apparatus 1 and the inspection chip 2 of the above embodiment are merely examples, and the structure, shape, processing, and the like can be changed.
  • the rotation angle of the generated inspection chip 2 that applies the first centrifugal force to the fixed surface T is not limited to 85 degrees, and may be any acute angle such as 80 degrees, 75 degrees, 70 degrees, or 65 degrees. Good.
  • the rotation angle of the generated inspection chip 2 that applies the second centrifugal force to the fixed surface T is not limited to 90 degrees.
  • the absolute value of the difference between two adjacent angles among the angles formed by the quantitative surface T and the second centrifugal force toward the quantitative surface T is formed by the quantitative surface T and the first centrifugal force toward the quantitative surface T.
  • Any rotation angle of the test chip 2 that causes the second centrifugal force to act on the quantitative surface in a direction that is smaller than the absolute difference between two adjacent angles among the angles may be used.
  • the angle K of the sample quantification unit 114 is not an acute angle and may be 0 degree among the angles formed by the direction of the centrifugal force X1 and the extending direction J of the sample supply unit 113.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 定量精度を向上する検査チップを提供する。 検査チップ2では、定量面Tと平行な仮想面H1と検体供給部壁面119との成す角の角度Aとする。定量面Tと平行な仮想面H2と第一通路壁面120との成す角の角度Bとする。定量面Tと平行な仮想面H3と第二通路壁面122との成す角の角度Cとする。定量面Tと平行な仮想面H4と保持部壁面118との成す角の角度Dとする。検査チップ2では、以下の関係を満たすようになっている。 角度A<角度B<角度C、角度A<角度D、角度D<角度B この関係を満たすことにより、検体定量部114での検体の定量時に、検体の不足を生じることなく正確に定量を行うことができる。

Description

検査チップ
 本発明は、検査対象物の化学的、医学的、または生物学的な検査を行うための検査チップに関する。
 従来、生体物質、または化学物質等の検体を検査するための検査チップが知られている。例えば特許文献1に開示の検査チップは、正面から見てV字状の定量部を備えている。この検査チップでは、V字状の定量部の入り口方向に対して遠心力を作用させて、定量部に検体または試薬が注入される。次に遠心力の方向を変えずに定量部において検体または試薬が定量されるようになっている。そして遠心力の方向を変えて定量された検体または試薬が検査に使用される。
特開2009-121912号公報
 特許文献1に開示の検査チップの定量部には、検体または試薬が定量部から溢れ出る仮想的な面である定量面が存在する。定量部では、この定量面までの容積の検体または試薬が定量される。定量部への検体または試薬の注入時に遠心力が定量面に垂直に印加されると、注入時の衝撃により、定量部以外の場所へ検体または試薬が飛び散る。この結果、注入が終了した時点で、定量部へ注入された検体または試薬が定量量に満たない可能性がある。よって、定量精度が低下するという問題がある。
 本発明の目的は、定量精度を向上する検査チップを提供することである。
 本開示の一態様は、液体である検体及び試薬が注入され、所定の第一軸を中心に回転されることで遠心力が付与され、且つ、前記第一軸とは異なる第二軸を中心に回転されることで前記遠心力の方向が変化される検査チップであって、前記検体または試薬を定量する定量部と、前記定量部に前記検体または前記試薬を供給する供給部と、前記検体と前記試薬とが混合される混合部側に向けて前記検体または前記試薬を案内する第1案内部と、前記定量部において余剰とされた前記検体または前記試薬を収容する余剰部側に向けて前記検体または前記試薬を案内する第2案内部と、前記定量部において、前記混合部に連通する前記第1案内部との接続箇所である第1接続部と、前記定量部において、前記余剰部に連通する前記第2案内部との接続箇所である第2接続部とを備え、前記第1接続部と前記第2接続部とを結ぶ定量面と平行な方向と、前記供給部の前記第1案内部側の壁面の延設方向とのなす第1角度と、前記定量面と平行な方向と、前記第1接続部に接続する前記第1案内部の壁面の延設方向とがなす第2角度と、前記定量面と平行な方向と、前記第2接続部に接続する前記第2案内部の壁面の延設方向とがなす第3角度とは、第1角度<第2角度<第3角度の関係を有することを特徴とする。
 上記態様に係る検査チップによれば、定量部への検体または試薬の注入時に、定量面と前記定量面へ向かう遠心力との成す角度の内、第2接続部側が鋭角になる方向に遠心力を定量面に作用させると、定量部の容量より多く検体または試薬を注入することができる。ここで、第1角度<第2角度<第3角度の関係があるので、検査チップ内での検体または試薬の移動時に、定量部から溢れ出た検体または試薬は、第1案内部から混合部側に向けて流れ込まずに、第2案内部から余剰部側に向けて流れ込むことができる。また、定量時に一旦、液面が凹んでも、先に定量部の容量より多く検体または試薬が注入されているので、定量精度を高めることができる。
 前記供給部と前記定量部とを連結する第3案内部を備え、前記第3案内部の前記第1案内部側の壁面の先端は前記第2接続部に対向する位置より前記第1案内部側にあるようにしてもよい。この場合、定量部への検体または試薬の注入時に、第3案内部の第1案内部側の壁面の先端は第2接続部に対向する位置より第1案内部側にあるので、検体または試薬が第3案内部から第2案内部側に流れることを防止でき、定量部に確実に注入することができる。従って、定量部へ注入された検体または試薬が定量量に満たなくなることを防止して、定量精度を向上することができる。
 前記供給部と連結され、前記検査チップに供給された前記検体または前記試薬を保持する保持部を備え、前記供給部と前記保持部とを隔てる保持部壁面の先端は、前記第3案内部より前記定量面と平行な方向において前記第1案内部側に位置するようにしてもよい。この場合、保持部壁面の先端は、第3案内部より定量面と平行な方向において第1案内部側に位置するので、供給部から保持部への検体または試薬を移動させる場合に、第3案内部に検体または試薬が流れ込んで、定量部に流入することを防止できる。従って、供給部から保持部への検体または試薬を移動時に、検体または試薬の減少を防止できる。故に、定量部へ注入された検体または試薬が定量量に満たなくなることを防止して、定量精度を向上することができる。
 前記第1角度より、前記定量面と平行な方向と前記保持部壁面の延設方向とがなす第4角度が大きくなるようにしてもよい。この場合、保持部から供給部への検体または試薬を移動させる場合に、第3案内部に検体または試薬が流れ込むことを防止できる。従って、第3案内部から検体または試薬が定量部に流入することを防止できる。従って、保持部から供給部への検体または試薬を移動時に、検体または試薬の減少を防止できる。故に、定量部へ注入された検体または試薬が定量量に満たなくなることを防止して、定量精度を向上することができる。
 前記第4角度より前記第2角度が大きくなるようにしてもよい。この場合、保持部から供給部への検体または試薬を移動させる場合に、第3案内部に検体または試薬が流れ込んでも第1案内部から混合部側に向けて流入することを防止できる。従って、定量部へ注入された検体または試薬が定量量に満たなくなることを防止して、定量精度を向上することができる。
 前記第3案内部と前記定量部との間の流路の底面に段差が形成されているようにしてもよい。この場合、第3案内部から前記定量部への検体または試薬の注入時に、段差により液体がスムーズに定量部に案内される。従って、注入される検体または試薬が広がって定量部の入り口を塞いでしまって、気泡が定量部に混入することを防止できる。従って、定量された検体または試薬の不足を防止し、定量精度を向上することができる。
 前記第3案内部の深さは、前記定量部の深さ、及び前記第3案内部と前記定量部との間の流路の深さより浅くなるようにしてもよい。第3案内部から前記定量部への検体または試薬の注入時に、流路の深さの浅い第3案内部から、深さの深い第3案内部と前記定量部との間の流路及び定量部に流れ込む。従って、注入される検体または試薬が広がって定量部の入り口を塞いでしまって、気泡が定量部に混入することを防止できる。従って、定量された検体または試薬の不足を防止し、定量精度を向上することができる。
 前記第3案内部と前記定量部との間の流路と、前記定量部との間には、深さが変化するくびれ部が形成されているようにしてもよい。この場合、くびれ部にて検体または試薬が定量部方向へスムーズに流れる方向を変えて流れ込むことができる。従って、定量された検体または試薬の不足を防止し、定量精度を向上することができる。
検査チップ2が定常状態にある検査装置1の背面図である。 検査チップ2が定常状態から自転した状態にある検査装置1の背面図である。 図1に示す検査装置1の平面図である。 検査チップ2の斜視図である。 遠心処理前の検査チップ2の正面図である。 検体定量部114及びその周囲の拡大正面図である。 図6のY-Y線に於ける矢印方向から見た断面図である。 自転角度0度において公転される検査チップ2の正面図である。 自転角度85度において公転される検査チップ2の正面図である。 図9の自転角度85度において公転される検査チップ2の検体定量部114及びその周囲の拡大正面図である。 自転角度85度において公転される検査チップ2の正面図である。 自転角度90度において公転される検査チップ2の正面図である。 自転角度90度において公転される検査チップ2の検体定量部114及びその周囲の拡大正面図である。 自転角度0度において公転される検査チップ2の正面図である。 自転角度90度において公転される検査チップ2の検体定量部114の周囲の拡大正面図である。 第二実施形態の検査チップ102の正面図である。 図16のZ-Z線に於ける矢印方向から見た断面図である。 検査チップ2の公転速度、自転角度、及び検体の移動を示すタイミングチャートである。
 本開示を具体化した実施の形態について、図面を参照して説明する。参照する図面は、本発明が採用しうる技術的特徴を説明するために用いられるものであり、単なる説明例である。
<1.検査システム3の概略構造>
 本開示の第一実施形態を説明する。図1及び図2を参照して、検査システム3の概略構造について説明する。本第一実施形態の検査システム3は、液体である検体及び試薬を収容可能な検査チップ2と、検査チップ2を用いて検査を行う検査装置1とを含む。検査装置1は、検査チップ2から離間した垂直軸線を中心とした回転により、検査チップ2に遠心力を付与できる。検査装置1は、水平軸線を中心に検査チップ2を回転させることにより、検査チップ2に付与される遠心力の方向である遠心方向を切り替え可能である。
<2.検査装置1の詳細構造>
 図1~図3を参照して、検査装置1の詳細構造について説明する。以下の説明では、図1及び図2の上方、下方、右方、左方、紙面手前側、及び紙面奥側を、それぞれ、検査装置1の上方、下方、右方、左方、後方、及び前方とする。図3の上方、下方、右方、左方、紙面手前側、及び紙面奥側を、それぞれ、検査装置1の前方、下方、右方、左方、上方、及び下方とする。本実施形態では、垂直軸線の方向は上下方向であり、水平軸線の方向は検査チップ2が垂直軸線を中心とした回転の際の速度の方向である。なお、理解を容易にするために、図1及び図2では上部筐体30を仮想線により示し、図3では上部筐体30の天板が取り除かれた状態を示す。
 図1~図3に示すように、検査装置1は、上部筐体30、下部筐体31、ターンテーブル33、角度変更機構34、及び制御装置90を備える。ターンテーブル33は、下部筐体31の上面側に設けられる円盤状の回転体である。検査チップ2は、ターンテーブル33の上方に保持される。角度変更機構34は、ターンテーブル33に設けられた駆動機構である。この駆動機構は、水平軸線を中心に検査チップ2を回転させる。上部筐体30は、下部筐体31の上側に固定されており、検査チップ2に対して光学測定を行う測定部7が内部に設けられている。制御装置90は、検査装置1の各種処理を制御するコントローラである。
 下部筐体31の詳細構造を説明する。図1及び図2に示すように、下部筐体31は、枠部材を組み合わせた箱状のフレーム構造を有する。下部筐体31の上面には、長方形の板材である上板32が設けられている。上板32の上側には、ターンテーブル33が回転自在に設けられている。下部筐体31の内部には、垂直軸線を中心にターンテーブル33を回転させる駆動機構が、次のように設けられている。
 下部筐体31内の左方寄りに、ターンテーブル33を回転させるための駆動力を供給する主軸モータ35が設置されている。主軸モータ35の軸36は、上方に突出しており、プーリ37が固定されている。下部筐体31の中央部には、下部筐体31の内部から上方に延びる垂直な主軸57が設けられている。主軸57は、上板32を貫通して、下部筐体31の上側に突出している。主軸57の上端部は、ターンテーブル33の中央部に接続されている。
 主軸57は、上板32の直下に設けられた支持部材53により、回転自在に保持されている。支持部材53の下側では、主軸57にプーリ38が固定されている。プーリ37、38に亘って、ベルト39が掛け渡されている。主軸モータ35が軸36を回転させると、プーリ37、ベルト39、及びプーリ38を介して駆動力が主軸57に伝達される。このとき、主軸57の回転に連動して、ターンテーブル33が主軸57を中心に回転する。
 下部筐体31内の右方寄りに、下部筐体31の内部において上下方向に延びるガイドレール56が設けられている。T型プレート48は、ガイドレール56に沿って下部筐体31内において上下方向に移動可能である。T型プレート48の前側、すなわち図1及び図2では紙面奥側の面には、左右方向に長い溝部80が形成されている。
 先述の主軸57は、内部が中空の筒状体である。内軸40は、主軸57の内部において上下方向に移動可能な軸である。内軸40の上端部は、主軸57内を貫通して後述のラックギア43に接続されている。T型プレート48の左端部には、軸受41が設けられている。軸受41の内部では、内軸40の下端部が回転自在に保持される。
 T型プレート48の前方には、T型プレート48を上下動させるためのステッピングモータ51が固定されている。ステッピングモータ51の軸58は後方、すなわち図1及び図2では紙面手前側に向けて突出している。軸58の先端には、円盤状のカム板59が固定されている。カム板59の後側の面には、円柱状の突起70が設けられている。突起70の先端部は、先述の溝部80に挿入されている。突起70は、溝部80内を摺動可能である。ステッピングモータ51が軸58を回転させると、カム板59の回転に連動して突起70が上下動する。このとき、溝部80に挿入されている突起70に連動して、T型プレート48がガイドレール56に沿って上下動する。
 角度変更機構34の詳細構造を説明する。角度変更機構34は、ターンテーブル33の上面に固定された一対のL型プレート60を有する。各L型プレート60は、ターンテーブル33の中心近傍に固定された基部から上方に延び、且つ、その上端部がターンテーブル33の径方向外側に向けて延びている。一対のL型プレート60の間には、内軸40に固定されたラックギア43が設けられている。ラックギア43は、上下方向に長い金属製の板状部材であり、両端面にギアが各々刻まれている。
 各L型プレート60の延設方向の先端側では、ギア45を有する水平な支軸46が回転自在に軸支されている。支軸46は図示外の装着用ホルダを介して検査チップ2に固定されている。このため、ギア45の回転に連動して検査チップ2も支軸46を中心に回転する。ギア45とラックギア43との間には、L型プレート60により水平軸線を中心に回転自在に支持されたピニオンギア44が介在している。ピニオンギア44は、ギア45及びラックギア43にそれぞれ噛合している。ラックギア43の上下動に連動して、ピニオンギア44、及びギア45がそれぞれ従動回転し、ひいては検査チップ2が支軸46を中心に回転する。
 本実施形態では、主軸モータ35がターンテーブル33を回転駆動するのに伴って、検査チップ2が垂直軸である主軸57を中心に回転して、検査チップ2に遠心力が付与される。検査チップ2の垂直軸線を中心とした回転を、公転と呼ぶ。一方、ステッピングモータ51が内軸40を上下動させるのに伴って、検査チップ2が水平軸である支軸46を中心に回転して、検査チップ2に作用する遠心力の方向が相対変化する。検査チップ2の水平軸線を中心とした回転を、自転と呼ぶ。
 図1に示すように、T型プレート48が可動範囲の最下端まで下降した状態では、ラックギア43も可動範囲の最下端まで下降する。このとき、検査チップ2は、自転角度が0度の定常状態になる。図2に示すように、T型プレート48が可動範囲の最上端まで上昇した状態では、ラックギア43も可動範囲の最上端まで上昇する。このとき、検査チップ2は、定常状態から水平軸線を中心に180度回転した状態になる。つまり、本実施形態では検査チップ2が自転可能な角度幅は、自転角度0度~180度である。
 上部筐体30の詳細構造を説明する。図3に示すように、上部筐体30は、枠部材を組み合わせた箱状のフレーム構造を有し、上板32の左部上側に設置されている。より詳細には、上部筐体30は、ターンテーブル33の回転中心にある主軸57からみて、検査チップ2が回転される範囲の外側に設けられている。
 上部筐体30の内部に設けられた測定部7は、測定光を発光する光源71と、光源71から発せられた測定光を検出する光センサ72とを有する。光源71及び光センサ72は、検査チップ2の回転範囲の外側において、ターンテーブル33の前後両側に配置されている。本実施形態では、検査チップ2の公転可能範囲のうちで主軸57の左側位置が、検査チップ2に測定光が照射される測定位置である。検査チップ2が測定位置にある場合、光源71と光センサ72とを結ぶ測定光が、検査チップ2の前後面に対して略垂直に交差する。
<2.検査チップ2の構造>
 図4~図7を参照して、第一実施形態に係る検査チップ2の詳細構造を説明する。以下の説明では、図4の上方、下方、左下方、右上方、右下方、及び左上方を、それぞれ、検査チップ2の上方、下方、前方、後方、右方、及び左方とする。図5~図7は、シート29を取り除いた検査チップ2の正面図を示している。後述の図8~図16も同様である。
 図4に示すように、検査チップ2は一例として前方から見た場合に正方形状であり、所定の厚みを有する透明な合成樹脂の板材20を主体とする。板材20の前面は、透明の合成樹脂の薄板から構成されたシート29により封止されている。板材20とシート29との間には、検査チップ2に封入された液体が流動可能な液体流路25が形成されている。液体流路25は、板材20の前面側に所定深さにより形成された凹部であり、板材20の厚み方向である前後方向と直交する方向に延びる。すなわち、シート29は、板材20の流路形成面を封止する。
 液体流路25は、検体保持部111、検体定量部114、検体余剰部116、試薬保持部131、試薬定量部134、試薬余剰部136、試薬保持部151、試薬定量部154、試薬余剰部156、及び混合部170を含む。図5に示すように、検体保持部111は検体10が注入及び貯留される部位である。検体保持部111は、左辺部23と左辺部23から右斜め上方に延設される保持部壁面118との間に形成され、且つ上側に開口する凹部である。本実施形態の検体10は、例えば血液である。試薬保持部131は第一試薬11が注入及び貯留される部位である。試薬保持部131は、後述する隔壁125と隔壁125から斜め上方に延設される保持部壁面138との間に形成され、且つ上側に開口する凹部である。試薬保持部151は第二試薬12が注入及び貯留される部位である。試薬保持部151は、後述する隔壁145と隔壁145から斜め上方に延設される保持部壁面158との間に形成され、且つ上側に開口する凹部である。
 図5に示すように、検体保持部111、試薬保持部131、及び試薬保持部151は、検査チップ2の上側の壁面である上辺部21に沿って、板材20の前面に左右方向に並んで形成されている。検体保持部111、試薬保持部131、及び試薬保持部151のうち、検体保持部111が検査チップ2の左側の壁面である左辺部23に最も近い。試薬保持部151が検査チップ2の右側の壁面である右辺部22に最も近い。試薬保持部131が検体保持部111と試薬保持部151との間に位置する。なお、検査チップ2の下側の壁面は、下辺部24である。
 図示しないがシート29には、検体10を検体保持部111に注入するための検体注入穴が形成されている。例えば、図示しない器具に収容された検体10が、ユーザの操作により検体注入穴から注入されればよい。すなわち、公知の手法を用いて、試薬注入穴を介して検体10が検体保持部111に注入されればよい。同様にシート29には、図示しないが、第一試薬11を試薬保持部131に注入するための試薬注入穴、及び第二試薬12を試薬保持部151に注入するための試薬注入穴が形成されている。尚、これらの注入穴は、例えば上辺部21が開口している形状でもよい。
 検体供給部112は、検体保持部111の右上部分から下方向に延びる検体10の供給流路である。検体供給部112の下端部は、流路が狭く形成された検体案内部113に接続する。検体供給部112と試薬保持部131との間には、上辺部21から下方に伸びる隔壁125が形成されている。隔壁125からは左斜め下方向に検体供給部壁面119が形成されている。検体案内部113の下方には、検体定量部114が設けられている。検体定量部114は検体10を定量する部位であり、上側に開口する凹部である。
 検体案内部113と検体定量部114とが連通する部位から、第一通路117が右方向に延び、且つ第二通路115が左方向に延びている。第二通路115は、検体定量部114の左下方に設けられた検体余剰部116まで延びている。すなわち第二通路115は、流路の形成方向が変わるように前方からみて屈曲している。これにより、第二通路115において検体10が検体定量部114と検体余剰部116との間を移動するためには、検体10に複数の異なる方向の外力を付与する必要がある。つまり検体余剰部116に貯留された検体10は、第二通路115を介して検体定量部114に逆流しにくい。
 検体定量部114は、検体10の液量が定量される場合に検体10の液面が形成される二つの定量端部121及び定量端部123を備える。定量端部121は検体定量部114と第一通路117との接続箇所である。定量端部123は検体定量部114と第二通路115との接続箇所である。定量端部121及び定量端部123を結ぶ面が図6に示す定量面Tである。検体案内部113から検体定量部114の凹部内側に向けて遠心力が付与されることにより、検体定量部114の凹部内側の体積と同量の検体10が定量される。定量方法の詳細は後述する。定量端部121からは、右斜め上方に向けて第一通路117を形成する第一通路壁面120が設けられる。定量端部123からは左斜め下方向に向けて第二通路115を形成する第二通路壁面122が設けられる。
 検体余剰部116は、検体定量部114から溢れ出た検体10が貯留される部位であり、第二通路115の下端部から右方向に延びる凹部である。第一通路117は、検体定量部114の右下側に設けられた後述の混合部170まで延びている。すなわち第一通路117は、第二通路115と同様の理由により、流路の形成方向が変わる。
 試薬供給部132は、試薬保持部131の右上部分から下方向に延びる第一試薬11の供給流路である。試薬供給部132の下端部は、流路が狭く形成された試薬案内部133に接続する。試薬供給部132と試薬保持部151との間には、上辺部21から下方に伸びる隔壁145が形成されている。隔壁145からは左斜め下方向に試薬供給部壁面139が形成されている。試薬案内部133の下方には、試薬定量部134が設けられている。試薬定量部134は第一試薬11を定量する部位であり、上側に開口する凹部である。試薬案内部133から試薬定量部134の凹部内側に向けて遠心力が付与されることにより、試薬定量部134の凹部内側の体積と同量の第一試薬11が定量される。
 試薬案内部133と試薬定量部134とが連通する部位から、第三通路137が右方向に延び、且つ第四通路135が左方向に延びている。第三通路137は、試薬定量部134の右下側に設けられた後述の混合部170までつながっている。すなわち第三通路137は、第一通路117と同様の理由により、流路の形成方向が変わる。第四通路135は、試薬定量部134の左下方に設けられた試薬余剰部136まで延びている。すなわち第四通路135は、第二通路115と同様の理由により、流路の形成方向が変わる。試薬余剰部136は、試薬定量部134から溢れ出た第一試薬11が貯留される部位であり、第四通路135の下端部から右方向に延びる凹部である。
 試薬定量部134は、液量が定量される場合に第一試薬11の液面が形成される二つの定量端部141及び定量端部143を備える。定量端部141は試薬定量部134と第三通路137との接続箇所である。定量端部143は試薬定量部134と第四通路135との接続箇所である。定量端部141及び定量端部143を結ぶ面が定量面である。試薬案内部133から試薬定量部134の凹部内側に向けて遠心力が付与されることにより、試薬定量部134の凹部内側の体積と同量の第一試薬11が定量される。定量端部141からは、右斜め上方に向けて第三通路137を形成する第三通路壁面140が設けられる。定量端部143からは左斜め下方向に向けて第四通路135を形成する第四通路壁面142が設けられる。
 試薬供給部152は、試薬保持部151の右上部分から下方向に延びる第二試薬12の供給流路である。試薬供給部152の下端部は、流路が狭く形成された試薬案内部153に接続する。試薬案内部153の下方には、試薬定量部154が設けられている。右辺部22からは左斜め下方向に試薬供給部壁面159が形成されている。試薬定量部154は第二試薬12を定量する部位であり、上側に開口する凹部である。試薬案内部153から試薬定量部154の凹部内側に向けて遠心力が付与されることにより、試薬定量部154の凹部内側の体積と同量の第二試薬12が定量される。
 試薬案内部153と試薬定量部154とが連通する部位から、第五通路157が右方向に延び、且つ第六通路155が左方向に延びている。第六通路155は、試薬定量部154の左下方に設けられた試薬余剰部156まで延びている。すなわち第六通路155は、第二通路115と同様の理由により、流路の形成方向が変わる。試薬余剰部156は、試薬定量部154から溢れ出た第二試薬12が貯留される部位であり、第六通路155の下端部から右方向に延びる凹部である。第五通路157は、試薬定量部154の右下側に設けられた後述の混合部170まで延びている。すなわち第五通路157は、第二通路115と同様の理由により、流路の形成方向が変わる。
 試薬定量部154は、液量が定量される場合に第二試薬12の液面が形成される二つの定量端部161及び定量端部163を備える。定量端部161は試薬定量部154と第五通路157との接続箇所である。定量端部163は試薬定量部154と第六通路155との接続箇所である。定量端部161及び定量端部163を結ぶ面が定量面である。試薬案内部153から試薬定量部154の凹部内側に向けて遠心力が付与されることにより、試薬定量部154の凹部内側の体積と同量の第二試薬12が定量される。定量端部161からは、右斜め上方に向けて第五通路157を形成する第五通路壁面160が設けられる。定量端部163からは左斜め下方向に向けて第六通路155を形成する第六通路壁面162が設けられる。
 混合部170は、検査チップ2の右下部に設けられた上側に開口する矩形状の凹部である。混合部170では、第一通路117から流入する検体10と、第三通路137から流入する第一試薬11と、第五通路157から流入する第二試薬12とが混合され、図15に示す混合液13が生成される。生成された混合液13は、混合部170を通る測定光により光学測定される。
 図6を参照して、定量端部121と定量端部123とを結ぶ定量面Tと平行な仮想面H1~H4に対する保持部壁面118、検体供給部壁面119、第一通路壁面120及び第二通路壁面122の傾斜角度の関係について説明する。定量面Tと平行な仮想面H1と検体供給部壁面119との成す角の角度Aとする。定量面Tと平行な仮想面H2と第一通路壁面120との成す角の角度Bとする。定量面Tと平行な仮想面H3と第二通路壁面122との成す角の角度Cとする。定量面Tと平行な仮想面H4と保持部壁面118との成す角の角度Dとする。検査チップ2では、以下の関係を満たすようになっている。
 角度A<角度B<角度C
 角度A<角度D
 角度D<角度B
 角度A<角度Bとなるように、検体供給部壁面119及び第一通路壁面120が形成される。この角度の関係により定量面Tと平行な仮想面H1に対する検体供給部壁面119の傾斜角度より定量面Tと平行な仮想面H2に対する第一通路壁面120の傾斜角度が大きくなる。従って、検体供給部112から検体案内部113に検体10を流し込んで、検体定量部114に検体10を注入する場合にも、遠心力により注入する場合は、遠心力の方向と検体供給部壁面119とのなす角度が、遠心力の方向と第一通路壁面120とのなす角度よりも大きい。従って、検体10が第一通路壁面120を伝わって混合部170に流れ込むことを防止できる。また、重力により注入する場合は、重力の方向と検体供給部壁面119とのなす角度が、重力の方向と第一通路壁面120とのなす角度よりも大きい。従って、検体10が第一通路壁面120を伝わって混合部170に流れ込むことを防止できる。尚、試薬供給部壁面139と第三通路壁面140との傾斜角度の関係及び試薬供給部壁面159と第五通路壁面160との傾斜角度の関係も上記と同様の関係である。
 また、角度B<角度Cとなるように、第一通路壁面120及び第二通路壁面122が形成される。この角度の関係により定量面Tと平行な仮想面H2に対する第一通路壁面120の傾斜角度より定量面Tと平行な仮想面H3に対する第二通路壁面122の傾斜角度が大きくなる。従って、遠心力により注入する場合は、遠心力の方向と第二通路壁面122とのなす角度が、遠心力の方向と第一通路壁面120とのなす角度よりも大きい。従って、検体定量部114から溢れ出た検体10は、第一通路壁面120を伝わって混合部170に流れ込まずに、第二通路壁面122を伝わって第二通路115から検体余剰部116に流れ込む。また、重力により注入する場合は、重力の方向と第二通路壁面122とのなす角度が、重力の方向と第一通路壁面120とのなす角度よりも大きい。従って、検体定量部114から溢れ出た検体10は、第一通路壁面120を伝わって混合部170に流れ込まずに、第二通路壁面122を伝わって第二通路115から検体余剰部116に流れ込む。尚、第三通路壁面140と第四通路壁面142との傾斜角の関係及びその効果も上記と同様の関係である。第五通路壁面160と第六通路壁面162との傾斜角度の関係及びその効果も上記と同様の関係である。
 また、角度A<角度Dとなるように、保持部壁面118及び検体供給部壁面119が形成される。この角度の関係により定量面Tと平行な仮想面H1に対する検体供給部壁面119の傾斜角度より定量面Tと平行な仮想面H4に対する保持部壁面118の傾斜角度が大きくなる。遠心力により検体を検体保持部111から検体供給部112へ移動する場合は、遠心力の方向と保持部壁面118とのなす角度が、遠心力の方向と検体供給部壁面119とのなす角度よりも大きい。従って、検体保持部111から検体10を検体供給部112に移動する場合に、検体10が検体案内部113に流れ込むことを防止できる。また、重力により検体を検体保持部111から検体供給部112へ移動する場合は、重力の方向と保持部壁面118とのなす角度が、重力の方向と検体供給部壁面119とのなす角度よりも大きい。従って、検体保持部111から検体10を検体供給部112に移動する場合に、検体10が検体案内部113に流れ込むことを防止できる。保持部壁面138と試薬供給部壁面139との傾斜角の関係その効果も上記と同様である。保持部壁面158と試薬供給部壁面159との傾斜角の関係及びその効果も上記と同様である。
 また、角度D<角度Bとなるように、保持部壁面118及び第一通路壁面120が形成される。この角度の関係により定量面Tと平行な仮想面H4に対する保持部壁面118の傾斜角度より定量面Tと平行な仮想面H2に対する第一通路壁面120の傾斜角度が大きくなる。遠心力により検体を検体保持部111から検体供給部112へ移動する場合は、遠心力の方向と第一通路壁面120とのなす角度が、遠心力の方向と保持部壁面118とのなす角度よりも大きい。従って、検体保持部111から検体10を検体供給部112に移動する場合に、検体10が検体案内部113に流れ込んで第一通路に漏れてしまっても、検体10が第一通路壁面120を伝わって混合部170方向へ流れることを防止できる。また、重力により検体を検体保持部111から検体供給部112へ移動する場合は、重力の方向と第一通路壁面120とのなす角度が、重力の方向と保持部壁面118とのなす角度よりも大きい。従って、検体保持部111から検体10を検体供給部112に移動する場合に、検体10が検体案内部113に流れ込んで第一通路に漏れてしまっても、検体10が第一通路壁面120を伝わって混合部170方向へ流れることを防止できる。また、保持部壁面138と第三通路壁面140との傾斜角の関係及びその効果も上記と同様の関係である。保持部壁面158と第五通路壁面160との傾斜角の関係及びその効果も上記と同様の関係である。
 さらに、図6に示すように、検体案内部113の第一通路117側の壁面の先端113Aは、定量端部123に対向する位置よりも定量面Tと平行な仮想的な平面の方向である左右方向において第一通路117側に形成されている。従って、検体案内部113から検体定量部114に注入される検体10が検体定量部114に入らずに第二通路115へ流れ込んでしまうことを防止できる。第二通路115側に検体10が注入されると、第二通路115側の検体定量部114にたまった気泡が抜けず、定量精度が悪くなる。これを回避するために、検体10が第一通路117側に注入される。故に、検体定量部114で検体10の量が不足することを防止できる。尚、試薬案内部133及び試薬案内部153においても上記同様の構造になっており、上記同様の効果を奏することができる。
 また、図6に示すように、保持部壁面118の先端118Aは、検体案内部113より左右方向において第一通路117側に位置する。よって、図8に示す矢印方向に遠心力Xを作用させて、検体保持部111から検体供給部112へ検体10を移動させる場合に、保持部壁面118の先端118Aが検体案内部113より遠心力の下流側に位置するので、検体案内部113に検体10が流れ込んで、検体定量部114に流入することが防止できる。
 次に、図7の断面図を参照して、検体案内部113と、検体案内部113と検体定量部114との間の流路124の底面124Aの形状について説明する。検体案内部113と検体定量部114との間の流路124の底面124Aは検体定量部114の底面114Aと同じ深さの平面となっている。そして、検体案内部113の深さL1は、流路124の底面124Aの深さL2より浅くなっている。
<3.検査チップ2のその他構造>
 図1に示すように、L型プレート60から延びる支軸46は、図示外の装着用ホルダを介して板材20の後面中央に垂直に連結される。支軸46の回転に伴って、検査チップ2が支軸46を中心に自転する。検査チップ2は図4~図6に示す定常状態である場合、上辺部21及び下辺部24が重力Gの方向と直交し、右辺部22及び左辺部23が重力Gの方向と平行、且つ、左辺部23が右辺部22よりも主軸57側に配置される。定常状態の検査チップ2が測定位置に配置されている場合、光源71と光センサ72とを結ぶ測定光が混合部170を上方からみて垂直に通過する。
<4.検査方法の一例>
 図5~図15、及び図18を参照して、検査装置1及び検査チップ2を用いた検査方法について説明する。尚、図18に示す、検査チップ2の自転、公転、及び回転数の制御は、それぞれ、時間T1~T5が経過したか否かで制御される。時間T1~T5の情報は制御装置90の図示しない記憶装置に予め記憶されている。ユーザは検査チップ2を支軸46に取り付けて、制御装置90に処理開始のコマンドを入力すると、以下の測定動作が実行される。処理開始のコマンドが入力された時間が図18に示すタイミングチャートの時間T0である。なお、検査装置1は二つの検査チップ2を同時に検査可能であるが、以下では説明の便宜のため、一つの検査チップ2を検査する手順を説明する。以下の説明では、図5に示す検査チップ2の定常状態を自転角度0度とし、定常状態から85度反時計回りに回転した状態を「自転角度85度」と言う。自転角度85度からさらに5度反時計回りに回転した状態を「自転角度90度」と言う。
 まず、時間T0から主軸モータ35が制御装置90の指示に基づき、ターンテーブル33の駆動を開始する。この結果、自転角度が0度の検査チップ2が公転する。主軸モータ35は、制御装置90の指示に基づき、ターンテーブル33の回転速度を上げる。回転速度が3000rpmに達すると、主軸モータ35はこの回転速度を保持する。3000rpmの回転速度でターンテーブル33が回転している状態を、以下高速駆動と記載する。尚、高速駆動時の回転速度は、3000rpmに限られず、他の回転速度でもよい。時間T0~時間T1において、図8に示すように、左辺部23から右辺部22に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用により検体10は検体保持部111から検体供給部112に移動する。同様に、第一試薬11は試薬保持部131から試薬供給部132に移動する。第二試薬12は試薬保持部151から試薬供給部152に移動する。時間T1は、検体10、第一試薬11、及び第二試薬12が、上述した移動を行うのに十分な時間として制御装置90の図示しない記憶装置に予め記憶されている。
 時間T1において、制御装置90の指示に基づくステッピングモータ51の駆動制御により、図9に示すように、高速駆動により公転中の検査チップ2が前方からみて反時計回りに85度自転される。これにより、検査チップ2の自転角度が85度に変化する。この結果、上辺部21と遠心力の方向との成す角度が85度になるように検査チップ2に遠心力X1が作用する。ここで、図10に示すように、定量面Tと作用する遠心力X1の方向との成す角のうち、定量端部123側の角度Eが鋭角であり、角度Eに隣接する角度Fが鈍角である。検査チップ2の自転角度が85度であるので、角度Eは85度になる。図9に示すように、遠心力X1の作用により、検体10は検体案内部113を介して検体定量部114に流入する。同様に、第一試薬11は試薬案内部133を介して試薬定量部134に流入する。第二試薬12は試薬案内部153を介して試薬定量部154に流入する。
 次に、時間T1~T2の間に、主軸モータ35が制御装置90の指示に基づき、ターンテーブル33の回転速度を下げる。回転速度が1000rpmに達すると、主軸モータ35は、この回転速度を保持する。1000rpmの回転速度でターンテーブル33が回転している状態を、以下低速駆動と記載する。尚、低速駆動時の回転速度は、高速駆動時の回転速度よりも遅ければ、1000rpmに限られず、他の回転速度でもよい。低速駆動時の遠心力Xは高速駆動時の遠心力Xより弱い。すなわち、時間T2における遠心力Xは、検体定量部114、試薬定量部134及び試薬定量部154への各液の注入開始時の遠心力Xより弱い。これにより、検体定量部114、試薬定量部134及び試薬定量部154への注入開始時は、強い遠心力により、効率よく各液が注入され、注入終了時に遠心力を弱めることにより、気泡の混入を防止すると共に、各液の液面の凹みを抑えることができる。時間T2は、検体10、第一試薬11、及び第二試薬12が、各定量部への移動を行うのに十分な時間として制御装置90の図示しない記憶装置に予め記憶されている。
 図10に示すように、検体案内部113は、検体定量部114に向けて検体10を案内し供給する。検体案内部113の下流側の先端113Aにおける遠心力X1の方向に第一通路117が位置してもよい。この場合、遠心力X1の方向と検体供給部113の延設方向Jとの成す角度の内、検体定量部114側の角度Kが鋭角である。
 図10に示すように、検体定量部114において所定量を超えた検体10が第二通路115に溢れ出して検体余剰部116に貯留される。ここで、遠心力X1は、定量端部123側の角度Eが鋭角になるように作用しているので、検体10は検体定量部114の容積と第一通路壁面120側に定量端部121を超えて溢れている量との合計量になる。試薬定量部134及び試薬定量部154においても同様である。すなわち、図18に示す時間T1~T2において、主軸モータ35がターンテーブル33を低速駆動することにより、遠心力を高速駆動時の遠心力より弱めるのは、遠心力が強いと液面が遠心力方向に凹み、前記合計量の検体10の液量が減るからである。
 次に、図18に示す時間T2において、制御装置90の指示に基づくステッピングモータ51の駆動制御により、低速駆動により公転中の検査チップ2が前方からみて反時計回りに5度自転される。これにより、図12に示すように検査チップ2の自転角度が90度に変化する。図13に示すように、定量面Tに対して、作用する遠心力X2は、定量端部123側の角度Gが90度になっており、角度Gに隣接する角度Hも90度になっている。故に、図13に示すように、定量面Tを超えて、第一通路壁面120側に定量端部121を超えて溢れていた検体10が第二通路115に溢れ出す。溢れ出した検体10は、検体余剰部116に貯留される。この結果、所定量の検体10が正確に定量される。ここで、定量面Tと検体定量部114を形成する壁とにより囲まれる体積が、所望の定量量である。検体定量部114において定量された体積の検体10が、第一試薬11と第二試薬12とに混合されて、混合液となる。この混合液が、光学測定される。検体定量部114において定量された体積が、所望の体積からずれると、光学測定に基づく検査精度が低下する。同様に、所定量を超える第一試薬11が第四通路135に溢れ出す。溢れ出した第一試薬11は、試薬余剰部136に貯留される。この結果、所定量の第一試薬11が正確に定量される。また、試薬定量部154では、所定量を超える第二試薬12が第六通路155に溢れ出す。溢れ出した第二試薬12は、試薬余剰部156に貯留される。この結果、所定量の第二試薬12が正確に定量される。
 次いで、図18に示す時間T2からT3の間に、制御装置90の指示に基づき、主軸モータ35がターンテーブル33を高速駆動する。この結果、自転角度が90度の検査チップ2が公転する。この高速駆動により、低速駆動時の遠心力よりも強い遠心力により、血液等の粘性のある検体が、より正確に定量される。時間T3は、検体10、第一試薬11、及び第二試薬12が、各定量部において定量されるのに十分な時間として制御装置90の図示しない記憶装置に予め記憶されている。
 次に、図18に示す時間T3において、制御装置90の指示に基づくステッピングモータ51の駆動制御により、図14に示すように、公転中の検査チップ2が前方からみて時計回りに90度自転される。これにより検査チップ2の自転角度が0度に戻り、左辺部23から右辺部22に向けて検査チップ2に遠心力Xが作用する。遠心力Xの作用により、検体定量部114において定量された検体10が第一通路117に移動する。一方、検体余剰部116は右方向に閉じる凹部であるため、余剰の検体10は検体余剰部116に留まる。
 同様に、試薬定量部134において定量された第一試薬11が第四通路135に移動する。一方、試薬余剰部136は右方向に閉じる凹部であるため、余剰の第一試薬11は試薬余剰部136に留まる。試薬定量部154で定量された第二試薬12が第五通路157に移動する。一方、試薬余剰部156は右方向に閉じる凹部であるため、余剰の第二試薬12は試薬余剰部156に留まる。
 次に、図18に示す時間T4において、制御装置90の指示に基づくステッピングモータ51の駆動制御により、図15に示すように、公転中の検査チップ2を前方からみて反時計回りに90度自転させる。これにより、検査チップ2の自転角度が90度に変化し、上辺部21から下辺部24に向けて検査チップ2に遠心力Xが作用する。遠心力Xの作用により、検体10は第一通路117から混合部170に流入する。第一試薬11は第三通路137から混合部170に流入する。第二試薬12は第五通路157から混合部170に流入する。一方、余剰の検体10、第一試薬11、及び第二試薬12は、先述したように検体余剰部116、試薬余剰部136、及び試薬余剰部156に留まる。混合部170に流入した検体10、第一試薬11、及び第二試薬12は、遠心力Xの作用により混合され、混合液13が生成される。
 次に、図18に示す時間T5において、制御装置90の指示に基づくステッピングモータ51の駆動制御により、公転中の検査チップ2を前方からみて時計回りに90度自転させる。これにより、検査チップ2の自転角度が0度に変化する。その後、主軸モータ35の駆動制御により、主軸モータ35が減速駆動され、主軸モータ35が停止する。故に、検査チップ2の公転が終了する。
 上記遠心処理の実行後、主軸モータ35の駆動制御により、検査チップ2を測定位置の角度まで回転移動させる。光源71が発光すると、測定光が混合部170に貯溜された混合液13を通る。光センサ72が受光した測定光の変化量に基づいて、混合液13の光学測定が行われ、測定データが取得される。次いで、取得された測定データに基づいて、検体10の測定結果が算出される。測定結果に基づく検体10の検査結果が表示される。その後、メイン処理が終了される。
<5.第一実施形態の主たる作用・効果>
 以上説明したように、第一実施形態の検査チップ2及び検査装置1によれば、検査装置1は液体である検体10、第一試薬11及び第二試薬12が注入された検査チップ2を使用可能である。検査チップ2では、検体定量部114が検査チップ2の内部に導入された検体10を所定量収容可能である。所定量を超える検体10は、検体定量部114から溢れて第二通路115を移動し、検体余剰部116に貯留される。検体定量部114への検体の注入時には、検査チップ2の自転角度を85度にして、定量面Tに作用する遠心力Xは、定量端部123側の角度Eが鋭角の85度になるように作用している。故に、定量面Tに直交する方向に遠心力が掛からないので、検体または試薬の注入時に液面が凹むことを抑えることができる。また、検体10は検体定量部114の容積と第一通路壁面120側に定量端部121を超えて溢れている量との合計量になる。故に、検体定量部114の容量より多く検体または試薬を注入することができる。試薬定量部134及び試薬定量部154においても同様である。その後、検査チップ2の自転角度を90度にして定量するので、定量時には、定量面Tに対して直交する方向から遠心力が掛かるが、例え、液面が一旦凹んでも検体定量部114の容積よりも多く注入しているので、液量が不足することなく正確に定量することができる。
 定量時には、ターンテーブル33が3000rpmの回転速度で回転して、検体定量部114への検体の注入開始時よりも強い遠心力を定量面Tに作用させるので、短時間に定量が出来る。この場合、検体または試薬の注入時に定量部へ余剰に注入しているので、定量時に強い遠心力で定量して、一旦、液面が凹んでも定量精度が低下することがない。
 検体定量部114への検体の注入時に定量面に作用する遠心力の方向と定量時に定量面に作用する遠心力の方向との角度の差に応じて、定量時に図示外の公転コントローラが主軸モータ35の回転数を制御する。従って、当該遠心力の角度の差により定量部へ余剰に注入した検体または試薬の量が変わるので、余剰に注入した量に応じて強い遠心力を印加することにより定量を短時間に行うことができる。
 検体定量部114への検体の注入時には、図示外の公転コントローラが主軸モータ35を高速駆動した後、回転速度を高速駆動より落とした低速駆動するので、注入時間を短縮することができると共に、注入した検体または試薬が勢い余って混合部または余剰部に流入することを防止できる。
 検体定量部114に向けて検体、または試薬を供給する検体案内部113の下流側の先端113Aにおいて、遠心力X1が向かう方向側に第一通路117が位置し、遠心力X1の向かう方向と検体案内部113の延設方向Jとの成す角度の内、検体定量部114の角度Kが鋭角になる。これにより、検体または試薬を第一通路117の第一通路壁面120当てて検体定量部114に流し込むことにより、検体定量部114内において対流を生じることができる。故に、検体定量部114に注入した検体または試薬が均質になる。
<6.検査チップの第二実施形態>
 次に、図16及び図17を参照して、検査チップの第二実施形態である検査チップ102について説明する。ここでは、第二実施形態の検査チップ102が第一実施形態の検査チップ2と異なる点のみを説明し、検査チップ2と同じ構造の部分は同じ符号を付し、説明は省略する。
 図16及び図17に示すように、検査チップ102では、検体案内部113と検体定量部114との間の流路124の深さL2が、検体定量部114の深さL3及び検体案内部113の深さL1よりも深くなっている。検体案内部113の深さL1が一番浅くなっている。また、流路124の底面124Aからは検体定量部114の底面114Aに向けて傾斜面である段差126が形成されている。そして、流路124の底面124Aと段差126と間には、深さが変化するくびれ部127が形成されている。試薬案内部133と試薬定量部134との間の部分にも段差146が形成されている。試薬案内部153と試薬定量部154との間の部分にも段差166が形成されている。
<7.第二実施形態の主たる作用・効果>
 以上説明したように、第二実施形態の検査チップ102によれば、検体案内部113と検体定量部114との間の流路124の底面124Aからは検体定量部114の底面114Aに向けて傾斜面である段差126が形成されているので、検体案内部113から検体定量部114への検体の注入時に、液体が左右方向に広がって検体定量部114の入り口を塞いでしまって気泡が定量部に混入することを防止できる。従って、定量された検体が不足することを防止できる。
 また、検査チップ102では、検体案内部113の深さL1が、検体案内部113と検体定量部114との間の流路124の深さL2、及び、検体定量部114の深さL3よりも浅くなっている。従って、流路の深さが浅い検体案内部113から流路の深さが深い流路124及び検体定量部114へ検体が流れ込むので、検体案内部113から検体定量部114への検体の注入時に、液体が広がって検体定量部114の入り口を塞いでしまって気泡が定量部に混入することを防止できる。
 また、検査チップ102では、流路124の底面124Aと段差126と間には、深さが変化するくびれ部127が形成されているので、検体定量部114へ検体がスムーズに流れる方向を変えて流れ込むことができる。また、試薬案内部133と試薬定量部134との間の流路、試薬案内部153と試薬定量部154との間の流路においても同様の作用、および効果を奏する。
<8.その他>
 上記実施形態において、検体保持部111、試薬保持部131及び試薬保持部151が、各々、本開示の「保持部」の一例である。保持部壁面118、保持部壁面138及び保持部壁面158が、各々、本開示の「保持部壁面」の一例である。検体供給部112、試薬供給部132及び試薬供給部152が、各々、本開示の「供給部」の一例である。検体定量部114、試薬定量部134及び試薬定量部154が、各々、本開示の「定量部」の一例である。第一通路117、第三通路137及び第五通路157が、各々、本開示の「第1案内部」の一例である。第二通路115、第四通路135及び第六通路155が、各々、本開示の「第2案内部」の一例である。検体案内部113、試薬案内部133及び試薬案内部153が、各々、本開示の「第3案内部」の一例である。検体余剰部116、試薬余剰部136及び試薬余剰部156が、各々、本開示の「余剰部」の一例である。混合部170が本開示の「混合部」の一例である。定量端部121、定量端部141及び定量端部161が、各々、本開示の「第1接続部」の一例である。定量端部123、定量端部143及び定量端部163が、各々、本開示の「第2接続部」の一例である。定量面Tが本開示の「定量面」の一例である。段差126、段差146及び段差166が、各々、本開示の「段差」の一例である。くびれ部127が、本開示の「くびれ部」の一例である。
 角度Aが本開示の「第1角度」の一例である。角度Bが本開示の「第2角度」の一例である。角度Cが本開示の「第3角度」の一例である。角度Dが本開示の「第4角度」の一例である。検体10が、本開示の「検体」の一例である。第一試薬11及び第二試薬12が、それぞれ本開示の「試薬」の一例である。
 本開示は、上記実施形態に限定されるものではなく、各種の変形が可能である。上記実施形態の検査装置1及び検査チップ2は単なる例示であり、各々の構造、形状及びや処理などを変更可能である。例えば、第1遠心力を定量面Tに作用する生起する検査チップ2の自転角度は、85度に限られず、80度、75度、70度または65度等の鋭角の任意の角度であればよい。また、第2遠心力を定量面Tに作用する生起する検査チップ2の自転角度90度に限られない。即ち、定量面Tと定量面Tへ向かう第2遠心力との成す角度の内、隣接する2つの角度の差の絶対値が、定量面Tと定量面Tへ向かう第1遠心力との成す角度の内、隣接する2つの角度の差の絶対より小さくなる方向に前記第2遠心力を前記定量面に作用させる検査チップ2の自転角度であればよい。
 また、図10に示すように、遠心力X1の方向と検体供給部113の延設方向Jとの成す角度の内、検体定量部114の角度Kが鋭角でなく、角度が0度でも良い。
1  検査装置
2  検査チップ
7  測定部
10  検体
11  第一試薬
12  第二試薬
13  混合液
114 検体定量部
115 第二通路
117 第一通路
116 検体余剰部
121,141,161 定量端部
123,143,163 定量端部
127 くびれ部
134 試薬定量部
154 試薬定量部
170 混合部
126,146,166, 段差

Claims (8)

  1.  液体である検体及び試薬が注入され、所定の第一軸を中心に回転されることで遠心力が付与され、且つ、前記第一軸とは異なる第二軸を中心に回転されることで前記遠心力の方向が変化される検査チップであって、
     前記検体または試薬を定量する定量部と、
     前記定量部に前記検体または前記試薬を供給する供給部と、
     前記検体と前記試薬とが混合される混合部側に向けて前記検体または前記試薬を案内する第1案内部と、
     前記定量部において余剰とされた前記検体または前記試薬を収容する余剰部側に向けて前記検体または前記試薬を案内する第2案内部と、
     前記定量部において、前記混合部に連通する前記第1案内部との接続箇所である第1接続部と、
     前記定量部において、前記余剰部に連通する前記第2案内部との接続箇所である第2接続部と
    を備え、
     前記第1接続部と前記第2接続部とを結ぶ定量面と平行な方向と、前記供給部の前記第1案内部側の壁面の延設方向とのなす第1角度と、
     前記定量面と平行な方向と、前記第1接続部に接続する前記第1案内部の壁面の延設方向とがなす第2角度と、
     前記定量面と平行な方向と、前記第2接続部に接続する前記第2案内部の壁面の延設方向とがなす第3角度とは、
     第1角度<第2角度<第3角度の関係を有することを特徴とする検査チップ。
  2.  前記供給部と前記定量部とを連結する第3案内部を備え、
     前記第3案内部の前記第1案内部側の壁面の先端は前記第2接続部に対向する位置より前記第1案内部側にあることを特徴とする請求項1記載の検査チップ。
  3.  前記供給部と連結され、前記検査チップに供給された前記検体または前記試薬を保持する保持部を備え、
     前記供給部と前記保持部とを隔てる保持部壁面の先端は、前記第3案内部より前記定量面と平行な方向において前記第1案内部側に位置することを特徴とする請求項2記載の検査チップ。
  4.  前記第1角度より、前記定量面と平行な方向と前記保持部壁面の延設方向とがなす第4角度が大きいことを特徴とする請求項3に記載の検査チップ。
  5.  前記第4角度より前記第2角度が大きいことを特徴とする請求項4に記載の検査チップ。
  6.  前記第3案内部と前記定量部との間の流路の底面に段差が形成されていることを特徴とする請求項2に記載の検査チップ。
  7.  前記第3案内部の深さは、前記定量部の深さ、及び前記第3案内部と前記定量部との間の流路の深さより浅いことを特徴とする請求項2に記載の検査チップ。
  8.  前記第3案内部と前記定量部との間の流路と、前記定量部との間には、深さが変化するくびれ部が形成されていることを特徴とする請求項2に記載の検査チップ。
PCT/JP2013/077911 2012-10-15 2013-10-15 検査チップ WO2014061636A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2013332956A AU2013332956A1 (en) 2012-10-15 2013-10-15 Inspection chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-228491 2012-10-15
JP2012228491A JP2014081248A (ja) 2012-10-15 2012-10-15 検査装置、検査システム、検査方法、及びコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2014061636A1 true WO2014061636A1 (ja) 2014-04-24

Family

ID=50488198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077911 WO2014061636A1 (ja) 2012-10-15 2013-10-15 検査チップ

Country Status (2)

Country Link
JP (1) JP2014081248A (ja)
WO (1) WO2014061636A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213000A1 (de) * 2016-07-15 2018-01-18 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Handhabung von Flüssigkeiten unter Verwendung eines Fluidikmoduls mit bezüglich einer Rotationsebene geneigter Fluidikebene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214884A (ja) * 2010-03-31 2011-10-27 Brother Industries Ltd 検査対象受体、検査装置及び検査方法
JP2011237325A (ja) * 2010-05-12 2011-11-24 Brother Ind Ltd 検査対象受体
JP2012078115A (ja) * 2010-09-30 2012-04-19 Brother Ind Ltd 検査対象受体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214884A (ja) * 2010-03-31 2011-10-27 Brother Industries Ltd 検査対象受体、検査装置及び検査方法
JP2011237325A (ja) * 2010-05-12 2011-11-24 Brother Ind Ltd 検査対象受体
JP2012078115A (ja) * 2010-09-30 2012-04-19 Brother Ind Ltd 検査対象受体

Also Published As

Publication number Publication date
JP2014081248A (ja) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6011156B2 (ja) 検査チップ
JP5998760B2 (ja) 試薬容器および検査チップ
JP6028624B2 (ja) 検査チップ及び検査システム
JP2014081247A (ja) 検査チップ
JP5900269B2 (ja) 検査チップ
WO2014061636A1 (ja) 検査チップ
WO2015080193A1 (ja) 検査チップ
JP5958330B2 (ja) 検査チップ
JP5958331B2 (ja) 検査チップ及び検査システム
JP5915686B2 (ja) 検査チップ
JP5958451B2 (ja) 検査チップ、送液方法、及び送液プログラム
WO2015080192A1 (ja) 検査チップ
JP5958249B2 (ja) 検査チップおよび検査装置
JP5939148B2 (ja) 検査チップ及び検査システム
JP5971082B2 (ja) 検査チップ
JP5910657B2 (ja) 検査チップ及び検査システム
JP2016070849A (ja) 検査チップ及び検査システム
JP2015105886A (ja) 検査装置
JP2015197352A (ja) 検査チップ
WO2014133126A1 (ja) 検査チップ
JP2014048194A (ja) 検査チップおよび検査ユニット
JP2016194448A (ja) 検査チップ
JP2014119319A (ja) 検査チップ及び検査システム
JP2016070841A (ja) 検査チップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013332956

Country of ref document: AU

Date of ref document: 20131015

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13846754

Country of ref document: EP

Kind code of ref document: A1