WO2014057900A1 - Riの単離装置 - Google Patents

Riの単離装置 Download PDF

Info

Publication number
WO2014057900A1
WO2014057900A1 PCT/JP2013/077209 JP2013077209W WO2014057900A1 WO 2014057900 A1 WO2014057900 A1 WO 2014057900A1 JP 2013077209 W JP2013077209 W JP 2013077209W WO 2014057900 A1 WO2014057900 A1 WO 2014057900A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
nuclide
tank
evaporation
line
Prior art date
Application number
PCT/JP2013/077209
Other languages
English (en)
French (fr)
Inventor
成人 ▲高▼橋
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2014540835A priority Critical patent/JPWO2014057900A1/ja
Publication of WO2014057900A1 publication Critical patent/WO2014057900A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/0005Isotope delivery systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/06Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0042Technetium

Definitions

  • the present invention relates to an RI isolation apparatus capable of isolating RI.
  • 99m Tc the radioactive isotope molybdenum-99
  • 99m Tc Drugs containing radioisotopes ( 99m Tc) can be administered to the human body, and the presence or absence of diseases and the state of organs can be detected by detecting the radiation emitted from them.
  • Diagnosis of diseases (such as breast cancer and prostate cancer) It is used as a test reagent for single-photon emission tomography (SPECT) for diagnosis of bone metastases and Alzheimer's disease.
  • SPECT single-photon emission tomography
  • 99m Tc is extracted from its parent nuclide, 99 Mo, by milking using a 99 Mo- 99m Tc generator and manufactured.
  • 99m Tc has a short half-life of 6.02 hours and is a radioisotope that can be administered in large doses.
  • 99 Mo has a half-life of 66 hours.
  • the generator is an apparatus in which 99 Mo is adsorbed on an alumina column, and 99m Tc can be eluted using physiological saline.
  • a 99 Mo manufacturing method using an accelerator As a manufacturing method for domestic production, a 99 Mo manufacturing method using an accelerator has been proposed. Specifically, it is a method of producing 99 Mo by a 100 Mo (n, 2n) 99 Mo reaction by irradiating a concentrated molybdenum target with neutrons generated by an accelerator.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2011-105567
  • the present invention has been made to solve the above-described problems, and the target RI can be efficiently isolated from a sample containing a large amount of stable isotopes (such as 98 Mo and 100 Mo).
  • the object is to provide an RI isolation device.
  • an RI isolation apparatus extracts a nuclide of one of the RIs from water and an organic solvent in which the RI including the parent nuclide and the daughter nuclide is dissolved, into the organic solvent.
  • An apparatus a guide line for guiding the organic solvent extracted from one nuclide of RI to the evaporation / elution tank from the nuclide extraction apparatus, a pump for feeding the organic solvent to the guide line, and an evaporation / elution tank
  • An evaporation heater for evaporating the guided organic solvent
  • an exhaust line for discharging the evaporated organic solvent from the evaporation / elution tank
  • an introduction line for introducing a liquid for elution into the evaporation / elution tank.
  • one nuclide is extracted into an organic solvent, the organic solvent is sent to an evaporation / elution tank, one nuclide is taken out by evaporation to dryness, and the one nuclide is eluted. Since it can be performed continuously, a large amount of RI can be isolated efficiently.
  • the nuclide extraction device preferably includes an extraction tank containing water and an organic solvent in which RI is dissolved, and a stirring device for stirring the liquid in the extraction tank. .
  • aqueous solution line for introducing the RI aqueous solution into the extraction tank.
  • the nuclide extraction device further includes a temperature control heater for controlling the temperature of the liquid in the extraction tank.
  • a drain line for discharging the aqueous solution of the other nuclide of the RI from the extraction tank.
  • adsorption column that is arranged in the guide line and adsorbs the other nuclide of the RI.
  • a pump for sending the evaporated organic solvent to the exhaust line.
  • a recovery line for recovering the eluate of one nuclide of the RI from the evaporation / elution tank is further provided.
  • 99 Mo- 99m Tc is used as the RI, and the nuclide extraction device preferably extracts 99m Tc which is a daughter nuclide of the RI.
  • physiological saline as the elution liquid.
  • the 99 Mo- 99m Tc is preferably obtained by irradiating molybdenum oxide with an accelerator or generated neutrons.
  • the inside of the evaporation / elution tank is heated and depressurized.
  • RI isolation apparatus of the present invention a large amount of RI can be isolated efficiently.
  • FIG. 1 is a schematic configuration diagram of an RI isolation apparatus according to an embodiment of the present invention.
  • an RI isolation device 1 (hereinafter simply referred to as an “isolation device”) extracts a daughter nuclide (one nuclide) of a radioisotope (RI) into an organic solvent.
  • a nuclide extraction device 2 is provided. Further, the isolation device 1 extracts a RI daughter nuclide (one nuclide) and then guides the organic solvent from the nuclide extraction device 2 to the evaporation / elution tank 4, and the organic solvent is introduced into the guide line 3. And a pump 5 for feeding.
  • the isolation device 1 includes an evaporation heater 6 that evaporates the organic solvent guided to the evaporation / elution tank 4, an exhaust line 7 that discharges the evaporated organic solvent from the evaporation / elution tank 4, and the evaporation / elution tank 4. And an introduction line 8 for introducing an elution liquid (saline).
  • the RI radioisotope
  • the RI is not particularly limited, and may be used, for example 99 Mo- 99m Tc, 81 Rb- 81m Kr and 188 W- 188 Re and the like.
  • the parent nuclide is 99 Mo, 81 Rb or 188 W
  • the daughter nuclide is 99 m Tc, 81 m Kr or 188 Re
  • the parent nuclide and the daughter nuclide coexist due to radiation equilibrium.
  • 99 Mo- 99m Tc is used as RI.
  • the method for producing 99 Mo- 99m Tc is not particularly limited.
  • 99 Mo- 99m Tc can be produced by irradiating molybdenum oxide powder with neutrons generated in a known accelerator or nuclear reactor. it can.
  • the organic solvent is not particularly limited, and for example, a ketone solvent, an ether solvent, an ester solvent, an aromatic hydrocarbon solvent, and the like can be used. In this embodiment, methyl ethyl ketone is used. Used.
  • the nuclide extraction apparatus 2 is an apparatus that extracts RI daughter nuclides (one nuclide) from water and organic solvent in which RI is dissolved into the organic solvent, and an extraction tank 10 that contains water and organic solvent in which RI is dissolved; And an agitation device 11 for agitating the liquid in the extraction tank 10.
  • the extraction tank 10 is made of a sealed metal container, and the inside is maintained at almost normal pressure.
  • a solvent line 12, an aqueous solution line 13, a drainage line 15, and a guide line 3 are connected to the extraction tank 10.
  • a temperature control heater 14 for controlling the temperature of the liquid in the extraction tank 10 is provided at the lower part of the extraction tank 10.
  • the stirring device 11 includes a stirring blade 24 disposed at the lower portion of the extraction tank 10 and a motor (not shown) that rotationally drives the stirring blade 24, and the liquid in the extraction tank 10 is rotated by the rotation of the stirring blade 24. Is stirred.
  • the water and the organic solvent stirred in the extraction tank 10 by the stirring device 11 are separated from each other when left for a while, water stays in the lower side of the extraction tank 10 to form an aqueous layer 20, and the organic solvent is on the upper side. It stays and the organic solvent layer 21 is formed.
  • the RI parent nuclide (the other nuclide: 99 Mo in this embodiment) is dissolved in the aqueous layer 20, and the daughter nuclide (the one nuclide: 99m Tc in this embodiment) is dissolved in the organic solvent layer 21. Is dissolved.
  • the parent nuclide of RI (the other nuclide: 99 Mo) and the daughter nuclide (one nuclide: 99m Tc) can be separated, and the daughter nuclide (one nuclide) is extracted into the organic solvent layer 21. Can do.
  • the solvent line 12 is connected to the upper part of the extraction tank 10 and introduces an organic solvent into the extraction tank 10.
  • the organic solvent is supplied to the solvent line 12 from a supply source (not shown).
  • the solvent line 12 is provided with an opening / closing valve 22, and the amount of the organic solvent introduced into the extraction tank 10 can be adjusted by adjusting the opening degree of the opening / closing valve 22.
  • the aqueous solution line 13 is connected to the upper part of the extraction tank 10 and introduces an aqueous solution of RI containing the parent nuclide and the daughter nuclide into the extraction tank 10.
  • the aqueous solution of RI is supplied to the aqueous solution line 13 from a supply source (not shown), and it is preferable that sodium hydroxide is dissolved together with the aqueous solution of RI.
  • the aqueous solution line 13 is provided with an opening / closing valve 23, and the amount of the aqueous solution introduced into the extraction tank 10 can be adjusted by adjusting the opening degree of the opening / closing valve 23.
  • the drainage line 15 is connected to the lower part of the extraction tank 10, and discharges the aqueous solution of the parent nuclide ( 99 Mo) staying in the aqueous layer 20 from the extraction tank 10.
  • the drain line 15 is provided with an opening / closing valve 25, and the amount of the aqueous solution discharged from the extraction tank 10 can be adjusted by adjusting the opening degree of the opening / closing valve 25.
  • the temperature control heater 14 is arrange
  • the temperature control heater 14 for example, a known configuration in which a heating element and a temperature sensor are built in a metal tube and the amount of heat generated by the heating element is changed by detecting the temperature of the temperature sensor can be used.
  • the temperature of the liquid in the extraction tank 10 is preferably 20 to 80 ° C. from the viewpoint of promoting the extraction of the daughter nuclide ( 99m Tc).
  • Both ends of the guide line 3 are connected to the extraction tank 10 and the evaporation / elution tank 4, respectively, and guides the organic solvent in the extraction tank 10 to the evaporation / elution tank 4.
  • the guide line 3 is provided with an opening / closing valve 31, and the amount of the organic solvent sent from the extraction tank 10 to the evaporation / elution tank 4 can be adjusted by adjusting the opening degree of the opening / closing valve 31.
  • the height position of the connection portion 30 between the extraction tank 10 and the guide line 3 is adjusted to be a position where the organic solvent layer 21 is formed in the extraction tank 10, and the position near the center of the extraction tank 10 is preferable.
  • the guide line 3 is connected slightly above the center of the extraction tank 10. Thereby, the organic solvent can be transferred from the organic solvent layer 21 in the extraction tank 10 to the evaporation / elution tank 4.
  • the guide line 3 is provided with an adsorption column 16 for adsorbing the parent nuclide ( 99 Mo).
  • adsorption column 16 a known configuration in which a cylindrical container is filled with an adsorbent can be used.
  • adsorbent alumina, silica, zeolite, activated carbon, or the like can be used.
  • the evaporation / elution tank 4 is formed of a sealed metal container, and the organic solvent containing the daughter nuclide ( 99m Tc) is evaporated and dried in the evaporation / elution tank 4. Further, a guide line 3, an introduction line 8, an exhaust line 7, and a recovery line 9 are connected to the evaporation / elution tank 4, and an evaporation heater 6 is provided below the evaporation / elution tank 4. .
  • the introduction line 8 is connected to a nozzle 17 disposed at the top of the evaporation / elution tank 4, and introduces the elution liquid into the evaporation / elution tank 4 through the nozzle 17.
  • the elution liquid is supplied to the introduction line 8 from a supply source (not shown).
  • the elution liquid is not particularly limited, but physiological saline is used in the present embodiment.
  • An opening / closing valve 32 is provided in the introduction line 8, and the amount of liquid introduced into the evaporation / elution tank 4 can be adjusted by adjusting the opening degree of the opening / closing valve 32.
  • the nozzle 17 discharges the elution liquid (physiological saline) downward.
  • the exhaust line 7 is connected to the upper part of the evaporation / elution tank 4 and can discharge the evaporated organic solvent from the evaporation / elution tank 4 to the outside.
  • the exhaust line 7 is provided with a pump 5.
  • the pump 5 is configured to pump the organic solvent that has flowed into the exhaust line 7 from the evaporation / elution tank 4 to the outside. Further, the pump 5 can decompress the inside of the evaporation / elution tank 4 by pumping the organic solvent, and can suck the organic solvent through the guide line 3 by this decompression. Thereby, the organic solvent in the extraction tank 10 can be sucked through the guide line 3 and transferred to the evaporation / elution tank 4.
  • the recovery line 9 is connected to the lower part of the evaporation / elution tank 4 and can be recovered by discharging the eluate from the evaporation / elution tank 4.
  • the recovery line 9 is provided with an opening / closing valve 33, and the amount of eluate recovered from the evaporation / elution tank 4 can be adjusted by adjusting the opening of the opening / closing valve 33.
  • the evaporating heater 6 is disposed below the evaporating / eluting tank 4, can control the temperature in the evaporating / eluting tank 4, and can increase or decrease this temperature.
  • the evaporating heater 6 for example, a known configuration in which a heating element and a temperature sensor are built in a metal tube and the amount of heat generated by the heating element is changed by detecting the temperature of the temperature sensor can be used.
  • the temperature in the evaporation / elution tank 4 is preferably 40 ° C. or higher from the viewpoint of promoting the evaporation of the organic solvent.
  • the isolation device 1 As described above, first, the open / close valves 23 and 22 are opened to introduce an aqueous solution in which 99 Mo- 99m Tc (RI) is dissolved into the extraction tank 10 from the aqueous solution line 13.
  • an organic solvent from the solvent line 12 to the extraction tank 10
  • an aqueous solution of 99 Mo- 99m Tc (RI) and the organic solvent are accommodated in the extraction tank 10.
  • the liquid stored in the extraction tank 10 is stirred by the stirring device 11. Further, the temperature in the extraction tank 10 is heated by the temperature control heater 14 to raise the temperature.
  • the water and the organic solvent stirred in the extraction tank 10 by the stirring device 11 are separated from each other when left for a while, water stays in the lower side of the extraction tank 10 to form an aqueous layer 20, and the organic solvent is on the upper side. It stays and the organic solvent layer 21 is formed. Further, 99 Mo (parent nuclide) of 99 Mo- 99m Tc (RI) is dissolved in the aqueous layer 20, and 99 m Tc (daughter nuclide) is dissolved in the organic solvent layer 21. Thus, the nuclide extractor 2 can be separated and 99 Mo- 99m 99 Mo of Tc (RI) (parent nuclide) and 99m Tc (daughter), to extract the 99m Tc to the organic solvent layer 21 it can. The organic solvent layer 21 also contains a small amount of 99 Mo (parent nuclide) that did not dissolve in the water of the aqueous layer 20.
  • the organic solvent in the organic solvent layer 21 is sucked into the guide line 3 by the operation of the pump 5, Along the evaporating / eluting tank 4.
  • the organic solvent after extracting 99m Tc aughter nuclide
  • the organic solvent after extracting 99m Tc can be transferred from the extraction tank 10 and introduced into the evaporation / elution tank 4.
  • a small amount of 99 Mo (parent nuclide) contained in the organic solvent is adsorbed on the adsorption column 16 provided in the guide line 3 and removed.
  • the atmosphere inside the evaporating / eluting tank 4 is heated by the evaporating heater 6 to raise the temperature, and the organic solvent introduced into the evaporating / eluting tank 4 evaporates in the evaporating / eluting tank 4 and is exhausted. 7 is discharged to the outside through the On the other hand, 99m Tc (daughter nuclide) dissolved in the organic solvent is taken out by drying, and falls to the bottom of the evaporation / elution tank 4 and accumulates.
  • the organic solvent and 99m Tc are separated by evaporation to dryness in the evaporation / elution tank 4 to remove the organic solvent, and 99m Tc (daughter nuclide) can be taken out.
  • the open / close valve 32 of the introduction line 8 is opened, and physiological saline (elution liquid) is introduced from the introduction line 8 into the evaporation / elution tank 4 through the nozzle 17.
  • physiological saline elution liquid
  • the open / close valve 32 may be opened in advance, and the introduction of the organic solvent into the evaporation / elution tank 4 through the guide line 3 and the introduction of physiological saline through the introduction line 8 may be performed simultaneously. .
  • the open / close valve 33 of the recovery line 9 is opened, and the eluate after 99m Tc is eluted in the physiological saline is recovered from the evaporation / elution tank 4 via the recovery line 9. In this way, RI can be isolated.
  • 99m Tc aughter nuclide
  • the organic solvent is transferred to the evaporation / elution tank 4, and then evaporated to dryness to be 99m Tc (daughter nuclide).
  • the 99m Tc (daughter nuclide) can be continuously eluted, so that a large amount of RI can be isolated efficiently.
  • the organic solvent and the RI aqueous solution can be continuously supplied to the extraction tank 10, respectively, and the isolation efficiency can be further increased.
  • 99 Mo parent nuclide
  • 99m Tc is caused by the collapse
  • the solvent line 12 and the organic solvent to the extraction vessel 10 beta - collapse
  • the resulting 99m Tc can be extracted again into an organic solvent.
  • RI can be isolated continuously.
  • the amount of 99 Mo (parent nuclide) contained in the water layer 20 decreases, the amount of 99 Mo contained in the water discharged from the drainage line 15 can be reduced, and the water can be drained safely. it can.
  • the temperature control heater 14 the temperature management of the liquid in the extraction tank 10 can be performed, and extraction of 99m Tc (daughter nuclide) can be promoted.
  • the adsorption column 16 disposed in the guide line 3 since the adsorption column 16 disposed in the guide line 3 is provided, 99 Mo (parent nuclide) contained in the organic solvent transferred along the guide line 3 can be adsorbed and removed. Thereby, the content rate of 99m Tc (daughter nuclide) in the organic solvent can be increased, and the purity can be increased.
  • the pump 5 disposed in the exhaust line 7 the vapor of the organic solvent can be efficiently exhausted, and evaporation to dryness can be promoted. Further, by providing the recovery line 9, the eluate can be continuously recovered, and a large amount of eluate can be obtained. Moreover, since 99 Mo- 99m Tc is produced using neutrons generated from the accelerator, it is not necessary to use a nuclear reactor, and RI can be isolated safely and inexpensively.
  • the inside of the evaporation / elution tank 4 is heated by the evaporation heater 6 and the inside of the evaporation / elution tank 4 is depressurized by the pump 5, so that the organic solvent in the evaporation / elution tank 4 is heated and reduced in pressure for efficient operation.
  • the RI can be isolated efficiently.
  • the concrete mode of the present invention is not limited to the above-mentioned embodiment.
  • RI is introduced into the extraction tank 10 by using an aqueous solution.
  • the present invention is not limited to this configuration, and RI can be introduced into the extraction tank 10 in a solid or gas state.
  • the pump 5 is provided in the exhaust line 7, and the inside of the evaporation / elution tank 4 is decompressed to suck the organic solvent and transfer it to the evaporation / elution tank 4.
  • the structure for transferring the solvent from the extraction tank 10 to the evaporation / elution tank 4 is not limited to this, and a structure in which a pump (not shown) is provided in the guide line 3 may be used. In such a configuration, the organic solvent in the extraction tank 10 can be transferred to the evaporation / elution tank 4 through the guide line 3 by pumping the organic solvent with a pump provided in the guide line 3.
  • the pump 5 provided in the exhaust line 7 transfers the organic solvent from the extraction tank 10 to the evaporation / elution tank 4, exhausts the organic solvent from the evaporation / elution tank 4 to the outside, and
  • a pump is provided in each of the guide line 3, the exhaust line 7, and the evaporation / elution tank 4.
  • the structure which exhausts and decompresses may be sufficient.
  • the structure provided with the motor and the stirring blade 24 was used as the stirring apparatus 11, if it is the structure which can stir the liquid in the extraction tank 10, it will not specifically limit,
  • the bottom part of the extraction tank 10 the bubbles may be supplied into the extraction tank 10 and the liquid in the extraction tank 10 may be stirred by the bubbles.
  • the temperature control heater 14 was installed in the extraction tank 10, this can also be abbreviate
  • the adsorption column 16 was installed in the guide line 3, this can also be abbreviate
  • the eluate is recovered by the recovery line 9, but the recovery method is not particularly limited.
  • the inside of the extraction tank 10 was the structure maintained at a normal pressure, the structure which pressurizes or decompresses the inside of the extraction tank 10 may be sufficient.
  • 99 Mo- 99m Tc is manufactured using neutrons generated from the accelerator, but 99 Mo- 99m Tc can also be manufactured using a nuclear reactor. Further, it can be produced by a 100 Mo ( ⁇ , n) 99 Mo reaction.
  • the parent nuclide (99m Tc) as one of the nuclide daughters (99m Tc), the parent nuclide (99 Mo) as the other nuclides, daughter (99m Tc) is extracted into an organic solvent layer 21, the parent nuclide (99
  • the configuration in which Mo) is extracted into the aqueous layer 20 has been described, the present invention is not limited to this configuration, and depending on the type of RI, the parent nuclide is one nuclide and the daughter nuclide is the other nuclide, contrary to the above.
  • the parent nuclide (one nuclide) is extracted into the organic solvent layer 21 and the daughter nuclide (the other nuclide) is extracted into the aqueous layer 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

 多量の安定同位体を含む試料より目的のRIを効率的に単離することができるRIの単離装置を提供する。RIの単離装置(1)は、多量の安定同位体とRIが溶解した水及び有機溶媒から前記RIの娘核種を前記有機溶媒に抽出する抽出槽(2)と、前記RIの娘核種を抽出した前記有機溶媒を抽出槽(2)から蒸発・溶出槽(4)に案内する案内ライン(3)と、案内ライン(3)に前記有機溶媒を送るポンプ(5)と、蒸発・溶出槽(4)に案内された前記有機溶媒を蒸発させる蒸発ヒーター(6)と、蒸発した前記有機溶媒を蒸発・溶出槽(4)から排出する排気ライン(7)と、蒸発・溶出槽(4)に溶出用の液体を導入する導入ライン(8)と、を備える。また、このRIの単離装置(1)は、吸着カラム(16)を備えている。

Description

RIの単離装置
 本発明は、RIを単離することができるRIの単離装置に関する。
 放射性同位元素モリブデン-99(以下「99Mo」と称する)の娘核種テクネチウム-99m(以下「99mTc」と称する)を含む医薬品は、核医学診断用RIとして今日世界中で最も多用されている。ラジオアイソトープ(99mTc)を含んだ医薬品は、これを人体に投与し、それから出る放射線を検出することにより病気の有無、臓器の状態を知ることができ、病気の診断(乳癌・前立腺癌などの骨転移の診断やアルツハイマー病の診断のための単一光子放射断層撮影(SPECT)など)のための検査の試薬として使用されている。
 従来、99mTcは、その親核種である99Moから99Mo-99mTcジェネレーターを使用したミルキングにより取り出し、製造されている。99mTcは半減期が6.02時間と短く、大量投与が可能な放射性同位元素であり、99Moの半減期は66時間であり、ジェネレーターの一回の購入で、約1週間99mTcを取り出すことが可能である。ジェネレーターは、99Moをアルミナカラムに吸着させた装置であって、生理食塩水を用いて99mTcを溶出させることができる。
 日本の99mTc製剤の消費量は、アメリカに次いで世界第二位であるが、99Moを100%輸入に依存している。現在、世界で必要とされている半減期66時間の99Moの95%以上は、世界の5基(カナダ、オランダ、ベルギー、フランス、南アフリカ)の高経年化した研究炉で、高濃縮235Uによる核分裂反応により製造されている。
 しかし、研究炉の高経年化のため事故が頻発し、原子炉が長期間、休止することがあり、99Moの供給ができない状況が続き、医療現場に混乱が生じた。更に、アイスランドの火山灰による欧州の空港閉鎖のためRI輸入が停止し、我が国では一時的に99Moを全く入手できない状況に陥り、病院での検査に一部支障を来した。
 以上のことから、99Moの国内製造に向けた開発研究の重要さが強く指摘され、
99Mo製造体制の構築が望まれている。
 国産化のための製造方法としては加速器を使用した99Moの製造方法が提案されている。具体的には、濃縮したモリブデンターゲットに、加速器で発生させた中性子を照射することにより100Mo(n,2n) 99Mo反応によって99Moを製造する方法である。
 98Moを原料として、中性子照射により99Moを生成する方法も検討されているが、この方法では溶離される98mTc溶液の放射能が低いため、医薬品として使用することが困難という問題がある。特許文献1では、ケトン系有機溶媒を用いることによって、ジェネレーターからの99mTc溶離液から99mTcを選択的に抽出でき、99mTc濃度を10倍以上に濃縮することが可能になることが報告されている。
日本国公開特許公報「特開2011-105567号公報」
 従来の99Mo-99mTcジェネレーターは99Moをアルミナカラムに吸着させるので、多量のMoを含む試料を処理することができない。そして、99mTcの国内生産を目的として加速器や原子炉で製造した99Moには多量の100Moや98Moが含まれるので、アルミナカラムを使用して、99mTcを分離、精製することができないという問題があった。
 そこで、本発明は、上記問題を解決するためになされたものであって、多量の安定同位体(98Moや100Mo等)を含む試料から目的のRIを効率的に単離することができるRIの単離装置の提供を目的とする。
 本発明に係るRIの単離装置は、上記課題を解決するために、親核種及び娘核種を含むRIが溶解した水及び有機溶媒から前記RIの一方の核種を前記有機溶媒に抽出する核種抽出装置と、前記RIの一方の核種を抽出した前記有機溶媒を前記核種抽出装置から蒸発・溶出槽に案内する案内ラインと、前記案内ラインに前記有機溶媒を送るポンプと、前記蒸発・溶出槽に案内された前記有機溶媒を蒸発させる蒸発ヒーターと、蒸発した前記有機溶媒を前記蒸発・溶出槽から排出する排気ラインと、前記蒸発・溶出槽に溶出用の液体を導入する導入ラインと、を備えている。
 このような構成によれば、一方の核種を有機溶媒に抽出し、その有機溶媒を蒸発・溶出槽に送り、そこから蒸発乾固により一方の核種を取り出し、その一方の核種を溶出する作業を連続的に行うことができるので、多量のRIを効率的に単離することができる。
 また、上記のRIの単離装置において、前記核種抽出装置は、RIが溶解した水及び有機溶媒を収容する抽出槽と、前記抽出槽内の液体を撹拌する撹拌装置と、を備えることが好ましい。
 また、前記抽出槽に前記有機溶媒を導入する溶媒ラインを更に備えることが好ましい。
 また、前記抽出槽に前記RIの水溶液を導入する水溶液ラインを更に備えることが好ましい。
 また、前記核種抽出装置は、前記抽出槽内の液体の温度を制御する温度制御ヒーターを更に備えることが好ましい。
 また、前記抽出槽から前記RIの他方の核種の水溶液を排出する排水ラインを更に備えることが好ましい。
 また、前記案内ラインに配置され、前記RIの他方の核種を吸着する吸着カラムを更に備えることが好ましい。
 また、蒸発した前記有機溶媒を前記排気ラインに送るポンプを更に備えることが好ましい。
 また、前記蒸発・溶出槽から前記RIの一方の核種の溶出液を回収する回収ラインを更に備えることが好ましい。
 また、前記RIとして99Mo-99mTcを用いており、前記核種抽出装置は、前記RIの娘核種である99mTcを抽出することが好ましい。
 また、前記溶出用の液体として生理食塩水を用いていることが好ましい。
 また、前記99Mo-99mTcは、加速器や発生させた中性子を酸化モリブデンに照射することにより得られることが好ましい。
 また、前記蒸発・溶出槽の内部が加熱及び減圧されることが好ましい。
 本発明のRIの単離装置によれば、多量のRIを効率的に単離することができる。
本発明の一実施形態に係るRIの単離装置の概略構成図である。
 以下、本発明の実施形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係るRIの単離装置の概略構成図である。図1に示すように、RIの単離装置1(以下、単に「単離装置」という)は、放射性同位元素(RI:radioisotope)の娘核種(一方の核種)を有機溶媒に抽出するための核種抽出装置2を備えている。また、この単離装置1は、RIの娘核種(一方の核種)を抽出した後に有機溶媒を核種抽出装置2から蒸発・溶出槽4に案内する案内ライン3と、案内ライン3に有機溶媒を送るためのポンプ5とを備えている。また、単離装置1は、蒸発・溶出槽4に案内された有機溶媒を蒸発させる蒸発ヒーター6と、蒸発した有機溶媒を蒸発・溶出槽4から排出する排気ライン7と、蒸発・溶出槽4に溶出用の液体(生理食塩水)を導入する導入ライン8とを備えている。
 RI(放射性同位元素)としては、特に限定されるものではないが、例えば99Mo-99mTc、81Rb-81mKrや188W-188Re等を用いることができる。これらのRIは、それぞれ親核種が99Mo、81Rbや188Wであり、娘核種が99mTc、81mKrや188Reでり、放射平衡により親核種と娘核種が並存している。本実施形態では、RIとして99Mo-99mTcを用いている。この99Mo-99mTcを製造する方法は特に限定されないが、例えば、公知の加速器や原子炉で発生させた中性子を酸化モリブデンの粉末に照射することにより、99Mo-99mTcを製造することができる。
 また、有機溶媒としては、特に限定されるものではないが、例えばケトン系溶媒、エーテル系溶媒、エステル系溶媒、及び芳香族炭化水素系溶媒等を用いることができ、本実施形態では、メチルエチルケトンを用いている。
 核種抽出装置2は、RIが溶解した水及び有機溶媒からRIの娘核種(一方の核種)を前記有機溶媒に抽出する装置であり、RIが溶解した水及び有機溶媒を収容する抽出槽10と、抽出槽10内の液体を撹拌する撹拌装置11とを備えている。抽出槽10は、密閉された金属製の容器からなり、内部がほぼ常圧に維持されている。この抽出槽10には、溶媒ライン12、水溶液ライン13、排水ライン15、及び、案内ライン3が接続されている。また、抽出槽10の下部には、抽出槽10内の液体の温度を制御する温度制御ヒーター14が設けられている。撹拌装置11は、抽出槽10の下部に配置された撹拌羽根24と、撹拌羽根24を回転駆動するモーター(図示せず)とを備えており、撹拌羽根24の回転により抽出槽10内の液体を撹拌する。撹拌装置11により抽出槽10内で撹拌された水及び有機溶媒は、しばらく放置すると互いに分離し、抽出槽10内の下側に水が滞留して水層20が形成され、上側に有機溶媒が滞留して有機溶媒層21が形成される。また、水層20にはRIの親核種(他方の核種:本実施形態では99Mo)が溶解しており、有機溶媒層21には娘核種(一方の核種:本実施形態では99mTc)が溶解している。これにより、RIの親核種(他方の核種:99Mo)と娘核種(一方の核種:99mTc)とを分離することができ、娘核種(一方の核種)を有機溶媒層21に抽出することができる。
 溶媒ライン12は、抽出槽10の上部に接続されており、有機溶媒を抽出槽10に導入する。この有機溶媒は、図示しない供給源から溶媒ライン12に供給されている。また、溶媒ライン12には開閉バルブ22が設けられており、開閉バルブ22の開度調整により抽出槽10に導入する有機溶媒の量を調整することができる。また、水溶液ライン13は、抽出槽10の上部に接続されており、親核種及び娘核種を含むRIの水溶液を抽出槽10に導入する。RIの水溶液は、図示しない供給源から水溶液ライン13に供給されており、このRIの水溶液には水酸化ナトリウムを併せて溶解することが好ましい。また、水溶液ライン13には開閉バルブ23が設けられており、開閉バルブ23の開度調整により抽出槽10に導入する水溶液の量を調整することができる。排水ライン15は、抽出槽10の下部に接続されており、抽出槽10から水層20に滞留する親核種(99Mo)の水溶液を外部に排出する。排水ライン15には開閉バルブ25が設けられており、開閉バルブ25の開度調整により抽出槽10から排出する水溶液の量を調整することができる。
 また、温度制御ヒーター14は、抽出槽10の下部に配置され、抽出槽10内の水及び有機溶媒の温度を制御することができ、この温度を上昇又は下降させることができる。この温度制御ヒーター14としては、例えば、金属の管内に発熱体と温度センサーとを内蔵し、温度センサーの温度検知により発熱体の発熱量を変化させる公知の構成を用いることができる。抽出槽10内の液体の温度は、娘核種(99mTc)の抽出を促進する観点から、20~80℃が好ましい。
 案内ライン3は、両端部がそれぞれ抽出槽10及び蒸発・溶出槽4に接続されており、抽出槽10内の有機溶媒を蒸発・溶出槽4に案内する。また、案内ライン3には開閉バルブ31が設けられており、開閉バルブ31の開度調整により抽出槽10から蒸発・溶出槽4に送る有機溶媒の量を調整することができる。抽出槽10と案内ライン3との接続部分30の高さ位置は、抽出槽10において有機溶媒層21が形成される位置になるように調整されており、抽出槽10の中央部近傍の位置が好ましい。本実施形態では、抽出槽10の中央部よりやや上方に案内ライン3が接続されている。これにより、抽出槽10内の有機溶媒層21から蒸発・溶出槽4へ有機溶媒を移送することができる。
 また、案内ライン3には、親核種(99Mo)を吸着するための吸着カラム16が設けられている。この吸着カラム16としては、円筒状の容器に吸着剤を充填した公知の構成を用いることができ、吸着剤としては、アルミナ、シリカ、ゼオライト又は活性炭等を用いることができる。
 蒸発・溶出槽4は、密閉された金属製の容器からなり、この蒸発・溶出槽4内で娘核種(99mTc)を含む有機溶媒が蒸発乾固する。また、蒸発・溶出槽4には、案内ライン3、導入ライン8、排気ライン7、及び、回収ライン9が接続されており、蒸発・溶出槽4の下部には蒸発ヒーター6が設けられている。
 導入ライン8は、蒸発・溶出槽4の上部に配置されたノズル17に接続されており、溶出用の液体をノズル17を介して蒸発・溶出槽4内に導入する。溶出用の液体は、図示しない供給源から導入ライン8に供給されている。この溶出用の液体としては特に限定されないが、本実施形態では生理食塩水を用いている。また、導入ライン8には開閉バルブ32が設けられており、開閉バルブ32の開度調整により蒸発・溶出槽4に導入する液体の量を調整することができる。また、ノズル17は、溶出用の液体(生理食塩水)を下方に向けて放出する。
 排気ライン7は、蒸発・溶出槽4の上部に接続されており、蒸発した有機溶媒を蒸発・溶出槽4から外部に排出することができる。また、排気ライン7にはポンプ5が設けられている。ポンプ5は、蒸発・溶出槽4から排気ライン7に流入した有機溶媒を外部に圧送するように構成されている。また、このポンプ5は、有機溶媒の圧送により蒸発・溶出槽4の内部を減圧し、この減圧により案内ライン3を介して有機溶媒を吸引することができる。これにより、抽出槽10内の有機溶媒を、案内ライン3を介して吸引し、蒸発・溶出槽4に移送することができる。
 回収ライン9は、蒸発・溶出槽4の下部に接続されており、蒸発・溶出槽4から溶出液を排出して回収することができる。また、回収ライン9には開閉バルブ33が設けられており、開閉バルブ33の開度調整により蒸発・溶出槽4から回収する溶出液の量を調整することができる。
 蒸発ヒーター6は、蒸発・溶出槽4の下部に配置され、蒸発・溶出槽4内の温度を制御することができ、この温度を上昇又は下降させることができる。蒸発ヒーター6としては、例えば、金属の管内に発熱体と温度センサーとを内蔵し、温度センサーの温度検知により発熱体の発熱量を変化させる公知の構成を用いることができる。蒸発・溶出槽4内の温度は、有機溶媒の蒸発を促進する観点から、40℃以上が好ましい。蒸発・溶出槽4内の有機溶媒が蒸発すると、有機溶媒に溶解している99mTc(娘核種)を乾固により取り出すことができ、蒸発乾固で取り出した99mTc(娘核種)は、蒸発・溶出槽4の底部に落下して溜まる。
 次に、上記の構成を備えるRIの単離装置によりRIを単離する方法について説明する。上記のような単離装置1によれば、まず、開閉バルブ23、22を開状態にして、99Mo-99mTc(RI)が溶解した水溶液を水溶液ライン13から抽出槽10に導入すると共に、有機溶媒を溶媒ライン12から抽出槽10に導入することにより、抽出槽10に99Mo-99mTc(RI)の水溶液及び有機溶媒を収容する。また、抽出槽10内に収容した液体を撹拌装置11により撹拌する。また、温度制御ヒーター14により抽出槽10内の液体を加熱して昇温する。
 撹拌装置11により抽出槽10内で撹拌された水及び有機溶媒は、しばらく放置すると互いに分離し、抽出槽10内の下側に水が滞留して水層20が形成され、上側に有機溶媒が滞留して有機溶媒層21が形成される。また、水層20には99Mo-99mTc(RI)のうち99Mo(親核種)が溶解し、有機溶媒層21には99mTc(娘核種)が溶解する。これにより、核種抽出装置2によって99Mo-99mTc(RI)の99Mo(親核種)と99mTc(娘核種)とを分離することができ、99mTcを有機溶媒層21に抽出することができる。なお、有機溶媒層21には、水層20の水に溶解しなかった少量の99Mo(親核種)も含まれている。
 次に、ポンプ5を作動させた状態で案内ライン3の開閉バルブ31を開状態にすると、有機溶媒層21内の有機溶媒がポンプ5の作動により案内ライン3内に吸引され、案内ライン3に沿って蒸発・溶出槽4へ移送される。これにより、99mTc(娘核種)を抽出した後の有機溶媒を抽出槽10から移送して蒸発・溶出槽4に導入することができる。このとき、有機溶媒が案内ライン3に沿って移送される過程で、有機溶媒に含まれる少量の99Mo(親核種)が案内ライン3に設けられた吸着カラム16に吸着され、除去される。
 また、蒸発・溶出槽4の内部の雰囲気は蒸発ヒーター6により加熱されて昇温しており、蒸発・溶出槽4に導入された有機溶媒は、蒸発・溶出槽4内で蒸発し、排気ライン7を介して外部に排出される。一方、有機溶媒に溶解していた99mTc(娘核種)は、乾固して取り出され、蒸発・溶出槽4の底部に落下して溜まる。このように、蒸発・溶出槽4における蒸発乾固により有機溶媒と99mTc(娘核種)とを分離して、有機溶媒を除去すると共に、99mTc(娘核種)を取り出すことができる。
 続いて、導入ライン8の開閉バルブ32を開状態にして、生理食塩水(溶出用の液体)を導入ライン8からノズル17を介して蒸発・溶出槽4に導入する。これにより、導入された生理食塩水に上記の取り出された99mTc(娘核種)が溶出し、溶出液を得ることができる。このとき、開閉バルブ32を予め開状態にしておき、蒸発・溶出槽4への案内ライン3による有機溶媒の導入と、導入ライン8による生理食塩水の導入とを同時並行的に行ってもよい。
 その後、回収ライン9の開閉バルブ33を開状態にして、99mTcが生理食塩水に溶出した後の溶出液を、回収ライン9を介して蒸発・溶出槽4から回収する。このようにしてRIを単離することができる。
 上記のような単離装置1によれば、99mTc(娘核種)を有機溶媒に抽出し、その有機溶媒を蒸発・溶出槽4に移送し、そこから蒸発乾固により99mTc(娘核種)を取り出し、その99mTc(娘核種)を溶出する作業を連続的に行うことができるので、多量のRIを効率的に単離することができる。
 また、抽出槽10及び撹拌装置11を備えることにより、99Mo-99mTc(RI)の99Mo(親核種)と99mTc(娘核種)とを効率良く分離することができ、99mTc(娘核種)を効率良く抽出することができる。その結果、より効率的にRIを単離することができる。また、従来のように99Moが吸着されたジェネレーターから99mTcを抽出する構成ではなく、抽出槽10において99Mo(親核種)と99mTc(娘核種)と分離して99mTcを抽出するので、99mTcを多量に抽出することができ、多量のRIを単離することができる。
 また、溶媒ライン12及び水溶液ライン13を備えることにより、有機溶媒及びRIの水溶液をそれぞれ抽出槽10に連続的に供給することができ、単離の効率を更に高めることができる。
 また、水層20に溶解している99Mo(親核種)がβ崩壊することにより99mTcが生じるので、溶媒ライン12から有機溶媒を抽出槽10に再び供給することにより、β崩壊で生じた99mTcを有機溶媒に再び抽出することができる。これにより、連続的にRIを単離することができる。また、水層20に含まれる99Mo(親核種)の量が減ってゆくので、排水ライン15から排出される水に含まれる99Moの量を少なくすることができ、安全に排水することができる。
 また、温度制御ヒーター14を備えることにより、抽出槽10内の液体の温度管理をすることができ、99mTc(娘核種)の抽出を促進することができる。
 また、案内ライン3に配置された吸着カラム16を備えているので、案内ライン3に沿って移送される有機溶媒に含まれる99Mo(親核種)を吸着除去することができる。これにより、有機溶媒における99mTc(娘核種)の含有率を高めることができ、純度を高めることができる。
 また、排気ライン7に配置されたポンプ5を備えることにより、有機溶媒の蒸気を効率的に排気することができ、蒸発乾固を促進することができる。また、回収ライン9を備えることにより、溶出液を連続的に回収することができ、多量の溶出液を得ることができる。また、加速器から発生した中性子を用いて99Mo-99mTcを製造しているので、原子炉を用いる必要が無く、安全かつ安価にRIを単離することができる。
 また、蒸発ヒーター6により蒸発・溶出槽4の内部を加熱すると共に、ポンプ5により蒸発・溶出槽4の内部を減圧するので、蒸発・溶出槽4内の有機溶媒を加熱及び減圧させて効率的に蒸発させることができ、RIを効率的に単離することができる。
 以上、本発明の一実施形態について説明したが、本発明の具体的な態様は、上記実施形態に限定されるものではない。例えば、上記実施形態では、水溶液によりRIを抽出槽10に導入していたが、この構成に限定されるものではなく、RIを固体または気体の状態で抽出槽10に導入することもできる。
 また、上記実施形態では、ポンプ5が排気ライン7に設けられ、蒸発・溶出槽4の内部を減圧することにより有機溶媒を吸引して蒸発・溶出槽4に移送する構成であったが、有機溶媒を抽出槽10から蒸発・溶出槽4に移送する構成はこれに限定されるものではなく、案内ライン3にポンプ(図示せず)が設けられている構成であってもよい。このような構成では、案内ライン3に設けられたポンプによって有機溶媒を圧送することにより、抽出槽10内の有機溶媒を案内ライン3を介して蒸発・溶出槽4に移送することができる。また、上記実施形態では、排気ライン7に設けられたポンプ5により、抽出槽10から蒸発・溶出槽4への有機溶媒の移送、蒸発・溶出槽4から外部への有機溶媒の排気、及び、蒸発・溶出槽4の減圧を行っていたが、この構成に限定されるものではなく、案内ライン3、排気ライン7、及び、蒸発・溶出槽4にそれぞれポンプを設け、各ポンプによりそれぞれ移送、排気、及び減圧を行う構成であってもよい。
 また、上記実施形態では、撹拌装置11としてモーター及び撹拌羽根24を備える構成を用いていたが、抽出槽10内の液体を撹拌できる構成であれば特に限定されず、例えば、抽出槽10の底部から抽出槽10内に気泡を供給し、この気泡により抽出槽10内の液体を撹拌する構成であってもよい。
 また、上記実施形態では、温度制御ヒーター14を抽出槽10に設置していたが、これを省略することもできる。また、吸着カラム16を案内ライン3に設置していたが、これを省略することもできる。
 また、上記実施形態では、溶出液を回収ライン9により回収していたが、回収方法は特に限定されるものではない。
 また、上記実施形態では、抽出槽10内が常圧に維持されている構成であったが、抽出槽10内を加圧又は減圧する構成であってもよい。
 また、上記実施形態では、加速器から発生した中性子を用いて99Mo-99mTcを製造しているが、原子炉を用いて99Mo-99mTcを製造することも可能である。
さらに100Mo(γ,n)99Mo反応でも製造することが可能である。
 また、上記実施形態では、娘核種(99mTc)を一方の核種とし、親核種(99Mo)を他方の核種として、娘核種(99mTc)が有機溶媒層21に抽出され、親核種(99Mo)が水層20に抽出される構成を説明したが、この構成に限定されるものではなく、RIの種類によっては上記と逆に、親核種を一方の核種とし、娘核種を他方の核種として、親核種(一方の核種)が有機溶媒層21に抽出され、娘核種(他方の核種)が水層20に抽出される構成もあり得る。
 1  RIの単離装置
 2  核種抽出装置
 3  案内ライン
 4  蒸発・溶出槽
 5  ポンプ
 6  蒸発ヒーター
 7  排気ライン
 8  導入ライン
 9  回収ライン
 10  抽出槽
 11  撹拌装置
 12  溶媒ライン
 13  水溶液ライン
 14  温度制御ヒーター
 15  排水ライン
 16  吸着カラム
 17  ノズル
 20  水層
 21  有機溶媒層
 24  撹拌羽根

Claims (13)

  1.  親核種及び娘核種を含むRIが溶解した水及び有機溶媒から前記RIの一方の核種を前記有機溶媒に抽出する核種抽出装置と、
     前記RIの一方の核種を抽出した前記有機溶媒を前記核種抽出装置から蒸発・溶出槽に案内する案内ラインと、
     前記案内ラインに前記有機溶媒を送るポンプと、
     前記蒸発・溶出槽に案内された前記有機溶媒を蒸発させる蒸発ヒーターと、
     蒸発した前記有機溶媒を前記蒸発・溶出槽から排出する排気ラインと、
     前記蒸発・溶出槽に溶出用の液体を導入する導入ラインと、を備えるRIの単離装置。
  2.  前記核種抽出装置は、RIが溶解した水及び有機溶媒を収容する抽出槽と、前記抽出槽内の液体を撹拌する撹拌装置と、を備える請求項1に記載のRIの単離装置。
  3.  前記抽出槽に前記有機溶媒を導入する溶媒ラインを更に備える請求項2に記載のRIの単離装置。
  4.  前記抽出槽に前記RIの水溶液を導入する水溶液ラインを更に備える請求項2または3に記載のRIの単離装置。
  5.  前記核種抽出装置は、前記抽出槽内の液体の温度を制御する温度制御ヒーターを更に備える請求項2から4のいずれかに記載のRIの単離装置。
  6.  前記抽出槽から前記RIの他方の核種の水溶液を排出する排水ラインを更に備える請求項2から5のいずれかに記載のRIの単離装置。
  7.  前記案内ラインに配置され、前記RIの他方の核種を吸着する吸着カラムを更に備える請求項1から6のいずれかに記載のRIの単離装置。
  8.  蒸発した前記有機溶媒を前記排気ラインに送るポンプを更に備える請求項1から7のいずれかに記載のRIの単離装置。
  9.  前記蒸発・溶出槽から前記RIの一方の核種の溶出液を回収する回収ラインを更に備える請求項1から8のいずれかに記載のRIの単離装置。
  10.  前記RIとして99Mo-99mTcを用いており、
     前記核種抽出装置は、前記RIの娘核種である99mTcを抽出する、請求項1から9のいずれかに記載のRIの単離装置。
  11.  前記99Mo-99mTcは、加速器で発生させた中性子を酸化モリブデンに照射することにより得られる請求項10に記載のRIの単離装置。
  12.  前記溶出用の液体として生理食塩水を用いている請求項1から11のいずれかに記載のRIの単離装置。
  13.  前記蒸発・溶出槽の内部が加熱及び減圧される請求項1から12のいずれかに記載のRIの単離装置。
PCT/JP2013/077209 2012-10-10 2013-10-07 Riの単離装置 WO2014057900A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014540835A JPWO2014057900A1 (ja) 2012-10-10 2013-10-07 Riの単離装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224859 2012-10-10
JP2012-224859 2012-10-10

Publications (1)

Publication Number Publication Date
WO2014057900A1 true WO2014057900A1 (ja) 2014-04-17

Family

ID=50477367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077209 WO2014057900A1 (ja) 2012-10-10 2013-10-07 Riの単離装置

Country Status (2)

Country Link
JP (1) JPWO2014057900A1 (ja)
WO (1) WO2014057900A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304156A (zh) * 2014-07-25 2016-02-03 株式会社日立制作所 放射性核素制造方法及放射性核素装置
WO2016063774A1 (ja) * 2014-10-20 2016-04-28 株式会社日立製作所 放射性薬剤製造システム、放射性薬剤製造装置および放射性薬剤の製造方法
JP2016095142A (ja) * 2014-11-12 2016-05-26 住友重機械工業株式会社 放射性同位元素の分離装置及び放射性同位元素の分離方法
WO2019176585A1 (ja) * 2018-03-15 2019-09-19 国立大学法人大阪大学 放射性核種製造システム、放射性核種製造プログラムを記憶したコンピュータに読み取り可能な記憶媒体、放射性核種製造方法、及び端末装置
WO2020184196A1 (ja) 2019-03-11 2020-09-17 株式会社京都メディカルテクノロジー テクネチウム99m単離システム及びテクネチウム99m単離方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133295A (en) * 1978-03-14 1979-10-16 Karageozian Hampar L Method of producing dry techetium 99m particle
WO2011092102A1 (de) * 2010-02-01 2011-08-04 Siemens Aktiengesellschaft VERFAHREN UND VORRICHTUNG ZUR PRODUKTION VON 99mTc

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4441643B2 (ja) * 2001-02-20 2010-03-31 独立行政法人 日本原子力研究開発機構 使用済核燃料から全アクチノイドを分離・貯蔵する方法
JP5817977B2 (ja) * 2011-08-08 2015-11-18 国立研究開発法人日本原子力研究開発機構 高濃度かつ高放射能をもつテクネチウム−99m溶液の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133295A (en) * 1978-03-14 1979-10-16 Karageozian Hampar L Method of producing dry techetium 99m particle
WO2011092102A1 (de) * 2010-02-01 2011-08-04 Siemens Aktiengesellschaft VERFAHREN UND VORRICHTUNG ZUR PRODUKTION VON 99mTc

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304156A (zh) * 2014-07-25 2016-02-03 株式会社日立制作所 放射性核素制造方法及放射性核素装置
WO2016063774A1 (ja) * 2014-10-20 2016-04-28 株式会社日立製作所 放射性薬剤製造システム、放射性薬剤製造装置および放射性薬剤の製造方法
JP2016080574A (ja) * 2014-10-20 2016-05-16 株式会社日立製作所 放射性薬剤製造システム、放射性薬剤製造装置および放射性薬剤の製造方法
JP2016095142A (ja) * 2014-11-12 2016-05-26 住友重機械工業株式会社 放射性同位元素の分離装置及び放射性同位元素の分離方法
CN111868838A (zh) * 2018-03-15 2020-10-30 国立大学法人大阪大学 放射性核素制造系统、存储了放射性核素制造程序的计算机可读存储介质、放射性核素制造方法、以及终端装置
WO2019176585A1 (ja) * 2018-03-15 2019-09-19 国立大学法人大阪大学 放射性核種製造システム、放射性核種製造プログラムを記憶したコンピュータに読み取り可能な記憶媒体、放射性核種製造方法、及び端末装置
JPWO2019176585A1 (ja) * 2018-03-15 2021-03-11 国立大学法人大阪大学 放射性核種製造システム、放射性核種製造プログラムを記憶したコンピュータに読み取り可能な記憶媒体、放射性核種製造方法、及び端末装置
JP2020148490A (ja) * 2019-03-11 2020-09-17 株式会社京都メディカルテクノロジー テクネチウム99m単離システム及びテクネチウム99m単離方法
WO2020184196A1 (ja) 2019-03-11 2020-09-17 株式会社京都メディカルテクノロジー テクネチウム99m単離システム及びテクネチウム99m単離方法
CN113168929A (zh) * 2019-03-11 2021-07-23 新华锦集团有限公司 99mTc分离提纯系统及99mTc分离提纯方法
US11373777B2 (en) 2019-03-11 2022-06-28 Kyoto Medical Technology Co., Ltd Technetium 99m isolation system and technetium 99m isolation method
EP3940718A4 (en) * 2019-03-11 2022-12-21 Kyoto Medical Technology Co., Ltd TECHNETIUM 99M ISOLATION SYSTEM AND TECHNETIUM 99M ISOLATION METHOD
CN113168929B (zh) * 2019-03-11 2024-04-19 新华锦集团有限公司 99mTc分离提纯系统及99mTc分离提纯方法

Also Published As

Publication number Publication date
JPWO2014057900A1 (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
US11037690B2 (en) Method and apparatus for the production of lead 212 for medical use
WO2014057900A1 (ja) Riの単離装置
CA2932118C (en) Process for producing gallium-68 through the irradiation of a solution target
KR101586555B1 (ko) 중성자 조사 표적 내에 생성된 유용핵종을 분리하는 방법 및 상기 방법에 이용되는 공정 장치
TWI397421B (zh) 鎵-68放射性同位素產生裝置及其方法
Dash et al. Pivotal role of separation chemistry in the development of radionuclide generators to meet clinical demands
CN113168929B (zh) 99mTc分离提纯系统及99mTc分离提纯方法
US20080187489A1 (en) Generator and Method for Production of Technetium-99m
US8758714B2 (en) Adsorbents for radioisotopes, preparation method thereof, and radioisotope generators using the same
JP5817977B2 (ja) 高濃度かつ高放射能をもつテクネチウム−99m溶液の製造方法
Šrank et al. Preparation of 90YCl3 radiopharmaceutical precursor for nuclear medicine using technology of centrifugal extractors
Chuvilin et al. Production of 89Sr in solution reactor
JPH0416446B2 (ja)
CA2764086A1 (en) A system for automatically separating 99mtc-radionuclide from low-medium specific activity 99mo and a process for the same
JP5598900B2 (ja) 高純度99mTc濃縮方法及び濃縮装置
RU2285964C2 (ru) СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ТЕХНЕЦИЯ-99m
KR101401373B1 (ko) 진단용 및 치료용 방사성 동위원소 제조장치 및 그 방법
Skuridin et al. Development of an automated unit for extraction-chromatographic separation of the 99 Mo/99 m Tc generator couple
NO327307B1 (no) Fremgangsmate og anordning for preparering av Bi-213 for terapeutisk bruk hos mennesker
WO2023113774A1 (en) Systems and methods for automated separation and recovery of astatine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845155

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014540835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845155

Country of ref document: EP

Kind code of ref document: A1