WO2019176585A1 - 放射性核種製造システム、放射性核種製造プログラムを記憶したコンピュータに読み取り可能な記憶媒体、放射性核種製造方法、及び端末装置 - Google Patents
放射性核種製造システム、放射性核種製造プログラムを記憶したコンピュータに読み取り可能な記憶媒体、放射性核種製造方法、及び端末装置 Download PDFInfo
- Publication number
- WO2019176585A1 WO2019176585A1 PCT/JP2019/008043 JP2019008043W WO2019176585A1 WO 2019176585 A1 WO2019176585 A1 WO 2019176585A1 JP 2019008043 W JP2019008043 W JP 2019008043W WO 2019176585 A1 WO2019176585 A1 WO 2019176585A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radionuclide
- unit
- carrier gas
- solvent
- adsorption
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/0005—Isotope delivery systems
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/001—Recovery of specific isotopes from irradiated targets
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/001—Recovery of specific isotopes from irradiated targets
- G21G2001/0094—Other isotopes not provided for in the groups listed above
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G4/00—Radioactive sources
- G21G4/04—Radioactive sources other than neutron sources
- G21G4/06—Radioactive sources other than neutron sources characterised by constructional features
- G21G4/08—Radioactive sources other than neutron sources characterised by constructional features specially adapted for medical application
Definitions
- the present disclosure relates to a radionuclide production system for stably producing a radionuclide from a target, a computer-readable storage medium storing a radionuclide production program, a radionuclide production method, and a terminal device.
- Patent Document 1 describes a method for generating 225 Ac (actinium) by irradiating a radium target with a cyclotron to separate and extract 225 Ac (actinium) for pharmaceutical use using an extraction chromatograph. ing.
- radionuclides are bound to compounds that target specific organs and cells, and radiopharmaceuticals for diagnosis that detect and image radiation emitted from the radionuclides and radiation from the radionuclides.
- research and development and practical application of therapeutic radiopharmaceuticals that attack and destroy tumor cells and the like with irradiated radiation are progressing.
- it is expected to expand to various uses such as crop varieties improvement, industrial use such as semiconductor manufacturing and tire processing, sample dating, and analytical use such as non-destructive inspection. Yes. Therefore, it is required to produce the radionuclide more stably.
- a radionuclide production system for producing a radionuclide more stably, a computer-readable storage medium storing a radionuclide production program, a radionuclide production method, And a terminal device.
- a carrier gas is introduced into one end and the other end from which the carrier gas is discharged is configured to store a target in which a radionuclide is held.
- a gas supply unit configured to include a heating unit, one end connected to the gas storage unit storing the carrier gas, and the other end connected to the one end of the heating unit, and An adsorbing portion connected to the other end to which the carrier gas is introduced and an other end from which the carrier gas is discharged, and configured to adsorb the radionuclide, and the adsorbing portion
- a solvent supply unit configured to include an end connected to the other end, a storage unit configured to store a predetermined instruction command, and the target held by the target based on the instruction command Radionuclides can volatilize
- the gas supply unit controls the heating unit to heat the target at a temperature, and supplies the carrier gas to the heating unit to transport the radionuclide volatilized in the heating unit to the adsorption unit.
- a control unit configured to control the
- a carrier gas is introduced into one end and the other end from which the carrier gas is discharged is configured to store a target in which a radionuclide is held.
- a gas supply unit configured to include a heating unit, one end connected to the gas storage unit storing the carrier gas, and the other end connected to the one end of the heating unit, and An adsorbing portion connected to the other end to which the carrier gas is introduced and an other end from which the carrier gas is discharged, and configured to adsorb the radionuclide, and the adsorbing portion
- a computer including a storage unit connected to a radionuclide production apparatus including a solvent supply unit configured to include an end connected to the other end and configured to store a predetermined instruction command; Based on order The carrier gas is used to control the heating unit to heat the target at a temperature at which the radionuclide held by the target can volatilize, and to transport the radionuclide volatilized by the heating unit to the adsorption unit.
- the gas supply unit is controlled so as to be supplied to the heating unit, and the solvent supply unit is controlled to supply a solvent for eluting the radionuclide adsorbed by the adsorption unit to the adsorption unit.
- a computer-readable storage medium storing a radionuclide production program for functioning as a control unit configured as described above is provided.
- a carrier gas is introduced into one end and the other end from which the carrier gas is discharged is configured to store a target in which a radionuclide is held.
- a gas supply unit configured to include a heating unit, one end connected to the gas storage unit storing the carrier gas, and the other end connected to the one end of the heating unit, and An adsorbing portion connected to the other end to which the carrier gas is introduced and an other end from which the carrier gas is discharged, and configured to adsorb the radionuclide, and the adsorbing portion
- the processor includes: Said A method for producing a radionuclide processed by executing an instruction, wherein the heating unit is controlled to heat the target at a temperature at which the radionuclide held by the target can volatilize; and Controlling the gas supply unit
- a carrier gas is introduced into one end and the other end from which the carrier gas is discharged is configured to store a target in which a radionuclide is held.
- a gas supply unit configured to include a heating unit, one end connected to the gas storage unit storing the carrier gas, and the other end connected to the one end of the heating unit, and An adsorbing portion connected to the other end to which the carrier gas is introduced and an other end from which the carrier gas is discharged, and configured to adsorb the radionuclide, and the adsorbing portion
- a terminal device connected to a radionuclide production apparatus including a solvent supply unit configured to include an end connected to the other end, and a storage unit configured to store a predetermined instruction command; , Based on the instruction instruction The carrier gas is used to control the heating unit to heat the target at a temperature at which the radionuclide held by the target can volatilize, and to transport the radionuclide volatilized by the heating unit to the ad
- the gas supply unit is controlled so as to be supplied to the heating unit, and the solvent supply unit is controlled to supply a solvent for eluting the radionuclide adsorbed by the adsorption unit to the adsorption unit.
- a control device configured as described above.
- a radionuclide production system for producing a radionuclide more stably, a computer-readable storage medium storing a radionuclide production program, a radionuclide production method, and a terminal device are provided. it can.
- FIG. 1 is a diagram conceptually illustrating extraction of a radionuclide used in a radionuclide production system according to the present disclosure.
- FIG. 2 is a diagram illustrating an overall configuration of a radionuclide production system according to the present disclosure.
- FIG. 3 is a block diagram illustrating an example of a configuration of a radionuclide production system according to the present disclosure.
- FIG. 4 is a diagram illustrating a flow of a manufacturing process executed in the radionuclide manufacturing system according to the present disclosure.
- FIG. 5 is a diagram illustrating a processing flow executed in the processor of the radionuclide production system according to the present disclosure.
- FIG. 6 is a diagram illustrating operation timing of each component in the radionuclide production system according to the present disclosure.
- FIG. 7 a is a diagram illustrating an example of the operation of the radionuclide production system according to the present disclosure.
- FIG. 7 b is a diagram illustrating an example of the operation of the radionuclide production system according to the present disclosure.
- FIG. 7c is a diagram illustrating an example of the operation of the radionuclide production system according to the present disclosure.
- FIG. 7d is a diagram illustrating an operation example of the radionuclide production system according to the present disclosure.
- FIG. 7e is a diagram illustrating an example of the operation of the radionuclide production system according to the present disclosure.
- FIG. 8 is a diagram conceptually showing the radiation dose detected by the first sensor of the radionuclide production system according to the present disclosure.
- FIG. 9 is a diagram conceptually showing the radiation dose detected by the second sensor of the radionuclide production system according to the present disclosure.
- the radionuclide production system extracts the radionuclide from a target that holds the radionuclide therein by, for example, irradiating with a cyclotron. It is a system for collecting as a contained solution.
- FIG. 1 is a diagram conceptually showing extraction of a radionuclide used in a radionuclide production system according to the present disclosure. Specifically, FIG. 1 shows that a radionuclide 13 is extracted from a target plate 10 comprising a target 12 that holds a radionuclide 13 therein and a metal support foil 11 that supports the target 12 by being irradiated with radiation in a cyclotron. It is a figure which shows the principle performed.
- a target plate 10 is prepared.
- the target plate 10 is heated to a temperature exceeding the melting point of the metal constituting the target 12, the target 12 is dissolved as shown in FIG.
- the boiling point of the radionuclide is exceeded and the target plate 10 is further heated to a temperature at which the radionuclide held therein can move to the surface of the target 12 due to thermal vibration of the metal constituting the target 12, FIG.
- the radionuclide volatilizes from the dissolved target 12 as a gas.
- the volatilized radionuclide is eluted and collected in a solvent to finally obtain a desired radionuclide-containing solution.
- the radionuclide 13 may be any radionuclide having a boiling point higher than the melting point of the target 12. Moreover, the radionuclide 13 may emit any of ⁇ rays, ⁇ rays, and ⁇ rays. For example, 67 Ga, 99m Tc, 111 In, 123 I, 131 I, 201 Tl, 81 m Examples include Kr, 18 F, 89 Sr, 90 Y, 223 Ra, 59 Fe, and 211 At. Among these, although the radionuclide 13 differs depending on the application, it can be appropriately selected from the viewpoints of the half-life and the type of radiation to be radiated. For example, 211 At can be used when used for pharmaceutical applications.
- the target 12 has a melting point lower than the boiling point of the desired radionuclide 13, it can be appropriately selected from known targets corresponding to the desired radionuclide 13. For example, if it is 211 At illustrated as a radionuclide, 209 Bi can be used as the target 12.
- Bi bismuth
- this Bi target Bi is deposited in a predetermined thickness (for example, 5 to 30 mg / cm 2 ) in a vapor deposition apparatus on a tantalum metal board to which an aluminum foil is attached at a predetermined thickness (for example, 10 ⁇ m).
- this Bi target is placed in the AVF cyclotron and irradiated with ⁇ rays. Thereby, a Bi target having 211 At held therein can be obtained.
- this method is merely an example, and any method may be used as long as a desired target is obtained.
- FIG. 2 is a diagram showing an overall configuration of the radionuclide production system 1 according to the present disclosure.
- the radionuclide production system 1 controls the radionuclide production apparatus 100 for heating the target 140 holding the radionuclide and recovering the volatilized radionuclide, and the radionuclide production apparatus 100.
- Terminal device 200 Note that the radionuclide production system 1 does not have to include all of the components shown in FIG. 2, and may have a configuration in which some of the components are omitted, or other components may be added. is there.
- connection Even when terms such as “connection”, “linkage”, and “coupling” are used in the description of each component, these components are “directly” connected to each other. Does not mean to be “connected”, “coupled”, or “coupled”. In other words, it is possible to include “indirectly”, “connected”, “coupled”, or “coupled” to each other with another component in between, without any particular indication.
- a radionuclide production apparatus 100 includes a pump 103, a mass flow controller (MFC) 104, a tubular furnace 105, a heater 106, a gas syringe pump 107, a solvent syringe pump 108, an adsorption tube 111, and a filter 114.
- the first valve 121 to the sixth valve 126 and the leak valve 127 are included.
- Each of these components is connected to each other by a pipeline 141, and is also connected to the terminal device 200 via a control line and a data line.
- the radionuclide production apparatus 100 further includes a first sensor 131 to a third sensor 133 that detect various types of information to be processed by the terminal device 200.
- the pump 103 includes an end portion 103 a connected to one end 105 a of the tubular furnace 105 via the first valve 121 and the second valve 122.
- the pump 103 functions as a suction portion for evacuating the pipe line 141, the tubular furnace 105, and the adsorption pipe 111 in the vacuuming process.
- the mass flow controller 104 includes one end 104 a connected to a tank (gas storage unit) that stores carrier gas, and the other end 104 b connected to one end 105 a of the tubular furnace 105 via the second valve 122. Carrier gas and exhaust gas are introduced into the pipe line 141 from the other end 104b.
- the mass flow controller 104 can control not only the on / off of the supply of the carrier gas and the exhaust gas, but also the supply amount and gas mixing ratio. In the present disclosure, it functions as a gas supply unit for supplying the carrier gas and the exhaust gas to the tubular furnace 105.
- any desired carrier gas can be used as appropriate depending on the radionuclide.
- He and / or O 2 are used.
- the volume ratio of He to O 2 is preferably 99: 1 to 51:49, more preferably 90:10 to 60:40, and even more preferably 80:20 to 70:30.
- the volume ratio is in the above range, an increase in the yield of radionuclide is expected.
- the carrier gas preferably contains a predetermined amount of H 2 O from the viewpoint of improving the yield of radionuclide.
- the amount of H 2 O contained is 1 to 15 ⁇ g / cm 3 , preferably 2 to 10 ⁇ g / cm 3 , more preferably 5 to 8 ⁇ g / cm 3 .
- the flow rate of the carrier gas depends on the size of the target 140 to be used, the size of the tubular furnace 105 to be used, and / or the thickness of the pipe line 141 to be used, but from the viewpoint of improving the yield of the radionuclide, It is preferably 5 to 40 mL / min, more preferably 1 to 30 mL / min, and further preferably 1.5 to 25 mL / min.
- the exhaust gas a desired one can be used as appropriate according to the radionuclide.
- He and / or O 2 are used, preferably He is used.
- the tubular furnace 105 is connected to one end 105 a connected to the end 103 a of the pump 103 and the other end 104 b of the mass flow controller 104 and the one end 111 a of the adsorption pipe 111 via the first valve 121 and / or the second valve 122. And the other end 105b.
- the carrier gas and the exhaust gas are introduced into the tubular furnace 105 from one end 105 a and discharged from the other end 105 b to the outside of the tubular furnace 105.
- the tubular furnace 105 functions as a heating unit that stores the target 140 therein and heats the target 140 at a temperature at which the radionuclide held by the target 140 can volatilize.
- the heating temperature can be appropriately determined according to the boiling point of the desired radionuclide, that is, the temperature at which volatilization is possible.
- it is preferably 600 to 850 ° C., more preferably 700 to 850 ° C., and further preferably 800 to 850 ° C.
- the temperature is preferably 600 to 850 ° C., more preferably 700 to 850 ° C., and further preferably 800 to 850 ° C.
- the heater 106 is disposed so as to cover at least a part of the adsorption pipe 111 connected to the other end 105 b of the tubular furnace 105.
- the heater 106 is configured by a ribbon heater, for example, and is wound around the adsorption tube 111 from the end of the adsorption tube 111 on the tubular furnace 105 side (that is, one end 111a), leaving an adsorption area where the radionuclide is adsorbed.
- the heater 106 can also be connected to a temperature controller for on / off and temperature control.
- the heater 106 covers a part of the adsorption tube 111 from the end of the adsorption tube 111 on the tubular furnace 105 side (that is, one end 111a), and heats the coated adsorption tube 111 and the radionuclide passing therethrough. It functions as a warming part. This is because the solvent is supplied to the adsorption area of the adsorption tube 111 to elute the radionuclide. At this time, if the tubular furnace 105 and the adsorption area are in direct contact, the solvent is evaporated by the tubular furnace 105 heated to a high temperature. This is to prevent this from happening.
- the temperature heated by the heater 106 is determined in consideration of the temperature at which the radionuclide is adsorbed as a liquid or solid and the temperature at which the solvent evaporates.
- the temperature is preferably 50 to 600 ° C, more preferably 80 to 200 ° C, and further preferably 100 to 150 ° C. In the production of 211 At, it is preferably 50 to 600 ° C., more preferably 80 to 200 ° C., and further preferably 100 to 150 ° C.
- the adsorption tube 111 has one end 111a connected to the other end 105b of the tubular furnace 105, and the other end 111b connected to the syringe pumps 107 and 108 and the recovery container 110 via the third valve 123 to the fifth valve 125. including.
- the carrier gas and the exhaust gas are introduced into the adsorption tube 111 from the one end 111a, and are discharged from the other end 111b to the outside of the adsorption tube 111. Further, the solvent is introduced from the other end 111b and is again discharged from the other end 111b by the exhaust gas.
- the adsorption tube 111 includes a Teflon tube, a glass tube, a quartz tube, or the like.
- the adsorption tube 111 is coated with a heater 106 from one end 111a side and heated to a desired temperature, and the radionuclide (gas) transported by the carrier gas from the tubular furnace 105 becomes a solid and becomes a solid wall. And an adsorption area to be adsorbed. Therefore, the adsorption tube 111 functions as an adsorption unit that adsorbs the radionuclide that is volatilized in the tubular furnace 105 and transported by the carrier gas. In addition, the radionuclide is not adsorbed or is hardly adsorbed in the heating area heated by the heater 106 as compared with the adsorption area. In addition, the adsorption area is not heated by the heater 106 in this embodiment, but can be heated or cooled from the viewpoint of yield or stability.
- the gas syringe pump 107 and the solvent syringe pump 108 include end portions 107a and 108a connected to the other end 111b of the adsorption tube 111 via the third valve 123 and the fourth valve 124, respectively.
- Both the syringe pumps 107 and 108 are a solvent supply unit that pushes out a certain amount of solvent supplied from the solvent syringe pump 108 by the gas supplied from the gas syringe pump 107 and transports it to the adsorption area of the adsorption tube 111. Function as.
- the gas syringe pump 107 and the solvent syringe pump 108 are provided separately.
- any one can be used as long as a certain amount of solvent can be transported to the adsorption area. It is possible to adopt. That is, it is not necessary to use the syringe pumps separately, and they may be integrated or a solvent supply device other than the syringe pump.
- the solvent supplied to the adsorption tube 111 can be appropriately selected according to the radionuclide to be adsorbed, but preferably sodium hydroxide, hydrochloric acid, nitric acid, alcohols such as ethanol and methanol, other organic solvents, Saline and distilled water are preferable, and physiological saline and distilled water are more preferable.
- the amount of solvent supplied depends on the amount of radionuclide retained in the target 140 and the thickness of the adsorption tube 111, but is preferably 1 to 1000 ⁇ L from the viewpoint of improving the yield of radionuclide. More preferably 10 to 500 ⁇ L, still more preferably 50 to 200 ⁇ L.
- the gas supplied from the gas syringe pump 107 may be the same component as the carrier gas or the exhaust gas, or other gases such as air may be used.
- the filter 114 has one end 114a connected to the end 103a of the pump 103 via the leak valve 127 and the first valve 121, and the other end connected to the other end 111b of the adsorption pipe 111 via the third valve 123 and the like. 114b.
- the filter 114 functions as a filter unit that removes nuclide residues and the like carried together with the carrier gas when the carrier gas or the like in the pipe 141 is discharged from the discharge port 109.
- a column containing anhydrous sodium sulfate, activated carbon, or the like can be used alone or in appropriate combination.
- the recovery container 110 is not necessarily included as one of the components of the radionuclide production system 1 according to the present disclosure, but is disposed after the adsorption tube 111 and is used for recovering the radionuclide eluted in the solvent. Functions as a collection unit.
- An example of the collection container 110 is an eppendle tube, but can be appropriately selected according to the amount and type of radionuclide or solvent.
- the first valve 121 to the sixth valve 126 and the leak valve 127 are valves that can be controlled by receiving a signal from the terminal device 200, such as an electromagnetic valve, an electric valve, and a valve to which an electric motor is connected. Either can be used.
- the first valve 121 to the fifth valve 125 are three-way valves,
- the first valve 121 is a connection between the second valve 122 and the pump 103 or the leak valve 127.
- the second valve 122 is a connection between the tubular furnace 105 and the mass flow controller 104 or the first valve 121.
- the third valve 123 connects the adsorption pipe 111 and the fourth valve 124 or the fifth valve 125
- the fourth valve 124 is a connection between the third valve 123 and the gas syringe pump 107 or the solvent syringe pump 108.
- the fifth valve 125 is a connection between the third valve 123 and the collection container 110 or the sixth valve 126. Control each one.
- the sixth valve 126 and the leak valve 127 are two-way valves, The sixth valve 126 connects the fifth valve 125 and the filter 114, The leak valve 127 is a connection between the first valve 121 and the filter 114. Control each one.
- the configuration of the terminal device 200 will be described in detail with reference to FIG.
- FIG. 3 is a block diagram illustrating an example of a configuration of a radionuclide production system according to the present disclosure.
- the radionuclide production system 1 includes the pump 103, the mass flow controller 104, the tubular furnace 105, the heater 106, the gas syringe pump 107, the solvent syringe pump 108, the first valve 121 to the first valve described in detail in FIG.
- the terminal device 200 and the first sensor 131 to the third sensor 133 are included. These components are electrically connected to each other through a control line and a data line.
- the radionuclide production system 1 does not have to include all of the components shown in FIG. 3, and may have a configuration in which some are omitted or may include other components. In FIG. 3, some of the components shown in FIG. 2 are not shown.
- the terminal device 200 includes at least a processor 201 and a memory 202, and displays an input interface (such as a touch panel and a keyboard) for inputting various settings of the radionuclide manufacturing apparatus 100, set information, detected information, and the like.
- a communication interface for transmitting / receiving setting information, detected information, and the like to / from other terminal devices and server devices remotely installed may be included as appropriate (none of which are shown).
- Examples of the terminal device 200 include a laptop personal computer and a desktop personal computer, but any terminal device capable of executing the program according to the present disclosure may be used.
- the processor 201 is composed of a CPU (microcomputer) and outputs a control signal to other connected components based on various programs stored in the memory 202 to control each component. Function as.
- the processor 201 performs processing for executing the instruction command stored in the memory 202, that is, the radionuclide manufacturing program and the OS according to the present disclosure. Note that the processor 201 may be configured by a single CPU, but may be configured by combining a plurality of CPUs.
- the memory 202 includes a RAM, a ROM, or a nonvolatile memory (in some cases, an HDD), and functions as a storage unit.
- the ROM stores an instruction command for controlling the radionuclide production system and an instruction command for executing the OS as a program.
- the RAM is a memory used for writing and reading data while the program stored in the ROM is being processed by the processor 201.
- the non-volatile memory is a memory in which data is written and read by executing the program, and the data written therein is stored even after the execution of the program is completed. As an example, radiation dose data and pressure data detected by the first sensor 131 to the third sensor 133 are stored.
- the first sensor 131 is disposed in the adsorption area of the adsorption tube 111 or in the vicinity thereof.
- the first sensor 131 functions as a first detection unit that detects the radiation dose emitted from the radionuclide that is volatilized from the target 140, transported by the carrier gas, and adsorbed on the adsorption tube 111.
- the first sensor 131 can be composed of a known radiation dose detector according to the type of radiation emitted by the radionuclide.
- the first sensor 131 can use a Geiger-Muller counter, a scintillator, a photodiode, or the like. From the viewpoint of detecting a more accurate radiation dose, Geiger-Muller counters and scintillators are preferred.
- the radiation dose detected by the first sensor 131 is output to the terminal device 200, stored in the memory 202, and processed by the processor 201 to be used as a trigger for starting the liquid feeding process.
- the second sensor 132 is arranged in the adsorption tube 111 or in the vicinity thereof, more specifically, in the adsorption tube 111 in the adsorption area where the radionuclide is adsorbed or in the vicinity thereof.
- the second sensor 132 is a second detection unit for detecting that the solvent is pushed out by the gas supplied from the gas syringe pump 107, passes through the adsorption area of the adsorption tube 111, and reaches the heating area. Function as. More specifically, when the radionuclide is transported in the direction of the heating area by the solvent, the second sensor 132 decreases the radiation dose in the adsorption area. By detecting this radiation dose, the second sensor 132 detects the solvent in the adsorption area.
- the second sensor 132 can be composed of a known radiation dose detector according to the type of radiation emitted by the radionuclide.
- the second sensor 132 can use a Geiger-Muller counter, a scintillator, a photodiode, or the like, but the accuracy of the detected radiation dose is not required as compared with the first sensor 131. A cheaper photodiode is preferred.
- the radiation dose detected by the second sensor 132 is output to the terminal device 200, stored in the memory 202, and processed by the processor 201 to be used as a trigger for starting the air feeding process.
- the first sensor 131 and the second sensor 132 are provided. However, only one of them can function in the same manner.
- the third sensor 133 is arranged connected to any position of the first valve 121 to the sixth valve 126 in the pipe line 141, and functions as a third detection unit for detecting the atmospheric pressure in the pipe line 141. .
- the atmospheric pressure detected by the third sensor 133 is output to the terminal device 200, stored in the memory 202, and processed by the processor 201 to be used as a trigger for starting the ventilation process or starting the separation process. It is.
- the pump 103, the mass flow controller 104, the tubular furnace 105, the heater 106, the gas syringe pump 107, the solvent syringe pump 108, the first valve 121 to the sixth valve 126, and the leak valve 127 will be described in detail with reference to FIG. Therefore, it is omitted here.
- FIG. 4 is a diagram illustrating a flow of a production process executed in the radionuclide production system according to the present disclosure. Specifically, FIG. 4 shows an outline of a radionuclide production method executed by the radionuclide production system when the processor 201 processes a radionuclide production program according to the present disclosure.
- the radionuclide manufacturing method according to the present disclosure is started after the target 140 holding the radionuclide therein is placed in the tubular furnace 105 by being irradiated with high-energy radiation accelerated in an accelerator.
- the pump 103 performs a vacuuming step (S101) for evacuating the inside of the pipe line 141, the tubular furnace 105, and the adsorption pipe 111 of the radionuclide production apparatus 100.
- a ventilation step (S102) for supplying the carrier gas from the mass flow controller 104 to the tubular furnace 105 is performed.
- the target 140 is heated at a temperature at which the radionuclide can be volatilized in the tubular furnace 105, and the radionuclide is volatilized from the target 140.
- a process (S103) is performed. In this separation step, the volatilized radionuclide is transported to the adsorption tube 111 by the carrier gas, and the radionuclide is adsorbed to the adsorption area of the adsorption tube 111.
- the solvent supplied in advance from the solvent syringe pump 108 is pushed out by the gas supplied from the gas syringe pump 107, and the adsorption area of the adsorption tube 111 is obtained.
- the liquid feeding process (S104) for feeding the liquid to is performed.
- the radionuclide eluted in the delivered solvent is pushed out to the recovery container 110 by the exhaust gas supplied from the mass flow controller 104, and the air supply step of recovering the solvent in which the radionuclide is eluted in the recovery container 110 (S105). ) Is executed.
- the radionuclide is produced as a radionuclide-containing solution from which the radionuclide separated from the target 140 is eluted.
- FIG. 5 is a diagram illustrating a processing flow executed in the processor of the radionuclide production system according to the present disclosure. Specifically, FIG. 5 is performed mainly by the processor 201 outputting a control signal to each component of the radionuclide production apparatus 100 to control each component in the radionuclide production method shown in FIG. A processing flow is shown.
- the radionuclide manufacturing method is started after the target 140 holding the radionuclide inside is placed in the tubular furnace 105 by being irradiated with high-energy radiation accelerated in an accelerator.
- FIG. 6 is a diagram showing operation timing of each component in the radionuclide production system according to the present disclosure. Specifically, FIG. 6 is a diagram illustrating the on / off timing of the operation of each component when a control signal is output from the processor 201.
- 7a to 7e are diagrams illustrating an example of the operation of the radionuclide production system according to the present disclosure. Specifically, FIG. 7a to FIG. 7e show the connection relationship of each component that changes as each component operates at the timing shown in FIG. In FIG. 7, each component operates (or the valve opens) when the vertical axis is “high”, and each component does not operate (or the valve closes) when “Low”. It is shown that. That is, in FIG. 7, each component operates (or the valve opens) at the timing when hatched hatching is performed.
- the processor 201 controls the first valve 121 to connect between the pump 103 and the second valve 122 and closes the sixth valve 126. That is, as shown in FIG. 7a, the processor 201 starts from the pump 103 with the first valve 121, the second valve 122, the tubular furnace 105, the adsorption pipe 111, the third valve 123, the fifth valve 125, and the sixth valve 126. Each component is controlled so as to form a system connected to each other. Referring to FIG. 5 again, the processor 201 turns on the pump 103 and starts evacuation in the system shown in FIG. 7A (S201).
- the processor 201 monitors the atmospheric pressure detected by the third sensor 133, and determines whether or not the inside of the system is in a vacuum state, that is, whether or not the inside atmospheric pressure is below a predetermined threshold value. Judgment is made (S202). The processor 201 repeats the above determination at predetermined intervals until the atmospheric pressure becomes equal to or lower than the threshold value. When the processor 201 determines that the atmospheric pressure has become equal to or lower than the threshold value, the evacuation process ends.
- the processor 201 ends the evacuation process based on the atmospheric pressure detected by the third sensor 133 in S202, and controls the mass flow controller 104 to start supplying the carrier gas into the tubular furnace 105. (Aeration process). Specifically, referring to FIG. 6, the processor 201 controls the second valve 122 to connect between the mass flow controller 104 and the tubular furnace 105, and controls the sixth valve 126 to control the filter 114 and the fifth valve. 125 are connected. That is, as shown in FIG.
- the processor 201 sends the second valve 122, the tubular furnace 105, the adsorption pipe 111, the third valve 123, the fifth valve 125, the sixth valve 126, the filter 114, and the like from the mass flow controller 104. Each component is controlled so as to form a system in which the discharge ports 109 are connected to each other.
- the processor 201 controls the mass flow controller 104 to introduce a carrier gas into the system (S203).
- the processor 201 monitors the atmospheric pressure detected by the third sensor 133 and determines whether or not the increased atmospheric pressure is lower than the atmospheric pressure (S204). ).
- the processor 201 repeats the above determination at predetermined intervals until the atmospheric pressure becomes equal to or higher than the atmospheric pressure. When the processor 201 determines that the atmospheric pressure has become equal to or higher than the atmospheric pressure, the ventilation process ends.
- the processor 201 controls the solvent syringe pump 108 to supply a predetermined amount (for example, 100 ⁇ L) supplied to the adsorption tube 111.
- a predetermined amount for example, 100 ⁇ L
- the processor 201 controls the solvent syringe pump 108 to push out from the fourth valve 124 toward the third valve 123 by a predetermined amount (arrow 151).
- a solvent may be prepared at an aeration process, it may be anytime if it is prepared and cleaned in advance before a liquid feeding process. That is, for example, it is possible to prepare in a vacuuming process or a separation process.
- the processor 201 controls the tubular furnace 105 to start heating the target 140 by controlling the tubular furnace 105 based on the atmospheric pressure detected by the third sensor 133 in S204 (separation process).
- the open / close state of each valve in the separation step is the same as that in the ventilation step. Therefore, as shown in FIG. 7c, from the mass flow controller 104 to the second valve 122, the tubular furnace 105, the adsorption pipe 111, the third valve 123, the fifth valve 125, the sixth valve 126, the filter 114, and the discharge port 109. Are connected to each other. Referring again to FIG.
- the processor 201 turns on the operation of the heater 106 and heats the adsorption tube 111 to a predetermined temperature (for example, 120 ° C.) (S205).
- the processor 201 turns on the operation of the tubular furnace 105 and heats the target 140 at a temperature at which the radionuclide can be volatilized (S206).
- the carrier gas is continuously supplied from the mass flow controller 104 into the system while the mass flow controller 104 remains on. Therefore, the radionuclide that is volatilized by being heated in the tubular furnace 105 and separated from the target 140 is transported to the adsorption area of the adsorption tube 111 by the carrier gas. At this time, since a part (heating area) of the adsorption tube 111 on the tubular furnace 105 side is heated by the heater 106, the radionuclide is not adsorbed in the heating area. On the other hand, the adsorption area closer to the collection container than the heating area is maintained at a temperature at which the radionuclide becomes solid. Therefore, the radionuclide (gas) transported by the carrier gas is cooled in the adsorption area and adsorbed on the inner wall of the adsorption area.
- FIG. 8 is a diagram conceptually showing the radiation dose detected by the first sensor 131 of the radionuclide production system according to the present disclosure.
- the radiation dose detected by the first sensor 131 increases with time (FIG. 8). 8: t1 to t2).
- the radiation dose reaches an equilibrium state (FIG. 8: after t2).
- the processor 201 calculates the slope (differentiation) of the radiation dose increase curve at predetermined intervals, and reaches equilibrium by determining whether the slope is equal to or less than a predetermined slope (generally zero). It is possible to determine whether or not.
- the processor 201 monitors the radiation dose detected by the first sensor 131, and determines whether or not the radiation dose has reached an equilibrium state (S207). The processor 201 repeats the above determination at predetermined intervals until the radiation dose reaches an equilibrium state. When the processor 201 determines that the radiation dose has reached an equilibrium state, the heating of the heater 106 is terminated (S208).
- the processor 201 determines whether or not the temperature of the heater 106 has been cooled to a temperature that does not evaporate the solvent (for example, 90 ° C.) (S209). The processor 201 repeats the determination until the temperature reaches the above temperature. Then, when the processor 201 determines that the temperature has reached the above temperature, the introduction of the carrier gas is stopped, and the separation process ends.
- a temperature that does not evaporate the solvent for example, 90 ° C.
- the processor 201 ends the separation process based on the radiation dose detected by the first sensor 131 in S207, and controls the gas syringe pump 107 to start the supply of the solvent (liquid feeding process). Specifically, referring to FIG. 6, the processor 201 controls the first valve 121 to connect between the leak valve 127 and the second valve 122, and controls the third valve to control the adsorption pipe 111 and the fourth valve. 124, the fourth valve is controlled to connect the third valve 123 and the gas syringe pump 107, and the leak valve 127 is controlled to connect the first valve 121 and the filter 114. That is, as shown in FIG.
- the processor 201 starts from the gas syringe pump 107 with the fourth valve 124, the third valve 123, the adsorption pipe 111, the tubular furnace 105, the second valve 122, the first valve 121, and the leak valve.
- Each component is connected so that 127, the filter 114, and the discharge port 109 may be connected to each other.
- the processor 201 controls the gas syringe pump 107 to supply gas into the formed system.
- a predetermined amount of solvent prepared on the third valve 123 side of the fourth valve 124 in the ventilation process is pushed out toward the adsorption pipe 111 by the gas supplied from the gas syringe pump 107 (arrow in FIG. 7d).
- a predetermined amount of solvent is supplied to the adsorption tube 111 (S210).
- the radionuclide adsorbed in the separation step elutes into the solvent.
- the decrease in the amount of radiation detected by the second sensor 132 disposed in the adsorption area reaches an equilibrium state.
- FIG. 9 is a diagram conceptually showing the radiation dose detected by the second sensor of the radionuclide production system according to the present disclosure.
- the radiation dose detected by the second sensor 132 is the separation step. The radiation dose immediately after is maintained. Thereafter, when the solvent reaches the adsorption area (s2), the radionuclide is eluted in the solvent and transported together with the solvent toward the heating area of the adsorption tube 111. Then, the radiation dose detected by the second sensor 132 decreases with time after s2.
- the processor 201 calculates the slope (differentiation) of the radiation dose reduction curve at predetermined intervals, and reaches equilibrium by determining whether the slope is equal to or less than a predetermined slope (generally zero). It is possible to determine whether or not. Referring back to FIG. 5, the processor 201 determines that the solvent has completely reached the adsorption area of the adsorption tube 111 and passed based on whether or not the decrease in the radiation dose detected by the second sensor 132 has reached equilibrium. It is determined whether or not it has been done (S211). The processor 201 repeats the above determination at predetermined intervals until it is determined that the solvent has completely passed. When the processor 201 determines that the solvent has completely passed, the operation of the gas syringe pump 107 is stopped, and the liquid feeding process is ended.
- the processor 201 ends the liquid feeding process and controls to start supplying exhaust gas from the mass flow controller 104 (air feeding process). Specifically, referring to FIG. 6, the processor 201 controls the second valve 122 to connect the mass flow controller 104 and the tubular furnace 105, and controls the third valve 123 to control the adsorption pipe 111 and the fifth valve. 125, and the fifth valve 125 is controlled to connect the third valve 123 and the pipe line on the collection container 110 side. That is, as shown in FIG.
- the processor 201 extends from the mass flow controller 104 to the second valve 122, the tubular furnace 105, the adsorption pipe 111, the third valve 123, the fifth valve 125, and the pipe line on the collection container 110 side. Are controlled so as to form a system connected to each other. Then, the processor 201 controls the mass flow controller 104 to introduce exhaust gas into the system (S212).
- Exhaust gas introduced from the mass flow controller 104 exists in the heating area of the adsorption tube 111, and pushes out the solvent from which the radionuclide has been eluted in the direction of the recovery container 110. Therefore, the solvent from which the radionuclide is eluted passes through the system shown in FIG. 7e, and is discharged from the conduit on the recovery container 110 side to the recovery container 110 (S213). As a result, the radionuclide is finally produced as a radionuclide-containing solution.
- the radionuclide is finally produced as a radionuclide-containing solution.
- the solution may be further concentrated or diluted to prepare a radionuclide-containing solution having a higher or lower concentration.
- each component of the radionuclide production apparatus 100 is operated under the control of the processor 201 to produce a radionuclide. Accordingly, the radionuclide can be produced more stably.
- the switching of each manufacturing process was performed based on the radiation dose and atmospheric pressure detected by the first sensor 131 to the third sensor 133. Therefore, more accurate and stable production of the radionuclide is possible.
- the radionuclide production apparatus 100 includes a timer.
- the timer functions as, for example, a time measuring unit that measures time since each manufacturing process is started.
- the processor 201 determines whether or not the measured time has exceeded a predetermined time.
- the processor 201 determines. When it is determined that the time has been exceeded, the processor 201 controls to introduce the carrier gas from the mass flow controller 104 (S203).
- the processor 201 determines whether or not the atmospheric pressure in the system has become an atmospheric pressure in S204 of the processing flow shown in FIG.
- the time after the introduction of the carrier gas into the system (S203) is started is measured with a timer, and whether or not the time required to bring the system to atmospheric pressure calculated in advance has been exceeded.
- the processor 201 determines whether or not. When it is determined that the time has been exceeded, the processor 201 controls to start heating by the heater 106 (S205).
- the processor 201 measures the time from the start of heating (S206) in the tubular furnace 105 with a timer, and the processor 201 determines whether or not the time until the equilibrium state calculated in advance has been exceeded. to decide. When it is determined that the time has been exceeded, the processor 201 controls to end the heating by the heater 106 (S208).
- the processor 201 determines whether or not a pre-calculated arrival time has been exceeded by measuring the time after the supply of the solvent (S210) by the gas syringe pump 107 is started with a timer. . When it is determined that the time has been exceeded, the processor 201 controls to end the supply of the solvent by the gas syringe pump 107.
- the radionuclide is manufactured by operating each component of the radionuclide manufacturing apparatus 100 under the control of the processor 201. Accordingly, the radionuclide can be produced more stably. Moreover, switching of each manufacturing process was judged based on the comparison between the time calculated in advance and the time measured by the timer. Therefore, more accurate and stable production of the radionuclide is possible.
- the processes and procedures described in this specification can be realized not only by those explicitly described in the embodiment but also by software, hardware, or a combination thereof. Specifically, the processes and procedures described in this specification are realized by mounting logic corresponding to the processes on a medium such as an integrated circuit, a volatile memory, a nonvolatile memory, a magnetic disk, or an optical storage. Is done. Further, the processes and procedures described in the present specification can be implemented as a computer program and executed by various computers including a terminal device.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
1.本開示に係る放射性核種製造システムの概要
本開示に係る放射性核種製造システムは、例えばサイクロトロンにおいて放射線を照射することにより、その内部に放射性核種を保持したターゲットから、当該放射性核種を抽出し、放射性核種含有溶液として回収するためのシステムである。
図2は、本開示に係る放射性核種製造システム1の全体の構成を示す図である。図2によると、放射性核種製造システム1は、放射性核種が保持されたターゲット140を加熱し揮発した放射性核種を回収するための放射性核種製造装置100と、当該放射性核種製造装置100を制御するための端末装置200とを含む。なお、放射性核種製造システム1は、図2に示された構成要素の全てを備える必要はなく、一部を省略した構成をとることも可能であるし、他の構成要素を加えることも可能である。たとえば、放射性核種製造装置100の前段にターゲット140を製造するための加速器及びターゲット140を放射性核種製造装置100内に運搬するための運搬装置をさらに含むことも可能であるし、後段に製造された放射性核種含有溶液を運搬用容器にパッケージングするためのパッケージング装置をさらに含むことも可能である。
・第1バルブ121は、第2バルブ122とポンプ103又はリークバルブ127間の接続を、
・第2バルブ122は、管状炉105とマスフローコントローラ104又は第1バルブ121間の接続を、
・第3バルブ123は、吸着管111と第4バルブ124又は第5バルブ125の接続を、
・第4バルブ124は、第3バルブ123とガス用シリンジポンプ107又は溶媒用シリンジポンプ108間の接続を、
・第5バルブ125は、第3バルブ123と回収容器110又は第6バルブ126間の接続を、
それぞれ制御する。また、第6バルブ126及びリークバルブ127は二方弁が用いられ、
・第6バルブ126は、第5バルブ125とフィルター114間の接続を、
・リークバルブ127は、第1バルブ121とフィルター114間の接続を、
それぞれ制御する。
なお、放射性核種製造システム1は、図3に示す構成要素の全てを備える必要はなく、一部を省略した構成をとることも可能であるし、他の構成要素を加えることも可能である。なお、図3には、図2に示された一部の構成要素については、図示されていない。
図4は、本開示に係る放射性核種製造システムにおいて実行される製造工程のフローを示す図である。具体的には、図4は、本開示に係る放射性核種製造プログラムをプロセッサ201が処理することにより放射性核種製造システムで実行される放射性核種製造方法の概要を示す。
図6によると、真空引き工程において、プロセッサ201は、第1バルブ121を制御してポンプ103と第2バルブ122間を接続するとともに、第6バルブ126を閉じる。つまり、図7aに示すように、プロセッサ201は、ポンプ103から、第1バルブ121、第2バルブ122、管状炉105、吸着管111、第3バルブ123、第5バルブ125、及び第6バルブ126までが互いに接続された系を形成するように、各構成要素を制御する。図5を再び参照して、プロセッサ201は、ポンプ103をオンにして、図7aに示す系内の真空引きを開始する(S201)。次に、プロセッサ201は、第3センサー133で検出された気圧を監視し、系内が真空状態になったか否か、つまりは系内の気圧があらかじめ決められた閾値以下になったか否かを判断する(S202)。プロセッサ201は、気圧が閾値以下になるまで上記判断を所定間隔で繰り返す。そして、プロセッサ201が、気圧が閾値以下になったと判断すると、真空引き工程が終了する。
プロセッサ201は、S202において第3センサー133で検出された気圧に基づいて、真空引き工程を終了させるとともに、マスフローコントローラ104を制御して管状炉105内にキャリアガスの供給を開始するように制御する(通気工程)。具体的には、図6を参照すると、プロセッサ201は、第2バルブ122を制御してマスフローコントローラ104と管状炉105間を接続するとともに、第6バルブ126を制御してフィルター114と第5バルブ125間を接続する。つまり、図7bに示すように、プロセッサ201は、マスフローコントローラ104から、第2バルブ122、管状炉105、吸着管111、第3バルブ123、第5バルブ125、第6バルブ126、フィルター114、及び排出口109までが互いに接続された系を形成するように、各構成要素を制御する。図5を再び参照して、プロセッサ201は、マスフローコントローラ104を制御して、キャリアガスを系内に導入する(S203)。次に、キャリアガスの導入によって系内の気圧が上昇するが、プロセッサ201は、第3センサー133で検出された気圧を監視し、上昇した気圧が大気圧より低いか否かを判断する(S204)。プロセッサ201は、気圧が大気圧以上になるまで上記判断を所定間隔で繰り返す。そして、プロセッサ201が、気圧が大気圧以上になったと判断すると、通気工程が終了する。
プロセッサ201は、S204において第3センサー133で検出された気圧に基づいて、通気工程を終了させるとともに、管状炉105を制御してターゲット140の加熱を開始するように制御する(分離工程)。図6を参照すると、分離工程の各バルブの開閉状態は、通気工程と同じである。したがって、図7cに示すように、マスフローコントローラ104から、第2バルブ122、管状炉105、吸着管111、第3バルブ123、第5バルブ125、第6バルブ126、フィルター114、及び排出口109までが互いに接続された系が形成される。図5を再び参照して、プロセッサ201は、ヒーター106の動作をオンにして、所定の温度(例えば、120℃)に吸着管111を加温する(S205)。また、プロセッサ201は、管状炉105の動作をオンにして、放射性核種が揮発可能な温度でターゲット140を加熱する(S206)。
プロセッサ201は、S207において第1センサー131で検出された放射線量に基づいて、分離工程を終了させるとともに、溶媒の供給を開始するようガス用シリンジポンプ107を制御する(送液工程)。具体的には、図6を参照すると、プロセッサ201は、第1バルブ121を制御してリークバルブ127と第2バルブ122間を接続し、第3バルブを制御して吸着管111と第4バルブ124間を接続し、第4バルブを制御して第3バルブ123とガス用シリンジポンプ107間を接続し、さらにリークバルブ127を制御して第1バルブ121とフィルター114間を接続する。つまり、図7dに示すように、プロセッサ201は、ガス用シリンジポンプ107から、第4バルブ124、第3バルブ123、吸着管111、管状炉105、第2バルブ122、第1バルブ121、リークバルブ127、フィルター114、及び排出口109までが互いに接続された系を形成するように、各構成要素を接続する。
プロセッサ201は、S211において第2センサー132で検出された放射線量に基づいて、送液工程を終了させるとともに、マスフローコントローラ104から排出ガスの供給を開始するよう制御する(送気工程)。具体的には、図6を参照すると、プロセッサ201は、第2バルブ122を制御してマスフローコントローラ104と管状炉105間を接続し、第3バルブ123を制御して吸着管111と第5バルブ125間を接続し、第5バルブ125を制御して第3バルブ123と回収容器110側の管路間を接続する。つまり、図7eに示すように、プロセッサ201は、マスフローコントローラ104から、第2バルブ122、管状炉105、吸着管111、第3バルブ123、第5バルブ125、及び回収容器110側の管路までが互いに接続された系を形成するように、各構成要素を制御する。そして、プロセッサ201は、マスフローコントローラ104を制御して、系内に排出ガスを導入する(S212)。
第1実施形態では、各製造工程の切り替えのタイミングを、第1センサー131~第3センサー133で検出された放射線量や気圧に基づいて判断する場合について説明した。第2実施形態では、第1センサー131~第3センサー133に代えて、放射性核種製造装置100がタイマーを含む場合について説明する。なお、本実施形態は、以下で具体的に説明する点を除いて、第1及び第2実施形態における構成、処理、手順と同様である。したがって、それらの事項の詳細な説明は省略する。
なお、各実施形態で説明した各要素を適宜組み合わせるか、それらを置き換えてシステムを構成することも可能である。
100 放射性核種製造装置
200 端末装置
Claims (14)
- キャリアガスが導入される一端と、前記キャリアガスが排出される他端と、を含み、放射性核種が保持されたターゲットを内部に格納するように構成された加熱部と、
前記キャリアガスを貯留するガス貯留部に接続される一端と、前記加熱部の前記一端に接続される他端と、を含むように構成されたガス供給部と、
前記加熱部の前記他端に接続され前記キャリアガスが導入される一端と、前記キャリアガスが排出される他端と、を含み、前記放射性核種を吸着するように構成された吸着部と、
前記吸着部の前記他端に接続される端部を含むように構成された溶媒供給部と、
所定の指示命令を記憶するように構成された記憶部と、
前記指示命令に基づいて、前記ターゲットに保持される前記放射性核種が揮発可能な温度で前記ターゲットを加熱するように前記加熱部を制御し、前記加熱部で揮発した前記放射性核種を前記吸着部に輸送するために前記キャリアガスを前記加熱部に供給するように前記ガス供給部を制御し、前記吸着部に吸着された前記放射性核種を溶出するための溶媒を前記吸着部へ供給するために前記溶媒供給部を制御するように構成された制御部と、
を含む放射性核種製造システム。 - 前記吸着部の一部を被覆するように配置され、前記キャリアガスによって輸送される前記放射性核種を加温するための加温部と、をさらに含む請求項1に記載の放射性核種製造システム。
- 前記制御部は、前記加温部に被覆された前記一部を、前記溶媒が揮発しない温度まで加温するために前記加温部を制御するように構成された、請求項2に記載の放射性核種製造システム。
- 前記加熱部に接続される端部を含み、前記加熱部を真空状態にするための吸込部と、をさらに含む請求項1に記載の放射性核種製造システム。
- 前記制御部は、前記加熱部を真空状態にするために前記吸込部を制御するように構成された、請求項4に記載の放射性核種製造システム。
- 前記溶媒を前記吸着部に供給するタイミングを決定するための第1検出部と、をさらに含む請求項1に記載の放射性核種製造システム。
- 前記第1検出部は、前記吸着部又はその近傍に配置され、
前記制御部は、前記第1検出部で検出された放射線量に基づいて、前記溶媒を前記吸着部に供給するために前記溶媒供給部を制御するように構成された、
請求項6に記載の放射性核種製造システム。 - 前記放射性核種が溶出された前記溶媒を回収するための回収部へ前記溶媒を排出するために、排出ガスを前記ガス供給部から前記吸着部に供給するタイミングを決定するための第2検出部と、をさらに含む請求項1に記載の放射性核種製造システム。
- 前記第2検出部は、前記吸着部又はその近傍に配置され、
前記制御部は、前記第2検出部で検出された放射線量に基づいて、前記排出ガスを前記吸着部に供給するために前記ガス供給部を制御するように構成された、
請求項8に記載の放射性核種製造システム。 - 前記ターゲットはBi(ビスマス)である、請求項1に記載の放射性核種製造システム。
- 前記放射性核種は211At(アスタチン)である、請求項1に記載の放射性核種製造システム。
- キャリアガスが導入される一端と、前記キャリアガスが排出される他端と、を含み、放射性核種が保持されたターゲットを内部に格納するように構成された加熱部と、前記キャリアガスを貯留するガス貯留部に接続される一端と、前記加熱部の前記一端に接続される他端と、を含むように構成されたガス供給部と、前記加熱部の前記他端に接続され前記キャリアガスが導入される一端と、前記キャリアガスが排出される他端と、を含み、前記放射性核種を吸着するように構成された吸着部と、前記吸着部の前記他端に接続される端部を含むように構成された溶媒供給部とを含む放射性核種製造装置に接続され、所定の指示命令を記憶するように構成された記憶部を含むコンピュータを、
前記指示命令に基づいて、前記ターゲットに保持される前記放射性核種が揮発可能な温度で前記ターゲットを加熱するように前記加熱部を制御し、前記加熱部で揮発した前記放射性核種を前記吸着部に輸送するために前記キャリアガスを前記加熱部に供給するように前記ガス供給部を制御し、前記吸着部に吸着された前記放射性核種を溶出するための溶媒を前記吸着部へ供給するために前記溶媒供給部を制御するように構成された制御部
として機能させるための放射性核種製造プログラムを記憶した、コンピュータに読み取り可能な記憶媒体。 - キャリアガスが導入される一端と、前記キャリアガスが排出される他端と、を含み、放射性核種が保持されたターゲットを内部に格納するように構成された加熱部と、前記キャリアガスを貯留するガス貯留部に接続される一端と、前記加熱部の前記一端に接続される他端と、を含むように構成されたガス供給部と、前記加熱部の前記他端に接続され前記キャリアガスが導入される一端と、前記キャリアガスが排出される他端と、を含み、前記放射性核種を吸着するように構成された吸着部と、前記吸着部の前記他端に接続される端部を含むように構成された溶媒供給部とを含む放射性核種製造装置に接続され、所定の指示命令を記憶するように構成された記憶部を含むコンピュータにおいて、プロセッサが前記指示命令を実行することにより処理される放射性核種製造方法であって、
前記ターゲットに保持される前記放射性核種が揮発可能な温度で前記ターゲットを加熱するように前記加熱部を制御する段階と、
前記加熱部で揮発した前記放射性核種を前記吸着部に輸送するために前記キャリアガスを前記加熱部に供給するように前記ガス供給部を制御する段階と、
前記吸着部に吸着された前記放射性核種を溶出するための溶媒を前記吸着部へ供給するために前記溶媒供給部を制御する段階と、
を含む、放射性核種製造方法。 - キャリアガスが導入される一端と、前記キャリアガスが排出される他端と、を含み、放射性核種が保持されたターゲットを内部に格納するように構成された加熱部と、前記キャリアガスを貯留するガス貯留部に接続される一端と、前記加熱部の前記一端に接続される他端と、を含むように構成されたガス供給部と、前記加熱部の前記他端に接続され前記キャリアガスが導入される一端と、前記キャリアガスが排出される他端と、を含み、前記放射性核種を吸着するように構成された吸着部と、前記吸着部の前記他端に接続される端部を含むように構成された溶媒供給部とを含む放射性核種製造装置に接続される端末装置であって、
所定の指示命令を記憶するように構成された記憶部と、
前記指示命令に基づいて、前記ターゲットに保持される前記放射性核種が揮発可能な温度で前記ターゲットを加熱するように前記加熱部を制御し、前記加熱部で揮発した前記放射性核種を前記吸着部に輸送するために前記キャリアガスを前記加熱部に供給するように前記ガス供給部を制御し、前記吸着部に吸着された前記放射性核種を溶出するための溶媒を前記吸着部へ供給するために前記溶媒供給部を制御するように構成された制御部と、
を含む端末装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/980,617 US20210210244A1 (en) | 2018-03-15 | 2019-03-01 | Radionuclide preparation system, storage medium readable by computer storing radionuclide preparation program, radionuclide preparation method, and terminal device |
AU2019233065A AU2019233065A1 (en) | 2018-03-15 | 2019-03-01 | Radionuclide preparation system, storage medium readable by computer storing radionuclide preparation program, radionuclide preparation method, and terminal device |
CN201980019055.8A CN111868838A (zh) | 2018-03-15 | 2019-03-01 | 放射性核素制造系统、存储了放射性核素制造程序的计算机可读存储介质、放射性核素制造方法、以及终端装置 |
JP2020506393A JPWO2019176585A1 (ja) | 2018-03-15 | 2019-03-01 | 放射性核種製造システム、放射性核種製造プログラムを記憶したコンピュータに読み取り可能な記憶媒体、放射性核種製造方法、及び端末装置 |
EP19768003.6A EP3767638A4 (en) | 2018-03-15 | 2019-03-01 | RADIONUCLIDE MANUFACTURING SYSTEM, STORAGE MEDIUM READABLE BY A COMPUTER STORING A RADIONUCLIDE MANUFACTURING PROGRAM, RADIONUCLIDE MANUFACTURING METHOD AND TERMINAL DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-048560 | 2018-03-15 | ||
JP2018048560 | 2018-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176585A1 true WO2019176585A1 (ja) | 2019-09-19 |
Family
ID=67906659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008043 WO2019176585A1 (ja) | 2018-03-15 | 2019-03-01 | 放射性核種製造システム、放射性核種製造プログラムを記憶したコンピュータに読み取り可能な記憶媒体、放射性核種製造方法、及び端末装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210210244A1 (ja) |
EP (1) | EP3767638A4 (ja) |
JP (1) | JPWO2019176585A1 (ja) |
CN (1) | CN111868838A (ja) |
AU (1) | AU2019233065A1 (ja) |
WO (1) | WO2019176585A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021092483A (ja) * | 2019-12-11 | 2021-06-17 | 株式会社東芝 | アスタチン同位元素の製造方法および装置、アスタチン同位元素の分離・回収方法および装置 |
JP2021096147A (ja) * | 2019-12-17 | 2021-06-24 | 株式会社東芝 | 放射性同位体製造方法および放射性同位体製造装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006074960A1 (en) * | 2005-01-14 | 2006-07-20 | European Organisation For Nuclear Research - Cern | Method for production of radioisotope preparations and their use in life science, research, medical application and industry |
WO2012039037A1 (ja) * | 2010-09-22 | 2012-03-29 | 独立行政法人放射線医学総合研究所 | テクネチウム含有モリブデンからのテクネチウムの分離・精製方法、装置、及び、モリブデンの回収方法・装置 |
WO2014057900A1 (ja) * | 2012-10-10 | 2014-04-17 | 国立大学法人大阪大学 | Riの単離装置 |
JP2016080574A (ja) * | 2014-10-20 | 2016-05-16 | 株式会社日立製作所 | 放射性薬剤製造システム、放射性薬剤製造装置および放射性薬剤の製造方法 |
JP2016166764A (ja) * | 2015-03-09 | 2016-09-15 | 住友重機械工業株式会社 | 放射性同位元素精製装置 |
WO2017093069A1 (en) * | 2015-11-30 | 2017-06-08 | Areva Med Sas | New method and apparatus for the production of high purity radionuclides |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4681727A (en) * | 1984-04-10 | 1987-07-21 | The United States Of America As Represented By The United States Department Of Energy | Process for producing astatine-211 for radiopharmaceutical use |
US4664869A (en) * | 1985-07-01 | 1987-05-12 | The United States Of America As Represented By The United States Department Of Energy | Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123 |
US5102651A (en) * | 1989-12-29 | 1992-04-07 | Neorx Corporation | Process for isolation and radiolabeling of pharmaceuticals with isotopes of astatine |
US5280505A (en) * | 1991-05-03 | 1994-01-18 | Science Research Laboratory, Inc. | Method and apparatus for generating isotopes |
WO2011156446A2 (en) * | 2010-06-09 | 2011-12-15 | General Atomics | Methods and apparatus for selective gaseous extraction of molybdenum-99 and other fission product radioisotopes |
JP5906936B2 (ja) * | 2012-05-15 | 2016-04-20 | 株式会社島津製作所 | 分取精製装置 |
JP6162063B2 (ja) * | 2014-03-17 | 2017-07-12 | 住友重機械工業株式会社 | 放射性同位元素の精製装置、及び放射性同位元素の精製方法 |
JP6830435B2 (ja) * | 2014-06-18 | 2021-02-17 | リンデグレン、ストゥーレ | アスタチン−211[At−211]放射性医薬品の生産のための自動化プロセスプラットフォーム |
-
2019
- 2019-03-01 JP JP2020506393A patent/JPWO2019176585A1/ja active Pending
- 2019-03-01 EP EP19768003.6A patent/EP3767638A4/en not_active Withdrawn
- 2019-03-01 AU AU2019233065A patent/AU2019233065A1/en not_active Abandoned
- 2019-03-01 WO PCT/JP2019/008043 patent/WO2019176585A1/ja active Application Filing
- 2019-03-01 US US16/980,617 patent/US20210210244A1/en not_active Abandoned
- 2019-03-01 CN CN201980019055.8A patent/CN111868838A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006074960A1 (en) * | 2005-01-14 | 2006-07-20 | European Organisation For Nuclear Research - Cern | Method for production of radioisotope preparations and their use in life science, research, medical application and industry |
WO2012039037A1 (ja) * | 2010-09-22 | 2012-03-29 | 独立行政法人放射線医学総合研究所 | テクネチウム含有モリブデンからのテクネチウムの分離・精製方法、装置、及び、モリブデンの回収方法・装置 |
WO2014057900A1 (ja) * | 2012-10-10 | 2014-04-17 | 国立大学法人大阪大学 | Riの単離装置 |
JP2016080574A (ja) * | 2014-10-20 | 2016-05-16 | 株式会社日立製作所 | 放射性薬剤製造システム、放射性薬剤製造装置および放射性薬剤の製造方法 |
JP2016166764A (ja) * | 2015-03-09 | 2016-09-15 | 住友重機械工業株式会社 | 放射性同位元素精製装置 |
WO2017093069A1 (en) * | 2015-11-30 | 2017-06-08 | Areva Med Sas | New method and apparatus for the production of high purity radionuclides |
Non-Patent Citations (1)
Title |
---|
See also references of EP3767638A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021092483A (ja) * | 2019-12-11 | 2021-06-17 | 株式会社東芝 | アスタチン同位元素の製造方法および装置、アスタチン同位元素の分離・回収方法および装置 |
JP7286525B2 (ja) | 2019-12-11 | 2023-06-05 | 株式会社東芝 | アスタチン同位元素の製造方法および装置、アスタチン同位元素の分離・回収方法および装置 |
JP2021096147A (ja) * | 2019-12-17 | 2021-06-24 | 株式会社東芝 | 放射性同位体製造方法および放射性同位体製造装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210210244A1 (en) | 2021-07-08 |
JPWO2019176585A1 (ja) | 2021-03-11 |
EP3767638A1 (en) | 2021-01-20 |
CN111868838A (zh) | 2020-10-30 |
EP3767638A4 (en) | 2021-07-28 |
AU2019233065A1 (en) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019176585A1 (ja) | 放射性核種製造システム、放射性核種製造プログラムを記憶したコンピュータに読み取り可能な記憶媒体、放射性核種製造方法、及び端末装置 | |
JP4495453B2 (ja) | 自動放射性核種分離システム | |
US10895565B2 (en) | Analysis system and method for detecting volatile organic compounds in liquid | |
US7928370B2 (en) | Open probe method and device for sample introduction for mass spectrometry analysis | |
US20210158987A1 (en) | System and method for metallic isotope separation by a combined thermal-vacuum distillation process | |
US10600528B2 (en) | Process for producing Gallium-68 through the irradiation of a solution target | |
US9134208B2 (en) | Solid phase micro extraction (SPME) vacuum inlet | |
BR112014000857B1 (pt) | métodos para produção de compostos de 177lu de alta pureza isentos de veículos, e uso de cromatografia de troca catiônica para a produção dos referidos compostos | |
WO2008131648A1 (fr) | Détection de danshensu de plasma sanguin et d'acide salvianolique b d'un extrait de plante éliminant l'hémostase | |
Wójcik et al. | Review of high-sensitivity Radon studies | |
US9240253B2 (en) | Column geometry to maximize elution efficiencies for molybdenum-99 | |
WO2014057900A1 (ja) | Riの単離装置 | |
Ganzha et al. | A circulating hydrogen ultra-high purification system for the MuCap experiment | |
Mushtaq | Concentration of 99mTcO4−/188ReO4− by a single, compact, anion exchange cartridge | |
Kazachenko et al. | TRAP—a cryo-pump for pumping tritium on pre-condensed argon | |
US20130240449A1 (en) | Device for material purification | |
CN216062117U (zh) | 放射性核素自动分离系统 | |
Nye et al. | Production of [124I]-iodine on an 11 MeV cyclotron | |
Kim et al. | The design and performance of a portable handheld 11CO2 delivery system | |
JPS6285851A (ja) | 化学試料の質量分析装置および方法 | |
JP6767037B2 (ja) | 同位体測定装置及び同位体測定方法 | |
JP2019534284A (ja) | 臨床設定用[f−18]fddnpの複数ドーズ合成方法 | |
Ylimaki et al. | Development of target delivery and recovery system for commercial production of high purity iodine-124 | |
CN113413637A (zh) | 放射性核素自动分离系统及方法 | |
RU2476942C1 (ru) | Способ получения радионуклида рений-188 без носителя и устройство для его осуществления |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19768003 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020506393 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019768003 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019768003 Country of ref document: EP Effective date: 20201015 |
|
ENP | Entry into the national phase |
Ref document number: 2019233065 Country of ref document: AU Date of ref document: 20190301 Kind code of ref document: A |