WO2014057721A1 - 有機透明電極、有機透明電極の製造方法、タッチパネル、ディスプレイ、有機金属、有機金属の製造方法、化合物又はその塩、電線及び電子デバイス - Google Patents

有機透明電極、有機透明電極の製造方法、タッチパネル、ディスプレイ、有機金属、有機金属の製造方法、化合物又はその塩、電線及び電子デバイス Download PDF

Info

Publication number
WO2014057721A1
WO2014057721A1 PCT/JP2013/069451 JP2013069451W WO2014057721A1 WO 2014057721 A1 WO2014057721 A1 WO 2014057721A1 JP 2013069451 W JP2013069451 W JP 2013069451W WO 2014057721 A1 WO2014057721 A1 WO 2014057721A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
transparent electrode
functional group
acid functional
salt
Prior art date
Application number
PCT/JP2013/069451
Other languages
English (en)
French (fr)
Inventor
由佳 小林
毅 寺内
聡 鷲見
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to US14/373,256 priority Critical patent/US9202605B2/en
Priority to EP13845891.4A priority patent/EP2793235B1/en
Priority to JP2014511666A priority patent/JP5943285B2/ja
Publication of WO2014057721A1 publication Critical patent/WO2014057721A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes

Definitions

  • the present invention relates to an organic transparent electrode or an organic metal.
  • Transparent electrodes including indium oxide are very useful materials used in electronic devices such as mobile phone displays.
  • ITO Indium Tin Oxide
  • indium which is a central element, is a rare metal, and the price has been rising in recent years. Considering future demand, it is desirable to substitute with other inexpensive materials.
  • metals organometals
  • a method using a charge transfer complex using an electrolytic oxidation method or a high chemical conductivity method using a chemical doping method with a doping agent added There are two types of methods: molecular. Until now, organic transparent electrodes could not be made except by these methods.
  • This invention is made
  • the first aspect of the present invention is Formed by an organic molecule having a Bronsted acid functional group, an electron donating property and a ⁇ -conjugated plane; It is an organic transparent electrode characterized by self-assembly.
  • the second aspect of the present invention is 2.
  • the organic transparent electrode according to claim 1, wherein the Bronsted acid functional group is any one of a carboxylic acid functional group, a sulfonic acid functional group, a phosphonic acid functional group, and a thiophosphonic acid functional group.
  • the third aspect of the present invention is 3.
  • the fourth aspect of the present invention is
  • the organic transparent electrode is characterized by being formed of a compound having a condensed tetrathiafulvalene derivative moiety in the skeleton and having a protonic acid functional group.
  • the fifth aspect of the present invention provides It is any compound represented by the following general formula (wherein R 1 , R 2 , R 3 , R 4 and R ′ may be the same or different) or a salt thereof Organic transparent electrode It is in.
  • the sixth aspect of the present invention provides It is any compound represented by the following general formula (wherein R 1 , R 2 , R 3 , R 4 and R ′ may be the same or different) or a salt thereof Organic transparent electrode It is in.
  • the seventh aspect of the present invention provides An organic transparent electrode characterized by being a compound represented by the formula (1) or a salt thereof It is in.
  • the eighth aspect of the present invention is An organic transparent electrode characterized by being a compound represented by the formula (2) or a salt thereof It is in.
  • the ninth aspect of the present invention provides An organic transparent electrode characterized by being a compound represented by the formula (3) or a salt thereof It is in.
  • the tenth aspect of the present invention provides The organic transparent electrode is tetrathiafulvalene-2-carboxylic acid aniline salt.
  • the eleventh aspect of the present invention is
  • the organic transparent electrode is tetrathiafulvalene-2-carboxylic acid hydroxyamine salt.
  • the thirteenth aspect of the present invention is there is a method for producing an organic transparent electrode in which a condensed sulfur-containing ⁇ compound having a carboxylic acid functional group introduced therein is recrystallized from an organic solvent.
  • the fourteenth aspect of the present invention provides In the method for producing an organic transparent electrode, the condensed tetrathiafulvalene introduced with a carboxylic acid functional group is recrystallized from an organic solvent to which an ammonia solution is added.
  • a touch panel comprising the organic transparent electrode according to claim 10.
  • the sixteenth aspect of the present invention is 12.
  • a display comprising the organic transparent electrode according to claim 10.
  • the seventeenth aspect of the present invention is 12.
  • An electronic device comprising the organic transparent electrode according to claim 10.
  • the eighteenth aspect of the present invention provides An organic compound having a proton defect in a hydrogen bond network, which is on an organic transparent electrode that generates a radical cation or a radical anion to compensate for the lost charge.
  • the nineteenth aspect of the present invention provides When the abundance ratio of cation and anion deviates from 1: 1 in the hydrogen bond network, the charge becomes unbalanced, and the organic transparent electrode generates radical cation or radical anion to compensate for the lost charge.
  • the twentieth aspect of the present invention provides The organic metal is characterized by being self-assembled and formed by an organic molecule having a Bronsted acid functional group, an electron donating property and a ⁇ -conjugated plane.
  • the 21st aspect of the present invention is 21.
  • the organic metal according to claim 20, wherein the Bronsted acid functional group is any one of a carboxylic acid functional group, a sulfonic acid functional group, a phosphonic acid functional group, and a thiophosphonic acid functional group.
  • the twenty-second aspect of the present invention provides 22.
  • the twenty-third aspect of the present invention provides The organic metal is characterized in that it is formed of a compound having a condensed ring tetrathiafulvalene derivative moiety in the skeleton and having a protonic acid functional group.
  • the twenty-fourth aspect of the present invention provides Any of the compounds represented by (Chemical 4A) (wherein R 1 , R 2 , R 3 and R 4 may be the same or different) or a salt thereof Organic metal It is in.
  • the 25th aspect of the present invention is Any one of the compounds represented by (Chemical 5A) (wherein R 1 , R 2 , R 3 and R 4 may be the same or different) or a salt thereof Organic metal It is in.
  • the twenty-sixth aspect of the present invention provides Or a salt thereof represented by (Chemical 1A) It is in.
  • the twenty-seventh aspect of the present invention provides A compound represented by the formula (2A) or a salt thereof It is in.
  • the 28th aspect of the present invention provides A compound represented by the formula (3A) or a salt thereof It is in.
  • the 29th aspect of the present invention provides An organic metal characterized by being a compound represented by the formula (1A) or a salt thereof It is in.
  • the thirtieth aspect of the present invention is An organic metal characterized by being a compound represented by the formula (2A) or a salt thereof It is in.
  • the thirty-first aspect of the present invention provides An organic metal characterized by being a compound represented by the formula (3A) or a salt thereof It is in.
  • the thirty-third aspect of the present invention provides There is an organic metal production method in which a fused sulfur-containing ⁇ compound having a carboxylic acid functional group introduced therein is recrystallized from an organic solvent.
  • the thirty-fourth aspect of the present invention provides The present invention resides in a method for producing an organic metal in which a condensed tetrathiafulvalene having a carboxylic acid functional group introduced therein is recrystallized from an organic solvent to which an ammonia solution is added.
  • a thirty-fifth aspect of the present invention provides An electric wire containing the organic metal according to claim 30.
  • a thirty-sixth aspect of the present invention provides An electronic device containing the organometallic according to claim 30.
  • the thirty-seventh aspect of the present invention provides An organic compound containing a proton defect in a hydrogen-bonding network and generating a radical cation or radical anion to compensate for the lost charge. It is in.
  • the thirty-eighth aspect of the present invention provides In the hydrogen-bonded network, the charge is unbalanced when the abundance ratio of cation and anion deviates from 1: 1, and it is in the organic metal that generated radical cation or radical anion to compensate for the lost charge.
  • the Bronsted acid functional group includes, for example, —COOH, —SO 3 H, and —P ( ⁇ X) OROH (X ⁇ O or S, R ⁇ H, Me, Et, Pr, Bu).
  • Examples of the inorganic acid include HBF 4 , HClO 4 , HCl, HBr, HI, DBF 4 , DClO 4 , DCl, DBr, and DI.
  • Metal refers to a conductor that conducts electricity well.
  • the electric conductivity of the pressure-molded pellet is approximately greater than 1 S / cm near room temperature.
  • transparent means, for example, a material having a transmittance of about 80% or more in a wide wavelength region (eg, 500-2000 nm).
  • the electrode has a conductivity of about 0.0001 S / cm or more near room temperature.
  • the donor refers to an electron donor (electron donating molecule or electron donating group).
  • the acceptor refers to an electron acceptor (electron acceptor molecule or electron acceptor group).
  • Room temperature refers to 300K (27 ° C), and near room temperature means about ⁇ 10 ° C.
  • the compounds in the present specification and claims include compounds having an equivalent structure and having an element substituted with an element isotope such as deuterium.
  • FIG. 3 is a diagram showing an XPS spectrum at room temperature of the nitrogen atom core level (1 s) of (Chemical Formula 3).
  • FIG. 2 is a diagram showing normalized near-infrared absorption spectra of (TTPCOO) 2 NH 4 and TTPCOOH.
  • TTPCOO is a diagram showing the electrical properties of the 2 NH 4 and TTPCOOH.
  • an electrode material having a high transmittance with an organic material composed of only a typical element without using a rare metal will be described.
  • Organic materials are not only inexpensive, but also have light and flexible characteristics, and thus have a large industrial gain. According to this method, an organic transparent electrode can be obtained only by metallization.
  • the compound shown in this embodiment has a high transmittance with respect to light in a wide wavelength range.
  • the material of the organic transparent electrode is not necessarily limited to the organic metal, but any organic metal can be used as the organic transparent electrode. Therefore, in the following description, a lot of space will be described for the manufacturing method of the organic metal.
  • a new manufacturing method for synthesizing an organic metal without using an electrolytic oxidation method or a chemical doping method is used.
  • a metallized organic substance can be obtained simply by introducing a carboxylic acid functional group into a fused sulfur-containing ⁇ compound (fused tetrathiafulvalene) and recrystallizing it from an organic solvent to which an ammonia solution is added.
  • This manufacturing method not only requires the large-scale equipment required for the electrolytic oxidation method, but also does not coexist with the deterioration and instability of the material that occurs during chemical doping, so that stable organometallics can be produced at once. It is easily obtained in large quantities. Therefore, it is an epoch-making manufacturing method that enables mass production on an industrial scale. This greatly expands the possibilities of organic materials as substitutes for metal resources.
  • this salt is a metal up to at least 4K, and its magnetic susceptibility at room temperature is an order of magnitude higher than typical charge transfer complexes, and exhibits antiferromagnetic behavior below 25K. is there.
  • Organic metals consisting of pure light elements are of great interest both academically and industrially. However, it is desirable to synthesize without electrolytic oxidation considering industrial scale applications.
  • the present inventors have recently found that an ammonium salt coexisting with an electron donating molecule is spontaneously doped to generate hole carriers in the ammonium salt formation stage.
  • the present inventors designed a novel molecular system tetrathiapentalene (fused tetrathiafulvalene) carboxylic acid ammonium salt (TTPCOO) 2 NH 4 .
  • the aim is to widen the band width of the valence band by expanding the overlap of the ⁇ orbital portions.
  • FIG. 1 shows a synthesis scheme.
  • the precursor TTPCOOH was synthesized without using metal catalyst at all stages of the synthesis pathway.
  • the salt is obtained as a black brown solid in 92% yield by recrystallizing TTPCOOH and aqueous ammonia from an organic solvent (THF / 1,4-dioxane / diethyl ether).
  • FIG. 2 is a diagram showing the temperature dependence of the electrical resistance of (Chemical Formula 1), (Chemical Formula 2), and (Chemical Formula 3). Among them, (Chemical Formula 2) and (Chemical Formula 3) were confirmed to be metallized in pellet samples obtained by pressure-molding powder. Since the deuterium substitution product has almost the same behavior, only the example of (Chemical Formula 2) is shown.
  • FIG. 3 is a diagram showing ESR spectra of (Chemical Formula 1), (Chemical Formula 2), and (Chemical Formula 3) at room temperature.
  • (Chemical formula 1), (Chemical formula 2), and (Chemical formula 3) when spin concentrations are quantified on the basis of the standard substance DPPH by electron spin resonance (ESR) at room temperature, they are 37%, 32%, and 12%, respectively.
  • FIG. 4 is a diagram showing an XPS spectrum at room temperature of the nitrogen atom core level (1 s) of (Chemical Formula 3).
  • the origin of metallization is that it is self-doped to make up for the lost charge of proton defects that occur within the salt bridge bonds. This was confirmed by X-ray photoelectron spectroscopy for (Chemical Formula 3) (TTPCOO) 2 NH 4 .
  • TTPCOO X-ray photoelectron spectroscopy
  • FIG. 4 shows the bond energy of N (1s) in Chemical formula 3.
  • the amount of proton defects contained in Chemical 3 which is the most typical substance is estimated to be 6% based on the mixing ratio of NH 3 species in the nitrogen 1s orbit by photoelectron spectroscopy (XPS). The presence of this proton defect causes molecular spin in the crystal.
  • FIG. 5 is a diagram showing normalized near-infrared absorption spectra of (TTPCOO) 2 NH 4 and TTPCOOH. All of these have a large absorption indicating an intermolecular transition of the TTP part in a mixed valence state at 800 nm or more. Which together have a free carrier, delocalized zwitterionic radical species at the molecular sequence [(TTP) 0.5+] COO - associated with. The self-protonated species TTPH + COO - is generated in TTPCOOH and is considered to substitute for the role of proton defects in ammonium salts.
  • FIG. 6 shows the electrical properties of (TTPCOO) 2 NH 4 and TTPCOOH.
  • the electrical resistance was measured from 4 to 320K by a four-terminal method using a pressure-molded sample as a contact terminal (FIG. 6a).
  • the resistance of TTPCOOH rises sharply below 100K and is semiconductor.
  • the resistance value of (TTPCOO) 2 NH 4 hardly changes in the measurement temperature range. The reason why the resistance value gradually increases below 25K is due to the increase of the grain boundary resistance value in the pellet sample.
  • DC conductivity at room temperature (dc conductivity) is (TTPCOO) 2 NH 4 is 2.3 S / cm
  • TTPCOOH is 1.2 S / cm.
  • FIG. 6b shows the temperature dependence of the magnetic susceptibility when a 0.1 T magnetic field is applied.
  • the diamagnetic effect derived from the inner shell electrons of the organic matter is subtracted.
  • the absolute value of magnetic susceptibility at room temperature is TTPCOOH Is 4.0 x 10 -4 emu / mol
  • (TTPCOO) 2 NH 4 is 1.5 x 10 -3 emu / mol, the latter being an order of magnitude higher than typical pure organic charge-transfer complexes. Furthermore, the latter exhibits diamagnetic behavior below 25K.
  • Wide-band solid-state 1 H-NMR measurement shows that the temperature dependence of the nuclear spin relaxation time of (TTPCOO) 2 NH 4 follows T 1 -1 and proves that it is metallized.
  • the TTP skeleton tends to accumulate two-dimensionally due to its extended ⁇ -conjugation, which may have made the zwitterionic radical species delocalized in the molecular arrangement and enabled metallization.
  • FIG. 7 is a schematic diagram showing a three-dimensional structure focusing on intermolecular bonds and intermolecular interactions. As shown in the figure, a hydrogen bond network is formed.
  • Ammonium is not only the key to physical properties, but also plays a role in effectively self-assembling TTF (donor) molecules into a molecular arrangement suitable for the carrier transport phenomenon.
  • These compounds are primarily organic materials that are carrier-doped to compensate for the loss of proton defects that occur in salt bridge bonds.
  • Organic radical species are highly reactive because the electronic state of radical spin is at the HOMO level, and they tend to decompose due to external factors such as oxygen in the air. Therefore, in order to make the organic radical species into a chemically stable electronic state, ingenuity is generally made to introduce an electron-withdrawing group such as a cyano group or a nitro group into the molecule for stabilization. In this way, even if the electronic state is devised and stored in the air for a long time, the composition and electronic state of the molecule at the beginning of the synthesis are maintained, and a state in which radical spin that does not easily decompose occurs is generated. Is expressed here.
  • the d orbitals of transition metal elements and the f orbitals of rare earth metal elements are atomic orbitals with higher localization located in the inner shell than the s or p orbit of the outermost shell, and have lower orbital energy.
  • the electronic state of this d orbital or f orbital is called a quasi-closed shell configuration, but because of the high localization of these orbitals, the d and f electrons occupied there tend not to participate in chemical bonds, so Stabilize.
  • the pseudo-shell configuration, not participating in chemical bonds, and strongly stabilized odd-electron properties often cause magnetism.
  • the pseudo closed shell arrangement will be described later.
  • organic metal the following are preferable, for example.
  • the molecular weight is 10,000 or less.
  • FIG. 13 is a graph showing optical transmittances of Compound A and Compound B in the ultraviolet-visible near-infrared region. According to the figure, both of these are 500 High transmittance is shown from around nm, and all have high transmittance exceeding 80% at 530 nm. Moreover, since the transmittance of about 70% is obtained until reaching the visible-near infrared region, the light transmittance is at a practical level.
  • FIG. 14 is a graph showing the temperature dependence of the electrical conductivities of Compound A and Compound B. According to the figure, at room temperature, it is about 0.1 S / cm. Both show thermal activation type temperature dependence, and the band gaps are 0.11 eV (1) and 0.13 eV (2), respectively.
  • FIG. 15 is a diagram showing the optical transmittance in the ultraviolet-visible near-infrared region of (Chemical Formula 2). According to the figure, they all have a high transmittance of 80% or more from around 350 nm. This compound is also at a practical level with respect to light transmittance.
  • the sample used for measuring the optical transmittance was a thin film.
  • the preparation method of TTP (COOH) 2 organic transparent thin film is as follows.
  • TTP (COOH) 2 (0.47 mg, 1 mmol) was dissolved in dimethyl sulfoxide (DMSO), 5 mL, and 0.1 ⁇ L-1 ⁇ L was added dropwise onto a glass substrate to obtain a transmittance of 80 in the 300-2000 nm wavelength region. % Of transparent thin film electrode was obtained.
  • the photograph in the figure is a thin film electrode prepared by dropping 2 ⁇ L.
  • the pseudo-closed-shell arrangement is realized by a simple technique of embedding organic radical species between closed-shell molecular arrays by self-assembly using a hydrogen bond network consisting of an acid and a base, which is the key to carrier generation.
  • the quasi-closed-shell configuration is, for example, an electron configuration found in transition metal d orbitals and particularly rare earth metal f orbitals. In this configuration, spin does not participate in chemical bonds and is low. Since it has orbital energy and is shielded by electrons in other high energy states, it is isolated and localized inside the atomic orbital. This induces a strong electron correlation effect in the solid state and becomes a source of various high physical properties specific to the strongly correlated metal.
  • This system is also called a “heavy electron system” because it increases the effective mass of electrons due to the strong electron correlation effect.
  • the series of compounds that have been described so far are positioned as f-electron metals that have been realized for the first time in organic solids.
  • R 1 , R 2 , R 3 and R 4 may be the same or different.
  • R 1 , R 2 , R 3 and R 4 may be the same or different.
  • the reason why these compounds have an effect as an organic metal similar to the synthesized compounds described above is that, based on the knowledge of material science so far, these substance groups can self-assemble by hydrogen bonds, and there are This is because there is a high possibility that a proton defect may occur, which is expected to generate a molecular spin delocalized in the similarly expanded ⁇ -conjugated site to become an organic metal.
  • Any material that becomes an organic metal can be used as an organic transparent electrode.
  • R 1 , R 2 , R 3 , R 4 and R ′ in each compound may be the same or different.
  • FIG. 8 is a diagram showing a synthesis scheme.
  • FIG. 10 is diagrams showing NMR spectra. It is shown together with the structure of the compound.
  • the experiment was conducted by ESR measurement of pellet-shaped small pieces of carrier-doped salt polycrystals under pressure at room temperature, and the ESR signal was measured as 2,2-diphenyl-1-
  • the spin was quantified in comparison with the peak area of 2,2-diphenylyl-1-picrylhydrazyl (commonly called DPPH). All sample quantities used are standardized.
  • the substituted TTP carboxylic acid derivative of this invention is demonstrated.
  • the substituted TTP carboxylic acid of the present invention can be produced, for example, by the production method shown below.
  • R 2 represents a hydrogen atom, an alkyl group, an aryl group, or the like.
  • Compound (IV) can be produced by reacting compound (II) with compound (III) in the presence or absence of an inert solvent and in the presence of a reducing agent.
  • Compound (II) may be a commercially available product, or a known method (for example, P. Wu, G. Saito, K. Imaeda, Z. Shi, T. Mori, T. Enoki, H. Inokuchi, Chem. Lett., 15, 441-444 (1986), E. Gomar-Nadal, C. Rovira, DB Amabilino, Tetrahedron, 62, 3370-3379 (2006), etc.) or a method described therein it can.
  • Compound (III) may be a commercially available product, or a known method (for example, H. Muller, C. Jouan, F. Salhi, Synth. Met., 85, 1457-1458 (1997)) or the like. It can be produced according to the method described.
  • inert solvent used as necessary examples include hydrocarbons such as benzene, toluene and xylene, ethers such as tetrahydrofuran, diethyl ether and dioxane, acetonitrile, N 2, N-dimethylformamide, hexamethylphosphorus.
  • a polar organic solvent such as acid triamide or a mixed solvent of these organic solvents can be preferably mentioned.
  • Preferred examples of the reducing agent include organic reducing substances such as trimethyl phosphite, triethyl phosphite, triphenylphosphine, and trimethylphosphine, metals such as zinc, tin, and aluminum, and inorganic salts.
  • reaction temperature mainly varies depending on the raw material compound or the type of solvent used, it is usually carried out at 0 ° C. to 200 ° C., preferably room temperature to 120 ° C. It is.
  • reaction time mainly varies depending on the reaction temperature, the raw material compound or the type of solvent used, it is generally 1 hour to 48 hours, preferably 2 hours to 12 hours.
  • Compound (V) is produced by reacting compound (IV) obtained in step 1 in the presence of a base in an inert solvent and then in the presence of a carbonylating agent.
  • a base in an inert solvent
  • a carbonylating agent e.g., benzene, toluene and xylene
  • ethers such as tetrahydrofuran, diethyl ether and dioxane
  • halogenated hydrocarbons such as chloroform and methylene chloride, acetonitrile
  • N Preferred examples include polar organic solvents such as, N-dimethylformamide and hexamethylphosphoric triamide, or mixed solvents of these organic solvents.
  • Examples of the base include organic bases such as triethylamine, diisopropylethylamine, and pyridine, potassium carbonate, inorganic bases such as sodium bicarbonate, cesium hydroxide, sodium hydroxide, and tetrabutylammonium hydroxide, sodium methoxide, Preferable examples include metal alkoxides such as potassium t-butoxide.
  • Preferable examples of the carbonylating agent include bis (trichloromethyl) carbonate, bis (4-nitrophenyl) carbonate, N 2, N′-carbonyldiimidazole and the like.
  • reaction temperature mainly varies depending on the starting compound or the kind of solvent used, it is usually carried out at 0 ° C. to 200 ° C., preferably room temperature to 60 ° C. It is.
  • reaction time mainly varies depending on the reaction temperature, the raw material compound or the type of solvent used, it is generally 1 hour to 48 hours, preferably 2 hours to 24 hours.
  • Compound (VII) is reacted with compound (VI) obtained in step 2 in the presence of a reducing agent in the presence or absence of an inert solvent in the same manner as in step 1.
  • Compound (VI) may be a commercially available product, or a known method (for example, M. Ngounda, HL Bozec, P. Dixneuf, J. Org. Chem., 47, 4000-4002 (1982), FM Benitez, JR Grunwell, J. Org. Chem., 43, 2917-2918 (1978), LR Melby, HD Hartzler, WA Sheppard, J. Org. Chem., 39, 2456-2458 (1974), etc. It can be produced according to the method.
  • Compound (VIII) can be produced by reacting compound (VII) obtained in step 3 in the presence of a base in an inert solvent.
  • the inert solvent include methanol and alcohols such as ethanol, ethers such as tetrahydrofuran, diethyl ether and dioxane, hydrocarbons such as benzene, toluene and xylene, and halogenation such as chloroform and methylene chloride.
  • Preferable examples include polar organic solvents such as hydrocarbons, N 2, N-dimethylformamide, hexamethylphosphoric triamide, and mixed solvents of these organic solvents and water.
  • the base examples include organic bases such as triethylamine, diisopropylethylamine, and pyridine, potassium carbonate, inorganic bases such as sodium bicarbonate, cesium hydroxide, sodium hydroxide, and tetrabutylammonium hydroxide, sodium methoxide, Preferable examples include metal alkoxides such as potassium t-butoxide.
  • reaction temperature mainly varies depending on the starting compound or the kind of solvent used, it is usually carried out at 0 ° C. to 200 ° C., preferably room temperature to 60 ° C. It is.
  • reaction time mainly varies depending on the reaction temperature, the raw material compound or the type of solvent used, it is generally 1 hour to 120 hours, preferably 12 hours to 72 hours.
  • m.p. represents a melting point
  • Tetrahydrofuran 25 ml was added and suspended therein, and after cooling to 0 ° C., bis (trichloromethyl) carbonate (520 mg, 1.75 mmol) dissolved in tetrahydrofuran (5 ml) was added. The mixture was stirred overnight at room temperature, diluted with toluene (30 ml) and methanol (10 ml), stirred for 10 minutes, and the solvent was evaporated under reduced pressure. Further, non-ionized water (20 ml) and methanol (20 ml) were added and stirred at room temperature for 20 minutes. The resulting suspension was filtered, and the solid obtained on the funnel was washed with non-ionized water and methanol, then taken out and vacuum dried.
  • Table 1 shows the structures of the compounds obtained in the same manner as in the above Examples.
  • Me represents a methyl group
  • nBu represents a normal butyl group.
  • Test Example 1 Room Temperature Conductivity Measurement Test Test Method For compounds 1 and 7, 8, 9, 10, a pellet sample (A) obtained by pulverizing a powder crystal in a mortar with a pestle and pressing with a hydraulic pump is used. Adjust 2 and 3 for the single crystal sample (B) obtained by gentle evaporation of the organic solvent, each using gold paste with a diameter of 0.01 mm and purity 99% or more in a row on the sample, using four gold pastes Then, the voltage applied between the two central points when a current of about 0.1 ⁇ A was applied was measured by measuring at room temperature. The value normalized by the sample size was taken as the test value.
  • Test Example 2 Room temperature mobility measurement test test method A gold wire with a diameter of 0.01mm and purity 99% or more is attached to both ends of the A and B samples with gold paste, and two more gold wires are connected in the direction perpendicular to the line connecting the two points. The voltage applied between two central points when a current of about 0.1 ⁇ A was applied between the terminals was measured at room temperature.
  • the hole mobility ( ⁇ h ) is related to the conductivity ( ⁇ ), the charge amount (e), and the carrier concentration (n) by the following formula, and a value calculated using this is used as a test value.
  • e * n * ⁇ h
  • the compound of this embodiment can be used for various uses. Electric wires, information transmission media, electronic devices, electrodes used for electronic elements, spintronics elements, information communication elements, memory elements, magnetic shields, medical magnetic shields, magnets, magnetic semiconductors, field effect transistors (FETs), adhesive plasters with magnets, Hard disk drive head, GMR head for high-sensitivity playback, solid-state magnetic memory, magnetoresistive memory (MRAM), optical isolator for fiber communication, material that changes color with magnetic field, material that uses interaction between conduction electron spin and atomic magnetic moment For example.
  • a printable circuit that directly forms a pattern on a substrate using inkjet technology or the like as ink.

Abstract

有機透明電極となり得る化合物などを提供する。 本発明のある側面は、ブレンステッド酸官能基、電子供与性及びπ共役平面を有する有機分子によって形成され、自己集積することを特徴とする有機透明電極にある。本発明のさらに他の側面は、前記ブレンステッド酸官能基は、カルボン酸官能基、スルホン酸官能基、ホスホン酸官能基、チオホスホン酸官能基のいずれかであることを特徴とする有機透明電極にある。

Description

有機透明電極、有機透明電極の製造方法、タッチパネル、ディスプレイ、有機金属、有機金属の製造方法、化合物又はその塩、電線及び電子デバイス
本発明は、有機透明電極又は有機金属に関する。
インジウム酸化物(ITO(Indium Tin Oxide))を始めとする透明電極は、携帯電話のディスプレイなどの電子機器に用いられる大変有用な材料である。ところが、中心元素であるインジウムは稀少金属であり、近年は価格が高騰している。今後の需要を考えると、安価な他物質で代替することが望ましい。
炭素、窒素、酸素、水素、硫黄原子などの典型元素から金属(有機金属)を得るには、電解酸化法を用いる電荷移動錯体による方法、又は、ドーピング剤を添加した化学ドーピング法による伝導性高分子による方法の2種類がある。
これまで、これらの方法以外では有機透明電極はできなかった。
本発明は、上述の背景技術に鑑みてなされたものであり、有機透明電極となり得る化合物又は有機透明電極となり得る化合物などを提供することを目的とする。
この発明によれば、上述の目的を達成するために、特許請求の範囲に記載のとおりの構成を採用している。以下、この発明を詳細に説明する。
本発明の第1の側面は、
ブレンステッド酸官能基、電子供与性及びπ共役平面を有する有機分子によって形成され、
自己集積することを特徴とする有機透明電極
にある。
本発明の第2の側面は、
前記ブレンステッド酸官能基は、カルボン酸官能基、スルホン酸官能基、ホスホン酸官能基、チオホスホン酸官能基のいずれかであることを特徴とする請求項1記載の有機透明電極にある。
本発明の第3の側面は、
自己集積した状態で前記ブレンステッド酸官能基に対して水素結合がなされることを特徴とする請求項2記載の有機透明電極
にある。
本発明の第4の側面は、
縮環テトラチアフルバレン誘導体部位を骨格に含みプロトン酸官能基を有する化合物によって形成されることを特徴とする有機透明電極
にある。
本発明の第5の側面は、
下記一般式で表されるいずれかの化合物(式中、R1、R2、R3、 R4及びR’は同一であっても異なっていてもよい。)又はその塩であることを特徴とする有機透明電極
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
にある。
本発明の第6の側面は、
下記一般式で表されるいずれかの化合物(式中、R1、R2、R3、 R4及びR’は同一であっても異なっていてもよい。)又はその塩であることを特徴とする有機透明電極
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
にある。
本発明の第7の側面は、
(化1)で表される化合物又はその塩であることを特徴とする有機透明電極
Figure JPOXMLDOC01-appb-C000030
にある。
本発明の第8の側面は、
(化2)で表される化合物又はその塩であることを特徴とする有機透明電極
Figure JPOXMLDOC01-appb-C000031
にある。
本発明の第9の側面は、
(化3)で表される化合物又はその塩であることを特徴とする有機透明電極
Figure JPOXMLDOC01-appb-C000032
にある。
本発明の第10の側面は、
テトラチアフルバレン-2-カルボン酸アニリン塩であることを特徴とする有機透明電極
にある。
本発明の第11の側面は、
テトラチアフルバレン-2-カルボン酸ヒドロキシアミン塩であることを特徴とする有機透明電極
にある。
本発明の第12の側面は、
下記で表される化合物であることを特徴とする有機透明電極
[(TTPCOO-NH4 +)(TTPCOOH)]1-x(TTP・+COO-NH3)x,
x = 0.06
Figure JPOXMLDOC01-appb-C000033
にある。
本発明の第13の側面は、
カルボン酸官能基が導入された縮環した含硫黄π化合物を有機溶媒から再結晶する有機透明電極の製造方法
にある。
本発明の第14の側面は、
カルボン酸官能基が導入された縮環テトラチアフルバレンを、アンモニア溶液を添加した有機溶媒から再結晶する有機透明電極の製造方法
にある。
本発明の第15の側面は、
請求項10又は11に記載の有機透明電極を含有するタッチパネル
にある。
本発明の第16の側面は、
請求項10又は11に記載の有機透明電極を含有するディスプレイ
にある。
本発明の第17の側面は、
請求項10又は11に記載の有機透明電極を含有する電子デバイス
にある。
本発明の第18の側面は、
水素結合ネットワーク内にプロトン欠陥を含む有機化合物であって、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機透明電極
にある。
本発明の第19の側面は、
水素結合ネットワーク中でカチオンとアニオンの存在比が1:1から外れることにより電荷が不釣り合いとなり、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機透明電極
にある。
本発明の第20の側面は、
ブレンステッド酸官能基、電子供与性及びπ共役平面を有する有機分子によって形成され、自己集積することを特徴とする有機金属
にある。
本発明の第21の側面は、
前記ブレンステッド酸官能基は、カルボン酸官能基、スルホン酸官能基、ホスホン酸官能基、チオホスホン酸官能基のいずれかであることを特徴とする請求項20記載の有機金属
にある。
本発明の第22の側面は、
自己集積した状態で前記ブレンステッド酸官能基に対して水素結合がなされることを特徴とする請求項21記載の有機金属
にある。
本発明の第23の側面は、
縮環テトラチアフルバレン誘導体部位を骨格に含みプロトン酸官能基を有する化合物によって形成されることを特徴とする有機金属
にある。
本発明の第24の側面は、
(化4A)で表されるいずれかの化合物(式中、R1、R2、R3及びR4は同一であっても異なっていてもよい。)又はその塩であることを特徴とする有機金属
Figure JPOXMLDOC01-appb-C000034
にある。
本発明の第25の側面は、
(化5A)で表されるいずれかの化合物(式中、R1、R2、R3及びR4は同一であっても異なっていてもよい。)又はその塩であることを特徴とする有機金属
Figure JPOXMLDOC01-appb-C000035
にある。
本発明の第26の側面は、
(化1A)で表される化合物又はその塩
Figure JPOXMLDOC01-appb-C000036
にある。
本発明の第27の側面は、
(化2A)で表される化合物又はその塩
Figure JPOXMLDOC01-appb-C000037
にある。
本発明の第28の側面は、
(化3A)で表される化合物又はその塩
Figure JPOXMLDOC01-appb-C000038
にある。
本発明の第29の側面は、
(化1A)で表される化合物又はその塩であることを特徴とする有機金属
Figure JPOXMLDOC01-appb-C000039
にある。
本発明の第30の側面は、
(化2A)で表される化合物又はその塩であることを特徴とする有機金属
Figure JPOXMLDOC01-appb-C000040
にある。
本発明の第31の側面は、
(化3A)で表される化合物又はその塩であることを特徴とする有機金属
Figure JPOXMLDOC01-appb-C000041
にある。
本発明の第32の側面は、
下記で表される化合物であることを特徴とする有機金属
[(TTPCOO-NH4 +)(TTPCOOH)]1-x(TTP・+COO-NH3)x,
x = 0.06
Figure JPOXMLDOC01-appb-C000042
にある。
本発明の第33の側面は、
カルボン酸官能基が導入された縮環した含硫黄π化合物を有機溶媒から再結晶する有機金属の製造方法
にある。
本発明の第34の側面は、
カルボン酸官能基が導入された縮環テトラチアフルバレンを、アンモニア溶液を添加した有機溶媒から再結晶する有機金属の製造方法
にある。
本発明の第35の側面は、
請求項30に記載の有機金属を含有する電線
にある。
本発明の第36の側面は、
請求項30に記載の有機金属を含有する電子デバイス
にある。
本発明の第37の側面は、
水素結合ネットワーク内にプロトン欠陥を含む有機化合物であって、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機金属。
にある。
本発明の第38の側面は、
水素結合ネットワーク中でカチオンとアニオンの存在比が1:1から外れることにより電荷が不釣り合いとなり、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機金属
にある。
ここで、ブレンステッド酸官能基には、例えば、-COOH、-SO3H、-P(=X)OROH (X=O or S, R = H, Me, Et, Pr, Bu)がある。第一級アミンは例えば-NHnD3-n(n=2~0)(ここでDは重水素)で表される。また、無機酸には、例えばHBF4, HClO4, HCl, HBr, HI, DBF4, DClO4, DCl, DBr, DIがある。無機塩基には、例えばNHnD3-n (n=3~0), NHnD2-nOH (n=2~0), NHnD2-nOD (n=2~0)がある。
なお、金属とは、電気を良く通す導体を指す。例えば、室温付近で、加圧成形ペレットの電気伝導度がほぼ1S/cmより大きいものである。透明とは、例えば、広域な波長領域(例:500-2000 nm)で80%程度以上の透過率を示すものを指す。電極とは、例えば、室温付近にて0.0001 S/cm程度以上の伝導率を有するものである。
ドナーとは電子供与体(電子供与分子ないしは電子供与基)を指す。また、アクセプターとは電子受容体(電子受容分子ないしは電子受容基)を指す。
室温とは300K(27℃)を指し、室温付近はその±10℃程度を意味する。
また、本明細書及び本特許請求の範囲の化合物には、同等の構造を有し、重水素などの元素同位体で元素が置換された化合物も含まれる。
本発明によれば、有機透明電極又は有機金属となり得る化合物などが得られる。本発明のさらに他の目的、特徴又は利点は、後述する本発明の実施の形態や添付する図面に基づく詳細な説明によって明らかになるであろう。
合成スキームを示す図である。 (化1)、(化2)及び(化3)の電気抵抗の温度依存性を示す図である。 (化1)、(化2)及び(化3)の室温におけるESRスペクトルを示す図である。 (化3)の窒素原子内殻レベル(1s)の室温におけるXPSスペクトルを示す図である。 (TTPCOO)2NH4とTTPCOOHの規格化された近赤外吸収スペクトルを示す図である。 (TTPCOO)2NH4とTTPCOOHとの電気的性質を示す図である。 分子間結合と分子間相互作用に着目した立体構造を示す模式図である。 合成スキームを示す図である。 NMRスペクトルを示す図である。 NMRスペクトルを示す図である。 NMRスペクトルを示す図である。 NMRスペクトルを示す図である。 化合物A及び化合物Bの紫外可視近赤外領域における光学透過率を示す図である。 化合物A及び化合物Bの電気伝導度の温度依存性を示す図である。 (化2)の紫外可視近赤外領域における光学透過率を示す図である。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
 [概要]
本実施形態では、稀少金属を用いることなく、典型元素のみから成る有機物で高い透過率を有する電極材料を製造する方法などについて説明する。有機物は原料が安価であるだけでなく、軽量で柔軟な特性を有するため、工業的な利得が大きい。この方法によれば、金属化しただけで有機透明電極を得ることができる。
また、本実施形態で示す化合物は、広域な波長範囲の光に対して高い透過率を有する。
有機透明電極の材料は必ずしも有機金属に限られるものではないが、有機金属であれば有機透明電極として使用できる。したがって、以下では、有機金属の製造方法などについて多くのスペースを割いて記載する。
本実施形態では、電解酸化法や化学ドーピング法を用いないで有機金属を合成する新しい製造方法を用いる。ここでは、縮環した含硫黄π化合物(縮環テトラチアフルバレン)にカルボン酸官能基を導入し、アンモニア溶液を添加した有機溶媒から再結晶するだけで金属化した有機物を得ることができる。
この製造方法は、電解酸化法に必要とされる大掛かりな装置を必要としないだけでなく、化学ドーピングの際に発生する物質の劣化や不安定性を併発しないために、安定な有機金属が一度に大量に簡便に得られる。故に、工業スケールでの大量生産が可能となる画期的な製造方法である。これにより、金属資源の代替物質としての有機材料の可能性を大きく拡げるものである。
具体的には、本発明者らは、高い伝導性を有する有機アンモニウム塩を電解酸化やドーパントの添加なしで合成した。電子輸送や分光分析により、この塩は、少なくとも4Kまで金属であり、さらに、室温における磁化率は典型的な電荷移動錯体よりも1桁高く、25K以下で反強磁性的な振る舞いを見せるものである。
 [本発明に至る経緯]
純粋に軽元素からなる有機金属は、学術的にも工業的にも大変注目されるものである。しかしながら、工業的規模の応用を考えると電解酸化なしで合成することが望ましい。
(a) Mulliken,  R.  S.  J. Am. Chem. Soc. 1952, 74,  811-824. (b) Akamatsu, H.; Inokuchi, H.;Matsunaga, Y. Nature 1954, 4395, 168-169. (c) Shirakawa, H.; Louis,E. J.; MacDiarmid, A. G.; Chiang, C. K.;  Heeger, A.  J.  J.  Chem.  Soc.,  Chem.  Commun. 1977,  578. (d) Batail, P. Ed. Chem.Rev. 2004, 104, 11 (special issue for molecular conductors), 4887-5782. (e)  Walzer, K.;  Maennig,  B.;  Pfeiffer,  M.; Leo, K. Chem. Rev. 2007,107, 1233-1271. (f) Kirtley, J. R.;Mann-hart, J. Nature Mat. 2008, 7, 520-521.
本発明者らは、ある電子供与分子と共存したアンモニウム塩が自発的にドープされ、アンモニウム塩形成段階でホールキャリアを発生することを近年見出した。
(a)  Kobayashi, Y.;  Yoshioka,  M.;  Saigo,  K.;  Hashizume,  D.;Ogura, T. J. Am. Chem. Soc. 2009, 131, 9997-10002. (b) Kobayashi, Y.; Yoshioka,  M.;  Saigo,  K.;  Hashizume,  D.; Ogura,  T.  Physica  B 2010,  405,  S23-S26. (c) Kobayashi,  Y.;  Suzuki,  A.;  Yamada,  Y.;Saigo,  K.;  Shibue,  T. Syn. Met. 2010,  160, 575-583, (d)  Furukawa, K.;Nakamura, T.; Kobayashi, Y.; Ogura, T. J. Phys. Soc. Jpn. 2010, 79, 053701-4. (e) Terauchi, T.;Kobayashi, Y.; Iwai, H.; Tanaka, A. Syn. Met. 2012, 162, 531-535.
このドーピング法では、(これまでの伝導性高分子のように)ドーパントの添加を必要としない代わりに、アンモニウムイオン部のプロトンが一部欠損することにより電荷の中性を保たれている。テトラチアフルバレンカルボン酸アンモニウム塩(TTFCOO-NH4 +)1-x(TTF・+COO-NH3)x,
x = 0.16, (本明細書ではTTFCOONH4と略す)は最初に報告されたホールドープの半導体であり、キャリア発生の機構や伝導性発現の起源などが説明された。さらにごく最近には、テトラチアフルバレンカルボン酸アニリニウム塩の単結晶が得られ、このドーピング現象が表面効果によるものだけでなく物質のバルクの性質であることが明らかとなった。これらの事実は、“電荷欠損”ドーパントは電解酸化を用いずに新しい有機金属を創製する高い可能性を示す。
本発明者らは、新規の分子系テトラチアペンタレン(縮環テトラチアフルバレン)カルボン酸アンモニウム塩(TTPCOO)2NH4 を設計した。ここでは、π軌道部分の重なりを拡げることにより、原子価バンドのバンド幅を広くする狙いがある。
[化合物の物性など]
以下では、特定の化合物を例示しながら、それらの化合物の物性などを詳細に説明する。
図1は、合成スキームを示す図である。前駆体であるTTPCOOHは合成経路の全段階で一度も金属触媒を用いずに合成された。塩は、TTPCOOHとアンモニア水溶液を有機溶媒(THF/1,4-ジオキサン/ジエチルエーテル)から再結晶することによって92%の収率で黒茶色固体として得られる。
その組成は酸:塩基=2:1である。すべてのTTPCOOHがアンモニウム塩へと変換されていることを1H-NMRスペクトルにより確認した。X線光電子分光でこの塩のN(1s)内殻レベルの測定を行うと、401.3eV, 399.6 eVにピークを有し、これがアンモニウムイオンとアンモニアと同定された。アンモニアは6%程度であることから、正式な記述は[(TTPCOO-NH4 +)(TTPCOOH)]1-x(TTP・+COO-NH3)x,
x = 0.06. となる。一方、ESRスペクトルは32%の大きなラジカルスピン濃度を示す。これはg値2.00575からTTPラジカルカチオンと同定された。
次に、本発明者らが合成した3種の縮環テトラチアフルバレン誘導体を示す。
1、TTPCOOH, TTPCOOD
Figure JPOXMLDOC01-appb-C000043
2、TTP(COOH)2, TTP(COOD)2
Figure JPOXMLDOC01-appb-C000044
3、(TTPCOO)2NH4, (TTPCOO)2ND4
Figure JPOXMLDOC01-appb-C000045
ここで、図2は、(化1)、(化2)及び(化3)の電気抵抗の温度依存性を示す図である。そのうち、(化2)及び(化3)は、粉末を加圧成形したペレット試料において金属化が確認された。重水素置換体についてはほぼ同じ挙動であるため、(化2)の例のみ示す。
図3は、(化1)、(化2)及び(化3)の室温におけるESRスペクトルを示す図である。(化1)、(化2)及び(化3)については、室温で電子スピン共鳴(ESR)により標準物質DPPHを基準としてスピン濃度を定量するとそれぞれ、37%, 32%, 12%である。
図4は、(化3)の窒素原子内殻レベル(1s)の室温におけるXPSスペクトルを示す図である。金属化の起源は、塩橋結合内に生じるプロトン欠陥の損失電荷を補填するためにセルフドープされるためである。そのことは、(化3)(TTPCOO)2NH4についてX線光電子分光法により確認された。ここでは、物質中にNH3種を6%含むため、これがプロトン欠陥の証拠となる。
言い換えれば、図4は、化3のN(1s)の結合エネルギーを示している。最も代表的な物質である化3に含まれるプロトン欠陥量は、光電子分光法(XPS)による窒素1s軌道のNH3種の混入割合より6%と見積もられる。このプロトン欠陥の存在が結晶中に分子スピンを生じさせる。
図5は、(TTPCOO)2NH4とTTPCOOHの規格化された近赤外吸収スペクトルを示す図である。これらはいずれも800nm以上に混合原子価状態にあるTTP部の分子間遷移を示す大きな吸収がある。これらは共にフリーキャリアを持ち、分子配列中で非局在化した両性イオンラジカル種[(TTP)0.5+]COO-と関連する。自己プロトン化種TTPH+COO-はTTPCOOHの中に発生し、アンモニウム塩でプロトン欠陥が担った役割を代替していると考えられる。
図6は、(TTPCOO)2NH4とTTPCOOHとの電気的性質を示す図である。電気抵抗は加圧成形したサンプルを用いて金ペーストを接触端子として用いて4端子法により4から320Kまで測定した(図6a)。TTPCOOHの抵抗が100K以下で急峻に上昇していて、半導体的である。一方、(TTPCOO)2NH4の抵抗値は測定温度範囲でほとんど変わらない。25K以下で緩やかに抵抗値が上昇しているのは、ペレットサンプル内での粒界抵抗値の増大によるものである。室温における直流伝導度(dc伝導度)は(TTPCOO)2NH4が2.3 S/cmで、TTPCOOHは1.2
S/cmである。これらの伝導度はTTFCOONH4のペレットサンプルよりも4桁高い値である。
図6bは、0.1Tの磁場を印加した際の磁化率の温度依存性を示す。有機物の内殻電子由来の反磁性効果は差し引いてある。室温における磁化率の絶対値はTTPCOOH
が4.0 x 10-4 emu/mol, (TTPCOO)2NH4が1.5 x 10-3 emu/molで、後者は典型的な純粋有機物からなる電荷移動錯体よりも1桁高い値である。さらに、後者は25K以下で反磁性的振る舞いを示す。広幅固体1H-NMR測定では、(TTPCOO)2NH4の核スピンの緩和時間の温度依存性がT1 -1に従っており、金属化していることを証明している。
TTP骨格はその拡張されたπ共役部により2次元に集積する傾向があり、このことが両性イオンラジカル種を分子配列中で非局在化させ、金属化を可能にしたのであろう。
次に、分子集合構造の概要などについて説明する。
図7は、分子間結合と分子間相互作用に着目した立体構造を示す模式図である。図に示すとおり、水素結合ネットワークが形成されている。
電気伝導に関しては、重水素化サンプルの誘電分散の周波数依存性から、水素結合が電子伝導にあらわに関与していることが明らかとなっている。
アンモニウムは物性発現の鍵になるだけでなく、TTF(ドナー)分子をキャリア輸送現象に適した分子配列に有効に自己集積させる役割を担っている。
それらの化合物は、主として、塩橋結合内に生じるプロトン欠陥の損失電荷を補填するためにキャリアドープされる有機物である。
 有機ラジカル種は、ラジカルスピンの電子状態がHOMO準位にあるために反応性に富み、空気中の酸素等の外的要因により分解する傾向が強い。そこで、有機ラジカル種を化学的に安定な電子状態にするために、一般にシアノ基やニトロ基などの電子吸引性基を分子中に導入して安定化する工夫がなされる。そのように、電子状態に工夫を施して空気中において長期保存しても、合成当初の分子の組成や電子状態を保ち、容易に分解しないラジカルスピンを発生した状態を「ラジカル種が安定に発生」とここで表現している。
 遷移金属元素のd軌道や希土類金属元素のf軌道は、最外殻のs軌道またはp軌道より内殻に位置し、高い局在性を有する原子軌道であり、より低い軌道エネルギーを有する。このd軌道やf軌道の電子状態を擬似閉殻配置というが、これらの軌道の高い局在性から、そこに占有されたd電子やf電子は化学結合に関与しない傾向にあるため、奇電子を安定化する。擬似閉殻配置をとり、化学結合に参加せず、強く安定化された奇電子の性質が磁性の原因になることが多い。擬似閉殻配置についてはあらためて後述する。
なお、有機金属としては、例えば、下記のものが好ましい。
 (1)電子ドナーもしくは電子アクセプター分子中にプロトン化されうる多重結合を有する塩橋物質で、塩橋形成の際に全体の0.1%以上のラジカル種が安定に発生するもの。さらに好ましくは、ラジカルスピンの電子状態が擬似閉殻配置を有するもの。
 その根拠は、0.1%以上の濃度でラジカルスピンが発生し、その電子状態が擬似閉殻配置を有する場合には、ラジカルスピン上の電子がフリーキャリアとして動き回り、10-5S/cm程度以上の電子伝導性を示すようになることが実験によって確認されているためである。
 (2)水素結合自己集積部を含み、分子量20000以下の低分子量有機化合物にブレンステッド酸または塩基を添加することにより全体の0.1%以上のラジカル種が安定に発生する物質。さらに好ましくは、ラジカルスピンの電子状態が擬似閉殻配置を有するもの。
 高分子であっても一部水素結合官能基による自己集積部位を有することが好ましく、これを満たすためには分子量20000以下が望ましい。磁気特性を十分に発揮するためには、プロトン欠陥が物質中に均一に導入され、均一なドープ状態が得られることが望ましく、極端に大きい分子量では難易度が上昇することが推測されるため、分子量は10000以下であることがさらに好ましい。
次に、下記の2つの化合物の物性について説明する。
化合物A: テトラチアフルバレン-2-カルボン酸アニリン塩単結晶 (TTFCOONH3Ph)
化合物B: テトラチアフルバレン-2-カルボン酸ヒドロキシアミン塩単結晶 (TTFCOONH3OH)
図13は、化合物A及び化合物Bの紫外可視近赤外領域における光学透過率を示す図である。図によれば、これらはいずれも、500
nm付近から高い透過率を示し、530 nmにおいてはいずれも80%を超える高い透過率を有する。また、可視-近赤外領域に至るまで70%前後の透過率を示すことから、光の透過率に関しては実用レベルである。
図14は、化合物A及び化合物Bの電気伝導度の温度依存性を示す図である。図によれば、室温ではいずれも0.1 S/cm程度である。共に熱活性化型の温度依存性を示し、バンドギャップはそれぞれ0.11 eV(1)と0.13 eV(2)である。
次に、下記の化合物の物性について説明する。
Figure JPOXMLDOC01-appb-C000046
図15は、(化2)の紫外可視近赤外領域における光学透過率を示す図である。図によれば、これらはいずれも、350nm付近から80%以上の高い透過率を有する。この化合物もまた、光の透過率に関しては実用レベルである。
光学透過率を測定するに際し使用した試料は薄膜であった。TTP(COOH)2有機透明薄膜の作製法は次のとおりである。
TTP(COOH)2 (0.47 mg,
1 mmol)をジメチルスルフォキシド(dimethyl sulfoxide(DMSO), 5 mL)に溶解させて調整した溶液をガラス基板上に0.1 μL-1μLを滴下することで300-2000 nmの波長領域で透過率80%を超える透明薄膜電極を得た。なお、図中の写真は、2 μLを滴下して作製された薄膜電極である。
[擬似閉殻配置]
擬似閉殻配置は、キャリア発生の鍵となる酸と塩基とからなる水素結合ネットワークによる自己集積化によって有機ラジカル種を閉殻分子配列の間に埋め込むというシンプルな手法により実現している。擬似閉殻配置(quasi-closed-shell configuration)とは、例えば、遷移金属d軌道や特に希土類金属f軌道で見られる電子配置のことであり、この配置では、スピンは化学結合に関与せず、低い軌道エネルギーを有し、他のエネルギー状態の高い電子に遮蔽されているため原子軌道内部に孤立、局在する。これは、固体状態において強い電子相関効果を誘引し、強相関系金属に特有の種々の高い物性発現の源となる。また、この系のことは、強い電子相関効果から電子の有効質量を増大させるため「重い電子系」とも呼ばれる。これまで説明してきた一連の化合物群は、有機固体で初めて実現されたf電子系金属に位置づけられる。
TTPCOO・NH4塩の4量体中に1分子のラジカル種TTP・+COO・NH4が埋没されたモデルを用いた非制限Hartree-Fock法(UHF)/6-31G*による電子状態について説明する。ラジカル種の単占有軌道(singly occupied molecular orbital: SOMO)はフロンティア軌道にはおらず、より安定化された軌道に局在することが明らかとなった。この擬似閉殻配置は、ラジカル種が水素結合を利用した超分子配列中に埋め込まれた形を有する化合物について発現する。
例として、有機金属としての効果を発現すると考えられるものを以下列挙する。式中、R1、R2、R3及びR4は同一であっても異なっていてもよい。これらの化合物が上述の合成した化合物と同様に有機金属としての効果を奏する理由は、これまでの物質科学の知見から、これらの物質群は水素結合による自己集積が可能であり、かつ、そこにプロトン欠陥を発生しうる可能性が高いこと、そのことが同様に拡張したπ共役部位に非局在化した分子スピンを発生して有機金属となることが予想されるからである。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
有機金属となる材料であれば有機透明電極として使用できる。
さらに、有機金属としての特性を備えていなくても有機透明電極になる化合物がある。これらの化合物もまた、有機透明電極としての使用できる理由は、室温付近において材料としての応用範囲が広い0.0001 S/cm程度以上の伝導率を保つことが可能であるからである。
これらの化合物の例として、有機透明電極としての効果を発現すると考えられるものを以下列挙する。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
各化合物中のR1、R2、R3、R4及びR’などの置換基は同一であっても異なっていてもよい。
[合成方法]
次に、化合物の具体的な合成方法について説明する。
図8は、 合成スキームを示す図である。
   Methyl 2-{5-(1,3-dithiol-2-ylidene)-[1,3]dithiolo[4,5-d][1,3]dithiol-2-ylidene}-1,3-dithiole-4-carboxylate
(10). 41) (45.8 mg, 0.238 mmol) 及び92) (58.4 mg, 0.198 mmol) をtrimethyl phosphite (3 ml) と トルエン (3
ml)の混合溶媒に懸濁させた。120 °C で15時間加熱還流後、室温まで放冷し、n-hexane (6 ml)を加えた。5°C
で2時間静置した後、メンブランフィルター (H010A047A, ADVANTEC) を用いて析出物を濾過した。濾物をトルエン、メタノール、クロロホルムの順に洗浄した。濾物を減圧下で乾燥させ、茶色固体10 (35.8  mg, 9を基準とした収率41%)を得た。
1H NMR (600 MHz, DMSO-d6): δ3.76 (s, 3H), 6.80 (s, 2H), 7.88 (s, 1H);
Anal. calcd. for C12H6O2S8: C, 32.85;
H, 1.38. Found: C, 32.47; H, 1.18.
 2-{5-(1,3-Dithiol-2-ylidene)-[1,3]dithiolo[4,5-d][1,3]dithiol-2-ylidene}-1,3-dithiole-4-carboxylic
acid (1). 10 (125 mg, 0.285 mmol) を1,4-dioxane (50 ml)、THF (50 ml)、MeOH (50 ml)の混合溶媒に懸濁させ、2N LiOH (28.5 ml, 57.0 mmol)を加えた。室温で15時間激しく撹拌した後、2N HCl (28.5 ml)をゆっくり滴下し、pHを確認しながらさらに2N HCl (2.0 ml)を加えpH 2-3にした。室温で20分間撹拌した後、メンブランフィルター (H010A047A, ADVANTEC) を用いて濾過した。濾物を水、メタノール、クロロホルムの順に洗浄し、減圧下で乾燥させて目的の化合物1 (110 mg, 91%) を光沢のある銀赤色フィルム状固体として得た。
1H NMR (600 MHz, DMSO-d6): δ6.80 (s, 2H), 7.73 (s, 1H); Anal. calcd.
for C11H4O2S8: C, 31.11; H, 0.95. Found:
C, 30.76; H, 0.82.
   Ammonium 2-{5-(1,3-dithiol-2-ylidene)-[1,3]dithiolo[4,5-d][1,3]dithiol-2-ylidene}-1,3-dithiole-4-carboxylate
(1-NH4 +). 細かくすりつぶした1 (140 mg, 0.330 mmol) を1,4-dioxane
(31.5 ml)、THF (31.5 ml)、Et2O (7.0 ml)の混合溶媒に懸濁させ15秒間超音波を照射した。さらに28% aq NH3 (2.8 ml)を加え、15秒間超音波を照射した。室温で14時間激しく撹拌した後、5°C
で1時間静置した。反応混合液をメンブランフィルター (H010A047A, ADVANTEC) を用いて濾過した。濾物を水、THF、Et2Oの順に洗浄し、減圧下で乾燥させて目的の化合物1-NH4 +
(134 mg, 92%) を暗赤色固体として得た。
1H NMR (600 MHz, DMSO-d6): δ6.69 (brs, 1H), 6.79 (s, 2H), 6.96 (brs,
4H); Anal. calcd. for ( TTFCOOH:NH3=2:1; C22H11O4NS16):
C, 30.50; H, 1.28; N, 1.62. Found: C, 30.56; H, 1.03; N, 1.41.
2-{5-(1,3-Dithiol-2-ylidene)-[1,3]dithiolo[4,5-d][1,3]dithiol-2-ylidene}-1,3-dithiole-4,5-dicarboxylic
acid (2). 112a) (20 mg, 0.0403 mmol) を1,4-dioxane (4 ml)、THF (2 ml)、MeOH (2 ml) 、toluene (2 ml)、DMF (1 ml)の混合溶媒に懸濁させ、2N LiOH (800μl, 1.60 mmol)を加えた。室温で3日間激しく撹拌した後、2N HCl (800μl)をゆっくり滴下し、pHを確認しながらさらに2N HCl (100μl)を加えpH 4にした。室温で20分間撹拌した後、メンブランフィルター (H010A047A, ADVANTEC) を用いて濾過した。濾物を水、メタノール、クロロホルムの順に洗浄し、減圧下で乾燥させて目的の化合物2 (17.2 mg, 91%) をこげ茶色固体として得た。
1H NMR (600 MHz, DMSO-d6): δ6.79 (s, 2H); Anal. calcd. for C12H4O4S8:
C, 30.75; H, 0.86. Found: C, 30.79; H, 1.19.
1) Pittman, Jr. C. U.; Narita, M.; Liang, Y. F. J. Org. Chem. 1976, 41, 2855-2860.
2) (a)Misaki, Y.; Matsui, T.; Kawakami, K.; Nishikawa, H.; Yamabe, T.; Shiro, M. Chem. Lett. 1993, 1337-1340.
(b) Misaki, Y.; Matsui, T.; Kawakami, K.; Fujiwara, H.; Yamabe, T.; Mori, T.; Mori, H.; Tanaka, S.; Shiro, M. Synth. Met. 1995, 70, 1149-1150.
(c) Aragaki, M.; Mori, T.; Misaki, Y.; Tanaka, K.; Yamabe, T. Synth. Met. 1999, 102, 1601-1602.
(d) Bartlett, P. N.; Booth, S.; Caruana, D. J.; Kilburn, J. D.; Santamaria, C. Anal. Chem. 1997, 69, 734-742.
(e) Olivier, J.; Golhen, S.; Swietlik, R.; Cador, O.; Pointillart, F.; Ouahab, L. Eur. J. Inorg. Chem. 2009, 3282-3290.
図9、図10、図11及び図12は、NMRスペクトルを示す図である。化合物の構造とともに図示する。
 なお、実験は自発的にキャリアドープされた塩の多結晶を加圧成型してペレット状にした小片を室温条件でESR測定し、そのESRシグナルを標準物質である2,2-ジフェニル-1-ピクリルヒドラジル(2,2-diphenyl -1-picrylhydrazyl) (通称DPPH)のピーク面積と比べてスピンの定量を行ったものである。使用したサンプル量はいずれも規格化されている。
[置換TTPカルボン酸誘導体の製造方法]
次に、本発明の置換TTPカルボン酸誘導体の製造方法について説明する。
本発明の置換TTPカルボン酸は、例えば、次に示す製造法により製造することができる。
Figure JPOXMLDOC01-appb-C000057
 (式中、R  は、水素原子、アルキル基又はアリール基等を表す。)
(工程1)
 化合物(II)と化合物(III)を不活性溶媒の存在下又は非存在下、還元剤の存在下で反応させることにより、化合物(IV)を製造することができる。化合物(II)は、市販品を使用するか、又は公知の方法( 例えば、P. Wu, G. Saito, K. Imaeda, Z. Shi, T. Mori, T. Enoki, H. Inokuchi, Chem. Lett., 15, 441-444 (1986), E. Gomar-Nadal, C. Rovira, D. B. Amabilino, Tetrahedron, 62, 3370-3379 (2006)など) 又はこれに記載の方法に準じて製造することができる。化合物(III)は、市販品を使用するか、又は公知の方法( 例えば、H. Muller, C. Jouan, F. Salhi, Synth. Met., 85, 1457-1458 (1997)など) 又はこれに記載の方法に準じて製造することができる。
 ここで必要に応じて使用される不活性溶媒としては、例えば、ベンゼン、トルエン、キシレン等の炭化水素類、テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類、アセトニトリル、N , N-ジメチルホルムアミド、ヘキサメチルりん酸トリアミド等の極性有機溶媒又はこれらの有機溶媒の混合溶媒を好適に挙げることができる。
 還元剤としては、例えば、亜りん酸トリメチルや、亜りん酸トリエチル、トリフェニルホスフィン、トリメチルホスフィン等の有機還元物質、亜鉛や錫、アルミニウム等の金属類又は無機塩類が好適に挙げられる
 反応温度は、主に原料化合物又は使用される溶媒の種類によって異なるが、通常、0℃~ 200℃ で行われるが、好適には、室温~120℃
である。
 反応時間は、主に反応温度、原料化合物又は使用される溶媒の種類によって異なるが、通常、1時間~48時間であり、好適には 2時間~12時間である。
(工程2)
 工程1により得た化合物(IV)を、不活性溶媒中、塩基の存在下で反応させた後、不活性溶媒中、カルボニル化剤の存在下で反応させることにより、化合物(V)を製造することができる。
 ここで使用される不活性溶媒としては、例えば、ベンゼン、トルエン、キシレン等の炭化水素類、テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、アセトニトリル、N , N-ジメチルホルムアミド、ヘキサメチルりん酸トリアミド等の極性有機溶媒又はこれらの有機溶媒の混合溶媒を好適に挙げることができる。
 塩基としては、例えば、トリエチルアミンや、ジイソプロピルエチルアミン、ピリジン等の有機塩基類、炭酸カリウムや、炭酸水素ナトリウム、水酸化セシウム、水酸化ナトリウム、水酸化テトラブチルアンモニウム等の無機塩基類、ナトリウムメトキシド、カリウムt -ブトキシド等の金属アルコキシド等が好適に挙げられる。
 カルボニル化剤としては、例えば、炭酸ビス(トリクロロメチル)や、炭酸ビス(4-ニトロフェニル)、N , N’-カルボニルジイミダゾール等が好適に挙げられる。
 反応温度は、主に原料化合物又は使用される溶媒の種類によって異なるが、通常、0℃~ 200℃ で行われるが、好適には、室温~60℃
である。
 反応時間は、主に反応温度、原料化合物又は使用される溶媒の種類によって異なるが、通常、1時間~48時間であり、好適には 2時間~24時間である。
(工程3)
 工程2により得た化合物(V)と、化合物(VI)を、工程1 と同様に、不活性溶媒の存在下又は非存在下、還元剤の存在下で反応させることにより、化合物(VII)を製造することができる。化合物(VI)は、市販品を使用するか、又は公知の方法( 例えば、M. Ngounda, H. L. Bozec, P. Dixneuf, J. Org. Chem., 47, 4000-4002 (1982), F. M. Benitez, J. R. Grunwell, J. Org. Chem., 43, 2917-2918 (1978), L. R. Melby, H. D. Hartzler, W. A. Sheppard, J. Org. Chem., 39, 2456-2458 (1974)など) 又はこれに記載の方法に準じて製造することができる。
(工程4)
 工程3により得た化合物(VII)を、不活性溶媒中、塩基の存在下で反応させることにより、化合物(VIII)を製造することができる。
 ここで、不活性溶媒としては、例えば、メタノールや、エタノール等のアルコール類、テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン等の炭化水素類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、N , N-ジメチルホルムアミド、ヘキサメチルりん酸トリアミド等の極性有機溶媒又はこれらの有機溶媒と水の混合溶媒を好適に挙げることができる。
 塩基としては、例えば、トリエチルアミンや、ジイソプロピルエチルアミン、ピリジン等の有機塩基類、炭酸カリウムや、炭酸水素ナトリウム、水酸化セシウム、水酸化ナトリウム、水酸化テトラブチルアンモニウム等の無機塩基類、ナトリウムメトキシド、カリウムt -ブトキシド等の金属アルコキシド等が好適に挙げられる。
 反応温度は、主に原料化合物又は使用される溶媒の種類によって異なるが、通常、0℃~ 200℃ で行われるが、好適には、室温~60℃
である。
 反応時間は、主に反応温度、原料化合物又は使用される溶媒の種類によって異なるが、通常、1時間~120時間であり、好適には12時間~72時間である。
[実施例]
 以下に、本発明について、実施例及び試験例を挙げて、更に具体的に詳述するが、本発明は、これらの実施例及び試験例によって何等限定されるものではない。尚、略号として、m.p. は融点を表す。
<実施例1>
<ジメチル 2-[5-{4,5-ビス(メチルチオ)-1,3-ジチオール-2-イリデン}-[1,3]ジチオロ[4,5-d] [1,3]ジチオール-2-イリデン]-1,3-ジチオール- 4,5-ジカルボキシレート(以下の表に示す化合物番号2の化合物2( 以下、同様に表示))の調製>
(a) 2,3-ビス(2-シアノエチルチオ)-6,7-ビス(メチルチオ)-テトラチアフルバレン(化合物(a))の調製(工程1)
 亜りん酸トリメチル(124 ml)に、4,5-ビス(メチルチオ)-1,3-ジチオール-2-チオン(3.26 g, 14.4 mmol)(化合物(II)に対応)と、4,5-ビス(2-シアノエチルチオ)-1, 3-ジチオール-2-オン(5.0 g, 17.3 mmol) (化合物(III)に対応)を室温で加えた。120℃で3時間撹拌した後、不溶物を濾過により除去した。濾液を減圧乾燥後、シリカゲルカラムクロマトグラフィー(100%トルエン~トルエン:酢酸エチル=10:1で溶出)により精製し、表題の化合物(a)(4.59 g, 68.3%)を茶色固体として得た。更に、トルエン/酢酸エチルから再結晶することにより、赤茶色針状結晶の表題化合物(a)を得た。
m.p. 118-121 °C; 1H NMR (600 MHz, CDCl3) δ 3.09 (t, J = 7.1 Hz, 4H), 2.75 (t, J = 7.1 Hz, 4H), 2.44 (s, 6H); 13C NMR (125 MHz, CDCl3): δ = 128.0, 127.6, 117.4, 114.6, 107.7, 31.3, 19.2, 18.9; IR (KBr) 2921, 2246, 1499, 1427, 1314, 1276, 1231, 975, 957, 896, 774 cm-1; Anal. Calcd for C14H14N2S8: C, 36.02; H, 3.02; N, 6.00; Found: C 36.09; H, 2.70; N, 5.86.
(b) 5-(4,5-ビス(メチルチオ)-1,3-ジチオール-2-イリデン)-1,3,4,6-テトラチアペンタレン-2-オン(化合物(b))の調製(工程2)
 化合物(a) (1.00 g, 2.14 mmol)(化合物(IV)に対応)、アセトン(10 ml)及びメタノール(10 ml)の混合懸濁液に、28%ナトリウムメトキシドメタノール溶液(1.0 ml, 5.0 mmol)を加えた。室温で30分間撹拌後、 得られた赤色溶液を0℃に冷却した。予めメタノール(5 ml)に溶解させた無水塩化亜鉛(175 mg, 1.28 mmol)及びメタノール(5 ml)に溶解させたテトラブチルアンモニウムブロミド(830 mg, 2.57 mmol) を加えた後、室温で20分間撹拌した。溶媒を減圧下留去した後、非イオン水(30 ml)を加え懸濁させ、懸濁液を濾過し、漏斗上に得られた固形物を非イオン水及びメタノールで洗浄後、取り出し真空乾燥させた。これにテトラヒドロフラン(25 ml)を加え懸濁させ、0℃に冷却後、予めテトラヒドロフラン(5 ml)に溶解させた炭酸ビス(トリクロロメチル)(520 mg, 1.75 mmol)を加えた。室温で 一晩撹拌後し、トルエン (30 ml) 及びメタノール(10 ml)を加え希釈し10分間撹拌した後、溶媒を減圧下留去した。さらに、非イオン水(20 ml) 及びメタノール(20 ml)を加え室温で20分間撹拌した。生じた懸濁液を濾過し、漏斗上に得られた固形物を非イオン水及びメタノールで洗浄後、取り出して真空乾燥させた。これにジエチルエーテル(250 ml) を加え、20秒間超音波を照射し、室温で10分間撹拌した。生じた懸濁液を濾過し、漏斗上に得られた固形物をジエチルエーテルで洗浄後、取り出し真空乾燥させることにより、表題の化合物(b)( 388 mg, 46.9%)を茶色粉末として得た。
1H NMR (600 MHz, CDCl3) δ 2.44 (s, 6H); IR (KBr) 2918, 1667, 1618, 1428, 967, 893, 881, 764, 749 cm-1; Anal. Calcd for C9H6OS8: C, 27.96; H, 1.56; Found: C 27.65; H, 1.21.
(c) ジメチル 2-[5-{4,5-ビス(メチルチオ)-1,3-ジチオール-2-イリデン}-[1,3]ジチオロ[4,5-d] [1,3]ジチオール-2-イリデン]-1,3-ジチオール- 4,5-ジカルボキシレート(化合物2)の調製(工程3)
 亜りん酸トリメチル(50 ml)に、化合物(b) (1.00 g, 2.59 mmol)(化合物(V)に対応)と1,3-ジチオール-2-チオン-4,5-ジカルボキシレート (1.00 g, 3.99 mmol) (化合物(VI)に対応)を室温で加えた。120℃で14時間撹拌した後、室温に戻し溶媒を減圧下留去した。残渣をジエチルエーテル(50 ml)に懸濁させ、室温で30分間撹拌した。この懸濁液を濾過し、漏斗上に得られた固形物をジエチルエーテルで洗浄した。この固形物を取り出してクロロホルム(350 ml)に溶解させ、シリカゲルカラムクロマトグラフィー(トルエンで溶出)により精製し、表題の化合物1(413 mg, 27.0%)を得た。更に、クロロホルムから再結晶することにより、こげ茶色平板状結晶の化合物2を得た。
m.p. 188 °C (分解); 1H NMR (600 MHz, CDCl3) δ 3.85 (s, 6H), 2.43 (s, 6H); 13C NMR (125 MHz, CDCl3): δ=159.7, 131.9, 127.7, 116.3, 115.9, 115.3, 113.7, 113.0, 53.5, 19.3; IR (KBr) 2953, 1730, 1709, 1574, 1433, 1295, 1263, 1189, 1090, 1034, 764 cm-1; Anal. Calcd for C16H12O4S10: C, 32.63; H, 2.05; Found: C 32.60; H, 1.72; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H13O4S10 588.8015; Found 588.8024.
<実施例2>
<2-[5-{4,5-ビス(メチルチオ)-1,3-ジチオール-2-イリデン}-[1,3]ジチオロ[4,5-d] [1,3]ジチオール-2-イリデン]-1,3-ジチオール- 4,5-ジカルボン酸(化合物7)の調製(工程4)>
 化合物1(200 mg, 0.340 mmol) をテトラヒドロフラン(40 ml)、メタノール (4 ml)の混合溶媒に懸濁させ、2N 水酸化ナトリウム水溶液 (6.8 ml, 13.6 mmol)を加えた。20℃で3時間撹拌した後、2N 塩酸水 (6.8 ml)をゆっくり滴下し、pHを確認しながらさらに2N塩酸水(0.2 ml)を加えpH 2-3にした。室温で3分間撹拌した後、この懸濁液を濾過した。漏斗上に得られた固形物を水、メタノール、少量のトルエンの順に洗浄し、取り出して真空乾燥させることにより、表題の化合物7(159 mg, 83.2%)を光沢のある銀赤色フィルム状固体として得た。
1H NMR (400 MHz, CDCl3) δ2.43 (s, 6H).
上記の実施例と同様にして得た化合物の構造を表1に示す。尚、表中の略号は、Meはメチル基を、nBuはノルマルブチル基を表す。
Figure JPOXMLDOC01-appb-T000058
上記化合物の1H NMRスペクトルを以下の表2に示す。
Figure JPOXMLDOC01-appb-T000059
試験例1 室温電気伝導度測定試験
試験方法
化合物1および7、8、9、10については、粉末結晶を乳鉢中、乳棒で粉砕し、油圧ポンプを用いて加圧成形したペレットサンプル(A)を調整し、2,3については有機溶媒の穏やかな蒸発により得られた単結晶サンプル(B)について、それぞれ直径0.01mm純度99%以上の金ワイヤーを試料上に一列に4箇所、金ペーストを用いて端子付けした後に、0.1 μA程度の電流を印加した際の中央2点間にかかる電圧を室温条件で測定することにより評価した。これを試料サイズで規格化した値を試験値とした。
試験例2 室温移動度測定試験
試験方法
A,Bのサンプルの両端に直径0.01mm純度99%以上の金ワイヤーを金ペーストにより端子付けし、その2点を結ぶ線に直角の方向に更に2点、金ワイヤーを端子付けした後に、両端の端子間に0.1 μA程度の電流を印加した際の中央2点間にかかる電圧を室温条件で測定することにより評価した。ホール移動度(μh)は、伝導度(σ)、電荷量(e)、キャリア濃度(n)と次式により関係づけられており、これを用いて算出した値を試験値とした。
σ = e*n*μh
上記試験の結果を以下の表3に示す。尚、表中のサンプルの形状の記号は、Aは粉末結晶を加圧成形したペレットを、Bは単結晶を表す。
Figure JPOXMLDOC01-appb-T000060
化合物番号1-10はいずれも単分子かつ純物質でありながら、電荷輸送特性と有機溶媒への溶解性に優れ、薄膜化が可能であることから、タッチパネルや透明電極、および有機電界効果トランジスタへの工業的実施が期待されるものである。
 [用途]
本実施形態の化合物は多様な用途に使用することができる。電線、情報伝達媒体、電子デバイス、電子素子に利用する電極、スピントロニクス素子、情報通信素子、メモリ素子、磁気シールド、医療用磁気シールド、磁石、磁性半導体、電界効果トランジスタ(FET)、磁石入り絆創膏、ハードディスクドライブのヘッド、高感度再生用GMRヘッド、固体磁気メモリ、磁気抵抗メモリ(MRAM)、ファイバ通信用光アイソレータ、磁界で色が変わる材料、伝導電子スピンと原子磁気モーメントの相互作用を利用した材料などが例として挙げられる。さらに、タッチパネル、ディスプレイ、電子デバイス、液晶ディスプレイ、薄型テレビ、プラズマディスプレイ、電子インク、有機ELにおけるアノード(正孔注入層)、太陽電池、帯電防止剤、電磁波シールド材料、光学コーティング剤、赤外線反射材、ガスセンサー、反射防止膜、表面処理剤、半導体レーザー、光学デバイス、光学素子、曲げ耐性を利用したデバイス、電解コンデンサ、電子機器、リチウムイオン電池の電極、発光素子、有機トランジスタ、導電性高分子をインクとしてインクジェット技術などを利用し直接基板にパターンを作るプリンタブル回路なども例として挙げられる。
なお、単結晶ではなくとも、微結晶加圧成形状態で高い物性値を示すことから、ポリマーや液晶へ形態変換し、薄膜化できる可能性が示唆される。塗布による薄膜形成は多くの用途への可能性を拓くものである。
 [権利解釈など]
以上、特定の実施形態を参照しながら、本発明について説明してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が実施形態の修正又は代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本発明の要旨を判断するためには、冒頭に記載した特許請求の範囲の欄を参酌すべきである。
また、この発明の説明用の実施形態が上述の目的を達成することは明らかであるが、多くの変更や他の実施例を当業者が行うことができることも理解されるところである。特許請求の範囲、明細書、図面及び説明用の各実施形態のエレメント又はコンポーネントを他の1つまたは組み合わせとともに採用してもよい。特許請求の範囲は、かかる変更や他の実施形態をも範囲に含むことを意図されており、これらは、この発明の技術思想および技術的範囲に含まれる。

Claims (38)

  1. ブレンステッド酸官能基、電子供与性及びπ共役平面を有する有機分子によって形成され、
    自己集積することを特徴とする有機透明電極。
  2. 前記ブレンステッド酸官能基は、カルボン酸官能基、スルホン酸官能基、ホスホン酸官能基、チオホスホン酸官能基のいずれかであることを特徴とする請求項1記載の有機透明電極。
  3. 自己集積した状態で前記ブレンステッド酸官能基に対して水素結合がなされることを特徴とする請求項2記載の有機透明電極。
  4. 縮環テトラチアフルバレン誘導体部位を骨格に含みプロトン酸官能基を有する化合物によって形成されることを特徴とする有機透明電極。
  5. 下記一般式で表されるいずれかの化合物(式中、R1、R2、R3、 R4及びR’は同一であっても異なっていてもよい。)又はその塩であることを特徴とする有機透明電極。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  6. 下記一般式で表されるいずれかの化合物(式中、R1、R2、R3、 R4及びR’は同一であっても異なっていてもよい。)又はその塩であることを特徴とする有機透明電極。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
  7. (化1)で表される化合物又はその塩であることを特徴とする有機透明電極。
    Figure JPOXMLDOC01-appb-C000009
  8. (化2)で表される化合物又はその塩であることを特徴とする有機透明電極。
    Figure JPOXMLDOC01-appb-C000010
  9. (化3)で表される化合物又はその塩であることを特徴とする有機透明電極。
    Figure JPOXMLDOC01-appb-C000011
  10. テトラチアフルバレン-2-カルボン酸アニリン塩であることを特徴とする有機透明電極。
  11. テトラチアフルバレン-2-カルボン酸ヒドロキシアミン塩であることを特徴とする有機透明電極。
  12. 下記で表される化合物であることを特徴とする有機透明電極。
    [(TTPCOO-NH4 +)(TTPCOOH)]1-x(TTP・+COO-NH3)x,
    x = 0.06
    Figure JPOXMLDOC01-appb-C000012
  13. カルボン酸官能基が導入された縮環した含硫黄π化合物を有機溶媒から再結晶する有機透明電極の製造方法。
  14. カルボン酸官能基が導入された縮環テトラチアフルバレンを、アンモニア溶液を添加した有機溶媒から再結晶する有機透明電極の製造方法。
  15. 請求項10又は11に記載の有機透明電極を含有するタッチパネル。
  16. 請求項10又は11に記載の有機透明電極を含有するディスプレイ。
  17. 請求項10又は11に記載の有機透明電極を含有する電子デバイス。
  18. 水素結合ネットワーク内にプロトン欠陥を含む有機化合物であって、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機透明電極。
  19. 水素結合ネットワーク中でカチオンとアニオンの存在比が1:1から外れることにより電荷が不釣り合いとなり、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機透明電極。
  20. ブレンステッド酸官能基、電子供与性及びπ共役平面を有する有機分子によって形成され、
    自己集積することを特徴とする有機金属。
  21. 前記ブレンステッド酸官能基は、カルボン酸官能基、スルホン酸官能基、ホスホン酸官能基、チオホスホン酸官能基のいずれかであることを特徴とする請求項20記載の有機金属。
  22. 自己集積した状態で前記ブレンステッド酸官能基に対して水素結合がなされることを特徴とする請求項21記載の有機金属。
  23. 縮環テトラチアフルバレン誘導体部位を骨格に含みプロトン酸官能基を有する化合物によって形成されることを特徴とする有機金属。
  24. (化4A)で表されるいずれかの化合物(式中、R1、R2、R3及びR4は同一であっても異なっていてもよい。)又はその塩であることを特徴とする有機金属。
    Figure JPOXMLDOC01-appb-C000013
  25. (化5A)で表されるいずれかの化合物(式中、R1、R2、R3及びR4は同一であっても異なっていてもよい。)又はその塩であることを特徴とする有機金属。
    Figure JPOXMLDOC01-appb-C000014
  26. (化1A)で表される化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000015
  27. (化2A)で表される化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000016
  28. (化3A)で表される化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000017
  29. (化1A)で表される化合物又はその塩であることを特徴とする有機金属。
    Figure JPOXMLDOC01-appb-C000018
  30. (化2A)で表される化合物又はその塩であることを特徴とする有機金属。
    Figure JPOXMLDOC01-appb-C000019
  31. (化3A)で表される化合物又はその塩であることを特徴とする有機金属。
    Figure JPOXMLDOC01-appb-C000020
  32. 下記で表される化合物であることを特徴とする有機金属。
    [(TTPCOO-NH4 +)(TTPCOOH)]1-x(TTP・+COO-NH3)x,
    x = 0.06
    Figure JPOXMLDOC01-appb-C000021
  33. カルボン酸官能基が導入された縮環した含硫黄π化合物を有機溶媒から再結晶する有機金属の製造方法。
  34. カルボン酸官能基が導入された縮環テトラチアフルバレンを、アンモニア溶液を添加した有機溶媒から再結晶する有機金属の製造方法。
  35. 請求項30に記載の有機金属を含有する電線。
  36. 請求項30に記載の有機金属を含有する電子デバイス。
  37. 水素結合ネットワーク内にプロトン欠陥を含む有機化合物であって、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機金属。
  38. 水素結合ネットワーク中でカチオンとアニオンの存在比が1:1から外れることにより電荷が不釣り合いとなり、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機金属。
PCT/JP2013/069451 2012-10-13 2013-07-17 有機透明電極、有機透明電極の製造方法、タッチパネル、ディスプレイ、有機金属、有機金属の製造方法、化合物又はその塩、電線及び電子デバイス WO2014057721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/373,256 US9202605B2 (en) 2012-10-13 2013-07-17 Organic transparent electrode, method for producing organic transparent electrode, touch panel, display, organic metal, method for producing organic metal, compound or salt thereof, electric wire and electronic device
EP13845891.4A EP2793235B1 (en) 2012-10-13 2013-07-17 Organic transparent electrode
JP2014511666A JP5943285B2 (ja) 2012-10-13 2013-07-17 電線、電子デバイス、化合物、金属化された有機物、及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-227532 2012-10-13
JP2012227532 2012-10-13
JP2012-232451 2012-10-21
JP2012232451 2012-10-21

Publications (1)

Publication Number Publication Date
WO2014057721A1 true WO2014057721A1 (ja) 2014-04-17

Family

ID=50477197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069451 WO2014057721A1 (ja) 2012-10-13 2013-07-17 有機透明電極、有機透明電極の製造方法、タッチパネル、ディスプレイ、有機金属、有機金属の製造方法、化合物又はその塩、電線及び電子デバイス

Country Status (4)

Country Link
US (1) US9202605B2 (ja)
EP (1) EP2793235B1 (ja)
JP (2) JP5943285B2 (ja)
WO (1) WO2014057721A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141692A1 (ja) * 2016-02-19 2017-08-24 国立研究開発法人物質・材料研究機構 水素発生剤、水素発生方法、及び物質の製造方法
JP2020007253A (ja) * 2018-07-05 2020-01-16 国立研究開発法人物質・材料研究機構 組成物、導電性塗膜、タッチパネル、及び、表示装置
JP2020015680A (ja) * 2018-07-25 2020-01-30 国立研究開発法人物質・材料研究機構 分子シート、分子シートの製造方法、透明電極、表示装置、及び、タッチパネル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542071B1 (ko) * 2014-04-02 2015-08-05 파낙스 이텍(주) 장수명 이차 전지용 비수성 전해액 및 이를 포함하는 이차전지
US10379540B2 (en) * 2016-10-17 2019-08-13 Waymo Llc Light detection and ranging (LIDAR) device having multiple receivers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027600A (ja) * 2008-06-19 2010-02-04 Panasonic Corp 電極活物質およびこれを用いた蓄電デバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100079A (ja) * 1975-03-03 1976-09-03 Mitsubishi Chem Ind Tetorachiafurubarenruinoseizohoho
FR2610928B1 (fr) * 1987-02-13 1989-05-05 Thomson Csf Composes organiques du type tetrathiafulvalene utilisables pour l'elaboration de films de langmuir-blodgett conducteurs et leur procede de fabrication
JPH0240378A (ja) * 1988-07-29 1990-02-09 Idemitsu Kosan Co Ltd 新規なテトラチアフルバレン誘導体及びこれを用いた導電性電荷移動錯体
JPH02258778A (ja) * 1989-03-30 1990-10-19 Idemitsu Kosan Co Ltd テトラセレナフルバレン誘導体及びこれを用いた導電性錯体
JP2008094781A (ja) * 2006-10-13 2008-04-24 Sharp Corp テトラチアフルバレン誘導体、および、それを用いた電子デバイス
JP5471324B2 (ja) * 2009-11-10 2014-04-16 株式会社デンソー 二次電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027600A (ja) * 2008-06-19 2010-02-04 Panasonic Corp 電極活物質およびこれを用いた蓄電デバイス

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
AKAMATSU, H.; INOKUCHI, H.; MATSUNAGA, Y, NATURE, vol. 4395, 1954, pages 168 - 169
ARAGAKI, M.; MORI, T.; MISAKI Y; TANAKA, K.; YAMABE, T, SYNTH. MET., vol. 102, 1999, pages 1601 - 1602
BARTLETT, P. N.; BOOTH, S.; CARUANA, D. J.; KILBURN, J. D.; SANTAMARIA, C, ANAL. CHEM., vol. 69, 1997, pages 734 - 742
BATAIL, P, ED. CHEM. REV., vol. 104, no. 11, 2004, pages 4887 - 5782
E. GOMAR-NADAL; C. ROVIRA; D. B. AMABILINO, TETRAHEDRON, vol. 62, 2006, pages 3370 - 3379
F. M. BENITEZ; J. R. GRUNWELL, J. ORG. CHEM., vol. 43, 1978, pages 2917 - 2918
FURUKAWA, K.; NAKAMURA, T.; KOBAYASHI, Y; OGURA, T, J. PHYS. SOC. JPN., vol. 79, 2010, pages 053701 - 4
H. MULLER; C. JOUAN; F. SALHI, SYNTH. MET., vol. 85, 1997, pages 1457 - 1458
KIRTLEY, J. R.; MANN-HART, J, NATURE MAT., vol. 7, 2008, pages 520 - 521
KOBAYASHI, Y; SUZUKI, A.; YAMADA, Y; SAIGO, K.; SHIBUE, T, SYN. MET., vol. 160, 2010, pages 575 - 583
KOBAYASHI, Y; YOSHIOKA, M.; SAIGO, K.; HASHIZUME, D.; OGURA, T, J. AM. CHEM. SOC., vol. 131, 2009, pages 9997 - 10002
KOBAYASHI, Y; YOSHIOKA, M.; SAIGO, K.; HASHIZUME, D.; OGURA, T, PHYSICA B, vol. 405, 2010, pages S23 - S26
L. R. MELBY; H. D. HARTZLER; W A. SHEPPARD, J. ORG. CHEM., vol. 39, 1974, pages 2456 - 2458
M. NGOUNDA; H. L. BOZEC; P. DIXNEUF, J. ORG. CHEM., vol. 47, 1982, pages 4000 - 4002
MISAKI Y; MATSUI, T.; KAWAKAMI, K.; FUJIWARA, H.; YAMABE, T.; MORI, T.; MORI, H.; TANAKA, S.; SHIRO, M, SYNTH. MET., vol. 70, 1995, pages 1149 - 1150
MISAKI Y; MATSUI, T.; KAWAKAMI, K.; NISHIKAWA, H.; YAMABE, T.; SHIRO, M, CHEM. LETT., 1993, pages 1337 - 1340
MULLIKEN, R. S, J. AM. CHEM. SOC., vol. 74, 1952, pages 811 - 824
OLIVIER, J.; GOLHEN, S.; SWIETLIK, R.; CADOR, 0.; POINTILLART, F.; OUAHAB, L, EUR. J. INORG. CHEM., 2009, pages 3282 - 3290
P. WU; G. SAITO; K. IMAEDA; Z. SHI; T. MORI; T. ENOKI; H. INOKUCHI, CHEM. LETT., vol. 15, October 1986 (1986-10-01), pages 441 - 444
PITTMAN, JR. C. U.; NARITA, M.; LIANG, Y F, J. ORG. CHEM., vol. 41, 1976, pages 2855 - 2860
See also references of EP2793235A4
SHIRAKAWA, H.; LOUIS, E. J.; MACDIARMID, A. G.; CHIANG, C. K.; HEEGER, A. J, J. CHEM. SOC., CHEM. COMMUN., vol. 578, 1977
TERAUCHI ET AL.: "Protonic defect induced carrier doping in TTFCOO NH4+: Tunable doping level by solvent", SYNTHETIC METALS, vol. 162, 25 February 2012 (2012-02-25), pages 531 - 535, XP055043721 *
TERAUCHI, T.; KOBAYASHI, Y; IWAI, H.; TANAKA, A, SYN. MET., vol. 162, 2012, pages 531 - 535
TSUYOSHI TERAUCHI ET AL.: "Shukukan Donor Bunshi o Mochiita Enkyogata Bunshisei Dotai no Kaihatsu", 92ND ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2012), 9 March 2012 (2012-03-09), KOEN YOKOSHU IV, pages 1642,2PA-118, XP008172953 *
WALZER K.; MAENNIG, B.; PFEIFFER M.; LEO, K, CHEM. REV., vol. 107, 2007, pages 1233 - 1271

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141692A1 (ja) * 2016-02-19 2017-08-24 国立研究開発法人物質・材料研究機構 水素発生剤、水素発生方法、及び物質の製造方法
JPWO2017141692A1 (ja) * 2016-02-19 2018-11-15 国立研究開発法人物質・材料研究機構 水素発生剤、水素発生方法、及び物質の製造方法
JP2020007253A (ja) * 2018-07-05 2020-01-16 国立研究開発法人物質・材料研究機構 組成物、導電性塗膜、タッチパネル、及び、表示装置
JP7082406B2 (ja) 2018-07-05 2022-06-08 国立研究開発法人物質・材料研究機構 組成物、導電性塗膜、タッチパネル、及び、表示装置
JP2020015680A (ja) * 2018-07-25 2020-01-30 国立研究開発法人物質・材料研究機構 分子シート、分子シートの製造方法、透明電極、表示装置、及び、タッチパネル
JP7082407B2 (ja) 2018-07-25 2022-06-08 国立研究開発法人物質・材料研究機構 分子シート、分子シートの製造方法、透明電極、表示装置、及び、タッチパネル

Also Published As

Publication number Publication date
US9202605B2 (en) 2015-12-01
JP5943285B2 (ja) 2016-07-05
JP2016129137A (ja) 2016-07-14
EP2793235A1 (en) 2014-10-22
EP2793235B1 (en) 2018-01-10
JP6145660B2 (ja) 2017-06-14
EP2793235A4 (en) 2015-07-15
JPWO2014057721A1 (ja) 2016-09-05
US20150005511A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
JP6145660B2 (ja) 有機透明電極、有機透明電極の製造方法、タッチパネル、ディスプレイ、及び電子デバイス
Yang et al. Stable organic diradicals based on fused quinoidal oligothiophene imides with high electrical conductivity
Xin et al. Azulene-based BN-heteroaromatics
Connell et al. Low cost triazatruxene hole transporting material for> 20% efficiency perovskite solar cells
EP2361915A1 (en) Novel heterocyclic compound and use thereof
Yamashita et al. Preparation and properties of bis [1, 2, 5] thiadiazolo-p-quinobis (1, 3-dithiole)(BTQBT) and its derivatives. Novel organic semiconductors
WO2015145315A1 (en) Azaazene analogues and their use as semiconductor
Perepichka et al. Engineering a Remarkably Low HOMO–LUMO Gap by Covalent Linkage of a Strong π‐Donor and a π‐Acceptor—Tetrathiafulvalene‐σ‐Polynitrofluorene Diads: Their Amphoteric Redox Behavior, Electron Transfer and Spectroscopic Properties
Ramkumar et al. Novel heterocyclic based blue and green emissive materials for opto-electronics
JP5187737B2 (ja) 電界効果トランジスタ、その製造方法及びそれに用いる化合物、並びに半導体デバイス作製用インク
Zhao et al. U-Shaped helical azaarenes: synthesis, structures, and properties
CN106699750B (zh) 吩噻嗪-三芳基吡啶有机黄绿发光化合物及其制备与应用
US8710263B2 (en) Organic semiconductor compound, semiconductor device, solar cell and producing method of organic semiconductor compound
KR101057632B1 (ko) 폴리(5-아미노퀴녹살린) 및 그것의 이용
Morita et al. Introduction of amino groups into the dibenzo-TTF π-system: enhanced electron-donating ability and intermolecular hydrogen bonding
JP5880893B2 (ja) 有機遍歴磁性体化合物を含有する磁石、スピントロニクス素子及び水素精製材料
JP3492241B2 (ja) 重合体および有機エレクトロルミネセンス材料
Kim et al. A novel n-type organic semiconductor comprising a 1, 5-naphthyridine-2, 6-dione unit
JP3712037B2 (ja) 環状化合物および有機エレクトロルミネセンス材料
KR101535186B1 (ko) 플러렌 유도체 및 이를 함유하는 유기 전자 소자
JP7372652B2 (ja) アクセプター材料、π共役系ホウ素化合物の製造方法および電子装置
CN115286644B (zh) 含[1,2,5]噻二唑[3,4-g]喹喔啉结构的有机光电小分子及其制备方法和应用
JP2722625B2 (ja) 2,2’―(2,5―ジヒドロチオフェン―2,5―ジイリデン)ビス(1,3―ジチオール)誘導体
US20230099136A1 (en) Fullerene derivative, fullerene derivative production method, deposit, film, and electronic device
Ji Aromatic and Quinoidal Conjugation of Ladder-type Macromolecules

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014511666

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14373256

Country of ref document: US

Ref document number: 2013845891

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE