WO2014054318A1 - Gravity center position detection device, gravity center position detection method, and program - Google Patents

Gravity center position detection device, gravity center position detection method, and program Download PDF

Info

Publication number
WO2014054318A1
WO2014054318A1 PCT/JP2013/067496 JP2013067496W WO2014054318A1 WO 2014054318 A1 WO2014054318 A1 WO 2014054318A1 JP 2013067496 W JP2013067496 W JP 2013067496W WO 2014054318 A1 WO2014054318 A1 WO 2014054318A1
Authority
WO
WIPO (PCT)
Prior art keywords
center
suspended load
gravity
rope
tension
Prior art date
Application number
PCT/JP2013/067496
Other languages
French (fr)
Japanese (ja)
Inventor
唯明 門前
法貴 ▲柳▼井
大作 林
Original Assignee
三菱重工マシナリーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マシナリーテクノロジー株式会社 filed Critical 三菱重工マシナリーテクノロジー株式会社
Publication of WO2014054318A1 publication Critical patent/WO2014054318A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements

Definitions

  • the present invention relates to a gravity center position detection device, a gravity center position detection method, and a program.
  • the container center of gravity position detection device described in Patent Document 1 includes a radiation source, a detector disposed with a container entry space between the radiation source, and a detector. And an arithmetic device that performs arithmetic processing based on the output of the above.
  • the arithmetic unit obtains the intensity distribution of the radiation that has reached the detector from the radiation source in a state where the container has entered the container entry space, and calculates the density distribution of the container based on the intensity distribution of the radiation. Based on this, the position of the center of gravity of the container is specified.
  • the gravity center position of a container can be specified easily, without opening a container.
  • the center-of-gravity position detection device described in Patent Document 1 the center-of-gravity position can be specified also in the height direction of the container.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a center-of-gravity position detection device, a center-of-gravity position detection method, and a program that can more accurately determine the center-of-gravity position in the height direction. There is.
  • a gravity center position detection device is a gravity center position detection device that obtains the gravity center position of a suspended load suspended by a rope from a rope support position by a crane. The distance between the support position and the center of gravity of the suspended load is calculated from the distance between the rope support position and the center of gravity of the suspended load.
  • a suspended load center-of-gravity height calculation unit that subtracts the distance from the upper surface to obtain the height of the center of gravity of the suspended load in the suspended load.
  • the center-of-gravity position detection device is the above-described center-of-gravity position detection device, wherein the support position center-of-gravity distance calculation unit is in a state in which the suspended load is shaken.
  • the distance between the rope support position and the center of gravity of the suspended load is determined based on the amount of swing of the suspended load and the acceleration of the suspended load.
  • the center-of-gravity position detection device is the above-described center-of-gravity position detection device, wherein the support position center-of-gravity distance calculation unit is in a state in which the suspended load is shaken. A distance between the rope support position and the center of gravity of the suspended load is obtained based on the swing period of the suspended load.
  • the center-of-gravity position detection device is the above-described center-of-gravity position detection device, and when the swinging load does not occur, the rope support position is moved to move the suspension load. And a support position movement control unit for generating vibration.
  • a gravity center position detection device is the above-described gravity center position detection device, wherein the rope length is corrected to include an extension amount of the rope, and the corrected rope length Further, a rope length correction unit for obtaining a distance between the rope support position and the upper surface of the suspended load is provided, and the suspended load center-of-gravity height calculation unit includes the rope support position and the suspended load obtained by the rope length correction unit. Based on the distance from the upper surface, the height of the center of gravity of the suspended load in the suspended load is obtained.
  • the center-of-gravity position detection device is the above-described center-of-gravity position detection device, wherein the crane includes a trolley that supports the rope, and the distance calculation unit between the support position center of gravity is The distance between the rope support position and the center of gravity of the suspended load is determined based on the acceleration of the suspended load obtained by adding the swing acceleration of the suspended load to the acceleration of the trolley.
  • the center-of-gravity position detection device is the above-described center-of-gravity position detection device, wherein the suspended load is suspended by a plurality of the ropes, and the tension of each of the ropes, Based on the inclination of each of the ropes relative to the vertical direction, a tension vertical component acquisition unit that obtains a vertical component of the tension of each of the ropes, and based on the vertical component of the tension of each of the ropes, the center of gravity of the suspended load A suspended load center-of-gravity horizontal position calculation unit for obtaining a position in the suspended load in at least one of the horizontal directions.
  • the center-of-gravity position detection device is the above-described center-of-gravity position detection device, wherein each of the ropes is based on an acceleration at which the rope support position moves and a load of the suspended load.
  • An acceleration / deceleration tension correction unit that performs correction for subtracting a component based on acceleration / deceleration of the rope support position from a vertical component of tension of the tension, and the suspended load center-of-gravity horizontal position calculation unit includes the corrected vertical component of tension The position of the center of gravity of the suspended load in the suspended load is obtained.
  • the center-of-gravity position detection device is the above-described center-of-gravity position detection device, wherein a timing detection unit that detects a timing at which the suspended load is positioned at the center of deflection, and the suspended load includes: A tension acquisition unit that acquires the tension of each of the ropes at a timing that is located at the center of the swing, and the tension vertical component acquisition unit is configured so that each of the ropes at a timing at which the suspended load is positioned at the center of the swing. Based on the tension, the vertical component of each tension of the rope is determined.
  • the center-of-gravity position detection device is the above-described center-of-gravity position detection device, wherein each tension of the rope in a state where the suspended load is not suspended is determined from each tension of the rope. And a tension component correction unit that performs correction for subtracting the tension, and the tension vertical component acquisition unit obtains the corrected vertical component of each tension of the rope.
  • a center-of-gravity position detection method for a center-of-gravity position detection device that obtains the center-of-gravity position of a suspended load suspended from a rope support position by a crane.
  • a distance calculation step between the support positions and the center of gravity of the suspended load, and a distance between the rope support position and the center of gravity of the suspended load is subtracted from the distance between the rope support position and the center of gravity of the suspended load.
  • a suspended load center-of-gravity height calculation step for obtaining a height of the center of gravity of the suspended load in the suspended load is provided.
  • a program for a computer serving as a center of gravity position detecting device for obtaining a center of gravity position of a suspended load suspended from a rope support position by a crane serving as a center of gravity position detecting device for obtaining a center of gravity position of a suspended load suspended from a rope support position by a crane.
  • a support position center-of-gravity distance calculating step for obtaining a distance to the center of gravity; and a center of gravity of the suspended load by subtracting a distance between the rope support position and the upper surface of the suspended load from a distance between the rope support position and the center of gravity of the suspended load.
  • This is a program for executing a suspended load center-of-gravity height calculating step for obtaining the height of the suspended load in the suspended load.
  • the position of the center of gravity in the height direction can be obtained more accurately.
  • the center of gravity position detection device determines the height of the center of gravity of the suspended load. It is a flowchart which shows a procedure. It is a schematic block diagram which shows the function structure of the gravity center position detection apparatus in the 2nd Embodiment of this invention. In the same embodiment, it is explanatory drawing which shows the example of the state which hangs a suspended load using four ropes. It is explanatory drawing which shows the example of the timing which the timing detection part in the embodiment detects. It is a flowchart which shows the process sequence in which the gravity center position detection apparatus in the same embodiment calculates
  • FIG. 1 is a schematic block diagram showing a functional configuration of the center-of-gravity position detection apparatus according to the first embodiment of the present invention.
  • the center-of-gravity position detection apparatus 100 includes a data acquisition unit 101, a support position movement control unit 102, a support position center-of-gravity distance calculation unit 103, a rope length correction unit 104, and a suspended load in-center centroid height calculation unit 105. And a display unit 106.
  • the center-of-gravity position detection device 100 is a device that obtains the center-of-gravity position of a suspended load suspended by a rope from a rope support position by a crane. (Height) ”.
  • FIG. 1 is a schematic block diagram showing a functional configuration of the center-of-gravity position detection apparatus according to the first embodiment of the present invention.
  • the center-of-gravity position detection apparatus 100 includes a data acquisition unit 101, a support position movement control unit 102, a support position center-of-gravity distance calculation unit 103,
  • FIG. 2 is explanatory drawing which shows the example of suspension of the suspended load by a crane.
  • a crane trolley 910 a rope 920, a spreader 930, and a container as an example of a suspended load C11 are shown.
  • the suspended load C ⁇ b> 11 is held by the spreader 930 and is suspended from the trolley 910 by the rope 920.
  • the trolley 910 supports the rope 920 on its lower surface, and the position where the trolley 910 supports the rope 920 corresponds to an example of the rope support position.
  • the center-of-gravity position detection device 100 obtains the height of the center of gravity of the suspended load C11 in a state where the suspended load C11 is suspended from the crane.
  • the center-of-gravity position detection device 100 is not limited to a suspended load suspended on a crane including a trolley, and can be applied to the calculation of the height of the center of gravity of various suspended loads suspended in a state where a swing can occur.
  • the center-of-gravity position detection device 100 can calculate the height of the center of gravity of a suspended load suspended from a jib on a crane having a turnable jib.
  • the data acquisition unit 101 acquires sensing data from various sensors provided on the crane.
  • the support position movement control unit 102 moves the rope support position to cause the suspended load C11 to shake when the suspended load C11 is not shaken. That is, when the distance calculation unit 103 between the support position centroids calculates the distance between the rope support position and the center of gravity of the suspended load C11, the suspended position C11 needs to be shaken. The swing of the suspended load C11 is intentionally generated.
  • the suspended load center-of-gravity height calculation unit 105 subtracts the distance between the rope support position and the suspended load upper surface from the distance between the rope support position and the suspended load C11 and calculates the difference between the suspended load upper surface and the suspended load C11 center of gravity. Find the distance.
  • the suspended load center-of-gravity height calculation unit 105 subtracts the distance between the suspended load upper surface and the suspended load C11 from the height of the suspended load C11 to obtain the height of the suspended load C11.
  • the rope length correction unit 104 performs correction to include the extension amount of the rope 920 in the length of the rope 920, and obtains the distance between the rope support position and the suspended load upper surface from the corrected length of the rope 920. That is, the rope 920 that suspends the suspended load C11 is extended by the weight of the suspended load C11 and the like, so that the distance between the rope support position and the upper surface of the suspended load is increased. Therefore, the rope length correction unit 104 corrects the elongation. Do. As the rope length correction unit 104 performs the correction, the suspended load center-of-gravity height calculation unit 105 determines the center of gravity of the suspended load C11 based on the distance between the rope support position obtained by the rope length correction unit 104 and the suspended load upper surface.
  • the display unit 106 has a display screen capable of displaying characters, such as a liquid crystal panel or an organic EL (Organic Electroluminescence) panel, and displays various types of information.
  • the display unit 106 displays the height of the center of gravity of the suspended load C11 obtained by the suspended load in-center centroid height calculating unit 105.
  • FIG. 3 is an explanatory diagram of the positional relationship between the rope support position and the suspended load core when traversing the trolley.
  • x 1 indicates the position of the trolley 910 (distance from the reference point).
  • x 2 represents the deflection displacement of the suspended load C11 relative to the rope supporting position P11
  • theta denotes the deflection angle of the suspended load C11 relative to the vertical line L11.
  • l represents the distance between the rope support position P11 and the center of gravity P12 of the suspended load C11
  • m represents the load of the suspended load C11.
  • equation (2) can be obtained from equation (1).
  • the supporting position the distance between the centers of gravity calculation unit 103, the shake displacement x 2 of the suspended load C11, the acceleration x 1 of the trolley 910 (double dot), shake acceleration x 2 of the suspended load C11 ( From the double dot), the distance l between the rope support position P11 and the center of gravity P12 of the suspended load C11 is obtained. That is, the support position center-of-gravity distance calculation unit 103 calculates the distance between the rope support position P11 and the center of gravity P12 of the suspended load C11 based on the acceleration of the suspended load C11 obtained by adding the swing acceleration of the suspended load C11 to the acceleration of the trolley 910. Ask.
  • shake displacement x 2 of the suspended load C11 can be determined using, for example, vibration sensor.
  • a CCD camera for imaging downward from the trolley 910 is installed, the light source provided on the hanging tool (for example, the spreader 930 in FIG. 2) is imaged, and the shake displacement x 2 is calculated based on the position of the light source in the captured image. calculate.
  • the CCD camera since the CCD camera is provided in the trolley 910, it is not necessary to provide the shock countermeasure against deflection of the suspended load C11, also, it is possible to obtain the displacement x 2 shake with high accuracy without receiving such an impact.
  • an acceleration sensor provided in the load block may be obtained displacement x 2 shake acceleration detected by the acceleration sensor 2 order integration.
  • an increase in equipment cost can be suppressed in that an acceleration sensor is used.
  • the acceleration x 1 (double dot) of the trolley 910 can be obtained by detecting and differentiating the trolley speed using, for example, a trolley speed detector.
  • a trolley speed detector is already provided for trolley control or the like, the trolley detector can be used for acceleration detection, and there is no need to provide a new sensor.
  • the shake acceleration x 2 (double dot) of the suspended load C11 is obtained, for example, by second-order differentiation of the shake displacement x 2 obtained using the shake sensor.
  • the shake acceleration x 2 (double dot) can be obtained with high accuracy without receiving such impacts.
  • an acceleration meter may be provided on the hanging tool to measure the shake acceleration x 2 (double dot). In this case, similarly to the above, an increase in equipment cost can be suppressed.
  • FIG. 4 is a flowchart illustrating a processing procedure in which the gravity center position detection device 100 obtains the height of the gravity center of the suspended load C11.
  • the center-of-gravity position detection device 100 performs the process shown in FIG.
  • the data acquisition unit 101 acquires the acceleration of the trolley 910, the swing acceleration of the suspended load C11, the swing displacement of the suspended load C11, the length of the rope 920, and the load of the suspended load C11. (Step S101).
  • the support position movement control unit 102 When the swing of the suspended load C11 is small, the support position movement control unit 102 outputs a control signal instructing traverse inching (short traverse) to the trolley 910, and intentionally causes residual swing. And the data acquisition part 101 acquires the acceleration of the trolley 910, the swing acceleration of the suspended load C11, and the deflection displacement of the suspended load C11 again in the state in which the suspended load C11 has shaken.
  • the length of the rope 920 can be obtained by, for example, detecting the rotation of the winding drum of the trolley 910 with an encoder and calculating the winding length or rewinding length of the rope 920 from the number of rotations of the drum.
  • the crane already has a mechanism for detecting the winding length and the rewinding length for hoisting control, and in this case, it is not necessary to provide a new sensor. Further, in the method of obtaining the rope length from the rotation speed of the drum, the rope length can be detected with high accuracy.
  • the support position center-of-gravity distance calculation unit 103 calculates the rope support position from the acceleration of the trolley 910, the swing acceleration of the suspended load C11, and the swing displacement of the suspended load C11. And the center of gravity of the suspended load C11 are obtained (step S102). Further, the rope length correction unit 104 calculates the elongation amount of the rope 920 from the load of the suspended load C11, the length of the rope 920, and the Young's modulus of the rope 920, and includes the calculated elongation amount in the length of the rope 920. Correction is performed (step S103). That is, the rope length correction unit 104 adds the calculated amount of elongation and the length of the rope 920 acquired by the data acquisition unit 101.
  • the rope length correction unit 104 performs correction to include the extension amount in the length of the rope 920, for example, for each of the four ropes 920, and averages the lengths of the four ropes 920 after correction.
  • the value is determined as the length of the rope 920.
  • the rope length correction unit 104 outputs the calculated average value to the suspended load center-of-gravity height calculation unit 105 as the distance from the rope support position to the upper surface of the suspended load C11.
  • the suspended load center-of-gravity height calculation unit 105 calculates the rope support position calculated by the rope length correction unit 104 from the distance between the rope support position calculated by the support position center-of-gravity distance calculation unit 103 and the center of gravity of the suspended load C11.
  • the distance between the upper surface of the suspended load C11 (for example, approximated by the lower surface of the spreader 930) is subtracted to obtain the distance between the suspended load upper surface and the center of gravity of the suspended load C11 (step S104).
  • the suspended load center-of-gravity height calculation unit 105 subtracts the distance between the suspended load upper surface and the suspended load C11 from the height of the suspended load C11 to obtain the height of the suspended load C11.
  • the suspended load center-of-gravity height calculation unit 105 multiplies the distance between the suspended load upper surface and the center of gravity of the suspended load C11 by the cosine of the inclined load, The distance from the center of gravity of the suspended load C11 may be corrected. Then, the display unit 106 displays the height of the center of gravity of the suspended load C11 calculated by the suspended load center-of-gravity height calculation unit 105 (step S105). Thereafter, the process of FIG. 4 is terminated.
  • the support position center-of-gravity distance calculation unit 103 obtains the distance between the rope support position and the center of gravity of the suspended load
  • the suspended load center-of-gravity height calculation unit 105 calculates the distance between the rope support position and the center of gravity of the suspended load.
  • the height of the center of gravity of the suspended load is obtained by subtracting the distance between the rope support position and the upper surface of the suspended load.
  • the center-of-gravity position detection apparatus 100 can obtain the height of the center of gravity of the suspended load without using radiation, and the center of gravity (height direction) of the suspended load regardless of the radiation transmission amount of the suspended load. Can be determined more accurately.
  • the support position center-of-gravity distance calculation unit 103 calculates the distance between the rope support position and the center of gravity of the suspended load based on the amount of swing of the suspended load and the acceleration of the suspended load when the suspended load is shaken. Find the distance. As described above, the support position center-of-gravity distance calculation unit 103 can obtain the distance between the rope support position and the center of gravity of the suspended load using easily measurable data such as the amount of swing of the suspended load and the acceleration of the suspended load. it can.
  • the support position movement control unit 102 moves the rope support position to generate the vibration in the suspended load.
  • the distance between the support position center of gravity calculation unit 103 cannot obtain the distance between the rope support position and the center of gravity of the suspended load because there is no vibration in the suspended load.
  • the rope length correction unit 104 performs correction to include the amount of elongation of the rope in the rope length.
  • the suspended load in-center centroid height calculation part 105 can calculate
  • the method for calculating the distance between the support position center of gravity and the distance between the rope support position and the center of gravity of the suspended load is not limited to the method described with reference to FIG.
  • the support position center-of-gravity distance calculation unit 103 obtains the distance between the rope support position and the center of gravity of the suspended load based on the swing period of the suspended load in a state where the suspended load is shaken. Also good.
  • FIG. 5 is an explanatory diagram illustrating an example of a swinging period of a suspended load.
  • a line L21 indicates the traversing speed of the trolley 910
  • a line L22 indicates the deflection displacement of the suspended load C11.
  • the trolley 910 traverses and stops until time T21, and as shown by the line L22 in the area A21 in the figure, after the time T21, the suspended swing C11 has a residual swing with a period T.
  • the period and angular frequency of the residual shake depend on the length of the pendulum (that is, the distance between the rope support position and the center of gravity of the suspended load C11). More specifically, from the above equation (2), the angular frequency ⁇ of the swing of the suspended load C11 is expressed as in equation (4).
  • Equation (6) is obtained from Equation (4) and Equation (5).
  • the distance calculation section 103 between the support position centroids calculates the distance l between the rope support position P11 and the centroid P12 of the suspended load C11 from the swing period T of the suspended load C11.
  • swinging period T of the suspended load C11 can be determined from the time series of vibration displacement x 2 of the suspended load C11. Therefore, as described above, the swing period T can be obtained using, for example, a swing sensor or an acceleration sensor provided on a hanging tool, or from the torque of the traversing motor of the trolley 910.
  • FIG. 6 shows that the center-of-gravity position detecting device 100 determines the height of the center of gravity of the suspended load C11 when the distance calculation unit 103 between the support positions calculates the distance between the rope support position and the center of gravity of the suspended load C11 from the swing period of the suspended load C11. It is a flowchart which shows the process sequence which calculates
  • the center-of-gravity position detection apparatus 100 performs the process of FIG. 6 instead of the process of FIG. 4 in a state where the trolley 910 stops traversing.
  • the data acquisition unit 101 acquires the data of the deflection displacement of the suspended load C11 and detects the amplitude of the remaining deflection of the suspended load C11 after the trolley traverse stop (step S201). Then, the support position movement control unit 102 compares the amplitude detected by the data acquisition unit 101 with a predetermined threshold value to determine whether or not the residual vibration of the suspended load C11 is sufficiently large (step S202). When it is determined that the residual shake is not sufficiently large (step S202: NO), the support position movement control unit 102 outputs a control signal for instructing traverse inching to the trolley 910, and intentionally causes the residual shake (step S211). ).
  • the data acquisition unit 101 acquires the data of the deflection displacement of the suspended load C11 and detects the period of the remaining deflection of the suspended load C11 after the trolley traverse stop (step S221). Then, as described with reference to FIG. 5, the support position center-of-gravity distance calculation unit 103 obtains the distance between the rope support position and the center of gravity of the suspended load C11 based on the swing period of the suspended load (step S222). . Further, the data acquisition unit 101 acquires the length of the rope 920 (step S223).
  • steps S224 to S226 are the same as steps S103 to S105 of FIG. After step S226, the process of FIG. 6 ends. If it is determined in step S202 that the residual shake is sufficiently large (step S202: YES), the process proceeds to step S221.
  • the support position center-of-gravity distance calculation unit 103 obtains the distance between the rope support position and the center of gravity of the suspended load based on the swing period of the suspended load in a state where the suspended load is shaken. .
  • the distance calculation part 103 between support position gravity centers can calculate the period of a suspended load from the data which can be measured easily, such as a displacement of a suspended load, and can obtain
  • FIG. 7 is a schematic block diagram showing a functional configuration of the center-of-gravity position detection device according to the second embodiment of the present invention.
  • the center-of-gravity position detection apparatus 200 includes a data acquisition unit 101, a support position movement control unit 102, a support position center-of-gravity distance calculation unit 103, a rope length correction unit 104, and a suspended load in-center centroid height calculation unit 105.
  • portions having the same functions corresponding to the respective portions in FIG. 1 are denoted by the same reference numerals (101 to 106), and description thereof is omitted.
  • the data acquisition unit 101 in the present embodiment corresponds to an example of a tension acquisition unit in the present invention.
  • the center-of-gravity position detection device 200 has a horizontal position within the suspended load C11 of the center of gravity of the suspended load C11 (hereinafter referred to as “the horizontal position of the center of gravity of the suspended load”). Ask). Specifically, the center-of-gravity position detection device 200 determines the horizontal position of the center of gravity of the suspended load C11 in the traversing direction of the trolley 910 and the traveling direction of the trolley 910 (perpendicular to the traversing direction).
  • the tension vertical component acquisition unit 203 obtains the vertical component of each tension of the rope 920 based on the tension of each of the plurality of ropes 920 that suspends the suspended load C11 and the inclination of each of the ropes 920 with respect to the vertical direction. . Specific contents of the processing performed by the tension vertical component acquisition unit 203 will be described later.
  • the suspended load center-of-gravity horizontal position calculation unit 205 obtains the position of the center of gravity of the suspended load C11 in the suspended load based on the vertical component of the tension of each rope 920 in at least one of the horizontal directions.
  • the suspended load center-of-gravity horizontal position calculation unit 205 determines that the rope 920 is suspended in the horizontal direction based on the ratio of the vertical components of the tensions of the ropes 920 obtained by the tension vertical component acquisition unit 203. The ratio of the distance between each point supporting C11 and the center of gravity is obtained, and the horizontal position of the center of gravity of the suspended load C11 is obtained from the ratio.
  • the timing detection unit 201 detects the timing at which the suspended load C11 is located at the center of the swing. By using the data at the timing detected by the timing detection unit 201, the center-of-gravity position detection device 200 can reduce the influence of the swing of the suspended load C11 and more accurately determine the horizontal position of the center of gravity of the suspended load. it can.
  • the acceleration / deceleration tension correction unit 202 subtracts the component based on the acceleration / deceleration of the rope support position from the vertical component of the tension of each rope 920 based on the acceleration at which the rope support position moves and the load of the suspended load C11. I do.
  • the acceleration / deceleration tension correction unit 202 performs the correction, so that the center-of-gravity position detection device 200 reduces the influence of the completion force of the suspended load C11 even during the acceleration / deceleration of the trolley 910, thereby leveling the center of gravity of the suspended load. The position in the direction can be obtained more accurately.
  • the suspension component tension correction unit 204 performs correction by subtracting each tension of the rope in a state where the suspended load is not suspended from each tension of the rope. When the lifting device tension correction unit 204 performs the correction, the center-of-gravity position detection device 200 reduces the error due to the weight of the lifting device and more accurately obtains the horizontal position of the center of gravity of the suspended load. be able to
  • FIG. 8 is an explanatory diagram illustrating an example of a state in which a suspended load is suspended using four ropes.
  • the suspended load C11 is suspended from rope support positions (points FR1, FL1, AR1, and AL1) by four ropes 920.
  • the points FR1, FL1, AR1, AL1 coordinates respectively, (x 1FR, y 1FR, z 1FR), (x 1FL, y 1FL, z 1FL), (x 1AR, y 1AR, z 1AR), ( X1AL , y1AL , z1AL ).
  • the x coordinate is taken in the traveling direction
  • the y coordinate is taken in the transverse direction
  • the z coordinate is taken upward in the vertical direction.
  • the four ropes are connected to the spreader 930 at points FR2, FL2, AR2, and AL2, respectively, and suspend a suspended load C11 that is held by the spreader 930.
  • the coordinates of the points FR2, FL2, AR2, AL2 are respectively (x 2FR , y 2FR , z 2FR ), (x 2FL , y 2FL , z 2FL ), (x 2AR , y 2AR , z 2AR ), (X 2AL , y 2AL , z 2AL ).
  • Various methods can be used as a method for obtaining the coordinates of the points FR2, FL2, AR2, and AL2.
  • the points FL1 and FR1 are moved from the position directly above the points FL2 and FR2 by the same distance (in other words, line-symmetric), and the distance between x1FL , x1FR , the point FL1 and the point FR1, and the point You may make it obtain
  • Other coordinate values can be obtained in the same manner by moving similarly for FL1 and AL1, FR1 and AR1, and AL1 and AR1.
  • an image including the point FL2, the point FR2, the point AL2, and the point AR2 may be captured from a camera installed at a fixed point, and the coordinates of each point may be obtained from the captured image.
  • the inclination of the rope 920 connecting the point FR1 and the point FR2 with the vertical direction is represented by an angle ⁇ FR .
  • the inclination of the rope 920 connecting the point FL1 and the point FL2 with the vertical direction is represented by an angle ⁇ FL
  • the inclination of the rope 920 connecting the point AR1 and the point AR2 with the vertical direction is represented by an angle ⁇ AR.
  • connecting the AL1 and point AL2 represents the inclination of the vertical direction of the rope 920 at an angle theta AL.
  • Point O ′ indicates the center position of the points FR2, FL2, AR2, and AL2, and point G indicates the center of gravity of the suspended load C11. From FIG. 8, the angle ⁇ FR of the slope of the rope with respect to the vertical direction is expressed as in Expression (8).
  • the tension vertical component acquisition unit 203 calculates the value of the angle ⁇ FR based on Expression (8). The same applies to ⁇ FL , ⁇ AR , and ⁇ AL . Further, the vertical component of the tension can be obtained based on the equation (9) using the value of the inclination ⁇ FR and the value of the tension tens_FR of the rope 920.
  • the tension vertical component acquisition unit 203 calculates the tension vertical component M FR based on the equation (9). The same applies to M FL , M AR , and M AL .
  • the suspended load center-of-gravity horizontal position calculation unit 205 uses a known method in the horizontal direction of the center of gravity of the suspended load C11. The position can be determined. More specifically, the suspended load center-of-gravity horizontal position calculation unit 205 determines that the rope 920 is suspended in the horizontal direction based on the ratio of the vertical components of the tensions of the ropes 920 obtained by the tension vertical component acquisition unit 203. The ratio of the distance between each point supporting C11 and the center of gravity is obtained, and the horizontal position of the center of gravity of the suspended load C11 is obtained from the ratio.
  • the inertial force of the suspended load is applied to the tension detector (eg, load cell) of the rope 920, so that the acceleration / deceleration tension correction unit 202 performs the suspended load Mall and the transverse acceleration / deceleration x 1 (double dot). ) And the correction is performed based on the equation (10).
  • the load Mall here is a total value of weights in a state where the trolley is not performing transverse acceleration / deceleration.
  • This load Mall is measured, for example, when the trolley is stopped or at a constant speed. Or you may make it use the load calculation value at the time of the suspended load winding by a winding inverter as the load Mall.
  • the acceleration / deceleration tension correction unit 202 performs the correction, so that the center-of-gravity position detection device 200 reduces the influence of the inertial force of the suspended load during the transverse acceleration / deceleration, thereby further increasing the horizontal position of the suspended load's center of gravity. It can be determined accurately. The same applies to the tensions tens_FL, tens_AR, and tens_AL.
  • the data acquisition unit 101 may acquire the tensions tens_FR, tens_FL, tens_AR, and tens_AL after waiting for a state where the trolley is not performing the lateral acceleration / deceleration.
  • FIG. 9 is an explanatory diagram illustrating an example of timing detected by the timing detection unit 201.
  • a line L31 indicates the deflection displacement of the suspended load C11.
  • a line L32 indicates the center of the swing of the suspended load C11. The center of the runout corresponds to the position of the suspended load C11 when the runout of the suspended load C11 has subsided.
  • the timing detection unit 201 detects the timing at which the suspended load C11 is located at the center of the shake as at time T31.
  • the data acquisition unit 101 acquires the tension of each of the ropes at the timing detected by the timing detection unit 201, so that the center-of-gravity position detection device 200 reduces the influence of the swing of the suspended load C11 and the center of gravity of the suspended load.
  • the position in the horizontal direction can be determined more accurately.
  • the timing in the center of the deflection is suspended load C11 can be obtained from the time series of vibration displacement x 2 of the suspended load C11. Therefore, as described above, the timing can be obtained using, for example, a vibration sensor or an acceleration sensor provided on the hanging tool, or from the torque of the traversing motor of the trolley 910.
  • the center of shake is detected using the shake sensor, an offset error due to the tilt of the shake sensor camera or the like may occur in the detection value of the shake sensor.
  • the center of the shake is determined by removing the offset error with a high-pass filter or the like.
  • the timing detection unit 201 may detect the maximum swing speed as the timing at which the suspended load C11 is positioned at the center of the swing.
  • the timing detection unit 201 may detect the timing at which the suspended load C11 is located at the center of the swing a plurality of times. For example, the timing detection unit 201 detects data by averaging the data at a plurality of timings, such as calculating the horizontal position of the center of gravity of the suspended load at each timing and calculating the horizontal position of the center of gravity of the suspended load. And the influence of the deviation between the timing at which the suspended load C11 is located at the center of the swing can be reduced.
  • an allowable range of errors included in the timing detected by the timing detection unit 201 can be set according to the target accuracy of the center of gravity detection. For example, when the target accuracy of the center of gravity position is plus or minus ( ⁇ ) 10 percent (%), the range of 1/10 plus or minus 1 percent of the deflection angle can be set as the allowable range. For example, if the rope length is 10 meters (m), the timing detection unit 201 is set to detect the timing when the suspended load C11 is within a range of plus or minus 0.1 meters from the center of the swing.
  • the load block content tension correcting unit 204 the vertical component of the tension in a state where the vertical component M FR tension in a state that hung suspended load, from M FL, M AR and M AL, not hung suspended load M FR0 , M FL0 , M AR0 , and M AL0 are subtracted to obtain vertical components M FRC , M FLC , M ARC , and M ALC of tension based on the suspended load.
  • the vertical component of tension (M FR0 , M FL0 , M AR0 and M AL0 ) is obtained by performing the same processing as when the suspended load is suspended in the state where the suspended load is not suspended.
  • the correction unit 204 stores in advance.
  • FIG. 10 is a flowchart illustrating a processing procedure in which the center-of-gravity position detection device 200 calculates the position of the center of gravity of the suspended load C11 in the transverse direction.
  • the center-of-gravity position detection apparatus 200 performs the processing shown in FIG.
  • the data acquisition unit 101 acquires the deflection displacement of the suspended load C11, and as described with reference to FIG. 9, the timing detection unit 201 positions the suspended load C11 at the center of the deflection. Timing is detected (step S301).
  • the data acquisition unit 101 acquires the tension at each rope support position of the rope 920 (step S302).
  • tensile_strength in each rope support position of the rope 920 can be measured using the tension meter (for example, load cell) installed in each of a rope support position, for example.
  • the tension of the rope can be accurately detected.
  • the load cell is already provided in the rope support position, it is not necessary to provide a new sensor. Or you may make it obtain
  • each rope support position is movably provided in a sheave opening / closing cylinder, and the data acquisition unit 101 receives a signal from an encoder that detects the displacement of the cylinder and calculates the coordinates of the rope support position.
  • the data acquisition unit 101 acquires the length of each rope 920 (step S304).
  • the tension vertical component acquisition unit 203 calculates the inclination with respect to the vertical direction for each of the ropes 920 (step S305).
  • the data acquisition unit 101 acquires the acceleration of the trolley 910 and determines whether the trolley 910 is traversing acceleration / deceleration (step S306).
  • step S306 When it is determined that traverse acceleration / deceleration is in progress (step S306: YES), the acceleration / deceleration tension correction unit 202 determines each tension of the rope 920 based on the acceleration at which the rope support position moves and the load of the suspended load C11. Correction for subtracting the component based on the acceleration / deceleration of the rope support position from the vertical component is performed (step S307). Or you may make it return to step S306 and wait for completion
  • the tension vertical component acquisition unit 203 is based on the inclination obtained in step S305, and the vertical component of each tension of the rope 920 (or the corrected tension when the acceleration / deceleration tension correction unit 202 performs correction). Is calculated (step S308).
  • step S309 the tension
  • amendment part 204 performs correction
  • the processes of steps S301 to S308 are performed to obtain the vertical component for the hanging tool, and the hanging tool tension correcting unit 204 stores it in advance.
  • step S309 can be omitted.
  • the suspended load center-of-gravity horizontal position calculation unit 205 calculates the position of the center of gravity of the suspended load C11 in the transverse direction based on the corrected vertical component of the lifting device tension correction unit 204 (step S310). Then, the display unit 106 displays the horizontal direction position of the center of gravity of the suspended load C11 calculated by the suspended load center of gravity horizontal position calculating unit 205 (step S311). Then, the process of FIG. 10 is complete
  • the center-of-gravity position detection device 200 determines the center-of-gravity position in the X direction (traveling direction) as in the case of the Y direction. However, traverse acceleration / deceleration is replaced with travel acceleration / deceleration. Further, the traverse motor torque is replaced with the travel motor torque. Further, the transverse direction shake is replaced with the running direction shake.
  • the center of gravity position the sum of the tensions of the two front and rear points on the right side (FR1 and AR1 in the example of FIG. 8) and the front and rear two points (FL1 and AL1 in the example of FIG. 8). The position of the center of gravity is obtained from the ratio with the sum of the tensions.
  • the tension vertical component acquisition unit 203 obtains the vertical component of the tension of each rope 920 based on the tension of each rope 920 and the inclination of each rope 920 with respect to the vertical direction. Then, the suspended load center-of-gravity horizontal position calculation unit 205 obtains the horizontal position of the center of gravity of the suspended load C11 based on the vertical component of the tension of each rope 920. Thereby, the center-of-gravity position detection apparatus 200 can obtain the horizontal position of the center of gravity of the suspended load C11 based on data that can be easily measured, such as the rope support position, the length of the rope 920, and the tension of the rope 920.
  • the acceleration / deceleration tension correction unit 202 subtracts the component based on the acceleration / deceleration of the rope support position from the vertical component of each tension of the rope 920 based on the acceleration at which the rope support position moves and the load of the suspended load C11. Make corrections.
  • the center-of-gravity position detection device 200 can reduce the influence of the completion force of the suspended load C11 even during acceleration / deceleration of the trolley 910, and can more accurately determine the horizontal position of the center of gravity of the suspended load.
  • the timing detection unit 201 detects the timing at which the suspended load C11 is positioned at the center of the swing, and the data acquisition unit 101 acquires the tension of each of the ropes 920 at the timing at which the suspended load C11 is positioned at the center of the swing. .
  • the center-of-gravity position detection device 200 can reduce the influence of the swing of the suspended load C11 and more accurately determine the horizontal position of the center of gravity of the suspended load. it can.
  • the lifting device tension correction unit 204 performs correction to subtract each tension of the rope 920 in a state where the suspended load C11 is not suspended from each tension of the rope 920.
  • the center-of-gravity position detecting device 200 can reduce the error due to the weight of the hanging tool and more accurately determine the horizontal position of the center of gravity of the suspended load.
  • the second embodiment can be implemented independently of the first embodiment.
  • the center-of-gravity position detection device excluding the support position center-of-gravity distance calculation unit 103, the rope length correction unit 104, and the suspended load center of gravity height calculation unit 105 from the configuration illustrated in FIG. You can ask for the position.
  • a program for realizing all or part of the functions of each part of the gravity center position detection apparatus 100 or 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read by a computer system.
  • the processing of each unit may be performed by executing.
  • the “computer system” includes an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention is a center-of-gravity position detection device for obtaining a center of gravity position of a suspended load suspended from a rope support position by a crane, and a distance between the support position centers of gravity for obtaining a distance between the rope support position and the center of gravity of the suspended load.
  • the present invention relates to a center-of-gravity position detection device comprising: According to the present invention, the position of the center of gravity in the height direction can be obtained more accurately.

Abstract

This gravity center position detection device (100) obtains the position of the center of gravity of a load suspended by a crane from a rope support position using a rope. The gravity center position detection device (100) is provided with: a distance calculation unit (103) for calculating the distance between the rope support position and the center of gravity of the suspended load; and a gravity center height calculation unit (105) for calculating the height, within the suspended load, of the center of gravity of the suspended load by subtracting the distance between the rope support position and the upper surface of the suspended load from the distance between the rope support position and the center of gravity of the suspended load.

Description

重心位置検出装置、重心位置検出方法およびプログラムCenter of gravity position detection apparatus, center of gravity position detection method, and program
 本発明は、重心位置検出装置、重心位置検出方法およびプログラムに関する。
 本願は、2012年10月3日に、日本に出願された特願2012-221474号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a gravity center position detection device, a gravity center position detection method, and a program.
This application claims priority based on Japanese Patent Application No. 2012-221474 filed in Japan on October 3, 2012, the contents of which are incorporated herein by reference.
 コンテナの輸送中にコンテナ輸送車等がバランスを崩すことを防止するために、コンテナの高さ方向(上下方向)の重心位置を検出することが有用である。すなわち、コンテナの重心位置が高い場合は、重心位置が低い場合との比較においてバランスを崩し易い。そこで、コンテナの重心位置が高い場合、コンテナの積荷を並べ替えて重心位置を低くする、あるいは、コンテナ輸送車の運転手に注意を喚起するなどの対策を講じることが考えられる。 It is useful to detect the position of the center of gravity in the height direction (vertical direction) of the container in order to prevent the container transportation vehicle from breaking the balance during the transportation of the container. That is, when the gravity center position of the container is high, the balance is easily lost in comparison with the case where the gravity center position is low. Therefore, when the center of gravity of the container is high, it is conceivable to take measures such as rearranging the cargo of the container to lower the position of the center of gravity or alerting the driver of the container transport vehicle.
 ここで、コンテナの重心位置の検出に関連して、特許文献1に記載のコンテナ重心位置検出装置では、放射線源と、放射線源との間にコンテナ進入スペースをあけて配置されるディテクタと、ディテクタの出力に基づいて演算処理を行う演算装置とが設けられている。演算装置は、コンテナ進入スペースにコンテナが進入した状態での放射線源からディテクタに到達した放射線の強度分布を求めるとともに、放射線の強度分布に基づいて、コンテナの密度分布を算出し、この密度分布に基づいてコンテナの重心位置を特定する。
 これにより、特許文献1に記載のコンテナ重心位置検出装置では、コンテナを開封することなしに、コンテナの重心位置を容易に特定することができる。特に、特許文献1に記載のコンテナ重心位置検出装置では、コンテナの高さ方向についても重心位置を特定することができる。
Here, in relation to the detection of the center of gravity position of the container, the container center of gravity position detection device described in Patent Document 1 includes a radiation source, a detector disposed with a container entry space between the radiation source, and a detector. And an arithmetic device that performs arithmetic processing based on the output of the above. The arithmetic unit obtains the intensity distribution of the radiation that has reached the detector from the radiation source in a state where the container has entered the container entry space, and calculates the density distribution of the container based on the intensity distribution of the radiation. Based on this, the position of the center of gravity of the container is specified.
Thereby, in the container gravity center position detection apparatus of patent document 1, the gravity center position of a container can be specified easily, without opening a container. In particular, in the container center-of-gravity position detection device described in Patent Document 1, the center-of-gravity position can be specified also in the height direction of the container.
特開2006-9803号公報JP 2006-9803 A
 コンテナに積載されている荷物の種類によっては、比較的軽い荷物でも放射線透過量が比較的少ない場合や、比較的重い荷物でも放射線透過量が比較的多い場合がある。かかる場合、コンテナを通過した放射線の強度分布からコンテナの密度分布を算出した際に、得られた密度分布に誤差が含まれ得る。従って、当該密度分布から算出したコンテナの高さ方向の重心位置にも誤差が含まれ得る。比較的軽くて放射線透過量が比較的少ない荷物や、比較的重くて放射線透過量が比較的多い荷物がコンテナに積載されている場合にも、高さ方向の重心位置をより正確に求められることが好ましい。 Depending on the type of luggage loaded in the container, there may be a relatively small amount of radiation transmission even with relatively light luggage, or a relatively large amount of radiation transmission even with relatively heavy luggage. In such a case, when the density distribution of the container is calculated from the intensity distribution of the radiation that has passed through the container, an error may be included in the obtained density distribution. Therefore, an error may be included in the center of gravity position in the height direction of the container calculated from the density distribution. The center of gravity in the height direction can be obtained more accurately even when a relatively light load with a relatively small amount of radiation transmission or a relatively heavy load with a relatively large amount of radiation transmission is loaded in the container. Is preferred.
 本発明は、このような事情を考慮してなされたものであり、その目的は、高さ方向の重心位置をより正確に求めることのできる重心位置検出装置、重心位置検出方法およびプログラムを提供することにある。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a center-of-gravity position detection device, a center-of-gravity position detection method, and a program that can more accurately determine the center-of-gravity position in the height direction. There is.
 この発明は上述した課題を解決するためになされたもので、本発明の一態様による重心位置検出装置は、クレーンでロープ支持位置からロープにより吊るされた吊荷の重心位置を求める重心位置検出装置であって、前記ロープ支持位置と前記吊荷の重心との距離を求める支持位置重心間距離算出部と、前記ロープ支持位置と前記吊荷の重心との距離から前記ロープ支持位置と前記吊荷上面との距離を減算して前記吊荷の重心の当該吊荷内における高さを求める吊荷内重心高算出部と、を具備する。 The present invention has been made to solve the above-described problems, and a gravity center position detection device according to an aspect of the present invention is a gravity center position detection device that obtains the gravity center position of a suspended load suspended by a rope from a rope support position by a crane. The distance between the support position and the center of gravity of the suspended load is calculated from the distance between the rope support position and the center of gravity of the suspended load. A suspended load center-of-gravity height calculation unit that subtracts the distance from the upper surface to obtain the height of the center of gravity of the suspended load in the suspended load.
 また、本発明のもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記支持位置重心間距離算出部は、前記吊荷に振れが発生している状態での当該吊荷の振れ量および当該吊荷の加速度に基づいて、前記ロープ支持位置と前記吊荷の重心との距離を求める。 Further, the center-of-gravity position detection device according to another aspect of the present invention is the above-described center-of-gravity position detection device, wherein the support position center-of-gravity distance calculation unit is in a state in which the suspended load is shaken. The distance between the rope support position and the center of gravity of the suspended load is determined based on the amount of swing of the suspended load and the acceleration of the suspended load.
 また、本発明のさらにもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記支持位置重心間距離算出部は、前記吊荷に振れが発生している状態での当該吊荷の振れ周期に基づいて、前記ロープ支持位置と前記吊荷の重心との距離を求める。 Further, the center-of-gravity position detection device according to yet another aspect of the present invention is the above-described center-of-gravity position detection device, wherein the support position center-of-gravity distance calculation unit is in a state in which the suspended load is shaken. A distance between the rope support position and the center of gravity of the suspended load is obtained based on the swing period of the suspended load.
 また、本発明のさらにもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記吊荷に振れが発生していない場合、前記ロープ支持位置を移動させて前記吊荷に振れを発生させる支持位置移動制御部を具備する。 The center-of-gravity position detection device according to yet another aspect of the present invention is the above-described center-of-gravity position detection device, and when the swinging load does not occur, the rope support position is moved to move the suspension load. And a support position movement control unit for generating vibration.
 また、本発明のさらにもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記ロープの長さに当該ロープの伸び量を含める補正を行い、補正後のロープの長さから前記ロープ支持位置と前記吊荷上面との距離を求めるロープ長補正部を具備し、前記吊荷内重心高算出部は、前記ロープ長補正部が求めた前記ロープ支持位置と前記吊荷上面との距離に基づいて、前記吊荷の重心の当該吊荷内における高さを求める。 Further, a gravity center position detection device according to still another aspect of the present invention is the above-described gravity center position detection device, wherein the rope length is corrected to include an extension amount of the rope, and the corrected rope length Further, a rope length correction unit for obtaining a distance between the rope support position and the upper surface of the suspended load is provided, and the suspended load center-of-gravity height calculation unit includes the rope support position and the suspended load obtained by the rope length correction unit. Based on the distance from the upper surface, the height of the center of gravity of the suspended load in the suspended load is obtained.
 また、本発明のさらにもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記クレーンは前記ロープを支持するトロリを備え、前記支持位置重心間距離算出部は、前記トロリの加速度に前記吊荷の振れ加速度を加えた前記吊荷の加速度に基づいて、前記ロープ支持位置と前記吊荷の重心との距離を求める。 Further, the center-of-gravity position detection device according to yet another aspect of the present invention is the above-described center-of-gravity position detection device, wherein the crane includes a trolley that supports the rope, and the distance calculation unit between the support position center of gravity is The distance between the rope support position and the center of gravity of the suspended load is determined based on the acceleration of the suspended load obtained by adding the swing acceleration of the suspended load to the acceleration of the trolley.
 また、本発明のさらにもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記吊荷は複数の前記ロープにて吊るされており、前記ロープの各々の張力と、垂直方向に対する前記ロープの各々の傾きとに基づいて、前記ロープの各々の張力の垂直成分を求める張力垂直成分取得部と、前記ロープの各々の張力の垂直成分に基づいて、前記吊荷の重心の当該吊荷内における位置を、水平方向のうち少なくとも1方向について求める吊荷内重心水平位置算出部と、を具備する。 Moreover, the center-of-gravity position detection device according to still another aspect of the present invention is the above-described center-of-gravity position detection device, wherein the suspended load is suspended by a plurality of the ropes, and the tension of each of the ropes, Based on the inclination of each of the ropes relative to the vertical direction, a tension vertical component acquisition unit that obtains a vertical component of the tension of each of the ropes, and based on the vertical component of the tension of each of the ropes, the center of gravity of the suspended load A suspended load center-of-gravity horizontal position calculation unit for obtaining a position in the suspended load in at least one of the horizontal directions.
 また、本発明のさらにもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記ロープ支持位置が移動する加速度と前記吊荷の荷重とに基づいて、前記ロープの各々の張力の垂直成分から前記ロープ支持位置の加減速に基づく成分を減算する補正を行う加減速分張力補正部を具備し、前記吊荷内重心水平位置算出部は、補正後の張力の垂直成分に基づいて、前記吊荷の重心の当該吊荷内における位置を求める。 Further, the center-of-gravity position detection device according to still another aspect of the present invention is the above-described center-of-gravity position detection device, wherein each of the ropes is based on an acceleration at which the rope support position moves and a load of the suspended load. An acceleration / deceleration tension correction unit that performs correction for subtracting a component based on acceleration / deceleration of the rope support position from a vertical component of tension of the tension, and the suspended load center-of-gravity horizontal position calculation unit includes the corrected vertical component of tension The position of the center of gravity of the suspended load in the suspended load is obtained.
 また、本発明のさらにもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記吊荷が振れの中心に位置するタイミングを検出するタイミング検出部と、前記吊荷が振れの中心に位置するタイミングにおける前記ロープの各々の張力を取得する張力取得部とを具備し、前記張力垂直成分取得部は、前記吊荷が振れの中心に位置するタイミングにおける前記ロープの各々の張力に基づいて、前記ロープの各々の張力の垂直成分を求める。 According to still another aspect of the present invention, the center-of-gravity position detection device is the above-described center-of-gravity position detection device, wherein a timing detection unit that detects a timing at which the suspended load is positioned at the center of deflection, and the suspended load includes: A tension acquisition unit that acquires the tension of each of the ropes at a timing that is located at the center of the swing, and the tension vertical component acquisition unit is configured so that each of the ropes at a timing at which the suspended load is positioned at the center of the swing. Based on the tension, the vertical component of each tension of the rope is determined.
 また、本発明のさらにもう一つの態様による重心位置検出装置は、上述の重心位置検出装置であって、前記ロープの各々の張力から、前記吊荷を吊るしていない状態における前記ロープの各々の張力を減算する補正を行う吊具分張力補正部を具備し、前記張力垂直成分取得部は、補正後の前記ロープの各々の張力の垂直成分を求める。 The center-of-gravity position detection device according to yet another aspect of the present invention is the above-described center-of-gravity position detection device, wherein each tension of the rope in a state where the suspended load is not suspended is determined from each tension of the rope. And a tension component correction unit that performs correction for subtracting the tension, and the tension vertical component acquisition unit obtains the corrected vertical component of each tension of the rope.
 また、本発明のさらにもう一つの態様による重心位置検出方法は、クレーンでロープ支持位置からロープにより吊るされた吊荷の重心位置を求める重心位置検出装置の重心位置検出方法であって、前記ロープ支持位置と前記吊荷の重心との距離を求める支持位置重心間距離算出ステップと、前記ロープ支持位置と前記吊荷の重心との距離から前記ロープ支持位置と前記吊荷上面との距離を減算して前記吊荷の重心の当該吊荷内における高さを求める吊荷内重心高算出ステップと、を具備する。 According to still another aspect of the present invention, there is provided a center-of-gravity position detection method for a center-of-gravity position detection device that obtains the center-of-gravity position of a suspended load suspended from a rope support position by a crane. A distance calculation step between the support positions and the center of gravity of the suspended load, and a distance between the rope support position and the center of gravity of the suspended load is subtracted from the distance between the rope support position and the center of gravity of the suspended load. Then, a suspended load center-of-gravity height calculation step for obtaining a height of the center of gravity of the suspended load in the suspended load is provided.
 また、本発明のさらにもう一つの態様によるプログラムは、クレーンでロープ支持位置からロープにより吊るされた吊荷の重心位置を求める重心位置検出装置としてのコンピュータに、前記ロープ支持位置と前記吊荷の重心との距離を求める支持位置重心間距離算出ステップと、前記ロープ支持位置と前記吊荷の重心との距離から前記ロープ支持位置と前記吊荷上面との距離を減算して前記吊荷の重心の当該吊荷内における高さを求める吊荷内重心高算出ステップと、を実行させるためのプログラムである。 According to still another aspect of the present invention, there is provided a program for a computer serving as a center of gravity position detecting device for obtaining a center of gravity position of a suspended load suspended from a rope support position by a crane. A support position center-of-gravity distance calculating step for obtaining a distance to the center of gravity; and a center of gravity of the suspended load by subtracting a distance between the rope support position and the upper surface of the suspended load from a distance between the rope support position and the center of gravity of the suspended load. This is a program for executing a suspended load center-of-gravity height calculating step for obtaining the height of the suspended load in the suspended load.
 本発明によれば、高さ方向の重心位置をより正確に求めることができる。 According to the present invention, the position of the center of gravity in the height direction can be obtained more accurately.
本発明の第1の実施形態における重心位置検出装置の機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the gravity center position detection apparatus in the 1st Embodiment of this invention. 同実施形態における、クレーンによる吊荷の吊下げの例を示す説明図である。It is explanatory drawing which shows the example of suspension of the suspended load by the crane in the same embodiment. 同実施形態のトロリ横行時におけるロープ支持位置と吊荷重心との位置関係の説明図である。It is explanatory drawing of the positional relationship of the rope support position and suspension load center at the time of trolley traversing of the embodiment. 同実施形態における、重心位置検出装置が吊荷の重心の高さを求める処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in which the gravity center position detection apparatus in the same embodiment calculates | requires the height of the gravity center of a suspended load. 同実施形態における吊荷の振れ周期の例を示す説明図である。It is explanatory drawing which shows the example of the swing period of the hanging load in the same embodiment. 同実施形態における、支持位置重心間距離算出部が吊荷の振れ周期からロープ支持位置と吊荷の重心との距離を求める場合に、重心位置検出装置が吊荷の重心の高さを求める処理手順を示すフローチャートである。In the same embodiment, when the distance calculation unit between the support position center of gravity calculates the distance between the rope support position and the center of gravity of the suspended load from the suspended load swing period, the center of gravity position detection device determines the height of the center of gravity of the suspended load. It is a flowchart which shows a procedure. 本発明の第2の実施形態における重心位置検出装置の機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the gravity center position detection apparatus in the 2nd Embodiment of this invention. 同実施形態において、4本のロープを用いて吊荷を吊るしている状態の例を示す説明図である。In the same embodiment, it is explanatory drawing which shows the example of the state which hangs a suspended load using four ropes. 同実施形態におけるタイミング検出部が検出するタイミングの例を示す説明図である。It is explanatory drawing which shows the example of the timing which the timing detection part in the embodiment detects. 同実施形態における、重心位置検出装置が吊荷の重心の横行方向の位置を求める処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in which the gravity center position detection apparatus in the same embodiment calculates | requires the position of the horizontal direction of the gravity center of a suspended load.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
<第1の実施形態>
 図1は、本発明の第1の実施形態における重心位置検出装置の機能構成を示す概略ブロック図である。同図において、重心位置検出装置100は、データ取得部101と、支持位置移動制御部102と、支持位置重心間距離算出部103と、ロープ長補正部104と、吊荷内重心高算出部105と、表示部106とを具備する。 重心位置検出装置100は、クレーンでロープ支持位置からロープにより吊るされた吊荷の重心位置を求める装置であり、特に吊荷の重心の当該吊荷内における高さ(以下、「吊荷の重心の高さ」と表記する)を求める。
 ここで、図2は、クレーンによる吊荷の吊下げの例を示す説明図である。同図では、クレーンのトロリ910と、ロープ920と、スプレッダ930と、吊荷C11の一例としてのコンテナとが示されている。吊荷C11は、スプレッダ930に把持されてロープ920にてトロリ910から吊るされている。
 なお、トロリ910は、自らの下面においてロープ920を支持しており、トロリ910がロープ920を支持している位置がロープ支持位置の一例に該当する。
<First Embodiment>
FIG. 1 is a schematic block diagram showing a functional configuration of the center-of-gravity position detection apparatus according to the first embodiment of the present invention. In the figure, the center-of-gravity position detection apparatus 100 includes a data acquisition unit 101, a support position movement control unit 102, a support position center-of-gravity distance calculation unit 103, a rope length correction unit 104, and a suspended load in-center centroid height calculation unit 105. And a display unit 106. The center-of-gravity position detection device 100 is a device that obtains the center-of-gravity position of a suspended load suspended by a rope from a rope support position by a crane. (Height) ”.
Here, FIG. 2 is explanatory drawing which shows the example of suspension of the suspended load by a crane. In the drawing, a crane trolley 910, a rope 920, a spreader 930, and a container as an example of a suspended load C11 are shown. The suspended load C <b> 11 is held by the spreader 930 and is suspended from the trolley 910 by the rope 920.
The trolley 910 supports the rope 920 on its lower surface, and the position where the trolley 910 supports the rope 920 corresponds to an example of the rope support position.
 重心位置検出装置100は、このように吊荷C11がクレーンに吊るされた状態において、吊荷C11の重心の高さを求める。
 なお、重心位置検出装置100は、トロリを備えるクレーンに吊るされた吊荷に限らず、振れを生じ得る状態に吊るされた様々な吊荷の重心の高さの算出に適用し得る。例えば、重心位置検出装置100は、旋回可能なジブを有するクレーンに当該ジブから吊るされた吊荷の重心の高さを算出し得る。
The center-of-gravity position detection device 100 obtains the height of the center of gravity of the suspended load C11 in a state where the suspended load C11 is suspended from the crane.
The center-of-gravity position detection device 100 is not limited to a suspended load suspended on a crane including a trolley, and can be applied to the calculation of the height of the center of gravity of various suspended loads suspended in a state where a swing can occur. For example, the center-of-gravity position detection device 100 can calculate the height of the center of gravity of a suspended load suspended from a jib on a crane having a turnable jib.
 データ取得部101は、クレーンに設けられた各種センサからセンシングデータを取得する。
 支持位置重心間距離算出部103は、ロープ支持位置と吊荷C11の重心との距離を求める。より具体的には、支持位置重心間距離算出部103は、吊荷C11に振れが発生している状態での当該吊荷C11の振れ量および当該吊荷C11の加速度に基づいて、ロープ支持位置と吊荷C11の重心との距離を求める。支持位置重心間距離算出部103が行う処理の更に具体的な内容については後述する。
The data acquisition unit 101 acquires sensing data from various sensors provided on the crane.
The distance calculation part 103 between support position gravity centers calculates | requires the distance of a rope support position and the gravity center of the suspended load C11. More specifically, the support position center-of-gravity distance calculation unit 103 determines the rope support position based on the swing amount of the suspended load C11 and the acceleration of the suspended load C11 when the suspended load C11 is shaken. And the center of gravity of the suspended load C11. More specific contents of the processing performed by the support position centroid distance calculation unit 103 will be described later.
 支持位置移動制御部102は、吊荷C11に振れが発生していない場合に、ロープ支持位置を移動させて吊荷C11に振れを発生させる。すなわち、支持位置重心間距離算出部103がロープ支持位置と吊荷C11の重心との距離を求める際、吊荷C11に振れが発生している必要があるため、支持位置移動制御部102は、吊荷C11の振れを意図的に発生させる。
 吊荷内重心高算出部105は、ロープ支持位置と吊荷C11の重心との距離から、ロープ支持位置と吊荷上面との距離を減算して、吊荷上面と吊荷C11の重心との距離を求める。そして、吊荷内重心高算出部105は、吊荷C11の高さから吊荷上面と吊荷C11の重心との距離を減算して、吊荷C11の重心の高さを求める。
The support position movement control unit 102 moves the rope support position to cause the suspended load C11 to shake when the suspended load C11 is not shaken. That is, when the distance calculation unit 103 between the support position centroids calculates the distance between the rope support position and the center of gravity of the suspended load C11, the suspended position C11 needs to be shaken. The swing of the suspended load C11 is intentionally generated.
The suspended load center-of-gravity height calculation unit 105 subtracts the distance between the rope support position and the suspended load upper surface from the distance between the rope support position and the suspended load C11 and calculates the difference between the suspended load upper surface and the suspended load C11 center of gravity. Find the distance. The suspended load center-of-gravity height calculation unit 105 subtracts the distance between the suspended load upper surface and the suspended load C11 from the height of the suspended load C11 to obtain the height of the suspended load C11.
 ロープ長補正部104は、ロープ920の長さに当該ロープ920の伸び量を含める補正を行い、補正後のロープ920の長さからロープ支持位置と吊荷上面との距離を求める。すなわち、吊荷C11等の重さによって吊荷C11を吊るしているロープ920が伸びることで、ロープ支持位置と吊荷上面との距離が伸びるので、ロープ長補正部104は、かかる伸びに対する補正を行う。ロープ長補正部104が当該補正を行うことで、吊荷内重心高算出部105は、ロープ長補正部104が求めたロープ支持位置と吊荷上面との距離に基づいて、吊荷C11の重心の高さを、より正確に求めることができる。
 表示部106は、例えば液晶パネルまたは有機EL(Organic Electroluminescence)パネルなど文字を表示可能な表示画面を有し、各種情報の表示を行う。特に、表示部106は、吊荷内重心高算出部105が求めた吊荷C11の重心の高さを表示する。
The rope length correction unit 104 performs correction to include the extension amount of the rope 920 in the length of the rope 920, and obtains the distance between the rope support position and the suspended load upper surface from the corrected length of the rope 920. That is, the rope 920 that suspends the suspended load C11 is extended by the weight of the suspended load C11 and the like, so that the distance between the rope support position and the upper surface of the suspended load is increased. Therefore, the rope length correction unit 104 corrects the elongation. Do. As the rope length correction unit 104 performs the correction, the suspended load center-of-gravity height calculation unit 105 determines the center of gravity of the suspended load C11 based on the distance between the rope support position obtained by the rope length correction unit 104 and the suspended load upper surface. Can be obtained more accurately.
The display unit 106 has a display screen capable of displaying characters, such as a liquid crystal panel or an organic EL (Organic Electroluminescence) panel, and displays various types of information. In particular, the display unit 106 displays the height of the center of gravity of the suspended load C11 obtained by the suspended load in-center centroid height calculating unit 105.
 次に、図3を参照して、支持位置重心間距離算出部103が行う処理について説明する。
 図3は、トロリ横行時におけるロープ支持位置と吊荷重心との位置関係の説明図である。図3において、xは、トロリ910の位置(基準点からの距離)を示す。また、xは、ロープ支持位置P11を基準とした吊荷C11の振れ変位を示し、θは垂直方向の線L11を基準とした吊荷C11の振れ角度を示す。また、lは、ロープ支持位置P11と吊荷C11の重心P12との距離を示し、mは吊荷C11の荷重を示す。
 以下では、図3に示すように、吊荷C11が1本のロープ920で吊るされているモデルにて、図2に示したロープ920および吊荷C11を近似する。この図3から、式(1)に示す運動方程式を得られる。
Next, with reference to FIG. 3, processing performed by the support position centroid distance calculation unit 103 will be described.
FIG. 3 is an explanatory diagram of the positional relationship between the rope support position and the suspended load core when traversing the trolley. In FIG. 3, x 1 indicates the position of the trolley 910 (distance from the reference point). Further, x 2 represents the deflection displacement of the suspended load C11 relative to the rope supporting position P11, theta denotes the deflection angle of the suspended load C11 relative to the vertical line L11. Further, l represents the distance between the rope support position P11 and the center of gravity P12 of the suspended load C11, and m represents the load of the suspended load C11.
In the following, as shown in FIG. 3, the rope 920 and the suspended load C <b> 11 shown in FIG. 2 are approximated by a model in which the suspended load C <b> 11 is suspended by a single rope 920. From this FIG. 3, the equation of motion shown in equation (1) can be obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 但し、gは重力加速度を示す。また、ダブルドットは2階微分を示す。
 ここで、sinθ=x/lなので、式(1)より式(2)を得られる。
However, g shows a gravitational acceleration. Double dots indicate second order differentiation.
Here, since sin θ = x 2 / l, equation (2) can be obtained from equation (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)より、距離lは式(3)のように示される。 From equation (2), the distance l is expressed as equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この式(3)に基づいて、支持位置重心間距離算出部103は、吊荷C11の振れ変位xと、トロリ910の加速度x(ダブルドット)と、吊荷C11の振れ加速度x(ダブルドット)とから、ロープ支持位置P11と吊荷C11の重心P12との距離lを求める。すなわち、支持位置重心間距離算出部103は、トロリ910の加速度に吊荷C11の振れ加速度を加えた吊荷C11の加速度に基づいて、ロープ支持位置P11と吊荷C11の重心P12との距離を求める。 Based on the equation (3), the supporting position the distance between the centers of gravity calculation unit 103, the shake displacement x 2 of the suspended load C11, the acceleration x 1 of the trolley 910 (double dot), shake acceleration x 2 of the suspended load C11 ( From the double dot), the distance l between the rope support position P11 and the center of gravity P12 of the suspended load C11 is obtained. That is, the support position center-of-gravity distance calculation unit 103 calculates the distance between the rope support position P11 and the center of gravity P12 of the suspended load C11 based on the acceleration of the suspended load C11 obtained by adding the swing acceleration of the suspended load C11 to the acceleration of the trolley 910. Ask.
 なお、吊荷C11の振れ変位xは、例えば振れセンサを用いて求めることができる。
具体的には、トロリ910から下向きに撮像するCCDカメラを設置し、吊具(例えば図2のスプレッダ930)に設けた光源を撮像し、撮像画像における光源の位置に基づいて振れ変位xを算出する。この場合、CCDカメラはトロリ910に設けられるので、吊荷C11の振れに対する衝撃対策を施す必要がなく、また、かかる衝撃を受けずに高精度に振れ変位xを求めることができる。
Incidentally, shake displacement x 2 of the suspended load C11 can be determined using, for example, vibration sensor.
Specifically, a CCD camera for imaging downward from the trolley 910 is installed, the light source provided on the hanging tool (for example, the spreader 930 in FIG. 2) is imaged, and the shake displacement x 2 is calculated based on the position of the light source in the captured image. calculate. In this case, since the CCD camera is provided in the trolley 910, it is not necessary to provide the shock countermeasure against deflection of the suspended load C11, also, it is possible to obtain the displacement x 2 shake with high accuracy without receiving such an impact.
 あるいは、吊具に加速度センサを設け、加速度センサの検出する加速度を2階積分して振れ変位xを求めるようにしてもよい。この場合、加速度センサを用いる点で設備コストの上昇を抑えることができる。
 あるいは、トロリ910の横行モータのトルクから振れ変位xを求めるようにしてもよい。この場合、例えば横行モータの電流値およびモータ特性からトルクを求めることができ、新たなセンサを設ける必要がない。
Alternatively, an acceleration sensor provided in the load block may be obtained displacement x 2 shake acceleration detected by the acceleration sensor 2 order integration. In this case, an increase in equipment cost can be suppressed in that an acceleration sensor is used.
Alternatively, it is also possible to determine the displacement x 2 shake from the torque of the transverse motor of the trolley 910. In this case, for example, torque can be obtained from the current value and motor characteristics of the traversing motor, and there is no need to provide a new sensor.
 また、トロリ910の加速度x(ダブルドット)は、例えばトロリ速度検出器を用いてトロリ速度を検出して微分することで得られる。特に、トロリ制御用等にトロリ速度検出器が既に備えられている場合、当該トロリ検出器を加速度検出に用いることができ、新たなセンサを設ける必要がない。 Further, the acceleration x 1 (double dot) of the trolley 910 can be obtained by detecting and differentiating the trolley speed using, for example, a trolley speed detector. In particular, when a trolley speed detector is already provided for trolley control or the like, the trolley detector can be used for acceleration detection, and there is no need to provide a new sensor.
 また、吊荷C11の振れ加速度x(ダブルドット)は、例えば上記の振れセンサを用いて得られる振れ変位xを2階微分して得られる。この場合、上記と同様、衝撃対策を施す必要がなく、また、かかる衝撃を受けずに高精度に振れ加速度x(ダブルドット)を求めることができる。
 あるいは、吊具に加速度計を設けて振れ加速度x(ダブルドット)を測定してもよい。この場合、上記と同様、設備コストの上昇を抑えることができる。
Further, the shake acceleration x 2 (double dot) of the suspended load C11 is obtained, for example, by second-order differentiation of the shake displacement x 2 obtained using the shake sensor. In this case, as described above, it is not necessary to take measures against impacts, and the shake acceleration x 2 (double dot) can be obtained with high accuracy without receiving such impacts.
Alternatively, an acceleration meter may be provided on the hanging tool to measure the shake acceleration x 2 (double dot). In this case, similarly to the above, an increase in equipment cost can be suppressed.
 次に、図4を参照して重心位置検出装置100の動作について説明する。
 図4は、重心位置検出装置100が吊荷C11の重心の高さを求める処理手順を示すフローチャートである。重心位置検出装置100は、例えば重心位置検出装置100のユーザの指示に従って同図の処理を行う。
 図4の処理において、まず、データ取得部101が、トロリ910の加速度と、吊荷C11の振れ加速度と、吊荷C11の振れ変位と、ロープ920の長さと、吊荷C11の荷重とを取得する(ステップS101)。
Next, the operation of the gravity center position detection apparatus 100 will be described with reference to FIG.
FIG. 4 is a flowchart illustrating a processing procedure in which the gravity center position detection device 100 obtains the height of the gravity center of the suspended load C11. The center-of-gravity position detection device 100 performs the process shown in FIG.
In the process of FIG. 4, first, the data acquisition unit 101 acquires the acceleration of the trolley 910, the swing acceleration of the suspended load C11, the swing displacement of the suspended load C11, the length of the rope 920, and the load of the suspended load C11. (Step S101).
 なお、吊荷C11の振れが小さい場合は、支持位置移動制御部102がトロリ910に横行インチング(短時間の横行)を指示する制御信号を出力して、意図的に残留振れを起こす。そして、データ取得部101は、吊荷C11に振れが生じている状態で、再びトロリ910の加速度と、吊荷C11の振れ加速度と、吊荷C11の振れ変位とを取得する。
 なお、ロープ920の長さは、例えばトロリ910の巻きドラムの回転をエンコーダにて検出し、ドラムの回転数からロープ920の巻き取り長ないし巻き戻し長を算出することで求められる。特に、巻上制御のために、クレーンが巻き取り長や巻き戻し長を検出する機構を既に備えていることが期待され、この場合、新たなセンサを設ける必要がない。
また、ドラムの回転数からロープ長を求める方法では、ロープ長を高精度に検出することができる。
When the swing of the suspended load C11 is small, the support position movement control unit 102 outputs a control signal instructing traverse inching (short traverse) to the trolley 910, and intentionally causes residual swing. And the data acquisition part 101 acquires the acceleration of the trolley 910, the swing acceleration of the suspended load C11, and the deflection displacement of the suspended load C11 again in the state in which the suspended load C11 has shaken.
The length of the rope 920 can be obtained by, for example, detecting the rotation of the winding drum of the trolley 910 with an encoder and calculating the winding length or rewinding length of the rope 920 from the number of rotations of the drum. In particular, it is expected that the crane already has a mechanism for detecting the winding length and the rewinding length for hoisting control, and in this case, it is not necessary to provide a new sensor.
Further, in the method of obtaining the rope length from the rotation speed of the drum, the rope length can be detected with high accuracy.
 次に、図3を参照して説明したように、支持位置重心間距離算出部103が、トロリ910の加速度と、吊荷C11の振れ加速度と、吊荷C11の振れ変位とから、ロープ支持位置と吊荷C11の重心との距離を求める(ステップS102)。
 また、ロープ長補正部104は、吊荷C11の荷重と、ロープ920の長さと、ロープ920のヤング率とからロープ920の伸び量を算出し、算出した伸び量をロープ920の長さに含める補正を行う(ステップS103)。すなわち、ロープ長補正部104は、算出した伸び量と、データ取得部101が取得したロープ920の長さとを足し合わせる。
Next, as described with reference to FIG. 3, the support position center-of-gravity distance calculation unit 103 calculates the rope support position from the acceleration of the trolley 910, the swing acceleration of the suspended load C11, and the swing displacement of the suspended load C11. And the center of gravity of the suspended load C11 are obtained (step S102).
Further, the rope length correction unit 104 calculates the elongation amount of the rope 920 from the load of the suspended load C11, the length of the rope 920, and the Young's modulus of the rope 920, and includes the calculated elongation amount in the length of the rope 920. Correction is performed (step S103). That is, the rope length correction unit 104 adds the calculated amount of elongation and the length of the rope 920 acquired by the data acquisition unit 101.
 図2に示す例の場合、ロープ長補正部104は、例えば4本のロープ920各々について伸び量をロープ920の長さに含める補正を行い、補正後の4本のロープ920の長さの平均値をロープ920の長さとして求める。また、図2に示す例では、ロープ支持位置から吊荷C11の上面までの距離とロープ920の長さとを同視し得る。そのため、ロープ長補正部104は、算出した平均値を、ロープ支持位置から吊荷C11の上面までの距離として吊荷内重心高算出部105へ出力する。 In the case of the example illustrated in FIG. 2, the rope length correction unit 104 performs correction to include the extension amount in the length of the rope 920, for example, for each of the four ropes 920, and averages the lengths of the four ropes 920 after correction. The value is determined as the length of the rope 920. In the example shown in FIG. 2, the distance from the rope support position to the upper surface of the suspended load C11 and the length of the rope 920 can be viewed together. Therefore, the rope length correction unit 104 outputs the calculated average value to the suspended load center-of-gravity height calculation unit 105 as the distance from the rope support position to the upper surface of the suspended load C11.
 次に、吊荷内重心高算出部105は、支持位置重心間距離算出部103の算出したロープ支持位置と吊荷C11の重心との距離から、ロープ長補正部104の算出したロープ支持位置と吊荷C11の上面(例えば、スプレッダ930の下面で近似する)との距離を減算して、吊荷上面と吊荷C11の重心との距離を求める(ステップS104)。そして、吊荷内重心高算出部105は、吊荷C11の高さから吊荷上面と吊荷C11の重心との距離を減算して、吊荷C11の重心の高さを求める。
 なお、ロープ920の垂直方向からの傾きを無視できない場合、吊荷内重心高算出部105が、吊荷上面と吊荷C11の重心との距離に傾きのコサインを乗算して、吊荷上面と吊荷C11の重心との距離を補正するようにしてもよい。
 そして、表示部106が、吊荷内重心高算出部105の算出した吊荷C11の重心の高さを表示する(ステップS105)。
 その後、図4の処理を終了する。
Next, the suspended load center-of-gravity height calculation unit 105 calculates the rope support position calculated by the rope length correction unit 104 from the distance between the rope support position calculated by the support position center-of-gravity distance calculation unit 103 and the center of gravity of the suspended load C11. The distance between the upper surface of the suspended load C11 (for example, approximated by the lower surface of the spreader 930) is subtracted to obtain the distance between the suspended load upper surface and the center of gravity of the suspended load C11 (step S104). The suspended load center-of-gravity height calculation unit 105 subtracts the distance between the suspended load upper surface and the suspended load C11 from the height of the suspended load C11 to obtain the height of the suspended load C11.
If the inclination of the rope 920 from the vertical direction cannot be ignored, the suspended load center-of-gravity height calculation unit 105 multiplies the distance between the suspended load upper surface and the center of gravity of the suspended load C11 by the cosine of the inclined load, The distance from the center of gravity of the suspended load C11 may be corrected.
Then, the display unit 106 displays the height of the center of gravity of the suspended load C11 calculated by the suspended load center-of-gravity height calculation unit 105 (step S105).
Thereafter, the process of FIG. 4 is terminated.
 以上のように、支持位置重心間距離算出部103が、ロープ支持位置と吊荷の重心との距離を求め、吊荷内重心高算出部105は、ロープ支持位置と吊荷の重心との距離からロープ支持位置と吊荷上面との距離を減算して吊荷の重心の高さを求める。
 これにより、重心位置検出装置100は、放射線を用いずに吊荷の重心の高さを求めることができ、吊荷の放射線透過量にかかわらず、当該吊荷の重心の高さ(高さ方向の重心位置)をより正確に求めることができる。
As described above, the support position center-of-gravity distance calculation unit 103 obtains the distance between the rope support position and the center of gravity of the suspended load, and the suspended load center-of-gravity height calculation unit 105 calculates the distance between the rope support position and the center of gravity of the suspended load. The height of the center of gravity of the suspended load is obtained by subtracting the distance between the rope support position and the upper surface of the suspended load.
Thereby, the center-of-gravity position detection apparatus 100 can obtain the height of the center of gravity of the suspended load without using radiation, and the center of gravity (height direction) of the suspended load regardless of the radiation transmission amount of the suspended load. Can be determined more accurately.
 また、支持位置重心間距離算出部103は、吊荷に振れが発生している状態での当該吊荷の振れ量および当該吊荷の加速度に基づいて、ロープ支持位置と吊荷の重心との距離を求める。
 このように、支持位置重心間距離算出部103は、吊荷の振れ量や吊荷の加速度といった容易に測定可能なデータを用いて、ロープ支持位置と吊荷の重心との距離を求めることができる。
Further, the support position center-of-gravity distance calculation unit 103 calculates the distance between the rope support position and the center of gravity of the suspended load based on the amount of swing of the suspended load and the acceleration of the suspended load when the suspended load is shaken. Find the distance.
As described above, the support position center-of-gravity distance calculation unit 103 can obtain the distance between the rope support position and the center of gravity of the suspended load using easily measurable data such as the amount of swing of the suspended load and the acceleration of the suspended load. it can.
 また、吊荷に振れが発生していない場合、支持位置移動制御部102が、ロープ支持位置を移動させて吊荷に振れを発生させる。
 これにより、吊荷に振れが発生していないために支持位置重心間距離算出部103がロープ支持位置と吊荷の重心との距離を求められない事態を回避できる。
In addition, when there is no vibration in the suspended load, the support position movement control unit 102 moves the rope support position to generate the vibration in the suspended load.
As a result, it is possible to avoid a situation in which the distance between the support position center of gravity calculation unit 103 cannot obtain the distance between the rope support position and the center of gravity of the suspended load because there is no vibration in the suspended load.
 また、ロープ長補正部104は、ロープの長さに当該ロープの伸び量を含める補正を行う。これにより、吊荷内重心高算出部105が、吊荷の重心の高さをより正確に求めることができる。 Also, the rope length correction unit 104 performs correction to include the amount of elongation of the rope in the rope length. Thereby, the suspended load in-center centroid height calculation part 105 can calculate | require the height of the centroid of an suspended load more correctly.
 なお、支持位置重心間距離算出部103がロープ支持位置と吊荷の重心との距離を求める方法は、図3を参照して説明した方法に限らない。例えば、支持位置重心間距離算出部103が、吊荷に振れが発生している状態での当該吊荷の振れ周期に基づいて、ロープ支持位置と吊荷の重心との距離を求めるようにしてもよい。 The method for calculating the distance between the support position center of gravity and the distance between the rope support position and the center of gravity of the suspended load is not limited to the method described with reference to FIG. For example, the support position center-of-gravity distance calculation unit 103 obtains the distance between the rope support position and the center of gravity of the suspended load based on the swing period of the suspended load in a state where the suspended load is shaken. Also good.
 図5は、吊荷の振れ周期の例を示す説明図である。同図において、線L21は、トロリ910の横行速度を示し、線L22は、吊荷C11の振れ変位を示している。トロリ910は、時刻T21まで横行して停止しており、同図の領域A21にて線L22が示すように、時刻T21の後、吊荷C11に周期Tの残留振れが生じている。
 この残留振れを単振り子の運動で近似すると、残留振れの周期や角振動数は、振り子の長さ(すなわち、ロープ支持位置と吊荷C11の重心との距離)に依存する。より具体的には、上記の式(2)より、吊荷C11の振れの角振動数ωは、式(4)のように示される。
FIG. 5 is an explanatory diagram illustrating an example of a swinging period of a suspended load. In the figure, a line L21 indicates the traversing speed of the trolley 910, and a line L22 indicates the deflection displacement of the suspended load C11. The trolley 910 traverses and stops until time T21, and as shown by the line L22 in the area A21 in the figure, after the time T21, the suspended swing C11 has a residual swing with a period T.
When this residual shake is approximated by the movement of a single pendulum, the period and angular frequency of the residual shake depend on the length of the pendulum (that is, the distance between the rope support position and the center of gravity of the suspended load C11). More specifically, from the above equation (2), the angular frequency ω of the swing of the suspended load C11 is expressed as in equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、吊荷C11の振れ周期Tは、式(5)のように示される。 Further, the swing period T of the suspended load C11 is expressed by the equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 但し、πは円周率を示す。
 式(4)および式(5)より式(6)を得られる。
Here, π represents the circumference ratio.
Equation (6) is obtained from Equation (4) and Equation (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)より、ロープ支持位置と吊荷の重心との距離lは式(7)のように示される。 From equation (6), the distance l between the rope support position and the center of gravity of the suspended load is given by equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この式(7)に基づいて、支持位置重心間距離算出部103は、吊荷C11の振れ周期Tから、ロープ支持位置P11と吊荷C11の重心P12との距離lを求める。
 なお、吊荷C11の振れ周期Tは、吊荷C11の振れ変位xの時系列から求めることができる。従って、上述したように、例えば、振れセンサ、または、吊具に設けられた加速度センサを用いて、あるいは、トロリ910の横行モータのトルクから振れ周期Tを求めることができる。
Based on this formula (7), the distance calculation section 103 between the support position centroids calculates the distance l between the rope support position P11 and the centroid P12 of the suspended load C11 from the swing period T of the suspended load C11.
Incidentally, swinging period T of the suspended load C11 can be determined from the time series of vibration displacement x 2 of the suspended load C11. Therefore, as described above, the swing period T can be obtained using, for example, a swing sensor or an acceleration sensor provided on a hanging tool, or from the torque of the traversing motor of the trolley 910.
 図6は、支持位置重心間距離算出部103が吊荷C11の振れ周期からロープ支持位置と吊荷C11の重心との距離を求める場合に、重心位置検出装置100が吊荷C11の重心の高さを求める処理手順を示すフローチャートである。重心位置検出装置100は、トロリ910が横行を停止した状態において、図4の処理に代えて図6の処理を行う。 FIG. 6 shows that the center-of-gravity position detecting device 100 determines the height of the center of gravity of the suspended load C11 when the distance calculation unit 103 between the support positions calculates the distance between the rope support position and the center of gravity of the suspended load C11 from the swing period of the suspended load C11. It is a flowchart which shows the process sequence which calculates | requires thickness. The center-of-gravity position detection apparatus 100 performs the process of FIG. 6 instead of the process of FIG. 4 in a state where the trolley 910 stops traversing.
 図6の処理において、まず、データ取得部101が、吊荷C11の振れ変位のデータを取得し、トロリ横行停止後の吊荷C11の残留振れの振幅を検出する(ステップS201)。
 そして、支持位置移動制御部102は、データ取得部101が検出した振幅と所定の閾値とを比較することで、吊荷C11の残留振れが充分大きいか否かを判定する(ステップS202)。
 残留振れが充分大きくないと判定した場合(ステップS202:NO)、支持位置移動制御部102は、トロリ910に横行インチングを指示する制御信号を出力して、意図的に残留振れを起こす(ステップS211)。
In the process of FIG. 6, first, the data acquisition unit 101 acquires the data of the deflection displacement of the suspended load C11 and detects the amplitude of the remaining deflection of the suspended load C11 after the trolley traverse stop (step S201).
Then, the support position movement control unit 102 compares the amplitude detected by the data acquisition unit 101 with a predetermined threshold value to determine whether or not the residual vibration of the suspended load C11 is sufficiently large (step S202).
When it is determined that the residual shake is not sufficiently large (step S202: NO), the support position movement control unit 102 outputs a control signal for instructing traverse inching to the trolley 910, and intentionally causes the residual shake (step S211). ).
 次に、データ取得部101が、吊荷C11の振れ変位のデータを取得し、トロリ横行停止後の吊荷C11の残留振れの周期を検出する(ステップS221)。
 そして、図5を参照して説明したように、支持位置重心間距離算出部103が、吊荷の振れ周期に基づいて、ロープ支持位置と吊荷C11の重心との距離を求める(ステップS222)。
 また、データ取得部101は、ロープ920の長さを取得する(ステップS223)。
Next, the data acquisition unit 101 acquires the data of the deflection displacement of the suspended load C11 and detects the period of the remaining deflection of the suspended load C11 after the trolley traverse stop (step S221).
Then, as described with reference to FIG. 5, the support position center-of-gravity distance calculation unit 103 obtains the distance between the rope support position and the center of gravity of the suspended load C11 based on the swing period of the suspended load (step S222). .
Further, the data acquisition unit 101 acquires the length of the rope 920 (step S223).
 以下、ステップS224~S226は、図4のステップS103~S105と同様である。ステップS226の後、図6の処理を終了する。
 なお、ステップS202において、残留振れが充分大きいと判定した場合(ステップS202:YES)、ステップS221へ進む。
Hereinafter, steps S224 to S226 are the same as steps S103 to S105 of FIG. After step S226, the process of FIG. 6 ends.
If it is determined in step S202 that the residual shake is sufficiently large (step S202: YES), the process proceeds to step S221.
 以上のように、支持位置重心間距離算出部103は、吊荷に振れが発生している状態での当該吊荷の振れ周期に基づいて、ロープ支持位置と吊荷の重心との距離を求める。
 これにより、支持位置重心間距離算出部103は、吊荷の変位といった容易に測定可能なデータから吊荷の周期を算出して、ロープ支持位置と吊荷の重心との距離を求めることができる。
As described above, the support position center-of-gravity distance calculation unit 103 obtains the distance between the rope support position and the center of gravity of the suspended load based on the swing period of the suspended load in a state where the suspended load is shaken. .
Thereby, the distance calculation part 103 between support position gravity centers can calculate the period of a suspended load from the data which can be measured easily, such as a displacement of a suspended load, and can obtain | require the distance of a rope support position and the gravity center of a suspended load. .
<第2の実施形態>
 図7は、本発明の第2の実施形態における重心位置検出装置の機能構成を示す概略ブロック図である。同図において、重心位置検出装置200は、データ取得部101と、支持位置移動制御部102と、支持位置重心間距離算出部103と、ロープ長補正部104と、吊荷内重心高算出部105と、表示部106と、タイミング検出部201と、加減速分張力補正部202と、張力垂直成分取得部203と、吊具分張力補正部204と、吊荷内重心水平位置算出部205とを具備する。同図において、図1の各部に対応して同様の機能を有する部分には同一の符号(101~106)を付して説明を省略する。
 なお、本実施形態におけるデータ取得部101は、本発明における張力取得部の一例に該当する。
<Second Embodiment>
FIG. 7 is a schematic block diagram showing a functional configuration of the center-of-gravity position detection device according to the second embodiment of the present invention. In the figure, the center-of-gravity position detection apparatus 200 includes a data acquisition unit 101, a support position movement control unit 102, a support position center-of-gravity distance calculation unit 103, a rope length correction unit 104, and a suspended load in-center centroid height calculation unit 105. A display unit 106, a timing detection unit 201, an acceleration / deceleration tension correction unit 202, a tension vertical component acquisition unit 203, a suspension component tension correction unit 204, and a suspended load center of gravity horizontal position calculation unit 205. It has. In the same figure, portions having the same functions corresponding to the respective portions in FIG. 1 are denoted by the same reference numerals (101 to 106), and description thereof is omitted.
Note that the data acquisition unit 101 in the present embodiment corresponds to an example of a tension acquisition unit in the present invention.
 重心位置検出装置200は、吊荷C11の重心の高さに加えて、吊荷C11の重心の当該吊荷C11内における水平方向の位置(以下、「吊荷の重心の水平方向の位置」と表記する)を求める。具体的には、重心位置検出装置200は、吊荷C11の重心の水平方向の位置を、トロリ910の横行方向と、トロリ910の走行方向(横行方向に対して直角方向)とについて求める。 In addition to the height of the center of gravity of the suspended load C11, the center-of-gravity position detection device 200 has a horizontal position within the suspended load C11 of the center of gravity of the suspended load C11 (hereinafter referred to as “the horizontal position of the center of gravity of the suspended load”). Ask). Specifically, the center-of-gravity position detection device 200 determines the horizontal position of the center of gravity of the suspended load C11 in the traversing direction of the trolley 910 and the traveling direction of the trolley 910 (perpendicular to the traversing direction).
 張力垂直成分取得部203は、吊荷C11を吊るしている複数のロープ920の各々の張力と、垂直方向に対するロープ920の各々の傾きとに基づいて、ロープ920の各々の張力の垂直成分を求める。張力垂直成分取得部203が行う処理の具体的な内容については後述する。
 吊荷内重心水平位置算出部205は、ロープ920の各々の張力の垂直成分に基づいて、吊荷C11の重心の当該吊荷内における位置を、水平方向のうち少なくとも1方向について求める。より具体的には、吊荷内重心水平位置算出部205は、張力垂直成分取得部203が求めたロープ920の各々の張力の垂直成分の比に基づいて、水平方向に関して、ロープ920が吊荷C11を支持している各点と重心との距離の比を求め、当該比から、吊荷C11の重心の水平方向の位置を求める。
The tension vertical component acquisition unit 203 obtains the vertical component of each tension of the rope 920 based on the tension of each of the plurality of ropes 920 that suspends the suspended load C11 and the inclination of each of the ropes 920 with respect to the vertical direction. . Specific contents of the processing performed by the tension vertical component acquisition unit 203 will be described later.
The suspended load center-of-gravity horizontal position calculation unit 205 obtains the position of the center of gravity of the suspended load C11 in the suspended load based on the vertical component of the tension of each rope 920 in at least one of the horizontal directions. More specifically, the suspended load center-of-gravity horizontal position calculation unit 205 determines that the rope 920 is suspended in the horizontal direction based on the ratio of the vertical components of the tensions of the ropes 920 obtained by the tension vertical component acquisition unit 203. The ratio of the distance between each point supporting C11 and the center of gravity is obtained, and the horizontal position of the center of gravity of the suspended load C11 is obtained from the ratio.
 タイミング検出部201は、吊荷C11が振れの中心に位置するタイミングを検出する。タイミング検出部201が検出したタイミングにおけるデータを用いることで、重心位置検出装置200は、吊荷C11の振れの影響を低減させて、吊荷の重心の水平方向の位置をより正確に求めることができる。 The timing detection unit 201 detects the timing at which the suspended load C11 is located at the center of the swing. By using the data at the timing detected by the timing detection unit 201, the center-of-gravity position detection device 200 can reduce the influence of the swing of the suspended load C11 and more accurately determine the horizontal position of the center of gravity of the suspended load. it can.
 加減速分張力補正部202は、ロープ支持位置が移動する加速度と吊荷C11の荷重とに基づいて、ロープ920の各々の張力の垂直成分からロープ支持位置の加減速に基づく成分を減算する補正を行う。加減速分張力補正部202が当該補正を行うことで、重心位置検出装置200は、トロリ910の加減速中においても、吊荷C11の完成力の影響を低減させて、吊荷の重心の水平方向の位置をより正確に求めることができる。
 吊具分張力補正部204は、ロープの各々の張力から、吊荷を吊るしていない状態におけるロープの各々の張力を減算する補正を行う。吊具分張力補正部204が当該補正を行うことで、重心位置検出装置200は、吊具の重さに起因する誤差を低減させて、吊荷の重心の水平方向の位置をより正確に求めることができる。
The acceleration / deceleration tension correction unit 202 subtracts the component based on the acceleration / deceleration of the rope support position from the vertical component of the tension of each rope 920 based on the acceleration at which the rope support position moves and the load of the suspended load C11. I do. The acceleration / deceleration tension correction unit 202 performs the correction, so that the center-of-gravity position detection device 200 reduces the influence of the completion force of the suspended load C11 even during the acceleration / deceleration of the trolley 910, thereby leveling the center of gravity of the suspended load. The position in the direction can be obtained more accurately.
The suspension component tension correction unit 204 performs correction by subtracting each tension of the rope in a state where the suspended load is not suspended from each tension of the rope. When the lifting device tension correction unit 204 performs the correction, the center-of-gravity position detection device 200 reduces the error due to the weight of the lifting device and more accurately obtains the horizontal position of the center of gravity of the suspended load. be able to.
 次に、図8を参照して、張力垂直成分取得部203が行う処理について説明する。
 図8は、4本のロープを用いて吊荷を吊るしている状態の例を示す説明図である。同図において、吊荷C11は4本のロープ920にてロープ支持位置(点FR1、FL1、AR1およびAL1)から吊るされている。ここで、点FR1、FL1、AR1、AL1の座標を、それぞれ、(x1FR,y1FR,z1FR)、(x1FL,y1FL,z1FL)、(x1AR,y1AR,z1AR)、(x1AL,y1AL,z1AL)で表す。
 なお、走行方向にx座標をとり、横行方向にy座標をとり、垂直方向上向きにz座標をとっている。
Next, processing performed by the tension vertical component acquisition unit 203 will be described with reference to FIG.
FIG. 8 is an explanatory diagram illustrating an example of a state in which a suspended load is suspended using four ropes. In the figure, the suspended load C11 is suspended from rope support positions (points FR1, FL1, AR1, and AL1) by four ropes 920. Here, the points FR1, FL1, AR1, AL1 coordinates, respectively, (x 1FR, y 1FR, z 1FR), (x 1FL, y 1FL, z 1FL), (x 1AR, y 1AR, z 1AR), ( X1AL , y1AL , z1AL ).
The x coordinate is taken in the traveling direction, the y coordinate is taken in the transverse direction, and the z coordinate is taken upward in the vertical direction.
 また、4本のロープはそれぞれ点FR2、FL2、AR2、AL2にてスプレッダ930に接続されて、スプレッダ930の把持する吊荷C11を吊るしている。ここで、点FR2、FL2、AR2、AL2の座標を、それぞれ、(x2FR,y2FR,z2FR)、(x2FL,y2FL,z2FL)、(x2AR,y2AR,z2AR)、(x2AL,y2AL,z2AL)で表す。 The four ropes are connected to the spreader 930 at points FR2, FL2, AR2, and AL2, respectively, and suspend a suspended load C11 that is held by the spreader 930. Here, the coordinates of the points FR2, FL2, AR2, AL2 are respectively (x 2FR , y 2FR , z 2FR ), (x 2FL , y 2FL , z 2FL ), (x 2AR , y 2AR , z 2AR ), (X 2AL , y 2AL , z 2AL ).
 なお、点FR2、FL2、AR2、AL2の座標を求める方法として様々な方法を用いることができる。
 例えば、点FL1、FR1が、それぞれ点FL2、FR2の真上の位置から同じ距離だけ(いわば線対称に)移動するようにし、x1FL、x1FR、点FL1と点FR1との距離、および点FL2と点FR2との距離に基づいて、x2FLおよびx2FRを求めるようにしてもよい。FL1とAL1と、FR1とAR1と、およびAL1とAR1とについても同様に移動するようにして、他の座標値についても同様に求めることができる。
 あるいは、固定点に設置されたカメラから点FL2と点FR2と点AL2と点AR2とを含む画像を撮像し、撮像画像から各点の座標を求めるようにしてもよい。
Various methods can be used as a method for obtaining the coordinates of the points FR2, FL2, AR2, and AL2.
For example, the points FL1 and FR1 are moved from the position directly above the points FL2 and FR2 by the same distance (in other words, line-symmetric), and the distance between x1FL , x1FR , the point FL1 and the point FR1, and the point You may make it obtain | require x2FL and x2FR based on the distance of FL2 and point FR2. Other coordinate values can be obtained in the same manner by moving similarly for FL1 and AL1, FR1 and AR1, and AL1 and AR1.
Alternatively, an image including the point FL2, the point FR2, the point AL2, and the point AR2 may be captured from a camera installed at a fixed point, and the coordinates of each point may be obtained from the captured image.
 また、点FR1と点FR2とを結ぶロープ920の垂直方向との傾きを角度θFRで表す。同様に、点FL1と点FL2とを結ぶロープ920の垂直方向との傾きを角度θFLで表し、点AR1と点AR2とを結ぶロープ920の垂直方向との傾きを角度θARで表し、点AL1と点AL2とを結ぶロープ920の垂直方向との傾きを角度θALで表す。
 また、点O’は、点FR2、FL2、AR2およびAL2の中心位置を示し、点Gは吊荷C11の重心を示す。
 図8より、垂直方向に対するロープの傾きの角度θFRは、式(8)のように示される。
In addition, the inclination of the rope 920 connecting the point FR1 and the point FR2 with the vertical direction is represented by an angle θ FR . Similarly, the inclination of the rope 920 connecting the point FL1 and the point FL2 with the vertical direction is represented by an angle θ FL , and the inclination of the rope 920 connecting the point AR1 and the point AR2 with the vertical direction is represented by an angle θ AR. connecting the AL1 and point AL2 represents the inclination of the vertical direction of the rope 920 at an angle theta AL.
Point O ′ indicates the center position of the points FR2, FL2, AR2, and AL2, and point G indicates the center of gravity of the suspended load C11.
From FIG. 8, the angle θ FR of the slope of the rope with respect to the vertical direction is expressed as in Expression (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 張力垂直成分取得部203は、式(8)に基づいて、角度θFRの値を算出する。θFL、θAR、θALについても同様である。
 また、傾きθFRの値と、ロープ920の張力tens_FRの値とを用いて、式(9)に基づいて張力の垂直成分を求めることができる。
The tension vertical component acquisition unit 203 calculates the value of the angle θ FR based on Expression (8). The same applies to θ FL , θ AR , and θ AL .
Further, the vertical component of the tension can be obtained based on the equation (9) using the value of the inclination θ FR and the value of the tension tens_FR of the rope 920.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 張力垂直成分取得部203は、式(9)に基づいて、張力の垂直成分MFRを算出する。MFL、MAR、MALについても同様である。
 張力垂直成分取得部203が求めたロープ920の各々の張力の垂直成分の比に基づいて、吊荷内重心水平位置算出部205は、公知の手法を用いて吊荷C11の重心の水平方向の位置を求めることができる。より具体的には、吊荷内重心水平位置算出部205は、張力垂直成分取得部203が求めたロープ920の各々の張力の垂直成分の比に基づいて、水平方向に関して、ロープ920が吊荷C11を支持している各点と重心との距離の比を求め、当該比から、吊荷C11の重心の水平方向の位置を求める。
The tension vertical component acquisition unit 203 calculates the tension vertical component M FR based on the equation (9). The same applies to M FL , M AR , and M AL .
Based on the ratio of the vertical components of the tension of each of the ropes 920 obtained by the tension vertical component acquisition unit 203, the suspended load center-of-gravity horizontal position calculation unit 205 uses a known method in the horizontal direction of the center of gravity of the suspended load C11. The position can be determined. More specifically, the suspended load center-of-gravity horizontal position calculation unit 205 determines that the rope 920 is suspended in the horizontal direction based on the ratio of the vertical components of the tensions of the ropes 920 obtained by the tension vertical component acquisition unit 203. The ratio of the distance between each point supporting C11 and the center of gravity is obtained, and the horizontal position of the center of gravity of the suspended load C11 is obtained from the ratio.
 なお、横行加減速中は吊荷の慣性力がロープ920の張力の検出計(例えばロードセル)に加わるので、加減速分張力補正部202が、吊荷荷重Mallと横行加減速度x(ダブルドット)とを用いて、式(10)に基づいて補正を行う。 During the transverse acceleration / deceleration, the inertial force of the suspended load is applied to the tension detector (eg, load cell) of the rope 920, so that the acceleration / deceleration tension correction unit 202 performs the suspended load Mall and the transverse acceleration / deceleration x 1 (double dot). ) And the correction is performed based on the equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここでの荷重Mallは、トロリが横行加減速を行っていない状態での加重の合計値である。この荷重Mallは、例えばトロリの停止時または定速横行時に測定する。あるいは、巻インバータでの吊荷巻上時の荷重演算値を荷重Mallとして用いるようにしてもよい。加減速分張力補正部202が当該補正を行うことで、重心位置検出装置200は、横行加減速中の吊荷の慣性力の影響を低減させて、吊荷の重心の水平方向の位置をより正確に求めることができる。張力tens_FL、tens_ARおよびtens_ALについても同様である。
 あるいは、加減速分張力補正部202の補正に代えて、トロリが横行加減速を行っていない状態を待ってデータ取得部101が張力tens_FR、tens_FL、tens_ARおよびtens_ALを取得するようにしてもよい。
The load Mall here is a total value of weights in a state where the trolley is not performing transverse acceleration / deceleration. This load Mall is measured, for example, when the trolley is stopped or at a constant speed. Or you may make it use the load calculation value at the time of the suspended load winding by a winding inverter as the load Mall. The acceleration / deceleration tension correction unit 202 performs the correction, so that the center-of-gravity position detection device 200 reduces the influence of the inertial force of the suspended load during the transverse acceleration / deceleration, thereby further increasing the horizontal position of the suspended load's center of gravity. It can be determined accurately. The same applies to the tensions tens_FL, tens_AR, and tens_AL.
Alternatively, instead of the correction by the acceleration / deceleration tension correction unit 202, the data acquisition unit 101 may acquire the tensions tens_FR, tens_FL, tens_AR, and tens_AL after waiting for a state where the trolley is not performing the lateral acceleration / deceleration.
 また、吊荷C11に振れが生じている場合、タイミング検出部201は、吊荷C11が振れの中心に位置するタイミングを検出し、データ取得部101は、当該タイミングでロープ920の各々の張力を取得する。
 図9は、タイミング検出部201が検出するタイミングの例を示す説明図である。同図において、線L31は、吊荷C11の振れ変位を示す。また、線L32は、吊荷C11の振れの中心を示す。この振れの中心は、吊荷C11の振れが治まったときの、吊荷C11の位置に相当する。
Further, when the suspended load C11 is shaken, the timing detection unit 201 detects the timing at which the suspended load C11 is located at the center of the shake, and the data acquisition unit 101 detects the tension of each rope 920 at the timing. get.
FIG. 9 is an explanatory diagram illustrating an example of timing detected by the timing detection unit 201. In the figure, a line L31 indicates the deflection displacement of the suspended load C11. A line L32 indicates the center of the swing of the suspended load C11. The center of the runout corresponds to the position of the suspended load C11 when the runout of the suspended load C11 has subsided.
 タイミング検出部201は、時刻T31のように、吊荷C11が振れの中心に位置するタイミングを検出する。データ取得部101が、タイミング検出部201の検出したタイミングにおける前記ロープの各々の張力を取得することで、重心位置検出装置200は、吊荷C11の振れの影響を低減させて、吊荷の重心の水平方向の位置をより正確に求めることができる。
 なお、吊荷C11が振れの中心に位置するタイミングは、吊荷C11の振れ変位xの時系列から求めることができる。従って、上述したように、例えば、振れセンサ、または、吊具に設けられた加速度センサを用いて、あるいは、トロリ910の横行モータのトルクから当該タイミングを求めることができる。
The timing detection unit 201 detects the timing at which the suspended load C11 is located at the center of the shake as at time T31. The data acquisition unit 101 acquires the tension of each of the ropes at the timing detected by the timing detection unit 201, so that the center-of-gravity position detection device 200 reduces the influence of the swing of the suspended load C11 and the center of gravity of the suspended load. The position in the horizontal direction can be determined more accurately.
The timing in the center of the deflection is suspended load C11 can be obtained from the time series of vibration displacement x 2 of the suspended load C11. Therefore, as described above, the timing can be obtained using, for example, a vibration sensor or an acceleration sensor provided on the hanging tool, or from the torque of the traversing motor of the trolley 910.
 なお、振れセンサを用いて振れの中心を検出する場合、振れセンサの検出値に、振れセンサカメラの傾き等によるオフセット誤差が生じる場合がある。この場合、オフセット誤差をハイパスフィルタ等で除去して振れの中心を判定する。あるいは、タイミング検出部201が、吊荷C11が振れの中心に位置するタイミングとして振れ速度最大のタイミングを検出するようにしてもよい。 Note that when the center of shake is detected using the shake sensor, an offset error due to the tilt of the shake sensor camera or the like may occur in the detection value of the shake sensor. In this case, the center of the shake is determined by removing the offset error with a high-pass filter or the like. Alternatively, the timing detection unit 201 may detect the maximum swing speed as the timing at which the suspended load C11 is positioned at the center of the swing.
 また、タイミング検出部201が、吊荷C11が振れの中心に位置するタイミングを複数回検出するようにしてもよい。例えば吊荷内重心水平位置算出部205が各タイミングで吊荷の重心の水平方向の位置を算出して平均を取るなど、複数のタイミングにおけるデータを平均化することで、タイミング検出部201が検出したタイミングと、吊荷C11が振れの中心に位置するタイミングとのずれの影響を低減させ得る。 Further, the timing detection unit 201 may detect the timing at which the suspended load C11 is located at the center of the swing a plurality of times. For example, the timing detection unit 201 detects data by averaging the data at a plurality of timings, such as calculating the horizontal position of the center of gravity of the suspended load at each timing and calculating the horizontal position of the center of gravity of the suspended load. And the influence of the deviation between the timing at which the suspended load C11 is located at the center of the swing can be reduced.
 なお、重心検出の目標精度に応じて、タイミング検出部201が検出するタイミングに含まれる誤差の許容範囲を設定することができる。例えば、重心位置の目標精度がプラスマイナス(±)10パーセント(%)である場合、振れ角度については、その10分の1のプラスマイナス1パーセントの範囲を許容範囲とすることができる。例えば、ロープ長が10メートル(m)の場合であれば、吊荷C11が振れの中心からプラスマイナス0.1メートルの範囲内にあるタイミングを、タイミング検出部201が検出するように設定する。 Note that an allowable range of errors included in the timing detected by the timing detection unit 201 can be set according to the target accuracy of the center of gravity detection. For example, when the target accuracy of the center of gravity position is plus or minus (±) 10 percent (%), the range of 1/10 plus or minus 1 percent of the deflection angle can be set as the allowable range. For example, if the rope length is 10 meters (m), the timing detection unit 201 is set to detect the timing when the suspended load C11 is within a range of plus or minus 0.1 meters from the center of the swing.
 また、吊具分張力補正部204は、吊荷を吊るしている状態での張力の垂直成分MFR、MFL、MARおよびMALから、吊荷を吊るしていない状態での張力の垂直成分MFR0、MFL0、MAR0、MAL0を減算して、吊荷荷重に基づく張力の垂直成分MFRC、MFLC、MARC、MALCを求める。
 そのために、吊荷を吊るしていない状態で、吊荷を吊るしている場合と同様の処理を行って張力の垂直成分(MFR0、MFL0、MAR0およびMAL0)を求め、吊具分張力補正部204が予め記憶しておく。
Moreover, the load block content tension correcting unit 204, the vertical component of the tension in a state where the vertical component M FR tension in a state that hung suspended load, from M FL, M AR and M AL, not hung suspended load M FR0 , M FL0 , M AR0 , and M AL0 are subtracted to obtain vertical components M FRC , M FLC , M ARC , and M ALC of tension based on the suspended load.
For this purpose, the vertical component of tension (M FR0 , M FL0 , M AR0 and M AL0 ) is obtained by performing the same processing as when the suspended load is suspended in the state where the suspended load is not suspended. The correction unit 204 stores in advance.
 次に、図10を参照して重心位置検出装置200の動作について説明する。
 図10は、重心位置検出装置200が吊荷C11の重心の横行方向の位置を求める処理手順を示すフローチャートである。重心位置検出装置200は、例えば重心位置検出装置200のユーザの指示に従って同図の処理を行う。
 図10の処理において、まず、データ取得部101が吊荷C11の振れ変位を取得し、図9を参照して説明したように、タイミング検出部201は、吊荷C11が振れの中心に位置するタイミングを検出する(ステップS301)。
Next, the operation of the gravity center position detection apparatus 200 will be described with reference to FIG.
FIG. 10 is a flowchart illustrating a processing procedure in which the center-of-gravity position detection device 200 calculates the position of the center of gravity of the suspended load C11 in the transverse direction. The center-of-gravity position detection apparatus 200 performs the processing shown in FIG.
In the process of FIG. 10, first, the data acquisition unit 101 acquires the deflection displacement of the suspended load C11, and as described with reference to FIG. 9, the timing detection unit 201 positions the suspended load C11 at the center of the deflection. Timing is detected (step S301).
 次に、データ取得部101は、ロープ920の各々のロープ支持位置における張力を取得する(ステップS302)。
 なお、ロープ920の各々のロープ支持位置における張力は、例えばロープ支持位置の各々に設置した張力計(例えばロードセル)を用いて測定することができる。ロードセルを用いて張力の測定を行うことで、ロープの張力を精度よく検出することができる。また、ロープ支持位置に既にロードセルが設けられている場合、新たなセンサを設ける必要がない。
 あるいは、歪ゲージを用いるなど、ロードセルを用いる方法以外の方法でロープ支持位置における張力を求めるようにしてもよい。
Next, the data acquisition unit 101 acquires the tension at each rope support position of the rope 920 (step S302).
In addition, the tension | tensile_strength in each rope support position of the rope 920 can be measured using the tension meter (for example, load cell) installed in each of a rope support position, for example. By measuring the tension using a load cell, the tension of the rope can be accurately detected. Moreover, when the load cell is already provided in the rope support position, it is not necessary to provide a new sensor.
Or you may make it obtain | require the tension | tensile_strength in a rope support position by methods other than the method of using a load cell, such as using a strain gauge.
 また、データ取得部101は、各ロープ支持位置の座標を取得する(ステップS303)。例えば、各ロープ支持位置はシーブ開閉シリンダにて移動可能に設けられており、データ取得部101は、当該シリンダの変位を検出するエンコーダからの信号を受けて、ロープ支持位置の座標を算出する。 Also, the data acquisition unit 101 acquires the coordinates of each rope support position (step S303). For example, each rope support position is movably provided in a sheave opening / closing cylinder, and the data acquisition unit 101 receives a signal from an encoder that detects the displacement of the cylinder and calculates the coordinates of the rope support position.
 また、データ取得部101は、ロープ920の各々の長さを取得する(ステップS304)。
 次に、張力垂直成分取得部203は、ロープ920の各々について、垂直方向に対する傾きを算出する(ステップS305)。
 また、データ取得部101は、トロリ910の加速度を取得して、トロリ910が横行加減速中か否かを判定する(ステップS306)。
Further, the data acquisition unit 101 acquires the length of each rope 920 (step S304).
Next, the tension vertical component acquisition unit 203 calculates the inclination with respect to the vertical direction for each of the ropes 920 (step S305).
In addition, the data acquisition unit 101 acquires the acceleration of the trolley 910 and determines whether the trolley 910 is traversing acceleration / deceleration (step S306).
 横行加減速中であると判定した場合(ステップS306:YES)、加減速分張力補正部202は、ロープ支持位置が移動する加速度と吊荷C11の荷重とに基づいて、ロープ920の各々の張力の垂直成分からロープ支持位置の加減速に基づく成分を減算する補正を行う(ステップS307)。あるいは、ステップS306へ戻って横行加減速の終了を待ち受けるようにしてもよい。
 次に、張力垂直成分取得部203は、ステップS305で求めた傾きに基づいて、ロープ920の各々の張力(加減速分張力補正部202が補正を行った場合は補正後の張力)の垂直成分を算出する(ステップS308)。
When it is determined that traverse acceleration / deceleration is in progress (step S306: YES), the acceleration / deceleration tension correction unit 202 determines each tension of the rope 920 based on the acceleration at which the rope support position moves and the load of the suspended load C11. Correction for subtracting the component based on the acceleration / deceleration of the rope support position from the vertical component is performed (step S307). Or you may make it return to step S306 and wait for completion | finish of transverse acceleration / deceleration.
Next, the tension vertical component acquisition unit 203 is based on the inclination obtained in step S305, and the vertical component of each tension of the rope 920 (or the corrected tension when the acceleration / deceleration tension correction unit 202 performs correction). Is calculated (step S308).
 そして、吊具分張力補正部204は、張力垂直成分取得部203が求めたロープ920の各々の張力の垂直成分から、吊具分の垂直成分を減算する補正を行う(ステップS309)。ここで、吊荷C11を吊るしていない状態でステップS301~S308の処理を行って吊具分の垂直成分を求めておき、吊具分張力補正部204が予め記憶しておく。
 なお、吊荷の重さに対して吊具の重さを無視し得る場合は、ステップS309を省略し得る。
And the tension | tensile_strength part correction | amendment correction | amendment part 204 performs correction | amendment which subtracts the perpendicular | vertical component for suspension from the perpendicular | vertical component of each tension | tensile_strength of the rope 920 which the tension | tensile_strength perpendicular | vertical component acquisition part 203 calculated | required (step S309). Here, in the state where the suspended load C11 is not suspended, the processes of steps S301 to S308 are performed to obtain the vertical component for the hanging tool, and the hanging tool tension correcting unit 204 stores it in advance.
In addition, when the weight of the hanging tool can be ignored with respect to the weight of the hanging load, step S309 can be omitted.
 次に、吊荷内重心水平位置算出部205は、吊具分張力補正部204の補正後の垂直成分に基づいて、吊荷C11の重心の横行方向の位置を算出する(ステップS310)。
 そして、表示部106が、吊荷内重心水平位置算出部205の算出した吊荷C11の重心の横行方向の位置を表示する(ステップS311)。
 その後、図10の処理を終了する。
 なお、ステップS306において、トロリ910が横行加減速中でないと判定した場合(ステップS306:NO)、ステップS308へ進む。すなわち、加減速分張力補正部202の処理を省略する。
Next, the suspended load center-of-gravity horizontal position calculation unit 205 calculates the position of the center of gravity of the suspended load C11 in the transverse direction based on the corrected vertical component of the lifting device tension correction unit 204 (step S310).
Then, the display unit 106 displays the horizontal direction position of the center of gravity of the suspended load C11 calculated by the suspended load center of gravity horizontal position calculating unit 205 (step S311).
Then, the process of FIG. 10 is complete | finished.
If it is determined in step S306 that the trolley 910 is not in the transverse acceleration / deceleration (step S306: NO), the process proceeds to step S308. That is, the processing of the acceleration / deceleration tension correction unit 202 is omitted.
 重心位置検出装置200は、X方向(走行方向)についても、Y方向の場合と同様に重心位置を求める。但し、横行加減速については、走行加減速に置き換える。また、横行モータトルクについては、走行モータトルクに置き換える。また、横行方向振れについては、走行方向振れに置き換える。また、重心位置を求める際は、右側の前後2点分(図8の例では、FR1およびAR1)の張力の和と、左側の前後2点分(図8の例では、FL1およびAL1)の張力の和との比から、重心位置を求める。 The center-of-gravity position detection device 200 determines the center-of-gravity position in the X direction (traveling direction) as in the case of the Y direction. However, traverse acceleration / deceleration is replaced with travel acceleration / deceleration. Further, the traverse motor torque is replaced with the travel motor torque. Further, the transverse direction shake is replaced with the running direction shake. When determining the center of gravity position, the sum of the tensions of the two front and rear points on the right side (FR1 and AR1 in the example of FIG. 8) and the front and rear two points (FL1 and AL1 in the example of FIG. 8). The position of the center of gravity is obtained from the ratio with the sum of the tensions.
 以上のように、張力垂直成分取得部203は、ロープ920の各々の張力と、垂直方向に対するロープ920の各々の傾きとに基づいて、ロープ920の各々の張力の垂直成分を求める。そして、吊荷内重心水平位置算出部205は、ロープ920の各々の張力の垂直成分に基づいて、吊荷C11の重心の水平位置を求める。
 これにより、重心位置検出装置200は、ロープ支持位置やロープ920の長さやロープ920の張力など容易に測定できるデータに基づいて、吊荷C11の重心の水平位置を求めることができる。
As described above, the tension vertical component acquisition unit 203 obtains the vertical component of the tension of each rope 920 based on the tension of each rope 920 and the inclination of each rope 920 with respect to the vertical direction. Then, the suspended load center-of-gravity horizontal position calculation unit 205 obtains the horizontal position of the center of gravity of the suspended load C11 based on the vertical component of the tension of each rope 920.
Thereby, the center-of-gravity position detection apparatus 200 can obtain the horizontal position of the center of gravity of the suspended load C11 based on data that can be easily measured, such as the rope support position, the length of the rope 920, and the tension of the rope 920.
 また、加減速分張力補正部202は、ロープ支持位置が移動する加速度と吊荷C11の荷重とに基づいて、ロープ920の各々の張力の垂直成分からロープ支持位置の加減速に基づく成分を減算する補正を行う。
 これにより、重心位置検出装置200は、トロリ910の加減速中においても、吊荷C11の完成力の影響を低減させて、吊荷の重心の水平方向の位置をより正確に求めることができる。
Further, the acceleration / deceleration tension correction unit 202 subtracts the component based on the acceleration / deceleration of the rope support position from the vertical component of each tension of the rope 920 based on the acceleration at which the rope support position moves and the load of the suspended load C11. Make corrections.
Thereby, the center-of-gravity position detection device 200 can reduce the influence of the completion force of the suspended load C11 even during acceleration / deceleration of the trolley 910, and can more accurately determine the horizontal position of the center of gravity of the suspended load.
 また、タイミング検出部201は、吊荷C11が振れの中心に位置するタイミングを検出し、データ取得部101は、吊荷C11が振れの中心に位置するタイミングにおけるロープ920の各々の張力を取得する。タイミング検出部201が検出したタイミングにおけるデータを用いることで、重心位置検出装置200は、吊荷C11の振れの影響を低減させて、吊荷の重心の水平方向の位置をより正確に求めることができる。 The timing detection unit 201 detects the timing at which the suspended load C11 is positioned at the center of the swing, and the data acquisition unit 101 acquires the tension of each of the ropes 920 at the timing at which the suspended load C11 is positioned at the center of the swing. . By using the data at the timing detected by the timing detection unit 201, the center-of-gravity position detection device 200 can reduce the influence of the swing of the suspended load C11 and more accurately determine the horizontal position of the center of gravity of the suspended load. it can.
 また、吊具分張力補正部204は、ロープ920の各々の張力から、吊荷C11を吊るしていない状態におけるロープ920の各々の張力を減算する補正を行う。これにより、重心位置検出装置200は、吊具の重さに起因する誤差を低減させて、吊荷の重心の水平方向の位置をより正確に求めることができる。 Also, the lifting device tension correction unit 204 performs correction to subtract each tension of the rope 920 in a state where the suspended load C11 is not suspended from each tension of the rope 920. Thereby, the center-of-gravity position detecting device 200 can reduce the error due to the weight of the hanging tool and more accurately determine the horizontal position of the center of gravity of the suspended load.
 なお、第2の実施形態を第1の実施形態と独立に実施することも可能である。例えば、図7に示す構成から支持位置重心間距離算出部103とロープ長補正部104と吊荷内重心高算出部105とを除いた重心位置検出装置が、吊荷C11の重心の水平方向の位置を求めるようにできる。 It should be noted that the second embodiment can be implemented independently of the first embodiment. For example, the center-of-gravity position detection device excluding the support position center-of-gravity distance calculation unit 103, the rope length correction unit 104, and the suspended load center of gravity height calculation unit 105 from the configuration illustrated in FIG. You can ask for the position.
 なお、重心位置検出装置100や200の各部の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
It should be noted that a program for realizing all or part of the functions of each part of the gravity center position detection apparatus 100 or 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read by a computer system. The processing of each unit may be performed by executing. Here, the “computer system” includes an OS and hardware such as peripheral devices.
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
 本発明は、クレーンでロープ支持位置からロープにより吊るされた吊荷の重心位置を求める重心位置検出装置であって、前記ロープ支持位置と前記吊荷の重心との距離を求める支持位置重心間距離算出部と、前記ロープ支持位置と前記吊荷の重心との距離から前記ロープ支持位置と前記吊荷上面との距離を減算して前記吊荷の重心の当該吊荷内における高さを求める吊荷内重心高算出部と、を具備する重心位置検出装置に関する。
 本発明によれば、高さ方向の重心位置をより正確に求めることができる。
The present invention is a center-of-gravity position detection device for obtaining a center of gravity position of a suspended load suspended from a rope support position by a crane, and a distance between the support position centers of gravity for obtaining a distance between the rope support position and the center of gravity of the suspended load. A suspension for calculating the height of the center of gravity of the suspended load in the suspended load by subtracting the distance between the rope supported position and the upper surface of the suspended load from the distance between the calculating unit and the center of gravity of the suspended load. The present invention relates to a center-of-gravity position detection device comprising:
According to the present invention, the position of the center of gravity in the height direction can be obtained more accurately.
 100、200 重心位置検出装置
 101 データ取得部
 102 支持位置移動制御部
 103 支持位置重心間距離算出部
 104 ロープ長補正部
 105 吊荷内重心高算出部
 106 表示部
 201 タイミング検出部
 202 吊具分張力補正部
 203 張力垂直成分取得部
 204 加減速分張力補正部
 205 吊荷内重心水平位置算出部
DESCRIPTION OF SYMBOLS 100,200 Center-of-gravity position detection apparatus 101 Data acquisition part 102 Support position movement control part 103 Support position center-of-gravity distance calculation part 104 Rope length correction part 105 Suspension load center of gravity height calculation part 106 Display part 201 Timing detection part 202 Tension component tension Correction unit 203 Tension vertical component acquisition unit 204 Acceleration / deceleration tension correction unit 205 Center of gravity horizontal position calculation unit in suspended load

Claims (13)

  1.  クレーンでロープ支持位置からロープにより吊るされた吊荷の重心位置を求める重心位置検出装置であって、
     前記ロープ支持位置と前記吊荷の重心との距離を求める支持位置重心間距離算出部と、
     前記ロープ支持位置と前記吊荷の重心との距離から前記ロープ支持位置と前記吊荷上面との距離を減算して前記吊荷の重心の当該吊荷内における高さを求める吊荷内重心高算出部と、
     を具備する重心位置検出装置。
    A center-of-gravity position detection device for obtaining a center-of-gravity position of a suspended load suspended from a rope support position by a crane,
    A support position center-of-gravity distance calculation unit for obtaining a distance between the rope support position and the center of gravity of the suspended load;
    The center-of-gravity height in the suspended load is obtained by subtracting the distance between the rope support position and the upper surface of the suspended load from the distance between the rope-supported position and the center of gravity of the suspended load to obtain the height of the suspended load's center of gravity in the suspended load. A calculation unit;
    A center-of-gravity position detection device comprising:
  2.  前記支持位置重心間距離算出部は、前記吊荷に振れが発生している状態での当該吊荷の振れ量および当該吊荷の加速度に基づいて、前記ロープ支持位置と前記吊荷の重心との距離を求める請求項1に記載の重心位置検出装置。 The distance calculation unit between the support position center of gravity is based on the swing amount of the suspended load and the acceleration of the suspended load in a state where the suspended load is shaken, and the center of gravity of the suspended load and the suspended load. The center-of-gravity position detection device according to claim 1, wherein the distance is calculated.
  3.  前記支持位置重心間距離算出部は、前記吊荷に振れが発生している状態での当該吊荷の振れ周期に基づいて、前記ロープ支持位置と前記吊荷の重心との距離を求める請求項1に記載の重心位置検出装置。 The distance calculation unit between the support position centers of gravity calculates a distance between the rope support position and the center of gravity of the suspended load based on a swing period of the suspended load in a state in which the suspended load is shaken. The center-of-gravity position detection device according to 1.
  4.  前記吊荷に振れが発生していない場合、前記ロープ支持位置を移動させて前記吊荷に振れを発生させる支持位置移動制御部を具備する請求項2に記載の重心位置検出装置。 The center-of-gravity position detection device according to claim 2, further comprising a support position movement control unit configured to move the rope support position and generate the shake of the suspended load when the suspended load is not shaken.
  5.  前記吊荷に振れが発生していない場合、前記ロープ支持位置を移動させて前記吊荷に振れを発生させる支持位置移動制御部を具備する請求項3に記載の重心位置検出装置。 4. The center-of-gravity position detection device according to claim 3, further comprising: a support position movement control unit configured to move the rope support position to generate a shake of the suspended load when the suspended load is not shaken.
  6.  前記ロープの長さに当該ロープの伸び量を含める補正を行い、補正後のロープの長さから前記ロープ支持位置と前記吊荷上面との距離を求めるロープ長補正部を具備し、
     前記吊荷内重心高算出部は、前記ロープ長補正部が求めた前記ロープ支持位置と前記吊荷上面との距離に基づいて、前記吊荷の重心の当該吊荷内における高さを求める請求項1に記載の重心位置検出装置。
    The rope length is corrected to include the amount of the rope in the rope length, and includes a rope length correction unit that determines the distance between the rope support position and the upper surface of the suspended load from the corrected rope length,
    The suspended load center-of-gravity height calculation unit obtains the height of the center of gravity of the suspended load in the suspended load based on the distance between the rope support position and the suspended load upper surface obtained by the rope length correction unit. Item 4. The center-of-gravity position detection device according to Item 1.
  7.  前記クレーンは前記ロープを支持するトロリを備え、
     前記支持位置重心間距離算出部は、前記トロリの加速度に前記吊荷の振れ加速度を加えた前記吊荷の加速度に基づいて、前記ロープ支持位置と前記吊荷の重心との距離を求める請求項2に記載の重心位置検出装置。
    The crane includes a trolley for supporting the rope;
    The distance calculation unit between the support position centers of gravity calculates a distance between the rope support position and the center of gravity of the suspended load based on the acceleration of the suspended load obtained by adding the swing acceleration of the suspended load to the acceleration of the trolley. The center-of-gravity position detection apparatus according to 2.
  8.  前記吊荷は複数の前記ロープにて吊るされており、
     前記ロープの各々の張力と、垂直方向に対する前記ロープの各々の傾きとに基づいて、前記ロープの各々の張力の垂直成分を求める張力垂直成分取得部と、
     前記ロープの各々の張力の垂直成分に基づいて、前記吊荷の重心の当該吊荷内における位置を、水平方向のうち少なくとも1方向について求める吊荷内重心水平位置算出部と、
     を具備する請求項1に記載の重心位置検出装置。
    The suspended load is suspended by a plurality of the ropes,
    A tension vertical component acquisition unit that obtains a vertical component of the tension of each of the ropes based on the tension of each of the ropes and the inclination of each of the ropes with respect to the vertical direction;
    Based on the vertical component of the tension of each of the ropes, the position of the center of gravity of the suspended load in the suspended load, the center of gravity horizontal position calculation unit in the suspended load for obtaining at least one of the horizontal directions, and
    The center-of-gravity position detection device according to claim 1, comprising:
  9.  前記ロープ支持位置が移動する加速度と前記吊荷の荷重とに基づいて、前記ロープの各々の張力の垂直成分から前記ロープ支持位置の加減速に基づく成分を減算する補正を行う加減速分張力補正部を具備し、
     前記吊荷内重心水平位置算出部は、補正後の張力の垂直成分に基づいて、前記吊荷の重心の当該吊荷内における位置を求める請求項8に記載の重心位置検出装置。
    Acceleration / deceleration tension correction for correcting the subtraction of the component based on the acceleration / deceleration of the rope support position from the vertical component of the tension of each rope based on the acceleration at which the rope support position moves and the load of the suspended load Comprising
    The gravity center position detection device according to claim 8, wherein the suspended load center-of-gravity horizontal position calculation unit obtains the position of the center of gravity of the suspended load in the suspended load based on the corrected vertical component of the tension.
  10.  前記吊荷が振れの中心に位置するタイミングを検出するタイミング検出部と、
     前記吊荷が振れの中心に位置するタイミングにおける前記ロープの各々の張力を取得する張力取得部とを具備し、
     前記張力垂直成分取得部は、前記吊荷が振れの中心に位置するタイミングにおける前記ロープの各々の張力に基づいて、前記ロープの各々の張力の垂直成分を求める請求項8に記載の重心位置検出装置。
    A timing detection unit for detecting the timing at which the suspended load is located at the center of deflection;
    A tension acquisition unit that acquires the tension of each of the ropes at a timing at which the suspended load is located at the center of deflection,
    9. The center-of-gravity position detection according to claim 8, wherein the tension vertical component acquisition unit obtains a vertical component of each tension of the rope based on a tension of each rope at a timing at which the suspended load is located at the center of the swing. apparatus.
  11.  前記ロープの各々の張力から、前記吊荷を吊るしていない状態における前記ロープの各々の張力を減算する補正を行う吊具分張力補正部を具備し、
     前記張力垂直成分取得部は、補正後の前記ロープの各々の張力の垂直成分を求める請求項8に記載の重心位置検出装置。
    A tension component correction unit that performs correction for subtracting the tension of each of the ropes in a state in which the suspended load is not suspended from the tension of each of the ropes,
    The center-of-gravity position detection device according to claim 8, wherein the tension vertical component acquisition unit calculates a vertical component of each tension of the rope after correction.
  12.  クレーンでロープ支持位置からロープにより吊るされた吊荷の重心位置を求める重心位置検出装置の重心位置検出方法であって、
     前記ロープ支持位置と前記吊荷の重心との距離を求める支持位置重心間距離算出ステップと、
     前記ロープ支持位置と前記吊荷の重心との距離から前記ロープ支持位置と前記吊荷上面との距離を減算して前記吊荷の重心の当該吊荷内における高さを求める吊荷内重心高算出ステップと、
     を具備する重心位置検出方法。
    A center-of-gravity position detection method for a center-of-gravity position detection device that obtains the position of the center of gravity of a suspended load suspended from a rope support position by a crane,
    A distance calculation step between the support position and the center of gravity to obtain the distance between the rope support position and the center of gravity of the suspended load;
    The center-of-gravity height in the suspended load is obtained by subtracting the distance between the rope support position and the upper surface of the suspended load from the distance between the rope-supported position and the center of gravity of the suspended load to obtain the height of the suspended load's center of gravity in the suspended load. A calculation step;
    A center of gravity position detection method comprising:
  13.  クレーンでロープ支持位置からロープにより吊るされた吊荷の重心位置を求める重心位置検出装置としてのコンピュータに、
     前記ロープ支持位置と前記吊荷の重心との距離を求める支持位置重心間距離算出ステップと、
     前記ロープ支持位置と前記吊荷の重心との距離から前記ロープ支持位置と前記吊荷上面との距離を減算して前記吊荷の重心の当該吊荷内における高さを求める吊荷内重心高算出ステップと、
     を実行させるためのプログラム。
    In the computer as the center of gravity position detection device that obtains the center of gravity position of the suspended load suspended from the rope support position by the crane,
    A distance calculation step between the support position and the center of gravity to obtain the distance between the rope support position and the center of gravity of the suspended load;
    The center-of-gravity height in the suspended load is obtained by subtracting the distance between the rope support position and the upper surface of the suspended load from the distance between the rope-supported position and the center of gravity of the suspended load to obtain the height of the suspended load's center of gravity in the suspended load. A calculation step;
    A program for running
PCT/JP2013/067496 2012-10-03 2013-06-26 Gravity center position detection device, gravity center position detection method, and program WO2014054318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012221474A JP2014073894A (en) 2012-10-03 2012-10-03 Center of gravity position detection device, center of gravity position detection method, and program
JP2012-221474 2012-10-03

Publications (1)

Publication Number Publication Date
WO2014054318A1 true WO2014054318A1 (en) 2014-04-10

Family

ID=50434654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067496 WO2014054318A1 (en) 2012-10-03 2013-06-26 Gravity center position detection device, gravity center position detection method, and program

Country Status (2)

Country Link
JP (1) JP2014073894A (en)
WO (1) WO2014054318A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776022A (en) * 2014-12-24 2016-07-20 中国二十冶集团有限公司 Disassembling method of mill housing during relocation
EP3626673A4 (en) * 2017-05-15 2021-03-10 Hitachi Industrial Equipment Systems Co., Ltd. Hoisting machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7069888B2 (en) * 2018-03-15 2022-05-18 株式会社タダノ Crane and crane control method
KR102031140B1 (en) * 2019-03-05 2019-11-08 지에스아이 주식회사 The crane and method for controlling the crane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159998A (en) * 1990-10-24 1992-06-03 Mitsubishi Heavy Ind Ltd Swinging control unit
JPH04213595A (en) * 1991-02-05 1992-08-04 Nippon Steel Corp Lift state detection method for lifting load
JPH08157181A (en) * 1994-12-02 1996-06-18 Meidensha Corp Swing prevention control method of crane
JPH09267989A (en) * 1996-02-02 1997-10-14 Nkk Corp Control method for preventing oscillation of hoisted load of crane
JPH1160153A (en) * 1997-08-19 1999-03-02 Sumitomo Heavy Ind Ltd Swing angle measuring device for hoisted load on crane
JP2012037469A (en) * 2010-08-11 2012-02-23 Yamato Scale Co Ltd Center of gravity position measuring equipment
JP2012078317A (en) * 2010-10-06 2012-04-19 Yamato Scale Co Ltd Hanging device and barycentric position measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159998A (en) * 1990-10-24 1992-06-03 Mitsubishi Heavy Ind Ltd Swinging control unit
JPH04213595A (en) * 1991-02-05 1992-08-04 Nippon Steel Corp Lift state detection method for lifting load
JPH08157181A (en) * 1994-12-02 1996-06-18 Meidensha Corp Swing prevention control method of crane
JPH09267989A (en) * 1996-02-02 1997-10-14 Nkk Corp Control method for preventing oscillation of hoisted load of crane
JPH1160153A (en) * 1997-08-19 1999-03-02 Sumitomo Heavy Ind Ltd Swing angle measuring device for hoisted load on crane
JP2012037469A (en) * 2010-08-11 2012-02-23 Yamato Scale Co Ltd Center of gravity position measuring equipment
JP2012078317A (en) * 2010-10-06 2012-04-19 Yamato Scale Co Ltd Hanging device and barycentric position measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776022A (en) * 2014-12-24 2016-07-20 中国二十冶集团有限公司 Disassembling method of mill housing during relocation
EP3626673A4 (en) * 2017-05-15 2021-03-10 Hitachi Industrial Equipment Systems Co., Ltd. Hoisting machine

Also Published As

Publication number Publication date
JP2014073894A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
RU2537728C2 (en) Weight registration system for load suspended on lifting crane cable
WO2014064966A1 (en) Center of gravity position detection device, center of gravity position detection method and program
JP4087847B2 (en) Method and apparatus for detecting run-out of cargo in hoisting machine
CN101723239B (en) Hanging hook attitude detection device and crane
JP4840442B2 (en) Suspended load stabilization device
WO2014054318A1 (en) Gravity center position detection device, gravity center position detection method, and program
US9523622B2 (en) Lateral rollover limit detection system
US20050224438A1 (en) Method and device for maintaining a position of a load suspended from a lifting gear
JP2014174019A (en) Device and method to measure gravity center of suspended load
US6351720B1 (en) Trolley camera position detecting apparatus
CN111465572B (en) Hoisting machine
JP2536078B2 (en) Suspended load status detection method
JP3081146B2 (en) Calibration method for crane hanging load deflection angle sensor
JP3153849B2 (en) Trolley camera position detection device
JP2020131865A (en) Safety monitoring device and safety monitoring method
JP2012025507A (en) Deflection detecting device, deflection detecting method, and crane
JPH11116183A (en) Crane rope swing angle measuring method and crane
JP2020134275A (en) Loading situation monitoring device and loading situation monitoring method
JP2766726B2 (en) Steady control device
JP6280395B2 (en) Rope trolley crane runout angle measuring device
JPH1017268A (en) Skew swing preventive method and device of crane suspending cargo
JP2001187688A (en) Crane swing detector
WO2020170873A1 (en) Crane and apparatus for detecting shaking of hanging tool of crane
JPH0650457Y2 (en) Deflection angle detector for suspended load
JP2006056648A (en) Swing quantity detecting device of suspending load, and crane therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843378

Country of ref document: EP

Kind code of ref document: A1