JP3574519B2 - Zero point correction method for deflection angle sensor for steady rest control - Google Patents

Zero point correction method for deflection angle sensor for steady rest control Download PDF

Info

Publication number
JP3574519B2
JP3574519B2 JP29200195A JP29200195A JP3574519B2 JP 3574519 B2 JP3574519 B2 JP 3574519B2 JP 29200195 A JP29200195 A JP 29200195A JP 29200195 A JP29200195 A JP 29200195A JP 3574519 B2 JP3574519 B2 JP 3574519B2
Authority
JP
Japan
Prior art keywords
sensor
deflection angle
angle sensor
output
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29200195A
Other languages
Japanese (ja)
Other versions
JPH09110373A (en
Inventor
弘 珍部
Original Assignee
日立機電工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立機電工業株式会社 filed Critical 日立機電工業株式会社
Priority to JP29200195A priority Critical patent/JP3574519B2/en
Publication of JPH09110373A publication Critical patent/JPH09110373A/en
Application granted granted Critical
Publication of JP3574519B2 publication Critical patent/JP3574519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、振れ止め制御用振れ角センサの0点補正方法に係り、特に振れ角センサの0点変動をなくし、振れ止め制御精度向を行うのに効果がある振れ止め制御用振れ角センサの0点補正方法に関するものである。
【0002】
【従来の技術】
従来クレーン等による吊り荷の振れ角検出は、図1に示すように吊り荷1はフック7を張架した吊り荷用ワイヤーロープ8を巻取ドラム9の回動にてワイヤーロープの巻き上げ、巻き下げにて吊り荷の吊垂時、クレーンのガーダ又はクラブに固定した固定側センサ6と、取付ブラケットに吊り荷の傾動により共に傾動するよう可動式に取り付けた可動側センサ4と、この可動側センサに一端部を締結したセンサロープ3と、このセンサロープの他端側を巻き取り、センサロープの張力を常に一定に保持するセンサロープ巻取用モータ2とより構成されている。従って上述のように構成された従来の振れ角センサにおいては、吊り荷1が振れると、センサロープ巻取用モータ2に一定テンションを与えられたセンサロープ3を介して自在に傾斜可能な可動側センサ4が傾き、この傾き角θに比例した出力が得られる。
【0003】
【発明が解決しようとする課題】
上記従来の振れ止め制御用振れ角センサには、吊り荷1が振れると、これに追従する可動側センサ4も傾き、この傾き角θに比例した出力が得られるが、これは静的な状態においてのみ成立するものである。
しかし、可動側センサ4内部の構成は、センサ内部に小さな振り子を持っており、この振り子が傾き、この量を電気信号に変換する構造のため、吊り荷1の振れ角θ以外に、クレーン5の走行加速度αが可動側センサ4に入力されるため、センサ4内部の振り子はこの加速度αにも反応するため、可動側センサ4単独では吊り荷1の振れ角θを高精度にて検出することは不可能である。
この対策として、従来技術では固定側センサ6を組み合わせている。すなわちクレーン5の加速度αは、移動側センサ4、固定側センサ6両方に入力されるため、両者のセンサ出力の差を取ると、αによる出力分は0となり、θのみが出力値として得られる構成となっている。
しかし、この方式の基本は、固定側センサ6の取付面は振れ角センサを使用中は、傾きの変化はないことを前提としているが、クレーンは稼働中、走行レール上を移動するため、走行レールのレベル変化により固定側センサ取付面はΔだけ傾くことになり、このため振れ角センサ出力はθではなく、θ−Δとなり、センサの0点変動となる。
すなわち、可動側センサ出力Θ1は、
Θ1=θ+f(α) (1)
固定側センサ出力Θ2は、
Θ2=f(α)+Δ (2)
Θ0=Θ1−Θ2=θ+f(α)−{f(α)+Δ}=θ−Δ (3)
ここで、
θ:吊り荷の振れ角
f(α):クレーン加速度によるセンサ出力変動
Δ:固定側センサ傾き角
α:クレーン加速度
Θ0:振れ角センサ出力
である。
従って、基準側振れ角センサの取付面が稼働中に傾くと、そのまま振れ角センサの0点変動となってしまうため、振れ止め制御精度向上に限界があるという問題点があった。
本発明は、この振れ角センサの0点変動をなくして、高精度の振れ角検出が可能なセンサを提供する振れ止め制御用振れ角センサの0点補正方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明の振れ止め制御用振れ角センサの0点補正方法は、固定側のセンサ出力分に含まれる走行レールのレベル変化によるセンサ出力をフィルタを用いて分離して、振れ角センサの0点を補正するようにしたことを特徴とする。
【0005】
上記の構成からなる本発明の振れ止め制御用振れ角センサの0点補正方法は、基準側振れ角センサの検出値より取り付け面傾斜分の出力をフィルタを組み合わせて分離し、この値により振れ角センサの0点変動を補正するので、振れ角センサの0点変動をなくすことができ、高精度の振れ角検出が可能となる。
【0006】
【発明の実施の形態】
以下、本発明の振れ止め制御用振れ角センサの0点補正方法の実施の形態を図面に基づいて説明する。
【0007】
図において1は吊り荷で、この吊り荷1はフック7を張架した吊り荷用ワイヤーロープ8を巻取ドラム9に巻き取り、吊り荷1を吊垂すると共に、クレーンのガーダ又はクラブに固定側センサ6を固定し、取付ブラケットに吊り荷の傾動により共に傾動するよう可動式に可動側センサ4を取り付けると共に、この可動側センサに一端部を締結したセンサロープ3の他端側をセンサロープ巻取用モータ2に巻き取り、センサロープの張力を常に一定に保持するように構成されている。
【0008】
従って、吊り荷1が振れると、センサロープ巻取用モータ2に一定テンションを与えられたセンサロープ3を介して自在に傾斜可能な可動側センサ4が傾き、この傾き角θに比例した出力が得られる。ただし、以上述べた状態は静的な状態においてのみ成立するものである。従って、吊り荷1の振れ角θ以外に、クレーン5の走行加速度αが可動側センサ4に入力されるため、センサ4内部の振り子はこの加速度αにも反応して、可動側センサ4の単独では吊り荷1の振れ角θを高精度にて検出することは不可能である。このため、固定側センサ6を組み合わせ、クレーン5の加速度αを、移動側センサ4、固定側センサ6両方に入力し、両センサのセンサ出力の差を取って、クレーン5の加速度αによる出力分を0とし、θのみが出力値として得られるようにする。
【0009】
この振れ角センサの0点変動、上記(3)式では、Δ分は、高精度振れ止め制御を行う上では大きな障害となっていた。この対策として、固定側センサ出力Θ2の出力には(2)式でも明らかな如く0点変動分Δがf(α)分と合成され混在しており、この中よりΔ分のみ取り出すためにフィルタを介して分離し、このΔを(3)式に加算することによりΘ0=θとなるようにした。
【0010】
本発明の振れ角センサの0点補正回路を図2に示す。固定側センサ6に作用するクレーンの加速度αは、走行制御装置からの指令加速度βとノイズ分、すなわちクレーン各部のたわみ等により発生する振動加速度δ(t)の合成となり、下式となる。
α=β+δ(t) (4)
ここで、
β:指令加速度
δ(t):振動加速度
このため、固定側センサ出力Θ2の出力波形は図3のようになっている。
【0011】
このため、ノイズフィルタを介した出力Θ3は、
【式1】

Figure 0003574519
となり、図4に示すなめらかな波形となる。
【0012】
この図4において直流分、すなわちΔを分離するため、下記手法を採用する。すなわち、指令加速度βは既知のため、理論上得られる振れ角モデルf(β)により、理論上の振れ角を計算し、フィルタを介して理論上の下記式を得る。
【式2】
Figure 0003574519
ここで、
f(β):指令加速度にて得られる理論上の振れ角
Θ4:フィルタを介した理論上の振れ角
【0013】
これはΔ分を含まない図5となる。このため、ノイズフィルタを介した出力Θ3とフィルタを介した理論上の振れ角Θ4との差Θ5は、
【式3】
Figure 0003574519
Δは直流分につき、
Θ5≒Δ
となり、図6に示す値となり、0点変動分Δが固定側センサ出力Θ2より分離されたことになる。
【0014】
このため、補正後の出力Θ6は、
Θ6=Θ0+Θ5=θ−Δ+Δ=θ
このように、0点変動分Δを除去された振れ角θが検出される。
【0015】
【発明の効果】
本発明の振れ止め制御用振れ角センサの0点補正方法によれば、クレーン全体が走行レールのレベル変化により傾いても、振れ角センサの0点変動は発生せず、正確な振れ角検出が可能となり、高精度な振れ止め制御が可能となる。
【図面の簡単な説明】
【図1】本発明の振れ止め制御用振れ角センサの第1実施例を示す説明図である。
【図2】本発明の0点変動補正制御方法を示すブロック図である。
【図3】0点変動分を分離する段階での出力波形図である。
【図4】0点変動分を分離する段階での出力波形図である。
【図5】0点変動分を分離する段階での出力波形図である。
【図6】0点変動分を分離する段階での出力波形図である。
【符号の説明】
1 吊り荷
2 センサロープ巻取用モータ
3 センサロープ
4 可動側センサ
5 クレーン
6 固定側センサ
7 フック
8 ワイヤーロープ
9 巻取ドラム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a zero-point correction method for a steady-state control shake angle sensor. In particular, the present invention relates to a steady-state control shake angle sensor that is effective for eliminating zero-point fluctuation of the steady-state control sensor and improving the accuracy of steady-state control. It relates to a zero point correction method.
[0002]
[Prior art]
Conventionally, the swing angle of a suspended load by a crane or the like is detected by, as shown in FIG. 1, lifting a wire rope 8 for a suspended load 1 with a hook 7 stretched around the wire rope 8 by rotating a winding drum 9. A fixed-side sensor 6 fixed to a girder or a club of a crane when a suspended load is suspended by a lowering; a movable-side sensor 4 movably mounted on a mounting bracket so as to be tilted together by the tilt of the suspended load; It comprises a sensor rope 3 having one end fastened to the sensor, and a sensor rope winding motor 2 which winds the other end of the sensor rope and always keeps the tension of the sensor rope constant. Therefore, in the conventional swing angle sensor configured as described above, when the suspended load 1 swings, the movable side that can tilt freely through the sensor rope 3 to which the sensor rope winding motor 2 is given a constant tension. The sensor 4 is tilted, and an output proportional to the tilt angle θ is obtained.
[0003]
[Problems to be solved by the invention]
When the suspended load 1 oscillates, the movable-side sensor 4 following the suspended load 1 also tilts, and an output proportional to the tilt angle θ is obtained. Holds only in.
However, the configuration inside the movable side sensor 4 has a small pendulum inside the sensor, and this pendulum is tilted. Since the amount is converted into an electric signal, the crane 5 is used in addition to the swing angle θ of the suspended load 1. Is input to the movable sensor 4, and the pendulum inside the sensor 4 also responds to the acceleration α. Therefore, the movable sensor 4 alone detects the swing angle θ of the suspended load 1 with high accuracy. It is impossible.
As a countermeasure against this, the conventional technology combines a fixed sensor 6. That is, since the acceleration α of the crane 5 is input to both the moving-side sensor 4 and the fixed-side sensor 6, if the difference between the sensor outputs is taken, the output component due to α becomes 0, and only θ is obtained as the output value. It has a configuration.
However, the basic principle of this method is that the mounting surface of the fixed-side sensor 6 does not change its inclination when the deflection angle sensor is used, but the crane moves on the traveling rail during operation. Due to the level change of the rail, the fixed-side sensor mounting surface is tilted by Δ, so that the output of the deflection angle sensor becomes θ-Δ instead of θ, and the sensor changes by zero point.
That is, the movable-side sensor output # 1 is
Θ1 = θ + f (α) (1)
The fixed-side sensor output Θ2 is
Θ2 = f (α) + Δ (2)
Θ0 = Θ1-Θ2 = θ + f (α)-{f (α) + Δ} = θ-Δ (3)
here,
θ: swing angle of the suspended load f (α): sensor output variation due to crane acceleration Δ: fixed-side sensor tilt angle α: crane acceleration Θ0: swing angle sensor output.
Therefore, if the mounting surface of the reference-side deflection angle sensor is tilted during operation, the deflection angle sensor changes to zero point as it is, and there is a problem that the improvement in the accuracy of the deflection control is limited.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for correcting a zero point of a shake angle sensor for a steady rest control which eliminates the zero point fluctuation of the shake angle sensor and provides a sensor capable of detecting a shake angle with high accuracy.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the zero point correction method of the steady-state control deflection angle sensor of the present invention separates the sensor output due to the level change of the traveling rail included in the fixed-side sensor output using a filter, It is characterized in that the zero point of the deflection angle sensor is corrected.
[0005]
In the zero-point correction method of the steady-state control shake angle sensor according to the present invention having the above-described configuration, the output of the mounting surface inclination is separated from the detected value of the reference-side shake angle sensor by combining a filter, and the shake angle is determined by the value. Since the zero-point fluctuation of the sensor is corrected, the zero-point fluctuation of the deflection angle sensor can be eliminated, and the deflection angle can be detected with high accuracy.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for correcting a zero point of a shake angle sensor for steadying control according to the present invention will be described with reference to the drawings.
[0007]
In the figure, reference numeral 1 denotes a suspended load. The suspended load 1 winds a suspended load wire rope 8 on a hook 7 around a winding drum 9, suspends the suspended load 1, and fixes the suspended load 1 to a girder or a club of a crane. The movable sensor 4 is fixed to the mounting bracket, and the movable sensor 4 is movably attached to the mounting bracket so as to be tilted together by the tilt of the suspended load. The other end of the sensor rope 3 having one end fastened to the movable sensor is connected to the sensor rope. The winding is carried out by the winding motor 2 so that the tension of the sensor rope is always kept constant.
[0008]
Therefore, when the suspended load 1 swings, the movable-side sensor 4 that can be freely tilted via the sensor rope 3 provided with a constant tension to the sensor rope winding motor 2 tilts, and an output proportional to the tilt angle θ is generated. can get. However, the state described above is established only in a static state. Therefore, since the traveling acceleration α of the crane 5 is input to the movable sensor 4 in addition to the swing angle θ of the suspended load 1, the pendulum inside the sensor 4 also responds to the acceleration α, and the movable sensor 4 Then, it is impossible to detect the deflection angle θ of the suspended load 1 with high accuracy. Therefore, the fixed-side sensor 6 is combined, the acceleration α of the crane 5 is input to both the movable-side sensor 4 and the fixed-side sensor 6, and the difference between the sensor outputs of both sensors is calculated to obtain the output component due to the acceleration α of the crane 5. Is set to 0, and only θ is obtained as an output value.
[0009]
In the above equation (3), the zero-point fluctuation of the deflection angle sensor, Δ, has been a major obstacle in performing high-precision anti-shake control. As a countermeasure, the output of the fixed-side sensor output Θ2 is mixed with the zero-point fluctuation Δ and f (α), as is clear from the equation (2). , And Δ is added to the equation (3) so that Θ0 = θ.
[0010]
FIG. 2 shows a zero-point correction circuit of the deflection angle sensor according to the present invention. The acceleration α of the crane acting on the fixed-side sensor 6 is a combination of the command acceleration β from the travel control device and a noise component, that is, a vibration acceleration δ (t) generated by bending of each part of the crane, and is given by the following equation.
α = β + δ (t) (4)
here,
β: commanded acceleration δ (t): vibrational acceleration For this reason, the output waveform of the fixed-side sensor output Θ2 is as shown in FIG.
[0011]
Therefore, the output Θ3 through the noise filter is
(Equation 1)
Figure 0003574519
And the smooth waveform shown in FIG.
[0012]
In FIG. 4, the following method is employed to separate the DC component, that is, Δ. That is, since the command acceleration β is known, the theoretical deflection angle is calculated by the theoretically obtained deflection angle model f (β), and the following theoretical formula is obtained through the filter.
[Equation 2]
Figure 0003574519
here,
f (β): theoretical deflection angle obtained at the commanded acceleration Θ4: theoretical deflection angle via a filter
This results in FIG. 5 not including the Δ component. Therefore, the difference Θ5 between the output Θ3 through the noise filter and the theoretical swing angle Θ4 through the filter is:
[Equation 3]
Figure 0003574519
Δ per DC component,
Θ5 ≒ Δ
The value shown in FIG. 6 is obtained, and the zero-point variation Δ is separated from the fixed-side sensor output Θ2.
[0014]
Therefore, the corrected output Θ6 is
Θ6 = Θ0 + Θ5 = θ−Δ + Δ = θ
As described above, the deflection angle θ from which the zero-point variation Δ has been removed is detected.
[0015]
【The invention's effect】
According to the method of correcting the zero point of the deflection angle sensor for steady rest control of the present invention, even when the entire crane is tilted due to the change in the level of the traveling rail, the zero point variation of the deflection angle sensor does not occur, and accurate deflection angle detection can be performed. This makes it possible to perform highly accurate anti-sway control.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a first embodiment of a deflection angle sensor for steadying control according to the present invention.
FIG. 2 is a block diagram illustrating a zero-point fluctuation correction control method according to the present invention.
FIG. 3 is an output waveform diagram at a stage of separating a zero-point variation.
FIG. 4 is an output waveform diagram at a stage of separating a zero-point variation.
FIG. 5 is an output waveform diagram at a stage of separating a zero-point variation.
FIG. 6 is an output waveform diagram at the stage of separating a zero-point variation.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 suspended load 2 sensor rope winding motor 3 sensor rope 4 movable side sensor 5 crane 6 fixed side sensor 7 hook 8 wire rope 9 winding drum

Claims (1)

吊り荷の振れ角検出のために、固定側と可動側に設けたセンサとを組み合わせて検出する振れ止め制御用振れ角センサにおいて、固定側のセンサ出力分に含まれる走行レールのレベル変化によるセンサ出力をフィルタを用いて分離して、振れ角センサの0点を補正することを特徴とする振れ止め制御用振れ角センサの0点補正方法。In the steady-state control swing angle sensor that detects the swing angle of the suspended load by combining the sensors provided on the fixed side and the movable side, a sensor based on the level change of the traveling rail included in the sensor output of the fixed side A method for correcting a zero point of a shake angle sensor for shake prevention control , comprising separating an output using a filter and correcting the zero point of the shake angle sensor.
JP29200195A 1995-10-13 1995-10-13 Zero point correction method for deflection angle sensor for steady rest control Expired - Fee Related JP3574519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29200195A JP3574519B2 (en) 1995-10-13 1995-10-13 Zero point correction method for deflection angle sensor for steady rest control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29200195A JP3574519B2 (en) 1995-10-13 1995-10-13 Zero point correction method for deflection angle sensor for steady rest control

Publications (2)

Publication Number Publication Date
JPH09110373A JPH09110373A (en) 1997-04-28
JP3574519B2 true JP3574519B2 (en) 2004-10-06

Family

ID=17776248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29200195A Expired - Fee Related JP3574519B2 (en) 1995-10-13 1995-10-13 Zero point correction method for deflection angle sensor for steady rest control

Country Status (1)

Country Link
JP (1) JP3574519B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115458A (en) * 2020-04-01 2020-05-08 湖南三一塔式起重机械有限公司 Load position calculation device and crane

Also Published As

Publication number Publication date
JPH09110373A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP4840442B2 (en) Suspended load stabilization device
JPH04120434A (en) Model supporting mechanism of wind tunnel testing apparatus
JP2572724B2 (en) Turning motion prevention device for container cranes
JP3574519B2 (en) Zero point correction method for deflection angle sensor for steady rest control
JP7117852B2 (en) hoisting machine
WO2014054318A1 (en) Gravity center position detection device, gravity center position detection method, and program
JP2536078B2 (en) Suspended load status detection method
JP3081146B2 (en) Calibration method for crane hanging load deflection angle sensor
JPH10139368A (en) Bracing and positioning control device for hung load
JPH08143273A (en) Detecting method for deflection angle of crane and deflection angle sensor for crane
JPH08110225A (en) Inclination measuring apparatus
JPH09272605A (en) Running controller for stacker crane
JP2766726B2 (en) Steady control device
JP3277802B2 (en) crane
JPH0891774A (en) Method and device for swing stop control of crane
JPH0557526B2 (en)
JPH06191790A (en) Device for detecting swing angle and swing angular speed of hanging load
JP3215753B2 (en) Crane steady rest control method
JPH0727774A (en) Detecting apparatus for swinging of crane-suspended load
JPS62238184A (en) Steering controller for motorcycle
JPH0958998A (en) Deflection preventive method of carrier car
WO2020170873A1 (en) Crane and apparatus for detecting shaking of hanging tool of crane
JP2696427B2 (en) Measuring device for tilt angle of moving object
JP3261210B2 (en) Crane runout prevention method and crane device with runout prevention function
JPH04223992A (en) Rope swinging angle detecting device of crane

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees