JPH09110373A - Zero point compensating method of swing angle sensor for swing preventing control - Google Patents

Zero point compensating method of swing angle sensor for swing preventing control

Info

Publication number
JPH09110373A
JPH09110373A JP29200195A JP29200195A JPH09110373A JP H09110373 A JPH09110373 A JP H09110373A JP 29200195 A JP29200195 A JP 29200195A JP 29200195 A JP29200195 A JP 29200195A JP H09110373 A JPH09110373 A JP H09110373A
Authority
JP
Japan
Prior art keywords
sensor
swing
zero point
angle sensor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29200195A
Other languages
Japanese (ja)
Other versions
JP3574519B2 (en
Inventor
Hiroshi Chinbe
弘 珍部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP29200195A priority Critical patent/JP3574519B2/en
Publication of JPH09110373A publication Critical patent/JPH09110373A/en
Application granted granted Critical
Publication of JP3574519B2 publication Critical patent/JP3574519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a zero point compensating method of a swing angle sensor for swing preventing control angle sensor, dispensing with any zero point variation in this sensor, and offering such a sensor as capable of detecting a highly accurate swing angle. SOLUTION: In this swing angle sensor for swing preventing control to detect a deviation angle after combining two sensors installed both fixed and movable sides together for detecting the swing angle with a lifting load, an extent of sensor output being contained in an output part of the sensor 6 at the fixed side is separated of its DC part alone with a filter, through which a zero point of the swing angle sensor is compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、振れ止め制御用振
れ角センサの0点補正方法に係り、特に振れ角センサの
0点変動をなくし、振れ止め制御精度向を行うのに効果
がある振れ止め制御用振れ角センサの0点補正方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero-point correction method of a shake angle sensor for steady rest control, and in particular, it is effective in eliminating the zero point variation of the shake angle sensor and achieving a steady rest control accuracy. The present invention relates to a zero-point correction method for a shake control deflection angle sensor.

【0002】[0002]

【従来の技術】従来クレーン等による吊り荷の振れ角検
出は、図1に示すように吊り荷1はフック7を張架した
吊り荷用ワイヤーロープ8を巻取ドラム9の回動にてワ
イヤーロープの巻き上げ、巻き下げにて吊り荷の吊垂
時、クレーンのガーダ又はクラブに固定した固定側セン
サ6と、取付ブラケットに吊り荷の傾動により共に傾動
するよう可動式に取り付けた可動側センサ4と、この可
動側センサに一端部を締結したセンサロープ3と、この
センサロープの他端側を巻き取り、センサロープの張力
を常に一定に保持するセンサロープ巻取用モータ2とよ
り構成されている。従って上述のように構成された従来
の振れ角センサにおいては、吊り荷1が振れると、セン
サロープ巻取用モータ2に一定テンションを与えられた
センサロープ3を介して自在に傾斜可能な可動側センサ
4が傾き、この傾き角θに比例した出力が得られる。
2. Description of the Related Art Conventionally, for detecting the deflection angle of a suspended load by a crane or the like, as shown in FIG. When hanging a load by hoisting or lowering the rope, a fixed-side sensor 6 fixed to a girder or a club of a crane and a movable-side sensor 4 movably attached to a mounting bracket so as to be tilted together by tilting of the load. And a sensor rope 3 having one end fastened to the movable sensor, and a sensor rope winding motor 2 that winds the other end of the sensor rope to keep the tension of the sensor rope constant. There is. Therefore, in the conventional deflection angle sensor configured as described above, when the suspended load 1 swings, the movable side that can freely tilt through the sensor rope 3 that is given a constant tension to the sensor rope winding motor 2 The sensor 4 tilts, and an output proportional to the tilt angle θ is obtained.

【0003】[0003]

【発明が解決しようとする課題】上記従来の振れ止め制
御用振れ角センサには、吊り荷1が振れると、これに追
従する可動側センサ4も傾き、この傾き角θに比例した
出力が得られるが、これは静的な状態においてのみ成立
するものである。しかし、可動側センサ4内部の構成
は、センサ内部に小さな振り子を持っており、この振り
子が傾き、この量を電気信号に変換する構造のため、吊
り荷1の振れ角θ以外に、クレーン5の走行加速度αが
可動側センサ4に入力されるため、センサ4内部の振り
子はこの加速度αにも反応するため、可動側センサ4単
独では吊り荷1の振れ角θを高精度にて検出することは
不可能である。この対策として、従来技術では固定側セ
ンサ6を組み合わせている。すなわちクレーン5の加速
度αは、移動側センサ4、固定側センサ6両方に入力さ
れるため、両者のセンサ出力の差を取ると、αによる出
力分は0となり、θのみが出力値として得られる構成と
なっている。しかし、この方式の基本は、固定側センサ
6の取付面は振れ角センサを使用中は、傾きの変化はな
いことを前提としているが、クレーンは稼働中、走行レ
ール上を移動するため、走行レールのレベル変化により
固定側センサ取付面はΔだけ傾くことになり、このため
振れ角センサ出力はθではなく、θ−Δとなり、センサ
の0点変動となる。すなわち、可動側センサ出力Θ1
は、 Θ1=θ+f(α) (1) 固定側センサ出力Θ2は、 Θ2=f(α)+Δ (2) Θ0=Θ1−Θ2=θ+f(α)−{f(α)+Δ}=θ−Δ (3) ここで、 θ:吊り荷の振れ角 f(α):クレーン加速度によるセンサ出力変動 Δ:固定側センサ傾き角 α:クレーン加速度 Θ0:振れ角センサ出力 である。従って、基準側振れ角センサの取付面が稼働中
に傾くと、そのまま振れ角センサの0点変動となってし
まうため、振れ止め制御精度向上に限界があるという問
題点があった。本発明は、この振れ角センサの0点変動
をなくして、高精度の振れ角検出が可能なセンサを提供
する振れ止め制御用振れ角センサの0点補正方法を提供
することを目的とする。
In the conventional steady-state control deflection angle sensor described above, when the suspended load 1 swings, the movable side sensor 4 that follows the swing load 1 also tilts, and an output proportional to this tilt angle θ is obtained. However, this is true only in the static state. However, the internal structure of the movable side sensor 4 has a small pendulum inside the sensor, and this pendulum tilts and converts this amount into an electric signal. Therefore, in addition to the swing angle θ of the suspended load 1, the crane 5 Since the traveling acceleration α of the moving sensor 4 is input to the movable side sensor 4, the pendulum inside the sensor 4 also reacts to this acceleration α, and the movable side sensor 4 alone detects the swing angle θ of the suspended load 1 with high accuracy. Is impossible. As a countermeasure against this, in the prior art, the fixed side sensor 6 is combined. That is, the acceleration α of the crane 5 is input to both the moving-side sensor 4 and the fixed-side sensor 6, so if the difference between the sensor outputs of both is taken, the output by α becomes 0, and only θ is obtained as the output value. It is composed. However, the basic principle of this method is that the mounting surface of the fixed-side sensor 6 does not change its inclination while the deflection angle sensor is in use, but since the crane moves on the traveling rail during operation, Due to the level change of the rail, the fixed side sensor mounting surface is inclined by Δ, so that the deflection angle sensor output becomes θ−Δ instead of θ, and the sensor zero point fluctuation occurs. That is, the movable side sensor output Θ1
Is Θ1 = θ + f (α) (1) Fixed-side sensor output Θ2 is Θ2 = f (α) + Δ (2) Θ0 = Θ1-Θ2 = θ + f (α)-{f (α) + Δ} = θ-Δ (3) Here, θ is the deflection angle of the suspended load f (α): Sensor output fluctuation due to crane acceleration Δ: Fixed-side sensor inclination angle α: Crane acceleration θ0: Deflection angle sensor output. Therefore, if the mounting surface of the reference side deflection angle sensor is tilted during operation, the deflection angle sensor will change as it is at 0 point, and there is a problem that there is a limit to improving the precision of the steady stop control. It is an object of the present invention to provide a zero-point correction method for a shake-prevention shake angle sensor, which eliminates the zero-point fluctuation of the shake angle sensor and provides a sensor capable of highly accurate shake angle detection.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明の振れ止め制御用振れ角センサの0点補正方
法は、固定側のセンサ出力分に含まれるセンサ出力をフ
ィルタを用いて直流分のみを分離して、振れ角センサの
0点を補正するようにしたことを特徴とする。
In order to achieve the above object, a method of correcting a zero point of a shake angle sensor for steady-state control according to the present invention is a DC output using a filter for a sensor output included in a sensor output of a fixed side. It is characterized in that only the minute is separated and the zero point of the shake angle sensor is corrected.

【0005】上記の構成からなる本発明の振れ止め制御
用振れ角センサの0点補正方法は、基準側振れ角センサ
の検出値より取り付け面傾斜分の出力をフィルタを組み
合わせて分離し、この値により振れ角センサの0点変動
を補正するので、振れ角センサの0点変動をなくすこと
ができ、高精度の振れ角検出が可能となる。
According to the zero-point correction method of the steady-state control shake angle sensor of the present invention having the above-mentioned structure, the output of the mounting surface inclination is separated from the detected value of the reference side shake angle sensor by combining a filter, and this value is separated. Since the zero point fluctuation of the shake angle sensor is corrected by the above, the zero point fluctuation of the shake angle sensor can be eliminated, and the shake angle can be detected with high accuracy.

【0006】[0006]

【発明の実施の形態】以下、本発明の振れ止め制御用振
れ角センサの0点補正方法の実施の形態を図面に基づい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a zero-point correction method for a steady-angle control shake angle sensor according to the present invention will be described below with reference to the drawings.

【0007】図において1は吊り荷で、この吊り荷1は
フック7を張架した吊り荷用ワイヤーロープ8を巻取ド
ラム9に巻き取り、吊り荷1を吊垂すると共に、クレー
ンのガーダ又はクラブに固定側センサ6を固定し、取付
ブラケットに吊り荷の傾動により共に傾動するよう可動
式に可動側センサ4を取り付けると共に、この可動側セ
ンサに一端部を締結したセンサロープ3の他端側をセン
サロープ巻取用モータ2に巻き取り、センサロープの張
力を常に一定に保持するように構成されている。
In the figure, reference numeral 1 is a suspended load, and this suspended load 1 winds a suspended load wire rope 8 around which a hook 7 is stretched around a winding drum 9 to suspend the suspended load 1 and also a crane girder or The fixed side sensor 6 is fixed to the club, the movable side sensor 4 is movably attached to the mounting bracket so as to be tilted together with the tilt of the suspended load, and the other end side of the sensor rope 3 having one end fastened to the movable side sensor. Is wound around the sensor rope winding motor 2, and the tension of the sensor rope is always kept constant.

【0008】従って、吊り荷1が振れると、センサロー
プ巻取用モータ2に一定テンションを与えられたセンサ
ロープ3を介して自在に傾斜可能な可動側センサ4が傾
き、この傾き角θに比例した出力が得られる。ただし、
以上述べた状態は静的な状態においてのみ成立するもの
である。従って、吊り荷1の振れ角θ以外に、クレーン
5の走行加速度αが可動側センサ4に入力されるため、
センサ4内部の振り子はこの加速度αにも反応して、可
動側センサ4の単独では吊り荷1の振れ角θを高精度に
て検出することは不可能である。このため、固定側セン
サ6を組み合わせ、クレーン5の加速度αを、移動側セ
ンサ4、固定側センサ6両方に入力し、両センサのセン
サ出力の差を取って、クレーン5の加速度αによる出力
分を0とし、θのみが出力値として得られるようにす
る。
Therefore, when the suspended load 1 swings, the movable side sensor 4 which can freely tilt through the sensor rope 3 which is given a constant tension to the sensor rope winding motor 2 tilts, and is proportional to the tilt angle θ. Output is obtained. However,
The states described above can be established only in the static state. Therefore, since the traveling acceleration α of the crane 5 is input to the movable side sensor 4 in addition to the deflection angle θ of the suspended load 1,
The pendulum inside the sensor 4 also reacts to this acceleration α, and it is impossible for the movable sensor 4 alone to detect the swing angle θ of the suspended load 1 with high accuracy. Therefore, the fixed-side sensor 6 is combined, the acceleration α of the crane 5 is input to both the moving-side sensor 4 and the fixed-side sensor 6, the difference between the sensor outputs of both sensors is taken, and the output component due to the acceleration α of the crane 5 is output. Is set to 0 so that only θ can be obtained as an output value.

【0009】この振れ角センサの0点変動、上記(3)
式では、Δ分は、高精度振れ止め制御を行う上では大き
な障害となっていた。この対策として、固定側センサ出
力Θ2の出力には(2)式でも明らかな如く0点変動分
Δがf(α)分と合成され混在しており、この中よりΔ
分のみ取り出すためにフィルタを介して分離し、このΔ
を(3)式に加算することによりΘ0=θとなるように
した。
The zero point fluctuation of this deflection angle sensor, the above (3)
In the formula, Δ component has been a major obstacle in performing high-precision steady rest control. As a countermeasure against this, as is apparent from the equation (2), the 0-point variation Δ is combined with the f (α) component in the output of the fixed-side sensor output Θ2, and from this, Δ
Separate this through a filter to extract only
Is added to the equation (3) so that Θ0 = θ.

【0010】本発明の振れ角センサの0点補正回路を図
2に示す。固定側センサ6に作用するクレーンの加速度
αは、走行制御装置からの指令加速度βとノイズ分、す
なわちクレーン各部のたわみ等により発生する振動加速
度δ(t)の合成となり、下式となる。 α=β+δ(t) (4) ここで、 β:指令加速度 δ(t):振動加速度 このため、固定側センサ出力Θ2の出力波形は図3のよ
うになっている。
A zero-point correction circuit of the deflection angle sensor of the present invention is shown in FIG. The acceleration α of the crane acting on the fixed-side sensor 6 is a combination of the command acceleration β from the traveling control device and the noise component, that is, the vibration acceleration δ (t) generated by the deflection of each part of the crane, and is given by the following formula. α = β + δ (t) (4) where β: commanded acceleration δ (t): vibrational acceleration. Therefore, the output waveform of the fixed-side sensor output Θ2 is as shown in FIG.

【0011】このため、ノイズフィルタを介した出力Θ
3は、
Therefore, the output Θ through the noise filter is
3 is

【式1】 となり、図4に示すなめらかな波形となる。(Equation 1) And the smooth waveform shown in FIG. 4 is obtained.

【0012】この図4において直流分、すなわちΔを分
離するため、下記手法を採用する。すなわち、指令加速
度βは既知のため、理論上得られる振れ角モデルf
(β)により、理論上の振れ角を計算し、フィルタを介
して理論上の下記式を得る。
In order to separate the direct current component, that is, Δ in FIG. 4, the following method is adopted. That is, since the command acceleration β is known, the theoretical deflection angle model f
From (β), the theoretical deflection angle is calculated, and the following theoretical formula is obtained through a filter.

【式2】 ここで、 f(β):指令加速度にて得られる理論上の振れ角 Θ4:フィルタを介した理論上の振れ角(Equation 2) Here, f (β): theoretical deflection angle obtained by commanded acceleration Θ4: theoretical deflection angle through a filter

【0013】これはΔ分を含まない図5となる。このた
め、ノイズフィルタを介した出力Θ3とフィルタを介し
た理論上の振れ角Θ4との差Θ5は、
This is shown in FIG. 5, which does not include Δ. Therefore, the difference Θ5 between the output Θ3 through the noise filter and the theoretical deflection angle Θ4 through the filter is

【式3】 Δは直流分につき、 Θ5≒Δ となり、図6に示す値となり、0点変動分Δが固定側セ
ンサ出力Θ2より分離されたことになる。
(Equation 3) Δ is Θ5≈Δ for the DC component and has the value shown in FIG. 6, which means that the 0-point variation Δ is separated from the fixed-side sensor output Θ2.

【0014】このため、補正後の出力Θ6は、 Θ6=Θ0+Θ5=θ−Δ+Δ=θ このように、0点変動分Δを除去された振れ角θが検出
される。
Therefore, the corrected output .THETA.6 is: .THETA.6 = .THETA.0 + .THETA.5 = .THETA .-. DELTA. +. DELTA. =. THETA.

【0015】[0015]

【発明の効果】本発明の振れ止め制御用振れ角センサに
よれば、クレーン全体が走行レールのレベル変化により
傾いても、振れ角センサの0点変動は発生せず、正確な
振れ角検出が可能となり、高精度な振れ止め制御が可能
となる。
According to the steady angle control deflection angle sensor of the present invention, even if the entire crane is tilted due to the level change of the traveling rail, the zero point fluctuation of the deflection angle sensor does not occur, and accurate deflection angle detection is possible. It becomes possible and highly accurate steady rest control becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の振れ止め制御用振れ角センサの第1実
施例を示す説明図である。
FIG. 1 is an explanatory diagram showing a first embodiment of a steady-angle control shake angle sensor of the present invention.

【図2】本発明の0点変動補正制御方法を示すブロック
図である。
FIG. 2 is a block diagram showing a zero point variation correction control method of the present invention.

【図3】0点変動分を分離する段階での出力波形図であ
る。
FIG. 3 is an output waveform diagram at the stage of separating 0-point variation.

【図4】0点変動分を分離する段階での出力波形図であ
る。
FIG. 4 is an output waveform diagram at a stage of separating 0-point variation.

【図5】0点変動分を分離する段階での出力波形図であ
る。
FIG. 5 is an output waveform diagram at the stage of separating 0-point variation.

【図6】0点変動分を分離する段階での出力波形図であ
る。
FIG. 6 is an output waveform diagram at the stage of separating 0-point variation.

【符号の説明】[Explanation of symbols]

1 吊り荷 2 センサロープ巻取用モータ 3 センサロープ 4 可動側センサ 5 クレーン 6 固定側センサ 7 フック 8 ワイヤーロープ 9 巻取ドラム 1 Suspended Load 2 Sensor Rope Winding Motor 3 Sensor Rope 4 Movable Side Sensor 5 Crane 6 Fixed Side Sensor 7 Hook 8 Wire Rope 9 Winding Drum

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吊り荷の振れ角検出のために、固定側と
可動側に設けたセンサとを組み合わせて検出する振れ止
め制御用振れ角センサにおいて、固定側のセンサ出力分
に含まれるセンサ出力をフィルタを用いて直流分のみを
分離して、振れ角センサの0点を補正することを特徴と
する振れ止め制御用振れ角センサの0点補正方法。
1. A steady-state deflection deflection angle sensor for detecting a deflection angle of a suspended load by combining a fixed side sensor and a movable side sensor, the sensor output included in the fixed side sensor output. Is corrected by using a filter to separate only the direct current component, and the zero point of the shake angle sensor is corrected.
JP29200195A 1995-10-13 1995-10-13 Zero point correction method for deflection angle sensor for steady rest control Expired - Fee Related JP3574519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29200195A JP3574519B2 (en) 1995-10-13 1995-10-13 Zero point correction method for deflection angle sensor for steady rest control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29200195A JP3574519B2 (en) 1995-10-13 1995-10-13 Zero point correction method for deflection angle sensor for steady rest control

Publications (2)

Publication Number Publication Date
JPH09110373A true JPH09110373A (en) 1997-04-28
JP3574519B2 JP3574519B2 (en) 2004-10-06

Family

ID=17776248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29200195A Expired - Fee Related JP3574519B2 (en) 1995-10-13 1995-10-13 Zero point correction method for deflection angle sensor for steady rest control

Country Status (1)

Country Link
JP (1) JP3574519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115458A (en) * 2020-04-01 2020-05-08 湖南三一塔式起重机械有限公司 Load position calculation device and crane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115458A (en) * 2020-04-01 2020-05-08 湖南三一塔式起重机械有限公司 Load position calculation device and crane

Also Published As

Publication number Publication date
JP3574519B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP4840442B2 (en) Suspended load stabilization device
KR100314143B1 (en) Control device and control method of loading and loading part of crane
GB2300177A (en) Preventing Load Vibration
JP2572724B2 (en) Turning motion prevention device for container cranes
JP7117852B2 (en) hoisting machine
JP2008127127A (en) Skew swing stopping device of crane and crane
JP3355616B2 (en) Crane steady rest control method
JPH09110373A (en) Zero point compensating method of swing angle sensor for swing preventing control
JP2536078B2 (en) Suspended load status detection method
JP3081146B2 (en) Calibration method for crane hanging load deflection angle sensor
JPH10139368A (en) Bracing and positioning control device for hung load
JP3043923B2 (en) Crane hanging load runout detector
JP2001139266A (en) Roped elevator control device
JP2955450B2 (en) Deflection angle detection device of hanging tool in crane
JPH09272605A (en) Running controller for stacker crane
JP2766726B2 (en) Steady control device
JP4790144B2 (en) Crane steady rest control method
JP3087616B2 (en) Sway control method for crane suspended load
JPH07125945A (en) Control device for elevator
JPH0557526B2 (en)
JP5176489B2 (en) Deflection angle correction apparatus and deflection angle correction method
JPH06191790A (en) Device for detecting swing angle and swing angular speed of hanging load
JPH02132099A (en) Swing damping control device for overhead travelling crane
JPH07257876A (en) Control method for crane swing stopping operation
JPH0891774A (en) Method and device for swing stop control of crane

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040702

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080709

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees