WO2014053414A1 - Verfahren zur herstellung von salzkernen für die giesstechnische herstellung von werkstücken - Google Patents

Verfahren zur herstellung von salzkernen für die giesstechnische herstellung von werkstücken Download PDF

Info

Publication number
WO2014053414A1
WO2014053414A1 PCT/EP2013/070192 EP2013070192W WO2014053414A1 WO 2014053414 A1 WO2014053414 A1 WO 2014053414A1 EP 2013070192 W EP2013070192 W EP 2013070192W WO 2014053414 A1 WO2014053414 A1 WO 2014053414A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
cores
cavity
casting
salt
Prior art date
Application number
PCT/EP2013/070192
Other languages
English (en)
French (fr)
Inventor
Michael Mittelstaedt
Original Assignee
Mahle International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International Gmbh filed Critical Mahle International Gmbh
Priority to CN201380051090.0A priority Critical patent/CN104703725B/zh
Priority to BR112015007043A priority patent/BR112015007043A2/pt
Priority to EP13770485.4A priority patent/EP2903760A1/de
Publication of WO2014053414A1 publication Critical patent/WO2014053414A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/105Salt cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/18Pistons  having cooling means the means being a liquid or solid coolant, e.g. sodium, in a closed chamber in piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F2003/0007Monolithic pistons; One piece constructions; Casting of pistons

Definitions

  • the invention relates to a method for the production of cores for the casting production of workpieces, in particular of cores for the formation of cooling channels in casting by hand produced piston or piston parts of internal combustion engines.
  • Pistons of internal combustion engines regardless of the nature of their production near the edge of the piston crown must have cooling ducts into which oil can be injected during operation of the internal combustion engine from its crank chamber in order to prevent thermal overloading.
  • EP 0 700 454 B1 describes a process for producing a polycrystalline salt body.
  • a molten salt is first produced by melting a starting material in a crucible which is inert to the molten salt, then the molten salt is poured into a casting mold. whose bottom is kept at a temperature 1 to 50 ° C below the freezing point of the molten salt, so that forms a solid salt crust on the ground. Thereafter, the mold is maintained at a temperature below the solidification point of the molten salt until it is completely solidified into a polycrystalline salt body, which is then cooled. In particular, large-area polycrystalline salt bodies are to be produced in this way.
  • a salt core for metal casting processes is described in DE 10 2009 015 984 A1.
  • a salt melt intended for the production of the salt core is pressed with a die casting machine into the associated printing forme.
  • surface areas of the die casting machine, as far as they are exposed to the molten salt can be exposed to a lubricant, which may contain a metal bromide and / or graphite.
  • the molten salt is preferably sodium chloride and / or potassium chloride and / or potassium carbonate.
  • EP 2 425 910 A1 is related to the production of salt cores for the casting production of cylinder blocks or the like of internal combustion engines.
  • a molten salt is first prepared, the is subsequently introduced into a mold whose temperature is 0.52 to 0.7 T m , where T m is the measured in degrees Kelvin melting temperature of the molten salt.
  • T m is the measured in degrees Kelvin melting temperature of the molten salt.
  • the molten salt then solidifies in the mold so that the desired salt core is available after demolding.
  • the cooling channel In order to allow optimum heat dissipation, however, the cooling channel should have relatively large walls in comparison to the size of its cross section, in particular slot-like cooling channels with extremely long oval cross sections are desired. As a result, the cores necessary for the casting-technical production of such cooling channels must have a very filigree thin-walled structure.
  • Desirable may be cores having smooth-surfaced peripheral sides to allow cooling channels with corresponding smooth-surfaced walls and low flow resistance.
  • salt cores having a predetermined uneven surface structure may also be desired.
  • the advantage of this method is that the cooling channel already by the cast salt core in high accuracy, for example, with a defined roughness, can be provided with grooves or other surface structures, which are of great importance for the properties of the cooling channel and the heat transfer from the piston to the coolant. Such rough surfaces can be generated with compressed salt cores only with considerable reworking effort and with little repeat accuracy.
  • the object of the invention is to provide a method for the production of cores for the formation of cooling channels in casting pistons piston and piston parts, on the one hand to ensure that the cores can be easily removed from the finished workpiece, and on the other hand a high precision is ensured in the formation of the cores.
  • the invention makes use of the knowledge that molten salts are well suited for the casting production of filigree workpieces.
  • the invention recognizes the finding that well suitable die casting processes in connection with large workpieces are problematic for the production of very precise workpieces, because the molds have unavoidable flexibility, in particular elasticity, with the result that thick-walled molds due to their high wall thicknesses should be sufficiently pressure-resistant, lead to increased deviations from the nominal dimensions of the workpiece to be produced. Such is reliably prevented in the invention by limiting the pressure with which the molten salt is introduced into the cavity of the molds.
  • the high molar flow rate of the molten salt provided by the invention ensures a complete filling of the cavity in the introduction into the cavity, even if the cores are formed according to the invention toroidal with pronounced long oval cross section and very small dimensions in oval transverse direction, at the same time the advantage is achieved that a rapid heat dissipation of the Molten salt in the molds can be made possible, as it is desired for fast cycle times in the production of cores.
  • FIG. 1 shows schematically in section a cast piston with a cooling channel which has been produced by means of a salt core according to the invention
  • FIG. 2 is a perspective view of a core according to the invention with a foot gate
  • Fig. 3 is a perspective view of a core according to the invention with a Tangentialanauer
  • Fig. 4 is a perspective view of a core according to the invention with a fan gullet.
  • the piston 10 has a piston head 11 and an axially adjoining piston shaft 12.
  • the piston head 1 1 has a combustion bowl 13 and a peripheral land 14 and a peripheral ring portion 15 with annular grooves for receiving piston rings (not shown).
  • the piston 10 is in the exemplary embodiment, a one-piece cast piston made of any suitable metallic material.
  • the present invention also includes a two-piece piston having a piston head and a piston stem, wherein at least the piston head is molded of any suitable metallic material.
  • a circumferential cooling channel 16 is provided at the level of the ring section 15.
  • the cooling channel 16 has an elongated oval cross-section, the long axis is inclined to the piston axis, whereby an effective cooling esp.
  • the piston crown including the radially outer regions of the combustion bowl 13 is made possible.
  • the cooling channel 16 further comprises, in a manner known per se, in its lower wall region (not shown) in the axial direction of the piston 10, inlet or outlet channels for coolant.
  • the cores 20, 30, 40 shown in FIGS. 2 to 4 are designed as funnel-like rings, the funnel wall having a cross section in the form of an extreme long oval.
  • the small diameter of the Langoval is of the order of 2 mm, while the large diameter is of the order of ten times. This information is not intended to be limiting, but merely to make it clear that the two diameters of the oval cross section have extremely different values. sen.
  • the ring diameter can be of the order of magnitude between 50 and 200 mm.
  • the funnel shape of the core is usually adapted to the shape of the piston crown, which may have the combustion bowl 13 shown in FIG. 1, to which the intended cooling channel is arranged substantially concentrically. If the combustion bowl is designed to be shallower than shown in FIG. 1, the funnel wall of the cooling passage 16 can have a correspondingly adapted opening angle.
  • closed rings are used as cores, as shown by way of example in FIGS. 2-4.
  • the cooling channel thus formed permits a substantially uniform cooling of the piston crown along its circumference.
  • it can also be used not closed cores, which have a mostly short interruption between the later inlet and outlet of the cooling channel in the circumferential direction.
  • two or more non-contiguous cores could be used, with which separate cooling channels are formed in the piston.
  • a non-illustrated, preferably multi-part mold is used, the mold parts between them one of the shape of the cores corresponding cavity.
  • This cavity is filled with a molten salt consisting essentially of sodium chloride (NaCl), to which, for example, further chlorides or carbonates, for example of potassium, may be mixed in order to lower the melting temperature.
  • NaCl sodium chloride
  • the aim is a salt mixture whose melting temperature is on the order of 600 ° C.
  • Such a melt is introduced into the cavity of the mold via fan-like arranged feed lines, tangential cuts or axial foot cuts with a larger cross section compared to fan sections with a high flow rate of the order of 100 m / s, the feed pressure on values of less than 100 bar, typically limited to about 70 bar.
  • the limited supply pressure is essential insofar as the material of the molds has an unavoidable volume elasticity, so that at excessively high supply pressure more or less pronounced deviations from the respective nominal shape of the annular cores to be formed would have to be accepted, it being surprisingly found that the deviations from the desired shape increase with increasing wall thickness of the molds.
  • the channels forming the gate can be formed in individual dies, provided that this geometry still permits demoulding.
  • the channels that supply the melt are formed at the interface between two molds.
  • Fig. 2 shows as an embodiment of a foot gate, in which the melt is introduced into the cavity of the mold substantially in the axial direction parallel to the later position of the piston axis.
  • Fig. 3 shows as another embodiment a Tangenti- alanintroductory in which the melt enters the cavity of the mold substantially in the tangential direction through a channel whose langovaler cross section corresponds approximately to that of the later core.
  • This arrangement does not require any significant deflection of the melt at the inlet and thereby facilitates a rapid and uniform filling of the cavity in the circumferential direction at flow speeds of about 100 m / s.
  • FIG. 4 shows a further exemplary embodiment with a fan-shaped section, in which the melt is introduced into the cavity in a substantially radial direction through a channel with a long oval cross-section.
  • This is the long Aligned axis of the oval cross-section perpendicular to the piston axis and extends radially inward to the piston axis.
  • the protrusions 21, 31, 41 originating from the sections and having their respective shape on the finished core are preferably removed before casting the piston. In some cases, however, they may be retained in whole or in part.
  • an axially extending projection 21 of the core 20 can form a channel for receiving an oil jet or for discharging oil from the cooling channel 16 and completely or partially replace a bore to be attached provided therefor.
  • the projection 21 can contribute to the positional fixation of the core 20 in the casting mold during the casting of the piston.
  • Such foot cuts prove to be e.g. in broken or multi-part cores at their respective ends in the circumferential direction to be advantageous.
  • the molds When the molten salt is introduced into the cavity of the mold, the molds have an initial temperature which is on the order of magnitude about 300 ° C. below the temperature of the molten salt, so that, after filling the mold due to the large peripheral surfaces of the cores to be produced, they rapidly respond accordingly to the temperature of the molds cools and solidifies.
  • inventively provided high flow rate of the molten salt during their import into the cavity of the mold premature solidification is reliably avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Kernen für die gießtechnische Herstellung von Werkstücken, insbesondere von ringförmigen Kernen für die Ausformung von Kühlkanälen in gießtechnisch herzustellenden Kolben oder Kolbenteilen von Verbrennungsmotoren, wobei die Kerne gießtechnisch hergestellt werden, indem eine als Gießwerkstoff verwendete Salzschmelze mit hoher Fließgeschwindigkeit und begrenztem Druck in eine dem herzustellenden Kern bzw. den herzustellenden Kernen entsprechende Kavität einer Formwerkzeuganordnung eingebracht wird, wobei die Fließgeschwindigkeit und die Temperaturen der Salzschmelze und der Formteile so eingestellt werden, dass eine Erstarrung der Salzschmelze erst nach vollständiger Befüllung der Kavität eintritt, und der Druck auf einen Maximalwert begrenzt wird, bei dem eine Verformung der Formteile unter einem Toleranzwert bleibt.

Description

VERFAHREN ZUR HERSTELLUNG VON SALZKERNEN FÜR DIE GIESSTECHNISCHE
HERSTELLUNG VON WERKSTÜCKEN
Die Erfindung betrifft ein Verfahren zur Herstellung von Kernen für die gießtechnische Herstellung von Werkstücken, insbesondere von Kernen für die Ausformung von Kühlkanälen in gießtechnisch herzustellenden Kolben oder Kolbenteilen von Verbrennungsmotoren.
Kolben von Verbrennungsmotoren müssen unabhängig von der Art Ihrer Herstellung nahe des Randes des Kolbenbodens Kühlkanäle aufweisen, in die beim Betrieb des Verbrennungsmotors von dessen Kurbelraum aus Öl eingespritzt werden kann, um eine thermische Überlastung zu verhindern. In diesem Zusammenhang ist es insbesondere erwünscht, in gießtechnisch herzustellenden Kolben bzw. Kolbenteilen Kühlkanäle in Form von Ring-Kanälen mit zum Kolbenboden paralleler Ringebene ausbilden, die dann über zum Kurbelraum des Verbrennungsmotors offene Zu- und Abflüsse von einem Ölstrom durchsetzt werden können.
Bei einer gießtechnischen Herstellung der die Kühlkanäle aufweisenden Kolben bzw. Kolbenteile werden dann entsprechend ringförmige Kerne benötigt. In der Gießtechnik ist es grundsätzlich bekannt, zur Herstellung von Kernen Salzmaterialien zu verwenden, die sich aus dem fertigen Werkstück z.B. mittels Wasser o- der schwachen Säuren mit vergleichsweise geringem Aufwand auswaschen lassen.
In der EP 0 700 454 B1 wird ein Verfahren zur Herstellung eines polykristallinen Salzkörpers beschrieben. Dabei wird zunächst eine Salzschmelze durch Aufschmelzen eines Ausgangsmaterials in einem gegen die Salzschmelze inerten Schmelztiegel erzeugt, sodann wird die Salzschmelze in eine Gießform einge- bracht, deren Boden auf einer Temperatur gehalten wird, die 1 bis 50 °C unter dem Erstarrungspunkt der Salzschmelze liegt, so dass sich am Boden eine feste Salzkruste ausbildet. Danach wird die Gießform bei einer Temperatur unter dem Erstarrungspunkt der Salzschmelze gehalten, bis diese vollständig zu einem polykristallinen Salzkörper erstarrt ist, welcher sodann abgekühlt wird. Auf diese Weise sollen insbesondere großflächige polykristalline Salzkörper erzeugt werden.
Aus der DE 10 2008 004 929 A1 ist es bekannt, für die Herstellung von Salzkernen für Gießereizwecke ein Gemisch aus wasserlöslichen Salzen zu verwenden, dem ein Bindemittel beigefügt ist, welches eine Proteinkombination mit anorganischen Bestandteilen enthält. Dadurch soll gewährleistet werden, dass der hergestellte Salzkern eine gute Beständigkeit gegen das zu umgießende Metall aufweist und nur eine geringe Penetration des flüssigen Metalls zulässt.
Ein weiteres Verfahren zur Herstellung eines Salzkerns für Metallgussverfahren wird in der DE 10 2009 015 984 A1 beschrieben. Hier ist vorgesehen, den Salzkern in einem Druckgussverfahren herzustellen, wobei eine für die Herstellung des Salzkerns vorgesehene Salzschmelze mit einer Druckgießmaschine in die zugehörige Druckform gedrückt wird. Um zu gewährleisten, dass der Salzkern aus der Druckgussform leicht gelöst werden kann, können Oberflächenbereiche der Druckgießmaschine, soweit diese der Salzschmelze ausgesetzt werden, mit einem Schmiermittel beaufschlagt werden, welches ein Metallbromid und/oder Gra- fit enthalten kann. Die Salzschmelze besteht bevorzugt aus Natriumchlorid und/oder Kaliumchlorid und/oder Kaliumcarbonat.
Die EP 2 425 910 A1 steht im Zusammenhang mit der Herstellung von Salzkernen für die gusstechnische Herstellung von Zylinderblöcken oder dergleichen von Verbrennungsmotoren. Dabei wird zunächst eine Salzschmelze hergestellt, die nachfolgend in eine Form eingebracht wird, deren Temperatur bei 0,52 bis 0,7 Tm liegt, wobei Tm die in Grad Kelvin gemessene Schmelztemperatur der Salzschmelze ist. Danach erstarrt die Salzschmelze in der Form, so dass nach Ent- formung der gewünschte Salzkern zur Verfügung steht.
Aus der DE 10 2008 028 197 A1 ist bekannt, Kühlkanäle in gegossenen Kolben mit einer Rillenstruktur zu versehen und dafür geeignete Kerne aus Salzen zu pressen. Jedoch war die damit erreichbare Oberflächenqualität nicht zufriedenstellend.
Alle oben dargestellten Verfahren haben gemeinsam, dass die hergestellten Salzkerne relativ kompakt sind und dementsprechend im Vergleich zum Kernvolumen eine vergleichsweise kleine Kernoberfläche aufweisen, so dass der Wär- mefluss von der Salzschmelze in die jeweilige Form vergleichsweise langsam erfolgt.
Um eine optimale Wärmeabfuhr zu ermöglichen, sollte der Kühlkanal im Vergleich zur Größe seines Querschnitts jedoch vergleichsweise großflächige Wandungen aufweisen, insbesondere sind schlitzähnliche Kühlkanäle mit extrem langovalen Querschnitten erwünscht. Dies führt dazu, dass die zur gießtechnischen Herstellung derartiger Kühlkanäle notwendigen Kerne eine sehr filigrane dünnwandige Struktur aufweisen müssen.
Wünschenswert können Kerne sein, die glattflächige Umfangsseiten aufweisen, um Kühlkanäle mit entsprechend glattflächigen Wänden und geringem Strömungswiderstand zu ermöglichen. Alternativ können aber auch Salzkerne mit einer vorbestimmten unebenen Oberflächenstruktur erwünscht sein. Der Vorteil dieses Verfahrens besteht darin, dass der Kühlkanal bereits durch den gegossenen Salzkern in hoher Genauigkeit beispielsweise mit einer definierten Rauheit, mit Rillen oder anderen Oberflächenstrukturen versehen werden kann, die für die Eigenschaften des Kühlkanals und den Wärmeübergang vom Kolben auf das Kühlmittel von hoher Bedeutung sind. Derartige raue Oberflächen können mit ge- pressten Salzkernen nur mit erheblichem Nachbearbeitungsaufwand und wenig wiederholgenau generiert werden.
Hier setzt die Erfindung an.
Aufgabe der Erfindung ist es, ein Verfahren für die Herstellung von Kernen für die Ausformung von Kühlkanälen in gießtechnisch herzustellenden Kolben und Kolbenteilen zu schaffen, wobei einerseits gewährleistet werden soll, dass die Kerne aus dem fertigen Werkstück leicht entfernt werden können, und andererseits eine hohe Präzision bei der Ausformung der Kerne sichergestellt ist.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß dem Anspruch 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der Unteransprüche.
Die Erfindung nutzt die Erkenntnis, dass Salzschmelzen zur gießtechnischen Herstellung filigraner Werkstücke gut geeignet sind. Andererseits wird bei der Erfindung die Erkenntnis berücksichtigt, dass an sich für die Herstellung sehr präziser Werkstücke gut geeignete Druckgussverfahren im Zusammenhang mit großflächigen Werkstücken problematisch sind, weil die Formwerkzeuge eine unvermeidbare Nachgiebigkeit, insbesondere Volumenelastizität aufweisen, mit der Folge, dass dickwandige Formwerkzeuge, die aufgrund ihrer hohen Wandstärken hinreichend druckfest sein sollten, zu erhöhten Abweichungen gegenüber den Sollmaßen des herzustellenden Werkstückes führen. Derartiges wird bei der Erfindung durch Begrenzung des Druckes, mit dem die Salzschmelze in die Kavität der Formwerkzeuge eingeleitet wird, sicher verhindert. Andererseits wird durch die erfindungsgemäß vorgesehene hohe Fließgeschwindigkeit der Salzschmelze bei der Einführung in die Kavität eine vollständige Ausfüllung der Kavität gewährleistet und zwar auch dann, wenn die Kerne gemäß der Erfindung torusförmige mit ausgeprägt langovalem Querschnitt und sehr geringen Abmessungen in Ovalquerrichtung ausgebildet sind, wobei gleichzeitig der Vorteil erzielt wird, dass eine schnelle Wärmeableitung von der Salzschmelze in die Formwerkzeuge ermöglicht werden kann, wie es für schnelle Taktzeiten bei der Herstellung der Kerne erwünscht ist.
Hinsichtlich bevorzugter Merkmale der Erfindung wird auf die Ansprüche sowie die nachfolgende Erläuterung der Zeichnung verwiesen, anhand der eine besonders bevorzugte Ausgestaltung der Erfindung näher erläutert wird.
Schutz wird nicht nur für dargestellte oder angegebene Merkmalskombinationen, sondern auch für prinzipiell beliebige Kombinationen der angegebenen oder dargestellten Einzelmerkmale beansprucht.
In der Zeichnung zeigt
Fig. 1 schematisch im Schnitt einen gegossenen Kolben mit einem Kühlkanal, der mittels eines erfindungsgemäßen Salzkerns erzeugt worden ist,
Fig. 2 eine perspektivische Darstellung eines erfindungsgemäßen Kerns mit einem Fußanschnitt,
Fig. 3 eine perspektivische Darstellung eines erfindungsgemäßen Kerns mit einem Tangentialanschnitt, und Fig. 4 eine perspektivische Darstellung eines erfindungsgemäßen Kerns mit einem Fächeranschnitt.
Fig. 1 zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäßen Kolbens 10 . Der Kolben 10 weist einen Kolbenkopf 1 1 und einen sich daran axial anschließenden Kolbenschaft 12 auf. Der Kolbenkopf 1 1 weist eine Verbrennungsmulde 13 sowie einen umlaufenden Feuersteg 14 und eine umlaufende Ringpartie 15 mit Ringnuten zur Aufnahme von Kolbenringen (nicht dargestellt) auf. Der Kolben 10 ist im Ausführungsbeispiel ein einteilig gegossener Kolben aus einem beliebigen geeigneten metallischen Werkstoff. Die vorliegende Erfindung umfasst jedoch auch einen zweiteiligen Kolben mit einem Kolbenkopf und einem Kolbenschaft, wobei zumindest der Kolbenkopf aus einem beliebigen geeigneten metallischen Werkstoff gegossen ist.
Im Kolbenkopf 1 1 ist in Höhe der Ringpartie 15 ein umlaufender Kühlkanal 16 vorgesehen. Der Kühlkanal 16 weist einen länglichen ovalen Querschnitt auf, dessen lange Achse gegen die Kolbenachse geneigt ist, wodurch eine wirksame Kühlung insbes. des Kolbenbodens einschließlich der radial äußeren Bereiche der Verbrennungsmulde 13 ermöglicht wird. Der Kühlkanal 16 weist ferner in an sich bekannter Weise in seinem in Achsrichtung des Kolbens 10 unteren Wandbereich (nicht dargestellte) Zulauf- bzw. Ablaufkanäle für Kühlmittel auf.
Die in den Figuren 2 bis 4 dargestellten Kerne 20, 30, 40 sind als trichterähnliche Ringe ausgebildet, wobei die Trichterwand einen Querschnitt in Form eines extremen Langovals aufweist. Typischerweise liegt der kleine Durchmesser des Langovals in der Größenordnung von 2 mm, während der große Durchmesser größenordnungsmäßig den zehnfachen Wert aufweist. Diese Angaben sollen keinerlei Beschränkung darstellen, sondern lediglich deutlich machen, dass die beiden Durchmesser des ovalen Querschnitts extrem unterschiedliche Werte aufwei- sen können. Der Ringdurchmesser kann größenordnungsmäßig zwischen 50 und 200 mm liegen. Die Trichterform des Kerns ist in der Regel der Form des Kolbenbodens angepasst, welcher die in Fig. 1 gezeigte Verbrennungsmulde 13 aufweisen kann, zu der der vorgesehene Kühlkanal im Wesentlichen konzentrisch angeordnet ist. Falls die Verbrennungsmulde flacher als in Fig. 1 dargestellt ausgebildet ist, kann die Trichterwand des Kühlkanals 16 einen entsprechend ange- passten Öffnungswinkel aufweisen.
Vorteilhafterweise werden als Kerne geschlossene Ringe verwendet, wie sie in den Fig. 2-4 beispielhaft dargestellt sind. Durch einen im Wesentlichen rotationssymmetrischen Aufbau und eine konzentrischen Anordnung im Kolben ermöglicht der so gebildete Kühlkanal eine im Wesentlichen gleichmäßige Kühlung des Kolbenbodens entlang seines Umfangs. Es können aber auch nicht geschlossene Kerne verwendet werden, die zwischen dem späteren Ein- und Auslass des Kühlkanals im Umfangsrichtung eine zumeist kurze Unterbrechung aufweisen. Alternativ könnten auch zwei oder mehr nicht zusammenhängenden Kerne verwendet werden, mit denen im Kolben getrennte Kühlkanäle gebildet werden.
Zur Herstellung der dargestellten Kerne 20, 30, 40 wird eine nicht dargestellte, vorzugsweise mehrteilige Form verwendet, deren Formteile zwischen sich eine der Form der Kerne entsprechende Kavität umgrenzen. Diese Kavität wird mit einer Salzschmelze befüllt, die im Wesentlichen aus Natriumchlorid (NaCI) besteht, dem beispielsweise weitere Chloride oder Karbonate, z.B. von Kalium zugemischt sein können, um die Schmelztemperatur herabzusetzen. Angestrebt wird eine Salzmischung, deren Schmelztemperatur größenordnungsmäßig bei 600 °C liegt. Eine derartige Schmelze wird in die Kavität der Form über fächerartig angeordnete Zuleitungen, tangentiale Anschnitte oder axiale Fußanschnitte mit im Vergleich zu Fächeranschnitten größerem Querschnitt mit einer hohen Fließgeschwindigkeit von größenordnungsgemäß 100 m/s eingeleitet, wobei der Zuführdruck auf werte von unter 100 bar, typischerweise auf ca. 70 bar begrenzt wird. Der begrenzte Zuführdruck ist insofern wesentlich, als das Material der Formwerkzeuge eine unvermeidbare Volumenelastizität aufweist, so dass bei übermäßig hohem Zuführdruck mehr oder weniger ausgeprägte Abweichungen von der jeweiligen Sollgestalt der zu formenden ringförmigen Kerne in Kauf genommen werden müssten, wobei sich überraschenderweise gezeigt hat, dass die Maßabweichungen von der Sollform mit zunehmender Wandstärke der Formwerkzeuge zunehmen.
Die den Anschnitt bildenden Kanäle können dabei in einzelnen Formwerkzeugen ausgebildet sein, sofern diese Geometrie noch eine Entformung zulässt. Alternativ sind die Kanäle, die die Schmelze zuführen, an der Grenzfläche zwischen zwei Formwerkzeugen ausgebildet.
Fig. 2 zeigt als ein Ausführungsbeispiel einen Fußanschnitt, bei dem die Schmelze im Wesentlichen in axialer Richtung parallel zur späteren Lage der Kolbenachse in den Hohlraum der Form eingeleitet wird.
Demgegenüber zeigt Fig. 3 als ein anderes Ausführungsbeispiel einen Tangenti- alanschnitt, bei dem die Schmelze im Wesentlichen in tangentialer Richtung durch einen Kanal, dessen langovaler Querschnitt etwa dem des späteren Kerns entspricht, in die Kavität der Form eintritt. Diese Anordnung erfordert kein wesentliches Umlenken der Schmelze beim Eintritt und erleichtert dadurch bei Fließgeschwindigkeiten von etwa 100 m/s ein schnelles und gleichmäßiges Befüllen der Kavität in Umfangsrichtung.
Fig. 4 zeigt ein weiteres Ausführungsbeispiel mit einem Fächeranschnitt, bei dem die Schmelze in einer im Wesentlichen radialen Richtung durch einen Kanal mit einem langovalen Querschnitt in die Kavität eingeleitet wird. Dabei ist die lange Achse des Ovalquerschnitts senkrecht zur Kolbenachse ausgerichtet und verlängert sich nach radial innen zur Kolbenachse hin.
Die von den Anschnitten stammenden und deren jeweilige Form aufweisenden Vorsprünge 21 , 31 , 41 am fertigen Kern werden vor dem Gießen des Kolbens vorzugsweise entfernt. In bestimmten Fällen können sie jedoch ganz oder teilweise erhalten bleiben. Insbesondere beim Fußanschnitt gemäß Fig. 2 kann beim Gießen des Kolbens ein axial verlaufenden Vorsprung 21 des Kerns 20 einen Kanal zur Aufnahme eines Ölstrahls oder zum Austritt von Öl aus dem Kühlkanal 16 bilden und eine dafür vorgesehene, spätere anzubringende Bohrung ganz oder teilweise ersetzen. Außerdem kann der Vorsprung 21 zur Lagefixierung des Kerns 20 in der Gießform beim Gießen des Kolbens beitragen. Derartige Fußanschnitte erweisen sich z.B. bei unterbrochenen oder mehrteiligen Kernen an deren jeweiligen Enden in der Umfangsrichtung als vorteilhaft.
Beim Einführen der Salzschmelze in die Kavität der Form weisen die Formwerkzeuge eine Anfangstemperatur auf, die größenordnungsmäßig etwa 300 °C unterhalb der Temperatur der Salzschmelze liegt, so dass diese nach Befüllung der Form aufgrund der großen Umfangsflächen der herzustellenden Kerne entsprechend schnell auf die Temperatur der Formwerkzeuge abkühlt und erstarrt. Durch die erfindungsgemäß vorgesehene hohe Fließgeschwindigkeit der Salzschmelze bei deren Einfuhr in die Kavität der Form wird eine vorzeitige Erstarrung sicher vermieden. 14
Bezugszeichenliste
10 Kolben
1 1 Kolbenkopf
12 Kolbenschaft
13 Verbrennungsmulde
14 Feuersteg
15 Ringpartie
16 Kühlkanal
20 Kern
21 Vorsprung
30 Kern
31 Vorsprung
40 Kern
41 Vorsprung

Claims

10 Ansprüche
1 . Verfahren zur Herstellung von Kernen (20, 30, 40) für die gießtechnische Herstellung von Werkstücken, insbesondere von ringförmigen Kernen für die Ausformung von Kühlkanälen (16) in gießtechnisch herzustellenden Kolben (10) oder Kolbenteilen von Verbrennungsmotoren, wobei torusförmige Kerne (20, 30, 40) mit ausgeprägt langovalem Querschnitt gießtechnisch hergestellt werden, indem eine als Gießwerkstoff verwendete Salzschmelze mit hoher Fließgeschwindigkeit und begrenztem Druck in eine dem herzustellenden Kern bzw. den herzustellenden Kernen entsprechende Kavität einer Formwerkzeuganordnung eingebracht wird, wobei die Fließgeschwindigkeit und die Temperaturen der Salzschmelze und der Formteile so eingestellt werden, dass eine Erstarrung der Salzschmelze erst nach vollständiger Befüllung der Kavität eintritt, und der Druck auf einen Maximalwert begrenzt wird, bei dem eine Verformung der Formteile unter einem Toleranzwert bleibt.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Salzschmelze mit einem Druck, der kleiner ist als 100 bar, in die Formwerkzeuganordnung eingebracht wird.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Temperatur der Salzschmelze bis zu etwa 10 % oberhalb der Schmelztemperatur liegt. 1 1
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die Formteile der Formwerkzeuganordnung vor Einbringung der Salzschmelze auf eine Temperatur gebracht werden, die etwa 150 bis 300°C geringer als die Schmelztemperatur des Salzmaterials ist.
5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass der kleinere Durchmesser des langovalen Querschnittes größenordnungsmäßig bei 2 mm liegt.
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass eine trichterähnliche Torusform hergestellt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Salzschmelze durch fächerförmig angeordnete Zuleitungen in die Kavität der Formwerkzeuganordnung eingebracht wird.
8. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Salzschmelze im Wesentlichen tangential in die Kavität eingebracht wird.
9. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, 12
dass die Salzschmelze durch axial angeordnete Zuleitungen in die Kavität eingebracht wird.
10. Verfahren nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
dass eine Salzschmelze verwendet wird, die im Wesentlichen aus Natriumchlorid besteht.
1 1 . Verfahren nach Anspruch 10,
dadurch gekennzeichnet,
dass eine Salzschmelze, die Beifügungen von Kaliumchlorid und Kaliumkarbonat enthält, verwendet wird.
PCT/EP2013/070192 2012-10-01 2013-09-27 Verfahren zur herstellung von salzkernen für die giesstechnische herstellung von werkstücken WO2014053414A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380051090.0A CN104703725B (zh) 2012-10-01 2013-09-27 通过浇铸制造用于制造工件的盐芯的方法
BR112015007043A BR112015007043A2 (pt) 2012-10-01 2013-09-27 processo para a produção de núcleos salinos para a produção de peças de trabalho por técnica de fundição
EP13770485.4A EP2903760A1 (de) 2012-10-01 2013-09-27 Verfahren zur herstellung von salzkernen für die giesstechnische herstellung von werkstücken

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012217939.9 2012-10-01
DE102012217939.9A DE102012217939A1 (de) 2012-10-01 2012-10-01 Verfahren zur Herstellung von Kernen für die gießtechnische Herstellung von Werkstücken

Publications (1)

Publication Number Publication Date
WO2014053414A1 true WO2014053414A1 (de) 2014-04-10

Family

ID=49261559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/070192 WO2014053414A1 (de) 2012-10-01 2013-09-27 Verfahren zur herstellung von salzkernen für die giesstechnische herstellung von werkstücken

Country Status (5)

Country Link
EP (1) EP2903760A1 (de)
CN (1) CN104703725B (de)
BR (1) BR112015007043A2 (de)
DE (1) DE102012217939A1 (de)
WO (1) WO2014053414A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016122080A1 (de) * 2015-11-19 2017-05-24 Ks Kolbenschmidt Gmbh Gegossene Zu- und Ablauföffnungen bei Stahlguss- und Eisengusskolben
CN106670376B (zh) * 2016-12-20 2019-11-12 华中科技大学 低熔点合金铸造用高强度复合盐芯材料、盐芯及制备方法
KR20180110930A (ko) * 2017-03-30 2018-10-11 현대자동차주식회사 중공형 솔트코어 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311956A (en) * 1965-05-24 1967-04-04 Kaiser Aluminium Chem Corp Casting process employing soluble cores
EP0613742A1 (de) * 1993-03-05 1994-09-07 Puget Corporation Gegossene Salzkerne für den Druckguss
WO2009153237A1 (de) * 2008-06-20 2009-12-23 Federal-Mogul Nürnberg GmbH Kolben für einen verbrennungsmotor
DE102009015984A1 (de) * 2009-04-02 2010-10-07 Daimler Ag Verfahren zur Herstellung eines Salzkerns für Metallgussverfahren
EP2425910A1 (de) * 2009-05-01 2012-03-07 National University Corporation Tohoku University Verfahren zur herstellung eines salzkerns für einen giesskörper

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2623303C3 (de) * 1976-05-25 1980-10-30 Phoenix Ag, 2100 Hamburg Einrichtung zum Herstellen von Formkernen aus Salzschmelzen
US5700404A (en) 1993-05-25 1997-12-23 Siemens Aktiengesellschaft Process and device for casting a large-area crystalline salt body
KR20000006623A (ko) * 1999-07-06 2000-02-07 이인호 고압주조용붕괴성코어의제조방법과코어및그코어의추출방법
JP4129727B2 (ja) * 2002-08-27 2008-08-06 新東工業株式会社 アルミ合金鋳物又はマグネシウム合金鋳物の溶融塩媒体によるhip処理方法及び塩中子並びにhip後処理方法
JP4000106B2 (ja) * 2003-10-30 2007-10-31 本田技研工業株式会社 鋳造用塩中子の製造方法
DE102004056870A1 (de) * 2004-11-25 2006-06-01 Mahle International Gmbh Kolben mit einem Kühlkanal für einen Verbrennungsmotor und Verfahren zur Herstellung des Kolbens
CN1943915A (zh) * 2005-10-08 2007-04-11 山东滨州渤海活塞股份有限公司 以液态挤压铸造工艺铸造带有内冷通道的活塞毛坯的方法
CN1994615B (zh) * 2006-12-11 2010-12-01 东风汽车有限公司 一种发动机活塞盐芯
DE102007044105A1 (de) * 2007-04-27 2008-10-30 Mahle International Gmbh Gießkern zur Bildung eines Kühlkanals in einem gießtechnisch hergestellten Kolben
CN101073819A (zh) * 2007-06-22 2007-11-21 华中科技大学 一种高压铸造用水溶性盐芯
DE102008004929A1 (de) 2008-01-18 2009-07-23 Ks Aluminium-Technologie Gmbh Druckfester Kern mit verbessertem Binder
DE102008028197A1 (de) 2008-06-12 2009-12-17 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311956A (en) * 1965-05-24 1967-04-04 Kaiser Aluminium Chem Corp Casting process employing soluble cores
EP0613742A1 (de) * 1993-03-05 1994-09-07 Puget Corporation Gegossene Salzkerne für den Druckguss
WO2009153237A1 (de) * 2008-06-20 2009-12-23 Federal-Mogul Nürnberg GmbH Kolben für einen verbrennungsmotor
DE102009015984A1 (de) * 2009-04-02 2010-10-07 Daimler Ag Verfahren zur Herstellung eines Salzkerns für Metallgussverfahren
EP2425910A1 (de) * 2009-05-01 2012-03-07 National University Corporation Tohoku University Verfahren zur herstellung eines salzkerns für einen giesskörper

Also Published As

Publication number Publication date
DE102012217939A1 (de) 2014-04-03
CN104703725A (zh) 2015-06-10
CN104703725B (zh) 2017-06-09
EP2903760A1 (de) 2015-08-12
BR112015007043A2 (pt) 2017-07-04

Similar Documents

Publication Publication Date Title
EP2091678B1 (de) Giessform zum giessen eines gussteils und verwendung einer solchen giessform
DE102014101080B3 (de) Vorrichtung zur Herstellung eines Zylinderkurbelgehäuses im Niederdruck- oder Schwerkraftgießverfahren
DE112009000915B4 (de) Verfahren zum Druckgießen eines Aluminium- oder Magnesiumlegierungsgegenstandes mithilfe einer Opferhülse
EP0872295B1 (de) Giessform und Verfahren zum Herstellen von metallischen Hohlgiesslingen sowie Hohlgiesslinge
EP3337968A1 (de) Stahl- oder aluminiumkolben für einen verbrennungsmotor sowie verfahren zur herstellung zumindest eines teils eines stahl- oder aluminiumkolbens für einen verbrennungsmotor
DE10058428B4 (de) Zylinderlaufbuchse und Zylinderblock sowie Verfahren zur Herstellung derselben
EP2903760A1 (de) Verfahren zur herstellung von salzkernen für die giesstechnische herstellung von werkstücken
EP0721387B1 (de) Verfahren und giessvorrichtung zum herstellen von teilen mit einer schraubensymmetrischen aussenkontur
EP2738377B1 (de) Verfahren zur Herstellung eines Zylinderkurbelgehäuses
DE102018108117A1 (de) Zylinderlaufbuchse für verbrennungsmotor
DE102011083268B4 (de) Formeinsatzanordnung und Verfahren zum Gießen
WO2010048916A1 (de) Vorrichtung zum druckgiessen, die verwendung einer solchen vorrichtung und ein verfahren zum druckgiessen
DE112010001446B4 (de) Verfahren zur Herstellung einer Zylinderlaufbuchse aus Metallmatrix-Verbundwerkstoffund Verfahren zur Herstellung derselben
DE102007030342B4 (de) Verfahren und Vorrichtung zum Druckgießen von gegliederten Metallgussstücken
EP3183080B1 (de) Verfahren zur herstellung eines kolbens für einen verbrennungsmotor
EP2340901B9 (de) Verfahren zur Herstellung eines Gussteils
EP2636467B1 (de) Vorrichtung zur Herstellung eines Zylinderkurbelgehäuses in V-Bauform
DE840905C (de) Spritzgiessform
WO2013072151A1 (de) Giessform für einen kolben
DE677931C (de) Verfahren zur Herstellung von Schleudergussmuffenkokillen
DE102017126392A1 (de) Bauteil einer Brennkraftmaschine, insbesondere Zylinderkopf, Gießformanordnung und Verfahren zum Herstellen eines Bauteils einer Brennkraftmaschine
DE4124021A1 (de) Verfahren und vorrichtung zur herstellung von gussteilen
DE603243C (de) Verfahren und Vorrichtung zum Herstellen von Hohlkoerpern oder von Vollkoerpern in um die senkrechte Achse umlaufenden Schleudergussformen
DE112020007413T5 (de) Formwerkzeug mit Kühlkörper
DE102007052498A1 (de) Verfahren zum Herstellen eines Kolbens für einen Verbrennungsmotor, mit diesem Verfahren herstellbarer Kolben sowie Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015007043

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2013770485

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015007043

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150330