WO2014051073A1 - インクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置 - Google Patents

インクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置 Download PDF

Info

Publication number
WO2014051073A1
WO2014051073A1 PCT/JP2013/076316 JP2013076316W WO2014051073A1 WO 2014051073 A1 WO2014051073 A1 WO 2014051073A1 JP 2013076316 W JP2013076316 W JP 2013076316W WO 2014051073 A1 WO2014051073 A1 WO 2014051073A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
pressure
driving
ejection
pulse
Prior art date
Application number
PCT/JP2013/076316
Other languages
English (en)
French (fr)
Inventor
大嗣 清水
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014538638A priority Critical patent/JP6149863B2/ja
Publication of WO2014051073A1 publication Critical patent/WO2014051073A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform

Definitions

  • the present invention relates to an ink-jet head driving method, an ink-jet head driving apparatus, and an ink-jet recording apparatus, and more specifically, an ink jet capable of suppressing velocity fluctuations at the time of the next droplet discharge caused by pressure reverberation vibration after droplet discharge.
  • the present invention relates to a head driving method, an inkjet head driving apparatus, and an inkjet recording apparatus.
  • the ink jet head applies a predetermined drive signal to pressure applying means formed by a piezoelectric element or the like, and mechanically deforms the pressure applying means to expand or contract the volume of the pressure generating chamber in which ink is stored. Ink is ejected from the nozzle in the form of fine droplets by the pressure change caused thereby. In this way, since the ink jet head ejects droplets from the nozzles by the mechanical deformation operation of the pressure applying means, pressure vibrations that periodically repeat positive pressure and negative pressure remain in the pressure generating chamber even after droplet ejection.
  • the pressure vibration remaining in the pressure generation chamber is referred to as a reverberation pressure wave.
  • Such a reverberant pressure wave gradually attenuates and disappears after droplet discharge, but recently, in order to perform high-speed driving, the driving cycle (the cycle in which a driving signal can be applied to the pressure applying means) tends to be shortened. In other words, the reverberation pressure wave generated by the droplet discharge may not completely disappear and may affect the next driving cycle. For this reason, when ejecting droplets from the same nozzle, there is a problem that fluctuations in droplet velocity may occur due to the reverberation pressure wave.
  • the influence of the reverberation pressure wave in the same nozzle is usually set appropriately in the drive cycle, and the condition of the reverberation pressure wave when the drive signal is applied in each drive cycle, that is, the reverberation pressure.
  • the condition whether the wave is positive pressure or negative pressure become the same, it can be substantially ignored, and the droplet velocity can be stabilized in each driving cycle.
  • FIG. 16A shows the relationship between the driving signal and the pressure generated in the pressure generating chamber when the driving signal is applied to each of the three consecutive driving cycles A1 to A3 in the same nozzle.
  • a drive signal Pa (see FIG. 3A) consisting only of an expansion pulse for expanding the volume of the pressure generating chamber is used.
  • the drive signal is indicated by a solid line, and the pressure is indicated by a broken line.
  • each drive cycle A1 to A3 is 5Tc.
  • the pressure in the pressure generating chamber becomes negative due to the application of the drive signal Pa consisting of an expansion pulse, but thereafter, the inversion is repeated every 1 Tc from negative to positive and from positive to negative.
  • Tc which will be described later in detail, is a time that is 1 ⁇ 2 of the pressure oscillation cycle generated in the pressure generation chamber.
  • the reverberation pressure wave generated at this time is also applied to the next drive cycle, and is reversed to a positive pressure at the time when the next drive signal Pa is applied.
  • the positive reverberation pressure wave is inverted to a negative pressure, and the reverberation pressure wave condition is the same as when the drive signal is applied in the drive cycle A1. Accordingly, the speed of the liquid droplets discharged in each of the driving cycles A1 to A3 is stable.
  • liquid droplet ejection is not always performed in each of the driving cycles A1 to A3.
  • the driving cycle A2 when the driving cycle A2 is non-ejection, a pause from the application of the driving signal Pa in the previous driving cycle A1 to the application of the driving signal Pa in the next driving cycle A3.
  • the period becomes 10 Tc and becomes longer.
  • the conditions of the reverberation pressure wave when the drive signal is applied are not the same in the drive cycles A1 and A3.
  • the pressure in the pressure generation chamber has turned to a negative pressure, and the negative pressure in the pressure generation chamber is further enhanced by the application of the drive signal Pa formed of an expansion pulse. Strong negative pressure state.
  • a pressure stronger than usual is applied to the pressure generating chamber due to the fall of the drive signal Pa, and the droplet velocity increases.
  • the frequency of the drive signal is set to an integer that is an integer of 0.5 times the time in which a pressure wave propagates in the pressure generation chamber plus a reciprocal of 0.5 times. It describes that volume fluctuations are prevented.
  • Patent Document 2 by applying a dummy pulse that falls simultaneously with the fall of the ejection pulse applied to the adjacent pressure generation chamber that ejects ink to the non-ejection pressure generation chamber that does not eject ink, It is described to reduce crosstalk and reverberant pressure waves.
  • Patent Document 3 is intended to reduce the size of the droplets and slightly vibrate the meniscus, and does not suppress droplet velocity fluctuations caused by reverberant pressure waves.
  • it is considered necessary to apply a pulse signal having an appropriate pulse width at an appropriate timing, but it is applied immediately before the ejection pulse as disclosed in Patent Document 3.
  • the pulse signal generated is not sufficient to suppress the fluctuation of the droplet velocity due to the influence of the reverberation pressure wave when the drive signal is applied in the drive period next to the non-ejection drive period which is a problem of the present invention. .
  • a reverberant pressure wave equivalent to the case where the drive signal is also applied in the non-ejection drive cycle is generated.
  • the pressure applying means of the ink jet head having a pressure applying means that operates by applying a drive signal, a pressure generating chamber whose volume expands or contracts by the operation of the pressure applying means, and a nozzle that communicates with the pressure generating chamber
  • An inkjet head driving method in which the drive signal is applied at a predetermined drive cycle in accordance with image data, and the volume of the pressure generating chamber is expanded or contracted to eject ink from the pressure generating chamber from the nozzle.
  • the drive signal includes an expansion pulse that expands the volume of the pressure generating chamber and maintains the expanded state for a certain period and then returns to the original volume.
  • the plurality of driving cycles for recording the one pixel is performed.
  • the drive signal includes, following the expansion pulse, a contraction pulse that contracts the volume of the pressure generation chamber and maintains the contracted state for a certain period and then returns to the original volume.
  • the contraction maintaining period of the contraction pulse is 1. 5.
  • the drive signal includes a contraction pulse that contracts the volume of the pressure generating chamber after a lapse of 0.8 Tc to 1.2 Tc from the fall of the expansion pulse, and returns to the original volume after maintaining the contracted state for a certain period of time, 5.
  • a pressure applying means for generating a driving signal the pressure applying means operating by applying the driving signal; a pressure generating chamber whose volume expands or contracts by the operation of the pressure applying means; and a nozzle communicating with the pressure generating chamber
  • the pressure applying unit of the ink jet head having the pressure is applied with the driving signal at a predetermined driving period in accordance with image data from the driving signal generating unit, and the volume of the pressure generating chamber is expanded or contracted.
  • the expansion maintaining period of the expansion pulse is 0.8 Tc to 1.2 Tc (Tc Is 1/2 of the pressure oscillation period generated in the pressure generation chamber,
  • the drive signal generating means when there is a drive cycle in which ejection is not performed at least immediately before the drive cycle in which ejection is performed, 0.8 Tc to 1.2 Tc after the start of the drive cycle in which the ejection is not performed,
  • An adjustment pulse that does not eject ink, comprising a contraction pulse that contracts the volume of the pressure generating chamber, maintains the contracted state for a certain period, and then returns to the original volume, and the contraction maintaining period is 0.8 Tc to 1.2 Tc Ink-jet head drive device for applying a pressure.
  • the drive signal generating means applies the adjustment pulse only to a drive cycle in which ejection is not performed immediately before a drive cycle in which ejection is first performed when a drive cycle in which ejection is not performed continues.
  • the drive signal generating unit records one pixel when performing multi-gradation driving to record one pixel by selectively applying the drive signal to the pressure applying unit within a plurality of continuous drive cycles.
  • a driving cycle in which ejection is not performed within a plurality of driving cycles and there is a driving cycle in which ejection for recording the next one pixel is performed after the driving cycle in which ejection is not performed 10.
  • the inkjet head drive device according to 7, 8, or 9, wherein the adjustment pulse is applied at least in a drive cycle in which ejection is not performed immediately before the drive cycle in which the ejection is performed.
  • the drive signal includes, following the expansion pulse, a contraction pulse that contracts the volume of the pressure generation chamber and maintains the contracted state for a certain period and then returns to the original volume.
  • the contraction maintaining period of the contraction pulse is 1.
  • the ink jet head drive device according to any one of 7 to 10, which is 8 Tc to 2.2 Tc.
  • the drive signal includes a contraction pulse that contracts the volume of the pressure generating chamber after a lapse of 0.8 Tc to 1.2 Tc from the fall of the expansion pulse, and returns to the original volume after maintaining the contracted state for a certain period of time, 11.
  • the ink jet head driving apparatus according to any one of 7 to 10, wherein the contraction maintaining period of the contraction pulse is 0.8 Tc to 1.2 Tc.
  • An ink jet head having pressure applying means that operates by applying a drive signal; a pressure generating chamber whose volume expands or contracts by operation of the pressure applying means; and a nozzle that communicates with the pressure generating chamber;
  • An inkjet recording apparatus comprising the inkjet head drive device according to any one of 7 to 12.
  • the figure which shows schematic structure of an inkjet recording device 1 shows an example of an inkjet head
  • (a) is a perspective view showing a part of the inkjet head in cross section
  • (b) is a cross sectional view seen from the side.
  • It is a signal waveform diagram showing an example of a drive signal used in the present invention, (a) is a DR waveform, (b) is a DRR waveform, (c) is a DRC waveform.
  • Signal waveform diagram showing an example of the adjustment pulse in the present invention The figure which shows the relationship between the drive signal at the time of applying the adjustment pulse in this invention, the adjustment pulse, and the pressure which generate
  • Timing chart illustrating a mode in which adjustment pulses are applied when a plurality of non-ejection drive cycles are continuous Timing chart for explaining another mode of applying an adjustment pulse when a plurality of non-ejection drive cycles are continuous Timing chart explaining a mode of applying an adjustment pulse when performing multi-gradation driving Timing chart for explaining another mode of applying an adjustment pulse when performing multi-tone drive
  • A is a timing chart showing a reference example in which a driving signal is applied in all continuous driving cycles
  • (b) is a timing chart showing an embodiment in which an adjustment pulse is applied in a non-ejection driving cycle
  • (c) is 1 Timing chart showing a comparative example in which every other drive cycle is non-ejection FIG.
  • FIG. 14 is a graph showing the droplet velocity of the ejected droplets.
  • A is a figure which shows the relationship between the drive signal at the time of a drive signal being applied in all the drive cycles, and the pressure which generate
  • (b) is a drive signal in case a non-ejection drive cycle is included. Diagram showing the relationship with pressure generated in the pressure generation chamber
  • FIG. 1 is a schematic configuration diagram showing an example of an ink jet recording apparatus according to the present invention.
  • the recording medium 100 is sandwiched between the transport roller pair 22 of the transport mechanism 2 and further transported in the Y direction (sub-scanning direction) by the transport roller 21 that is rotationally driven by the transport motor 23. It has become.
  • the inkjet head 3 shown in FIG. 2 is provided between the conveyance roller 21 and the conveyance roller pair 22 so as to face the recording surface 101 of the recording medium 100.
  • the inkjet head 3 is mounted on the carriage 5 so that the nozzle surface side faces the recording surface 101 of the recording medium 100, and is electrically connected to the driving device 7 via the FPC 6.
  • the carriage 5 is moved along the guide rail 4 spanning the width direction of the recording medium 100 by driving means (not shown) and is substantially perpendicular to the conveyance direction (sub-scanning direction) of the recording medium 100. It is provided so as to be able to reciprocate along the 'direction (main scanning direction).
  • the inkjet head 3 scans and moves the recording surface 101 of the recording medium 100 in the XX ′ direction as the carriage 5 moves in the main scanning direction, and discharges droplets from the nozzles during the scanning movement. Record the desired inkjet image.
  • FIG. 2 shows an example of the inkjet head 3, (a) is a perspective view showing a part of the inkjet head 3 in cross section, and (b) is a cross sectional view seen from the side.
  • 30 is a channel substrate.
  • a large number of narrow grooves 31 serving as pressure generation chambers and partition walls 32 serving as pressure applying means are arranged side by side on the channel substrate 30 alternately.
  • a cover substrate 33 is provided on the upper surface of the channel substrate 30 so as to block all the channels 31 above.
  • a nozzle plate 34 is bonded to the end surfaces of the channel substrate 30 and the cover substrate 33, and a nozzle surface is formed by the surface of the nozzle plate 34.
  • One end of each channel 31 communicates with the outside through a nozzle 34 a formed on the nozzle plate 34.
  • each channel 31 gradually becomes a shallow groove with respect to the channel substrate 30, and communicates with a common flow path 33 a common to each channel 31 formed in the cover substrate 33.
  • the common flow path 33 a is further closed by a plate 35, and ink is supplied from the ink supply pipe 35 b into the common flow path 33 a and each channel 31 through an ink supply port 35 a formed in the plate 35.
  • Each partition 32 is made of a piezoelectric element such as PZT which is an electrical / mechanical conversion means.
  • the upper wall portion 32a and the lower wall portion 32b are both formed by a piezoelectric element that is polarized, and the polarization directions (indicated by arrows in FIG. 2B) are determined by the upper wall portion 32a and the lower wall portion 32b.
  • the portion formed by the polarized piezoelectric element may be, for example, only the portion indicated by reference numeral 32 a, and may be at least part of the partition wall 32.
  • the partition walls 32 are arranged in parallel with the channels 31. Accordingly, one partition 32 is shared by the adjacent channels 31 and 31.
  • drive electrodes 36 are formed from the wall surfaces of both partition walls 32 to the bottom surface of the channel 31, respectively.
  • a drive signal of a predetermined voltage is applied to the drive electrode 36 from a drive signal generator 71 which is a drive signal generator provided in the drive device 7, the partition wall 32 is formed between the upper wall portion 32a and the lower wall portion 32b. Shear deformation in the shape of a letter with the joint surface as the boundary. Due to the deformation of the partition wall 32, a pressure wave is generated in the channel 31, and pressure for ejecting from the nozzle 34a is applied to the ink in the channel 31.
  • the drive device 7 has a drive signal generator 71 that generates a drive signal to be applied to the drive electrode 36 in each channel 31 as shown in FIG.
  • FIGS. 3A to 3C show examples of the drive signal Pa given from the drive signal generator 71 to the drive electrode 36 of the ink jet head 3 when droplets are discharged.
  • the operation of the partition wall 32 when each drive signal Pa is applied will be described with reference to FIG.
  • the drive signal Pa shown in FIG. 3 (a) is composed only of an expansion pulse composed of a rectangular wave that expands the volume of the channel 31 and maintains the expanded state for a certain period and then returns to the original volume.
  • the drive signal Pa is applied from the drive signal generator 71 to the drive electrode 36B of the central channel 31B in which the partition wall 32 shown in FIG. 4A is in a neutral state, and the drive electrodes 36A of the adjacent channels 31A and 31C are both.
  • 36C is grounded, as shown in FIG. 4B, an electric field in a direction perpendicular to the polarization direction (indicated by arrows in the figure) of the piezoelectric elements forming the partition walls 32B and 32C on both sides of the channel 31B is generated.
  • both the partition walls 32B and 32C are shear-deformed into a U-shape toward each other to expand the volume of the channel 31B.
  • the ink flows into the channel 31B from the common flow path 33a.
  • the partition walls 32B and 32C return to the neutral state in FIG.
  • high pressure is applied to the ink in the channel 31B, and droplets are ejected from the nozzle 34a.
  • the drive signal Pa shown in FIG. 3A is referred to as a DR waveform.
  • the expansion maintaining period W1 of the expansion pulse of the drive signal Pa is preferably in the vicinity of 1 Tc where the pressure in the channel 31 changes from negative to positive.
  • the range is 8 Tc to 1.2 Tc.
  • Tc means a time that is 1 ⁇ 2 of the pressure oscillation cycle generated in the channel 31 that is the pressure generating chamber.
  • Tc is measured when the velocity of a droplet ejected when a rectangular wave drive signal is applied to the drive electrode 36, and when the rectangular wave pulse width is changed while the rectangular wave voltage value is kept constant. It is determined as the pulse width that maximizes the drop velocity.
  • a pulse is a rectangular wave having a constant voltage peak value.
  • the pulse width is 10% of the voltage from 0V and the peak voltage. It is defined as the time between 10% of the falling edge.
  • the rectangular wave refers to a waveform in which both the rise time and fall time between 10% and 90% of the voltage are within 1 ⁇ 2 of Tc, preferably within 1 ⁇ 4.
  • the drive signal Pa shown in FIG. 3 (b) is composed of a rectangular wave that generates a positive pressure by contracting the volume of the channel 31 for a certain period and then restoring it after the expansion pulse in the expansion maintaining period W1.
  • the contraction continuation period W2 of the contraction pulse is preferably 1.8 Tc to 2.2 Tc from the viewpoint of efficiently ejecting the droplets.
  • the drive signal Pa is applied from the drive signal generator 71 to the drive electrode 36B of the central channel 31B in which the partition wall 32 shown in FIG. 4A is in a neutral state, and the drive electrodes 36A of the adjacent channels 31A and 31C are both.
  • 36C is grounded, as in the case of the DR waveform, due to the expansion pulse, both the partition walls 32B and 32C are shear-deformed outwardly toward each other as shown in FIG. Inflate the volume. Due to the deformation of the partition walls 32B and 32C, the ink flows into the channel 31B from the common flow path 33a. After this expanded state is maintained by W1, a contraction pulse is subsequently applied to the drive electrode 36B of the central channel 31B. Then, as shown in FIG.
  • both the partition walls 32B and 32C are sheared and deformed in a U-shape toward the inside, and the volume of the channel 31B is contracted. At this time, a higher pressure is applied to the ink in the channel 31B, and a droplet is ejected from the nozzle 34a. After the contraction pulse is maintained by W2, the partition walls 32B and 32C return to the neutral state shown in FIG.
  • the drive signal Pa shown in FIG. 3B is referred to as a DRR waveform.
  • the drive signal Pa shown in FIG. 3 (c) is obtained by restoring the original volume after contracting the volume of the channel 31 for a certain period after the expansion pulse of the expansion maintenance period W1 and then through the rest period (zero potential period) W3. It has a contraction pulse consisting of a square wave that generates a positive pressure. Similarly, from the viewpoint of efficiently discharging droplets, it is preferable that the duration of the rest period W3 is 0.8 Tc to 1.2 Tc and the contraction duration W4 of the contraction pulse is 0.8 Tc to 1.2 Tc.
  • the drive voltage (Von) of the expansion pulse and the drive voltage (Voff) of the contraction pulse in each of the above drive signals Pa are preferably set to
  • FIG. 5 shows the adjustment pulse Pb used for reducing the influence of the reverberation pressure wave in the present invention.
  • the adjustment pulse Pb is a rectangular wave contraction pulse that contracts the volume of the channel 31 and maintains the contracted state for a certain period, and then returns to the original volume, but does not eject ink (ink droplets).
  • the contraction maintaining period W5 is set to 0.8 Tc to 1.2 Tc.
  • FIG. 6 shows a non-ejection drive when a DR waveform is used, and in the same manner as in FIG. 16, ejection is performed, non-ejection, and ejection is performed in three consecutive driving cycles A1 to A3, respectively.
  • the relationship between the drive signal and the adjustment pulse when the adjustment pulse Pb is applied in the period A2 and the pressure generated in the channel 31 is shown.
  • the driving signal Pa is applied so that the expansion pulse rises simultaneously with the start of the driving periods A1 and A3 for performing ejection.
  • the adjustment pulse Pb is applied to the drive cycle A2 in which ejection is not performed immediately before the drive cycle A3 in which ejection is performed, at a timing after a fixed rest period W0 has elapsed from the start of the drive cycle A2.
  • the rest period W0 is set to 0.8 Tc to 1.2 Tc.
  • an adjustment pulse Pb composed of a contraction pulse is applied almost at the same time as when the pressure that has changed to a positive pressure at the start of the non-ejection drive cycle A2 changes to a negative pressure after 1 Tc. Invert to. Thereafter, the inversion is repeated from positive to negative and from negative to positive every 1 Tc, and at the start of the driving cycle A3, the driving signal Pa is applied in the state where the pressure is changed to the positive pressure as at the start of the driving cycle A1. Will be. Thereby, the reverberation pressure wave in the channel 31 at the time of applying the drive signal is the same condition in the drive cycles A1 and A3. Therefore, the pressure at the time of droplet discharge by the drive signal Pa is equal to that in the drive cycle A1, and fluctuations in the droplet velocity are suppressed and stabilized.
  • the drive voltage (Von) of the expansion pulse of the drive signal Pa and the drive voltage (Voff) of the adjustment pulse Pb are in the range of
  • 1 / 0.3 to 1 / 0.7.
  • the drive voltage of the adjustment pulse Pb is set. Since the reverberation pressure wave that has reached within the non-ejection drive cycle is attenuated, the drive voltage of the adjustment pulse Pb is set to a voltage lower than the drive voltage of the drive signal Pa without causing droplets to be ejected.
  • the condition of the reverberation pressure wave when the drive signal is applied in the next drive cycle can be made substantially equal to that when the drive signal is applied in the previous drive cycle.
  • the DR waveform shown in FIG. 3A is used as the drive signal Pa.
  • the adjustment pulse Pb functions similarly even when another drive signal is used as the drive signal Pa.
  • FIG. 7 shows an example in which the DRR waveform shown in FIG. 3B is used as the drive signal Pa.
  • the driving cycle A 5 Tc, which is the same as the example of FIG.
  • the driving signal Pa is applied so that the expansion pulse rises simultaneously with the start of the driving periods A1 and A3 for performing ejection.
  • the drive signal Pa when the drive signal Pa is applied to each of the drive periods A1 to A3, the conditions of the reverberant pressure wave at the time of applying each drive signal are the same.
  • the adjustment pulse Pb is applied after the rest period W0 of 0.8 Tc to 1.2 Tc has elapsed from the start of the driving period A2 even when only the driving period A2 is non-ejection. Then, the condition of the reverberation pressure wave when the drive signal is applied in the next drive cycle A3 can be made equal to that when the drive signal is applied in the drive cycle A1.
  • the pressure at the time of droplet discharge by the drive signal Pa is equal to that in the drive cycle A1, and fluctuations in the droplet velocity in the drive cycle A3 are suppressed and stabilized.
  • FIG. 8 shows an example in which the DRC waveform shown in FIG. 3C is used as the drive signal Pa.
  • the driving cycle A 5 Tc, which is the same as the example of FIG.
  • the driving signal Pa is applied so that the expansion pulse rises simultaneously with the start of the driving periods A1 and A3 for performing ejection.
  • the drive signal Pa when the drive signal Pa is applied to each of the drive periods A1 to A3, the conditions of the reverberant pressure wave at the time of applying each drive signal are the same.
  • the adjustment pulse Pb is applied after the rest period W0 of 0.8 Tc to 1.2 Tc has elapsed from the start of the driving cycle A2 even when only the driving cycle A2 is non-ejection. Then, the condition of the reverberation pressure wave when the drive signal is applied in the next drive cycle A3 can be made equal to that when the drive signal is applied in the drive cycle A1.
  • the pressure at the time of droplet discharge by the drive signal Pa is equal to that in the drive cycle A1, and fluctuations in the droplet velocity in the drive cycle A3 are suppressed and stabilized.
  • the driving cycle A is 5 Tc. However, even if the driving cycle changes variously, 0.8 Tc to 1 from the start of the non-ejection driving cycle immediately before the driving cycle in which ejection is performed.
  • the adjustment pulse Pb after .2Tc the conditions of the reverberation pressure wave when the drive signal is applied can be made equal.
  • A shows a case where droplets are ejected in each of the driving cycles A1 to A3, and
  • (b) shows a case where only the driving cycle A2 is not ejected.
  • the drive cycle is 6 Tc, as long as the drive signal Pa is applied to each of the drive cycles A1 to A3, the conditions of the reverberant pressure wave at the time of applying each drive signal are the same.
  • the adjustment pulse Pb is applied after the rest period W0 of 0.8 Tc to 1.2 Tc has elapsed from the start of the drive cycle A2, thereby driving in the next drive cycle A3.
  • the condition of the reverberation pressure wave at the time of applying the signal can be made equal to that at the time of applying the driving signal in the driving period A1. As a result, the fluctuation of the droplet velocity in the driving cycle A3 is suppressed and stabilized.
  • FIG. 10 shows a timing chart in the case where a plurality of non-ejection drive cycles are continuous.
  • the DRR waveform shown in FIG. 3B is used.
  • the adjustment pulse Pb is applied to each of the non-ejection drive cycles A3 to A6. Thereby, it is possible to suppress and stabilize the droplet velocity fluctuation at the time of droplet ejection in the driving cycle A7 to which the driving signal Pa is applied next.
  • the application timing of each adjustment pulse Pb is 0.8 Tc to the start of each drive cycle A3 to A6.
  • it is after 1.2 Tc it is preferable to set the same application timing within the range of 0.8 Tc to 1.2 Tc from the viewpoint of effectively suppressing fluctuations in the droplet velocity.
  • the adjustment pulse Pb may be applied only to the non-ejection drive cycle A6 immediately before the drive cycle A7 in which ejection is first performed after A3 to A6.
  • the number of adjustment pulses Pb applied can be suppressed, so that power consumption can be reduced accordingly, and heat generation of the inkjet head 3 can also be suppressed.
  • the inkjet head 3 may perform multi-gradation driving for recording one pixel by selectively applying the driving signal Pa within a plurality of continuous driving cycles.
  • FIG. 12 shows an example in which one continuous pixel driving cycle A1 to A4 is used as one pixel cycle. In this case, it is possible to perform five gradation recording from recording one pixel with all the driving cycles A1 to A4 being non-ejection to ejecting one pixel with all the driving cycles A1 to A4. it can.
  • the drive signal Pa is applied only to the first drive cycle A1 in the first pixel cycle Aa, and the drive signal Pa is applied only to the first and second drive cycles A1 and A2 in the next pixel cycle Ab.
  • the adjustment pulse Pb can be applied to each of the driving cycles A2 to A4 that are non-ejection in the pixel cycle Aa and each of the driving cycles A3 and A4 that are non-ejection in the pixel cycle Aa.
  • the drive cycle A1 for performing ejection in the pixel cycle Ab follows the last non-ejection drive cycle A4 in the first pixel cycle Aa, as shown in FIG. 13, the first drive cycle in the pixel cycle Ab is performed.
  • the adjustment pulse Pb may be applied only to the non-ejection drive cycle A4 immediately before A1. As a result, similarly to the case of FIG. 11, the number of adjustment pulses Pb applied can be suppressed, power consumption can be reduced accordingly, and heat generation of the inkjet head 3 can also be suppressed.
  • the ink jet head 3 of the type in which the partition wall 32 between adjacent channels 31 is deformed and driven as a pressure applying means is illustrated as the ink jet head.
  • the partition wall 32 for expanding or contracting the volume of the channel 31 is shared by the adjacent channels 31, and the deformation operation of the partition wall 32 extends to the adjacent channels 31. It is not possible to discharge at the same time. For this reason, in the present invention, when such an ink jet head 3 is used, in order to prevent the adjustment operation from applying the adjustment pulse, the discharge operation of the adjacent channel is not affected. It is preferable to use an independent drive type ink jet head in which dummy channels that are not used are alternately arranged.
  • the signal waveform of the drive signal is not limited to the above-described DR waveform, DRR waveform, and DRC waveform, and the volume of the pressure generation chamber is expanded or expanded during droplet discharge according to the structure of the pressure generation chamber. Any signal waveform that contracts may be used.
  • the ink jet recording apparatus performs recording by ejecting liquid droplets in the process of scanning and moving the ink jet head 3 in the width direction (main scanning direction) of the recording medium 100.
  • the inkjet head 3 is constituted by a line-shaped inkjet head fixed across the width direction of the recording medium 100, and droplets are ejected from the nozzles 34a in the process of moving the recording medium 100 along the Y direction in FIG. May be recorded.
  • a drive signal Pa is applied in each of a plurality of continuous drive cycles A1 to A10 as shown in FIG. Droplet discharge was performed.
  • Each driving cycle A 5 Tc
  • the driving signal Pa used the DRR waveform shown in FIG.
  • the expansion maintenance period of the expansion pulse of the DRR waveform was 1 Tc
  • the contraction maintenance period of the contraction pulse was 2 Tc.
  • the respective droplet velocities were about 7 m / s in all the driving cycles A1 to A10, and were stable.
  • a plurality of continuous driving cycles A1 to A10 are set to non-ejection without applying the driving signal Pa every other driving cycle, and non-ejection driving is performed.
  • cycles A2, A4, A6, and A8 after 1 Tc from the start of each drive cycle, an adjustment pulse Pb having a contraction maintenance period of 1 Tc is applied, and the droplet velocity discharged in drive cycles A3, A5, A7, and A9 was measured.
  • the droplet velocity in the driving cycles A3, A5, A7, and A9 is slightly lower than 7 m / s, but all of the droplet velocity is lower than that in the case where the adjustment pulse Pb is not applied. The fluctuation was greatly suppressed.
  • Inkjet head 2 Transport mechanism 21: Transport roller 22: Transport roller pair 23: Transport motor 3: Inkjet head 30: Channel substrate 31: Channel (pressure generation chamber) 32: Partition wall (pressure applying means) 32a: Upper wall part 32b: Lower wall part 33: Cover substrate 33a: Common flow path 34: Nozzle plate 34a: Nozzle 35: Plate 35a: Ink supply port 35b: Ink supply pipe 36: Drive electrode 4: Guide rail 5: Carriage 6: FPC 7: Drive device 71: Drive signal generator (drive signal generator) Pa: Drive signal Pb: Adjustment pulse

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Abstract

非吐出の駆動周期の次の駆動周期に駆動信号が印加される際、非吐出の駆動周期にも駆動信号が印加された場合と同等の残響圧力波が発生するようにし、当該次の駆動周期に駆動信号が印加された際の液滴速度を安定化させ、液滴速度変動を低減することを目的とし、圧力付与手段に印加する駆動信号Paは、圧力発生室の容積を膨張させ、一定期間膨張状態を維持した後に元の容積へ戻す膨張パルスを含み、該膨張パルスの膨張維持期間は0.8Tc~1.2Tc(Tcは圧力発生室で生じる圧力振動周期の1/2)であり、吐出が行われる駆動周期の少なくとも直前に吐出が行われない駆動周期が存在する場合に、該吐出が行われない駆動周期の開始から0.8Tc~1.2Tc後に、圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積へ戻す収縮パルスからなり、且つ、収縮維持期間が0.8Tc~1.2Tcである、インクを吐出しない調整パルスPbを印加する。

Description

インクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置
 本発明はインクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置に関し、詳しくは、液滴吐出後の圧力残響振動に起因する次の液滴吐出時の速度変動を抑制できるようにしたインクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置に関する。
 インクジェットヘッドは、圧電素子等によって形成される圧力付与手段に所定の駆動信号を印加し、該圧力付与手段を機械的に変形動作させることによってインクが貯留される圧力発生室の容積を膨張又は収縮させ、それによって生じる圧力変化によってインクをノズルから微小液滴状に吐出させる。このようにインクジェットヘッドは、圧力付与手段の機械的な変形動作によってノズルから液滴を吐出させるため、液滴吐出後でも圧力発生室内に周期的に正圧と負圧を繰り返す圧力振動が残る。以下、この圧力発生室内に残る圧力振動を残響圧力波という。
 このような残響圧力波は液滴吐出後に次第に減衰してやがて消失するが、近年、高速駆動を行うために駆動周期(圧力付与手段に対して駆動信号が印加可能な周期)を短くする傾向にあり、液滴吐出によって発生した残響圧力波が完全に消失せず、次の駆動周期にも影響することがある。このため、同一のノズルから液滴を吐出する際に、この残響圧力波が原因となって液滴速度の変動が発生する場合があることが問題となっている。
 このような同一のノズル(同一の圧力発生室)における残響圧力波の影響は、通常、駆動周期を適切に設定し、各駆動周期での駆動信号印加時の残響圧力波の条件、すなわち残響圧力波が正圧か負圧かの条件が同一になるようにすることで実質的に無視することができ、各駆動周期において液滴速度を安定させることができる。
 例えば図16(a)は、同一のノズルにおいて、連続する3つの駆動周期A1~A3の各々に駆動信号を印加した場合の駆動信号と圧力発生室内に発生する圧力との関係を示している。ここでは、圧力発生室の容積を膨張させる膨張パルスのみからなる駆動信号Pa(図3(a)参照)を使用している。駆動信号を実線で示し、圧力を破線で示している。
 各駆動周期A1~A3の継続期間は5Tcである。同図に示すように、膨張パルスからなる駆動信号Paの印加により、圧力発生室内の圧力は負圧となるが、その後、負から正へ、正から負へと1Tc毎に反転を繰り返す。なお、Tcとは、詳細には後述するが、圧力発生室で生じる圧力振動周期の1/2の時間のことである。1Tc後に圧力が正圧に反転したタイミングで駆動信号Paが0電位に戻されると、圧力発生室内のインクに高い圧力が掛かり、ノズルから液滴が吐出される。このときに発生した残響圧力波は次の駆動周期にもかかり、次の駆動信号Paを印加する時点では正圧に反転している。しかし、このタイミングで駆動信号Paが印加されることにより、この正圧の残響圧力波は負圧に反転され、残響圧力波の条件は駆動周期A1における駆動信号印加時と同等となる。従って、駆動周期A1~A3の各々において吐出される液滴の速度は安定している。
 ところが、各駆動周期A1~A3において常に液滴吐出が行われるとは限らない。例えば図16(b)に示されるように、駆動周期A2が非吐出である場合、先の駆動周期A1における駆動信号Paの印加から次の駆動周期A3における駆動信号Paの印加までの間の休止期間が10Tcとなって長くなる。このため、駆動周期A1とA3とで駆動信号印加時の残響圧力波の条件が同一にならない。駆動周期A3に駆動信号Paが印加された時点では、圧力発生室内の圧力は負圧に転じており、膨張パルスからなる駆動信号Paの印加によって、圧力発生室内の負の圧力はより増強されて強い負圧状態となる。その結果、駆動信号Paの立下りによって圧力発生室内には通常よりも強い圧力が付与され、液滴速度が増大してしまう。
 このように、同一のノズルにおける連続する駆動周期において、駆動信号が印加されない非吐出の駆動周期が含まれる場合、非吐出の駆動周期の次の駆動周期に駆動信号が印加された際に液滴速度が変動し、着弾位置ずれや液滴量の変動が発生することによって画質を劣化させる問題があった。
 特許文献1には、駆動信号の周波数を、圧力発生室内を圧力波が片道伝播する時間の整数+0.5倍の逆数とすることにより、連続する複数ドットの2発目以降の液滴速度や体積の変動を防止することが記載されている。
 しかし、圧力波が伝播する時間は圧力発生室の形状によって異なってくるため、駆動信号の周波数を設定するだけでは、ヘッド製造時の圧力発生室形状のばらつきによって液滴速度が大きく変動してしまい、実施が困難である。しかも、特許文献1には、駆動信号が印加された駆動周期の後、非吐出の駆動周期を挟んで次に駆動信号が印加される場合の残響圧力波の影響については全く言及されていない。
 一方、特許文献2には、インクを吐出しない非吐出の圧力発生室に、インクを吐出する隣接する圧力発生室に印加される吐出パルスの立下りと同時に立下がるダミーパルスを印加することで、クロストークと残響圧力波とを低減することが記載されている。
 また、特許文献3には、吐出パルスの直前に2AL(=2Tc)以上の収縮パルスからなる予備パルスと1AL(=1Tc)の収縮パルスからなる第2パルスのいずれか一方又は両方を印加することが記載されている。
特開平11-170521号公報 特開2000-255055号公報 特開2010-131988号公報
 特許文献2の方法では、隣接する圧力発生室にも吐出パルスが印加されない場合、ダミーパルスが印加されないため、隣接する圧力発生室同士がいずれも非吐出である場合は、次の駆動信号の印加時における残響圧力波の影響を防止することができず、液滴速度の変動を抑制することができない。
 また、特許文献3は小液滴化やメニスカスの微振動が目的であり、残響圧力波に起因する液滴速度変動を抑制するものではない。残響圧力波の影響を防止するには、適切なパルス幅のパルス信号を適切なタイミングで印加することが必要であると考えられるが、特許文献3に開示されるような吐出パルスの直前に印加されるパルス信号では、本発明が問題とする非吐出の駆動周期の次の駆動周期に駆動信号が印加される際の残響圧力波の影響による液滴速度変動を抑制する上では十分ではなかった。
 そこで、本発明は、非吐出の駆動周期の次の駆動周期に駆動信号が印加される際、非吐出の駆動周期にも駆動信号が印加された場合と同等の残響圧力波が発生するようにすることで、当該次の駆動周期に駆動信号が印加された際の液滴速度を安定化させ、液滴速度変動を低減することができるインクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置を提供することを課題とする。
 本発明の他の課題は、以下の記載により明らかとなる。
 1.駆動信号の印加により動作する圧力付与手段と、前記圧力付与手段の動作によって容積が膨張又は収縮する圧力発生室と、前記圧力発生室に連通したノズルとを有するインクジェットヘッドの前記圧力付与手段に、画像データに応じて所定の駆動周期で前記駆動信号を印加し、前記圧力発生室の容積を膨張又は収縮させることによって該圧力発生室内のインクを前記ノズルから吐出させるインクジェットヘッドの駆動方法であって、
 前記駆動信号は、前記圧力発生室の容積を膨張させ、一定期間膨張状態を維持した後に元の容積へ戻す膨張パルスを含み、該膨張パルスの膨張維持期間は0.8Tc~1.2Tc(Tcは圧力発生室で生じる圧力振動周期の1/2)であり、
 吐出が行われる駆動周期の少なくとも直前に吐出が行われない駆動周期が存在する場合に、該吐出が行われない駆動周期の開始から0.8Tc~1.2Tc後に、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積へ戻す収縮パルスからなり、且つ、収縮維持期間が0.8Tc~1.2Tcである、インクを吐出しない調整パルスを印加するインクジェットヘッドの駆動方法。
 2.前記膨張パルスの駆動電圧(Von)と、前記調整パルスの駆動電圧(Voff)が、|Von|/|Voff|=1/0.3~1/0.7である前記1記載のインクジェットヘッドの駆動方法。
 3.吐出が行われない駆動周期が複数連続する場合に、その後に最初に吐出が行われる駆動周期の直前の吐出が行われない駆動周期のみに前記調整パルスを印加する前記1又は2記載のインクジェットヘッドの駆動方法。
 4.連続する複数の駆動周期内で前記駆動信号を前記圧力付与手段に選択的に印加することによって1画素を記録する多階調駆動を行う際、該1画素を記録するための複数の駆動周期内で吐出が行われない駆動周期が存在し、該吐出が行われない駆動周期の後に、次の1画素を記録するための吐出が行われる駆動周期が存在する場合に、当該吐出が行われる駆動周期の少なくとも直前の吐出が行われない駆動周期に前記調整パルスを印加する前記1、2又は3記載のインクジェットヘッドの駆動方法。
 5.前記駆動信号は、前記膨張パルスに続いて、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す収縮パルスを含み、該収縮パルスの収縮維持期間が1.8Tc~2.2Tcである前記1~4のいずれかに記載のインクジェットヘッドの駆動方法。
 6.前記駆動信号は、前記膨張パルスの立下りから0.8Tc~1.2Tc経過後に、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す収縮パルスを含み、該収縮パルスの収縮維持期間が0.8Tc~1.2Tcである前記1~4のいずれかに記載のインクジェットヘッドの駆動方法。
 7.駆動信号を発生する駆動信号発生手段を備え、駆動信号の印加により動作する圧力付与手段と、前記圧力付与手段の動作によって容積が膨張又は収縮する圧力発生室と、前記圧力発生室に連通したノズルとを有するインクジェットヘッドの前記圧力付与手段に、前記駆動信号発生手段から画像データに応じて所定の駆動周期で前記駆動信号を印加し、前記圧力発生室の容積を膨張又は収縮させることによって該圧力発生室内のインクを前記ノズルから吐出させるインクジェットヘッドの駆動装置であって、
 前記駆動信号は、前記圧力発生室の容積を膨張させ、一定期間膨張状態を維持した後に元の容積へ戻す膨張パルスを含み、該膨張パルスの膨張維持期間は0.8Tc~1.2Tc(Tcは圧力発生室で生じる圧力振動周期の1/2)であり、
 前記駆動信号発生手段は、吐出が行われる駆動周期の少なくとも直前に吐出が行われない駆動周期が存在する場合に、該吐出が行われない駆動周期の開始から0.8Tc~1.2Tc後に、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積へ戻す収縮パルスからなり、且つ、収縮維持期間が0.8Tc~1.2Tcである、インクを吐出しない調整パルスを印加するインクジェットヘッドの駆動装置。
 8.前記膨張パルスの駆動電圧(Von)と、前記調整パルスの駆動電圧(Voff)が、|Von|/|Voff|=1/0.3~1/0.7である前記7記載のインクジェットヘッドの駆動装置。
 9.前記駆動信号発生手段は、吐出が行われない駆動周期が連続する場合に、その後に最初に吐出が行われる駆動周期の直前の吐出が行われない駆動周期のみに前記調整パルスを印加する前記7又は8記載のインクジェットヘッドの駆動装置。
 10.前記駆動信号発生手段は、連続する複数の駆動周期内で前記駆動信号を前記圧力付与手段に選択的に印加することによって1画素を記録する多階調駆動を行う際、該1画素を記録するための複数の駆動周期内で吐出が行われない駆動周期が存在し、該吐出が行われない駆動周期の後に、次の1画素を記録するための吐出が行われる駆動周期が存在する場合に、当該吐出が行われる駆動周期の少なくとも直前の吐出が行われない駆動周期に前記調整パルスを印加する前記7、8又は9記載のインクジェットヘッドの駆動装置。
 11.前記駆動信号は、前記膨張パルスに続いて、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す収縮パルスを含み、該収縮パルスの収縮維持期間が1.8Tc~2.2Tcである前記7~10のいずれかに記載のインクジェットヘッドの駆動装置。
 12.前記駆動信号は、前記膨張パルスの立下りから0.8Tc~1.2Tc経過後に、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す収縮パルスを含み、該収縮パルスの収縮維持期間が0.8Tc~1.2Tcである前記7~10のいずれかに記載のインクジェットヘッドの駆動装置。
 13.駆動信号の印加により動作する圧力付与手段と、前記圧力付与手段の動作によって容積が膨張又は収縮する圧力発生室と、前記圧力発生室に連通したノズルとを有するインクジェットヘッドと、
 前記7~12のいずれかに記載のインクジェットヘッドの駆動装置とを備えるインクジェット記録装置。
インクジェット記録装置の概略構成を示す図 インクジェットヘッドの一例を示しており、(a)はその一部を断面で示す斜視図、(b)は側面から見た断面図 本発明に使用される駆動信号の例を示す信号波形図であり、(a)はDR波形、(b)はDRR波形、(c)はDRC波形を示す図 駆動信号による隔壁の変形動作を説明する図 本発明における調整パルスの一例を示す信号波形図 本発明における調整パルスを印加した場合の駆動信号及び調整パルスと圧力発生室内に発生する圧力との関係を示す図 駆動信号としてDRR波形を使用した場合の駆動信号及び調整パルスと圧力発生室内に発生する圧力との関係を示す図 駆動信号としてDRC波形を使用した場合の駆動信号及び調整パルスと圧力発生室内に発生する圧力との関係を示す図 駆動周期を図6と異ならせた場合の駆動信号及び調整パルスと圧力発生室内に発生する圧力との関係を示す図 非吐出の駆動周期が複数連続する場合に調整パルスを印加する態様を説明するタイミングチャート 非吐出の駆動周期が複数連続する場合に調整パルスを印加する別の態様を説明するタイミングチャート 多階調駆動を行う場合に調整パルスを印加する態様を説明するタイミングチャート 多階調駆動を行う場合に調整パルスを印加する別の態様を説明するタイミングチャート (a)は連続する駆動周期の全てで駆動信号を印加する参考例を示すタイミングチャート、(b)は非吐出の駆動周期に調整パルスを印加する実施例を示すタイミングチャート、(c)は1つおきの駆動周期を非吐出とした比較例を示すタイミングチャート 図14において吐出された液滴の液滴速度を示すグラフ (a)は全ての駆動周期で駆動信号が印加された場合の駆動信号と圧力発生室内に発生する圧力との関係を示す図、(b)は非吐出の駆動周期を含む場合の駆動信号と圧力発生室内に発生する圧力との関係を示す図
 以下、本発明の実施の形態について図面を用いて説明する。
 図1は、本発明に係るインクジェット記録装置の一例を示す概略構成図である。
 インクジェット記録装置1において、記録媒体100は、搬送機構2の搬送ローラー対22に挟持され、更に、搬送モーター23によって回転駆動される搬送ローラー21により図示Y方向(副走査方向)に搬送されるようになっている。
 搬送ローラー21と搬送ローラー対22の間には、記録媒体100の記録面101と対向するように、図2に示したインクジェットヘッド3が設けられている。このインクジェットヘッド3は、ノズル面側が記録媒体100の記録面101と対向するように配置されてキャリッジ5に搭載され、FPC6を介して駆動装置7と電気的に接続されている。キャリッジ5は、記録媒体100の幅方向に亘って掛け渡されたガイドレール4に沿って、不図示の駆動手段によって、記録媒体100の搬送方向(副走査方向)と略直交する図示X-X’方向(主走査方向)に沿って往復移動可能に設けられている。
 インクジェットヘッド3は、キャリッジ5の主走査方向の移動に伴って記録媒体100の記録面101を図示X-X’方向に走査移動し、この走査移動の過程でノズルから液滴を吐出することによって所望のインクジェット画像を記録する。
 図2はインクジェットヘッド3の一例を示しており、(a)はその一部を断面で示す斜視図、(b)は側面から見た断面図である。
 インクジェットヘッド3において、30はチャネル基板である。チャネル基板30には、圧力発生室である細溝状の多数のチャネル31と、圧力付与手段である隔壁32とが交互となるように並設されている。チャネル基板30の上面には、全てのチャネル31の上方を塞ぐようにカバー基板33が設けられている。チャネル基板30とカバー基板33の端面にはノズルプレート34が接合され、このノズルプレート34の表面によってノズル面が形成される。各チャネル31の一端は、このノズルプレート34に形成されたノズル34aを介して外部と連通している。
 各チャネル31の他端は、チャネル基板30に対して徐々に浅溝となり、カバー基板33に開口形成された各チャネル31に共通の共通流路33aに連通している。共通流路33aは更にプレート35によって閉塞され、該プレート35に形成されたインク供給口35aを介して、インク供給管35bから共通流路33a及び各チャネル31内にインクが供給される。
 各隔壁32は、電気・機械変換手段であるPZT等の圧電素子からなる。ここでは上壁部32aと下壁部32bが共に分極処理された圧電素子によって形成され、上壁部32aと下壁部32bとで分極方向(図2(b)中の矢印で示す。)を互いに反対方向としたものを例示しているが、分極処理された圧電素子によって形成される部分は例えば符号32aの部分のみであってもよく、隔壁32の少なくとも一部にあればよい。隔壁32はチャネル31と交互に並設されている。従って、一つの隔壁32はその両隣のチャネル31、31で共用される。
 各チャネル31内には、両隔壁32の壁面からチャネル31の底面に亘って、それぞれ駆動電極36(図4参照)が形成されている。この駆動電極36に、駆動装置7に設けられた駆動信号発生手段である駆動信号発生部71から所定電圧の駆動信号が印加されると、隔壁32は上壁部32aと下壁部32bとの接合面を境にしてくの字状にせん断変形する。この隔壁32の変形によってチャネル31内に圧力波が発生し、チャネル31内のインクにノズル34aから吐出するための圧力が付与される。
 駆動装置7は、図4に示すように各チャネル31内の駆動電極36に印加するための駆動信号を発生させる駆動信号発生部71を有している。液滴吐出時に、この駆動信号発生部71からインクジェットヘッド3の駆動電極36に与えられる駆動信号Paの例を図3(a)~(c)に示す。また、各駆動信号Paを印加した時の隔壁32の動作について図4を用いて説明する。
 図3(a)に示す駆動信号Paは、チャネル31の容積を膨張させ、一定期間膨張状態を維持した後に元の容積へ戻す矩形波からなる膨張パルスのみによって構成されている。
 この駆動信号Paが、駆動信号発生部71から図4(a)に示す隔壁32が中立状態にある中央のチャネル31Bの駆動電極36Bに印加され、その両隣のチャネル31A、31Cの各駆動電極36A、36Cが接地されると、図4(b)に示すように、チャネル31Bの両側の隔壁32B、32Cを形成する圧電素子の分極方向(図中矢印で示す。)に直角な方向の電界が生じ、両隔壁32B、32Cが互いに外側に向けてくの字状にせん断変形し、チャネル31Bの容積を膨張させる。この隔壁32B、32Cの変形によりチャネル31B内に共通流路33aからインクが流れ込む。この膨張状態をW1だけ維持した後、0電位に戻すと、隔壁32B、32Cは図4(a)の中立状態に復帰する。これによりチャネル31B内のインクに高い圧力が掛かり、ノズル34aから液滴が吐出される。以下、この図3(a)に示す駆動信号PaをDR波形という。
 このように隔壁32の外側に向けた変形によって生じたチャネル31内の圧力は、負から正へ、正から負へと1Tc毎に反転を繰り返す。このため、効率良く液滴を吐出するため、駆動信号Paの膨張パルスの膨張維持期間W1は、チャネル31内の圧力が負から正に転じる1Tc近傍であることが好ましく、具体的には0.8Tc~1.2Tcの範囲とされる。
 ここでTcとは、圧力発生室であるチャネル31で生じる圧力振動周期の1/2の時間をいう。Tcは、駆動電極36に矩形波の駆動信号を印加した際に吐出される液滴の速度を測定し、矩形波の電圧値を一定にして矩形波のパルス幅を変化させたときに、液滴速度が最大になるパルス幅として求められる。
 また、パルスとは、一定電圧波高値の矩形波であり、0Vを0%、波高値電圧を100%とした場合に、パルス幅とは、電圧の0Vからの立ち上がり10%と波高値電圧からの立ち下がり10%との間の時間として定義する。
 更に、矩形波とは、電圧の10%と90%との間の立ち上がり時間、立ち下がり時間のいずれもがTcの1/2以内、好ましくは1/4以内であるような波形を指す。
 図3(b)に示す駆動信号Paは、同じく膨張維持期間W1の膨張パルスに続いて、一定期間チャネル31の容積を収縮させてから元に戻すことによって正の圧力を発生させる矩形波からなる収縮パルスを有する。この収縮パルスの収縮継続期間W2は、液滴を効率良く吐出させる観点から1.8Tc~2.2Tcとすることが好ましい。
 この駆動信号Paが、駆動信号発生部71から図4(a)に示す隔壁32が中立状態にある中央のチャネル31Bの駆動電極36Bに印加され、その両隣のチャネル31A、31Cの各駆動電極36A、36Cが接地されると、DR波形の場合と同様に、膨張パルスによって図4(b)に示すように両隔壁32B、32Cが互いに外側に向けてくの字状にせん断変形し、チャネル31Bの容積を膨張させる。この隔壁32B、32Cの変形によりチャネル31B内に共通流路33aからインクが流れ込む。この膨張状態がW1だけ維持された後、引き続いて中央のチャネル31Bの駆動電極36Bに収縮パルスが印加される。すると、図4(c)に示すように、両隔壁32B、32Cが互いに内側に向けてくの字状にせん断変形し、チャネル31Bの容積を収縮させる。このときチャネル31B内のインクには更に高い圧力が掛かり、ノズル34aから液滴が吐出される。収縮パルスはW2だけ維持された後、0電位に戻されると、隔壁32B、32Cは図4(a)に示す中立状態に復帰する。以下、この図3(b)に示す駆動信号PaをDRR波形という。
 図3(c)に示す駆動信号Paは、同じく膨張維持期間W1の膨張パルスの後、休止期間(0電位期間)W3を経て、一定期間チャネル31の容積を収縮させてから元に戻すことによって正の圧力を発生させる矩形波からなる収縮パルスを有する。同様に液滴を効率良く吐出させる観点から、この休止期間W3の継続期間は0.8Tc~1.2Tc、収縮パルスの収縮継続期間W4は0.8Tc~1.2Tcとすることが好ましい。
 この駆動信号Paが、駆動信号発生部71から図4(a)に示す隔壁32が中立状態にある中央のチャネル31Bの駆動電極36Bに印加されると、DR波形の場合と同様に、膨張パルスによって図4(b)に示すように両隔壁32B、32Cが互いに外側に向けてくの字状にせん断変形し、チャネル31Bの容積を膨張させる。この隔壁32B、32Cの変形によりチャネル31B内に共通流路33aからインクが流れ込む。この膨張状態が0.8Tc~1.2Tc維持された後、0電位に戻されると、隔壁32B、32Cは中立状態に復帰すると共にチャネル31B内のインクに圧力が掛かり、ノズル34aから液滴が吐出される。この中立状態が0.8Tc~1.2Tc維持された後、中央のチャネル31Bの駆動電極36Bに収縮パルスが印加されると、図4(c)に示すように、両隔壁32B、32Cが互いに内側に向けてくの字状にせん断変形し、チャネル31Bの容積を収縮させる。これによりチャネル31B内に残留する圧力波がキャンセルされる。但し、この収縮パルスによってチャネル31内に残留する圧力波は完全にキャンセルされるわけではなく、僅かに残響圧力波として次の駆動周期に影響を及ぼすおそれがある。以下、この図3(c)に示す駆動信号PaをDRC波形という。
 以上の各駆動信号Paにおける膨張パルスの駆動電圧(Von)と収縮パルスの駆動電圧(Voff)は、液滴を効率良く吐出させる観点から、|Von|>|Voff|とすることが好ましい。
 次に、液滴吐出後に当該液滴を吐出したチャネル31内の残響圧力波による影響を低減するために、駆動信号発生部71からインクジェットヘッド3に対して駆動信号を印加する方法について説明する。
 図5は、本発明において残響圧力波の影響を低減するために用いられる調整パルスPbを示している。この調整パルスPbは、チャネル31の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す矩形波の収縮パルスからなるが、インク(インクの液滴)を吐出させるものではない。この収縮維持期間W5は0.8Tc~1.2Tcとされている。
 図6は、DR波形を用いて図16と同様に駆動周期A=5Tcで、連続する3つの駆動周期A1~A3でそれぞれ吐出、非吐出、吐出となる場合に、このうちの非吐出の駆動周期A2に調整パルスPbを印加した場合の駆動信号及び調整パルスとチャネル31内に発生する圧力との関係を示している。駆動信号Paは、吐出を行う駆動周期A1、A3の周期開始と同時に膨張パルスが立ち上がるように印加される。
 ここで調整パルスPbは、吐出が行われる駆動周期A3の直前の吐出が行われない駆動周期A2に、当該駆動周期A2の開始から一定の休止期間W0を経たタイミングで印加される。この休止期間W0は0.8Tc~1.2Tcとされる。
 その結果、非吐出の駆動周期A2の開始時に正圧に転じた圧力が1Tc後に負圧に転じる時期とほぼ同じくして、収縮パルスからなる調整パルスPbが印加されることで、圧力は正圧に反転する。その後は1Tc毎に正から負へ、負から正へと反転を繰り返し、駆動周期A3の開始時は、駆動周期A1の開始時と同様に圧力が正圧に転じた状態で駆動信号Paが印加されることになる。これにより、駆動周期A1とA3とで駆動信号印加時のチャネル31内の残響圧力波は同一条件となる。従って、駆動信号Paによる液滴吐出時の圧力は駆動周期A1の場合と同等となり、液滴速度の変動は抑えられ、安定化される。
 駆動信号Paの膨張パルスの駆動電圧(Von)と、この調整パルスPbの駆動電圧(Voff)とは、|Von|/|Voff|=1/0.3~1/0.7の範囲となるように調整パルスPbの駆動電圧が設定されていることが好ましい。非吐出の駆動周期内に差し掛かった残響圧力波は減衰しているため、調整パルスPbの駆動電圧は、駆動信号Paの駆動電圧よりも低い電圧とすることで、液滴を吐出させることなく、次の駆動周期における駆動信号印加時の残響圧力波の条件を、先の駆動周期における駆動信号印加時とほぼ同等にすることができる。
 図6では、駆動信号Paとして図3(a)に示すDR波形を用いたが、調整パルスPbは駆動信号Paとして他の駆動信号が使用された場合でも同様に機能する。
 図7は、駆動信号Paとして図3(b)に示すDRR波形を用いた例を示している。駆動周期A=5Tcであり、図6の例と同一である。駆動信号Paは、吐出を行う駆動周期A1、A3の周期開始と同時に膨張パルスが立ち上がるように印加される。
 図7(a)に示すように、各駆動周期A1~A3の各々に駆動信号Paが印加される場合、各駆動信号印加時の残響圧力波の条件は同等となっている。また、図7(b)に示すように、駆動周期A2のみ非吐出である場合でも、この駆動周期A2の開始から0.8Tc~1.2Tcの休止期間W0が経過した後に調整パルスPbを印加すると、次の駆動周期A3における駆動信号印加時の残響圧力波の条件を駆動周期A1の駆動信号印加時と同等にすることができる。その結果、駆動信号Paによる液滴吐出時の圧力は駆動周期A1の場合と同等となり、駆動周期A3における液滴速度の変動は抑制され、安定化される。
 図8は、駆動信号Paとして図3(c)に示すDRC波形を用いた例を示している。駆動周期A=5Tcであり、図6の例と同一である。駆動信号Paは、吐出を行う駆動周期A1、A3の周期開始と同時に膨張パルスが立ち上がるように印加される。
 図8(a)に示すように、各駆動周期A1~A3の各々に駆動信号Paが印加される場合、各駆動信号印加時の残響圧力波の条件は同等となっている。また、図8(b)に示すように、駆動周期A2のみ非吐出である場合でも、この駆動周期A2の開始から0.8Tc~1.2Tcの休止期間W0が経過した後に調整パルスPbを印加すると、次の駆動周期A3における駆動信号印加時の残響圧力波の条件を駆動周期A1の駆動信号印加時と同等にすることができる。その結果、駆動信号Paによる液滴吐出時の圧力は駆動周期A1の場合と同等となり、駆動周期A3における液滴速度の変動は抑制され、安定化される。
 また、以上の説明では、いずれも駆動周期A=5Tcとしたが、駆動周期が様々に変化しても、吐出が行われる駆動周期の直前の非吐出の駆動周期の開始から0.8Tc~1.2Tc後に調整パルスPbを印加することで、同様に駆動信号印加時の残響圧力波の条件を同等にすることができる。
 図9は駆動周期A=6Tcの場合を示している。(a)は各駆動周期A1~A3のいずれも液滴を吐出する場合、(b)は駆動周期A2のみ非吐出である場合を示している。このように、駆動周期が6Tcであっても、各駆動周期A1~A3にそれぞれ駆動信号Paが印加される限り、各駆動信号印加時の残響圧力波の条件は同等となる。また、駆動周期A2が非吐出の場合に、この駆動周期A2の開始から0.8Tc~1.2Tcの休止期間W0が経過した後に調整パルスPbを印加することによって、次の駆動周期A3における駆動信号印加時の残響圧力波の条件を駆動周期A1の駆動信号印加時と同等にすることができる。その結果、駆動周期A3における液滴速度の変動は抑制され、安定化される。
 図10は、非吐出の駆動周期が複数連続する場合のタイミングチャートを示している。ここでは図3(b)に示すDRR波形が用いられている。ここでは全ての非吐出の駆動周期A3~A6にそれぞれ調整パルスPbを印加している。これによって、次に駆動信号Paが印加される駆動周期A7における液滴吐出時の液滴速度変動を抑制し、安定化させることができる。
 このように複数の連続する非吐出の駆動周期A3~A6の各々に調整パルスPbを印加する場合、各調整パルスPbの印加タイミングは、いずれも各駆動周期A3~A6の開始から0.8Tc~1.2Tc後とされるが、液滴速度の変動を効果的に抑制する観点から、この0.8Tc~1.2Tcの範囲内で各々同一の印加タイミングに設定することが好ましい。
 また、このように非吐出の駆動周期が複数連続する場合、必ずしも全ての駆動周期A3~A6に調整パルスPbを印加する必要はなく、図11に示すように、複数連続する非吐出の駆動周期A3~A6の後に最初に吐出が行われる駆動周期A7の直前の非吐出の駆動周期A6のみに調整パルスPbが印加されるだけでもよい。これにより調整パルスPbの印加数が抑えられるので、それだけ電力消費を低減でき、インクジェットヘッド3の発熱も抑制することができる。
 インクジェットヘッド3では、連続する複数の駆動周期内で駆動信号Paを選択的に印加することによって1画素を記録する多階調駆動を行う場合がある。例えば、図12は連続する4つの駆動周期A1~A4で1画素周期とする例を示している。この場合、全ての駆動周期A1~A4を非吐出として1画素を記録するものから全ての駆動周期A1~A4で吐出を行って1画素を記録するものまでの5階調の記録を行うことができる。
 図12では、最初の画素周期Aaにおいて1番目の駆動周期A1のみに駆動信号Paが印加され、次の画素周期Abにおいて1番目と2番目の駆動周期A1、A2のみに駆動信号Paが印加されている。このとき、画素周期Aaにおいて非吐出となる各駆動周期A2~A4、及び画素周期Aaにおいて非吐出となる各駆動周期A3、A4にそれぞれ調整パルスPbを印加することができる。
 また、最初の画素周期Aaにおける最後の非吐出の駆動周期A4の次が、画素周期Abにおける吐出を行う駆動周期A1であるため、図13に示すように、当該画素周期Abの最初の駆動周期A1の直前の非吐出の駆動周期A4のみに調整パルスPbを印加するだけであってもよい。これによって図11の場合と同様、調整パルスPbの印加数が抑えられ、それだけ電力消費を低減でき、インクジェットヘッド3の発熱も抑制することができる。
 以上の説明では、インクジェットヘッドとして、隣接するチャネル31間の隔壁32を圧力付与手段として変形駆動させるタイプのインクジェットヘッド3を例示した。このようなインクジェットヘッド3は、チャネル31の容積を膨張又は収縮させるための隔壁32が隣り合うチャネル31で共用され、隔壁32の変形動作は隣接するチャネル31にも及ぶため、隣接するチャネル31同士で同時に吐出を行うことができない。このため本発明においては、このようなインクジェットヘッド3を用いる場合、調整パルスの印加によって隣接するチャネルの吐出動作に影響を与えないようにするため、インク吐出を行うための吐出チャネルとインク吐出を行わないダミーチャネルとを交互に配置した独立駆動タイプのインクジェットヘッドを用いることが好ましい。
 但し、本発明において使用することができるインクジェットヘッドは、駆動信号の印加によって圧力発生室の容積が膨張又は収縮することによって該圧力発生室内のインクをノズルから吐出せるものであればよく、チャネル間の隔壁を変形動作させることによって液滴を吐出するものに限定されない。従って、例えば圧力発生室の一壁面を振動板とし、この振動板の外面にPZT等の圧電素子を積層して、駆動信号の印加による圧電素子の機械的変位によって振動板を振動させ、圧力発生室の容積を膨張又は収縮させるタイプのインクジェットヘッドであってもよい。
 また、駆動信号の信号波形は、以上説明したDR波形、DRR波形、DRC波形に限定されるものではなく、圧力発生室の構造に応じて、液滴吐出時に該圧力発生室の容積を膨張又は収縮させるような信号波形であればよい。
 更に、本発明におけるインクジェット記録装置は、以上説明したように、インクジェットヘッド3を記録媒体100の幅方向(主走査方向)に亘って走査移動させる過程で液滴を吐出して記録を行うものに限らず、インクジェットヘッド3が記録媒体100の幅方向に亘って固定されたライン状のインクジェットヘッドによって構成され、記録媒体100を図1中のY方向に沿って移動させる過程でノズル34aから液滴を吐出して記録を行うものであってもよい。
 以下、本発明の効果を実施例によって例証する。
(参考例)
 図2に示すインクジェットヘッドを用い、そのうちの一つのチャネルに着目して、図14(a)に示すように連続する複数の駆動周期A1~A10の各々において駆動信号Paを印加し、連続して液滴吐出を行った。各駆動周期A=5Tcであり、駆動信号Paは図3(b)に示すDRR波形を使用した。DRR波形の膨張パルスの膨張維持期間は1Tc、収縮パルスの収縮維持期間は2Tcとした。
 このときのそれぞれの液滴速度は、図15に示すように、いずれの駆動周期A1~A10もおよそ7m/sとなり、安定していた。
(実施例)
 参考例と同一のインクジェットヘッドにおいて、図14(b)に示すように連続する複数の駆動周期A1~A10を、1駆動周期おきに駆動信号Paを印加せずに非吐出とし、非吐出の駆動周期A2、A4、A6、A8において、それぞれの駆動周期の開始から1Tc後に、収縮維持期間が1Tcからなる調整パルスPbを印加し、駆動周期A3、A5、A7、A9において吐出された液滴速度を測定した。
 その結果、図15に示すように、駆動周期A3、A5、A7、A9における液滴速度は、7m/sを僅かに下回るものの、いずれも調整パルスPbを印加しない場合に比べて液滴速度の変動は大きく抑えられた。
(比較例)
 図14(c)に示すように、1駆動周期おきに駆動信号Paを印加せずに非吐出とした各駆動周期A2、A4、A6、A8において調整パルスを印加しなかった場合、その後の駆動周期A3、A5、A7、A9における液滴速度は、図15に示すように、いずれも8~9m/sとなって大きく変動した。
 以上より、吐出が行われる駆動周期の直前の非吐出の駆動周期に本発明に係る調整パルスを印加することにより、連続駆動する場合と同様に液滴速度が安定した液滴吐出を行うことが可能となった。
 1:インクジェットヘッド
 2:搬送機構
  21:搬送ローラー
  22:搬送ローラー対
  23:搬送モーター
 3:インクジェットヘッド
  30:チャネル基板
  31:チャネル(圧力発生室)
  32:隔壁(圧力付与手段)
   32a:上壁部
   32b:下壁部
  33:カバー基板
   33a:共通流路
  34:ノズルプレート
   34a:ノズル
  35: プレート
   35a:インク供給口
   35b:インク供給管
  36:駆動電極
 4:ガイドレール
 5:キャリッジ
 6:FPC
 7:駆動装置
  71:駆動信号発生部(駆動信号発生手段)
 Pa:駆動信号
 Pb:調整パルス

Claims (13)

  1.  駆動信号の印加により動作する圧力付与手段と、前記圧力付与手段の動作によって容積が膨張又は収縮する圧力発生室と、前記圧力発生室に連通したノズルとを有するインクジェットヘッドの前記圧力付与手段に、画像データに応じて所定の駆動周期で前記駆動信号を印加し、前記圧力発生室の容積を膨張又は収縮させることによって該圧力発生室内のインクを前記ノズルから吐出させるインクジェットヘッドの駆動方法であって、
     前記駆動信号は、前記圧力発生室の容積を膨張させ、一定期間膨張状態を維持した後に元の容積へ戻す膨張パルスを含み、該膨張パルスの膨張維持期間は0.8Tc~1.2Tc(Tcは圧力発生室で生じる圧力振動周期の1/2)であり、
     吐出が行われる駆動周期の少なくとも直前に吐出が行われない駆動周期が存在する場合に、該吐出が行われない駆動周期の開始から0.8Tc~1.2Tc後に、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積へ戻す収縮パルスからなり、且つ、収縮維持期間が0.8Tc~1.2Tcである、インクを吐出しない調整パルスを印加するインクジェットヘッドの駆動方法。
  2.  前記膨張パルスの駆動電圧(Von)と、前記調整パルスの駆動電圧(Voff)が、|Von|/|Voff|=1/0.3~1/0.7である請求項1記載のインクジェットヘッドの駆動方法。
  3.  吐出が行われない駆動周期が複数連続する場合に、その後に最初に吐出が行われる駆動周期の直前の吐出が行われない駆動周期のみに前記調整パルスを印加する請求項1又は2記載のインクジェットヘッドの駆動方法。
  4.  連続する複数の駆動周期内で前記駆動信号を前記圧力付与手段に選択的に印加することによって1画素を記録する多階調駆動を行う際、該1画素を記録するための複数の駆動周期内で吐出が行われない駆動周期が存在し、該吐出が行われない駆動周期の後に、次の1画素を記録するための吐出が行われる駆動周期が存在する場合に、当該吐出が行われる駆動周期の少なくとも直前の吐出が行われない駆動周期に前記調整パルスを印加する請求項1、2又は3記載のインクジェットヘッドの駆動方法。
  5.  前記駆動信号は、前記膨張パルスに続いて、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す収縮パルスを含み、該収縮パルスの収縮維持期間が1.8Tc~2.2Tcである請求項1~4のいずれかに記載のインクジェットヘッドの駆動方法。
  6.  前記駆動信号は、前記膨張パルスの立下りから0.8Tc~1.2Tc経過後に、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す収縮パルスを含み、該収縮パルスの収縮維持期間が0.8Tc~1.2Tcである請求項1~4のいずれかに記載のインクジェットヘッドの駆動方法。
  7.  駆動信号を発生する駆動信号発生手段を備え、駆動信号の印加により動作する圧力付与手段と、前記圧力付与手段の動作によって容積が膨張又は収縮する圧力発生室と、前記圧力発生室に連通したノズルとを有するインクジェットヘッドの前記圧力付与手段に、前記駆動信号発生手段から画像データに応じて所定の駆動周期で前記駆動信号を印加し、前記圧力発生室の容積を膨張又は収縮させることによって該圧力発生室内のインクを前記ノズルから吐出させるインクジェットヘッドの駆動装置であって、
     前記駆動信号は、前記圧力発生室の容積を膨張させ、一定期間膨張状態を維持した後に元の容積へ戻す膨張パルスを含み、該膨張パルスの膨張維持期間は0.8Tc~1.2Tc(Tcは圧力発生室で生じる圧力振動周期の1/2)であり、
     前記駆動信号発生手段は、吐出が行われる駆動周期の少なくとも直前に吐出が行われない駆動周期が存在する場合に、該吐出が行われない駆動周期の開始から0.8Tc~1.2Tc後に、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積へ戻す収縮パルスからなり、且つ、収縮維持期間が0.8Tc~1.2Tcである、インクを吐出しない調整パルスを印加するインクジェットヘッドの駆動装置。
  8.  前記膨張パルスの駆動電圧(Von)と、前記調整パルスの駆動電圧(Voff)が、|Von|/|Voff|=1/0.3~1/0.7である請求項7記載のインクジェットヘッドの駆動装置。
  9.  前記駆動信号発生手段は、吐出が行われない駆動周期が連続する場合に、その後に最初に吐出が行われる駆動周期の直前の吐出が行われない駆動周期のみに前記調整パルスを印加する請求項7又は8記載のインクジェットヘッドの駆動装置。
  10.  前記駆動信号発生手段は、連続する複数の駆動周期内で前記駆動信号を前記圧力付与手段に選択的に印加することによって1画素を記録する多階調駆動を行う際、該1画素を記録するための複数の駆動周期内で吐出が行われない駆動周期が存在し、該吐出が行われない駆動周期の後に、次の1画素を記録するための吐出が行われる駆動周期が存在する場合に、当該吐出が行われる駆動周期の少なくとも直前の吐出が行われない駆動周期に前記調整パルスを印加する請求項7、8又は9記載のインクジェットヘッドの駆動装置。
  11.  前記駆動信号は、前記膨張パルスに続いて、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す収縮パルスを含み、該収縮パルスの収縮維持期間が1.8Tc~2.2Tcである請求項7~10のいずれかに記載のインクジェットヘッドの駆動装置。
  12.  前記駆動信号は、前記膨張パルスの立下りから0.8Tc~1.2Tc経過後に、前記圧力発生室の容積を収縮させ、一定期間収縮状態を維持した後に元の容積に戻す収縮パルスを含み、該収縮パルスの収縮維持期間が0.8Tc~1.2Tcである請求項7~10のいずれかに記載のインクジェットヘッドの駆動装置。
  13.  駆動信号の印加により動作する圧力付与手段と、前記圧力付与手段の動作によって容積が膨張又は収縮する圧力発生室と、前記圧力発生室に連通したノズルとを有するインクジェットヘッドと、
     請求項7~12のいずれかに記載のインクジェットヘッドの駆動装置とを備えるインクジェット記録装置。
     
PCT/JP2013/076316 2012-09-27 2013-09-27 インクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置 WO2014051073A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538638A JP6149863B2 (ja) 2012-09-27 2013-09-27 インクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012214709 2012-09-27
JP2012-214709 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014051073A1 true WO2014051073A1 (ja) 2014-04-03

Family

ID=50388466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076316 WO2014051073A1 (ja) 2012-09-27 2013-09-27 インクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置

Country Status (2)

Country Link
JP (1) JP6149863B2 (ja)
WO (1) WO2014051073A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013461A (ja) * 2015-07-06 2017-01-19 株式会社東芝 インクジェットヘッド及びインクジェットプリンタ
JP2018161747A (ja) * 2017-03-24 2018-10-18 東芝テック株式会社 インクジェットヘッド
JP2020055214A (ja) * 2018-10-02 2020-04-09 東芝テック株式会社 液体吐出ヘッド及びプリンタ
JP2021070299A (ja) * 2019-11-01 2021-05-06 エスアイアイ・プリンテック株式会社 液体噴射ヘッドおよび液体噴射記録装置
JP2022058820A (ja) * 2015-07-06 2022-04-12 株式会社東芝 インクジェットヘッド及びインクジェットプリンタ
JP7506527B2 (ja) 2020-05-26 2024-06-26 東芝テック株式会社 液体吐出ヘッド

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188043A (ja) * 2004-12-10 2006-07-20 Konica Minolta Holdings Inc 液滴吐出装置及び液滴吐出ヘッドの駆動方法
JP2009143142A (ja) * 2007-12-14 2009-07-02 Fuji Xerox Co Ltd 液滴吐出ヘッドの駆動装置及び駆動プログラム
JP2010179494A (ja) * 2009-02-03 2010-08-19 Seiko Epson Corp 液体吐出装置、及び、液体吐出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188043A (ja) * 2004-12-10 2006-07-20 Konica Minolta Holdings Inc 液滴吐出装置及び液滴吐出ヘッドの駆動方法
JP2009143142A (ja) * 2007-12-14 2009-07-02 Fuji Xerox Co Ltd 液滴吐出ヘッドの駆動装置及び駆動プログラム
JP2010179494A (ja) * 2009-02-03 2010-08-19 Seiko Epson Corp 液体吐出装置、及び、液体吐出方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013461A (ja) * 2015-07-06 2017-01-19 株式会社東芝 インクジェットヘッド及びインクジェットプリンタ
JP2022058820A (ja) * 2015-07-06 2022-04-12 株式会社東芝 インクジェットヘッド及びインクジェットプリンタ
JP7225446B2 (ja) 2015-07-06 2023-02-20 株式会社東芝 インクジェットヘッド及びインクジェットプリンタ
JP2018161747A (ja) * 2017-03-24 2018-10-18 東芝テック株式会社 インクジェットヘッド
JP2020055214A (ja) * 2018-10-02 2020-04-09 東芝テック株式会社 液体吐出ヘッド及びプリンタ
JP2021070299A (ja) * 2019-11-01 2021-05-06 エスアイアイ・プリンテック株式会社 液体噴射ヘッドおよび液体噴射記録装置
CN112776481A (zh) * 2019-11-01 2021-05-11 精工电子打印科技有限公司 液体喷射头及液体喷射记录装置
JP7382793B2 (ja) 2019-11-01 2023-11-17 エスアイアイ・プリンテック株式会社 液体噴射ヘッドおよび液体噴射記録装置
CN112776481B (zh) * 2019-11-01 2023-11-17 精工电子打印科技有限公司 液体喷射头及液体喷射记录装置
JP7506527B2 (ja) 2020-05-26 2024-06-26 東芝テック株式会社 液体吐出ヘッド

Also Published As

Publication number Publication date
JPWO2014051073A1 (ja) 2016-08-25
JP6149863B2 (ja) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6149863B2 (ja) インクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置
JP6624205B2 (ja) インクジェット記録装置、インクジェットヘッドの駆動方法及び駆動波形の設計方法
JP5861513B2 (ja) インクジェット記録装置
JP5867072B2 (ja) 液滴射出装置及び液滴射出装置の駆動方法
WO2015152185A1 (ja) インクジェットヘッドの駆動方法及びインクジェット記録装置
JP3713958B2 (ja) インク噴射装置
JP4866457B2 (ja) インクジェット記録装置、クロストーク低減方法
JP2015085593A (ja) インクジェットヘッド
JPWO2014054655A1 (ja) インクジェットヘッドの駆動方法、インクジェットヘッドの駆動装置及びインクジェット記録装置
US20180264810A1 (en) Ink jet head and ink jet recording apparatus
JP2016034720A (ja) インクジェットヘッド
JP6450533B2 (ja) インクジェットヘッド及びインクジェットプリンタ
JPH11170521A (ja) インク滴噴射方法及びその装置
JP2004262237A (ja) 液滴吐出装置及び液滴吐出ヘッドの駆動方法
JPH11170522A (ja) インク滴噴射方法及びその装置
EP3405348B1 (en) Fluid jetting device, printing apparatus, and method therefor
JP2002019103A (ja) インクジェットヘッドの駆動装置
JP2018161750A (ja) インクジェットヘッド、インクジェット記録装置及び吐出方法
JP2003175600A (ja) インクジェット式記録装置
JP4763418B2 (ja) インクジェットヘッドの駆動方法、インクジェットヘッドおよびインクジェット記録装置
JP5432627B2 (ja) インクジェット記録装置
JP2020055214A (ja) 液体吐出ヘッド及びプリンタ
JP4228599B2 (ja) インクジェットヘッドの駆動方法
JP2006056241A (ja) インク滴噴射方法およびインク滴噴射装置
JP3362732B2 (ja) インクジェットヘッド駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841067

Country of ref document: EP

Kind code of ref document: A1