WO2014051007A1 - 光電変換素子およびその使用方法、光センサ、撮像素子 - Google Patents

光電変換素子およびその使用方法、光センサ、撮像素子 Download PDF

Info

Publication number
WO2014051007A1
WO2014051007A1 PCT/JP2013/076151 JP2013076151W WO2014051007A1 WO 2014051007 A1 WO2014051007 A1 WO 2014051007A1 JP 2013076151 W JP2013076151 W JP 2013076151W WO 2014051007 A1 WO2014051007 A1 WO 2014051007A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
photoelectric conversion
substituent
compound
bonded
Prior art date
Application number
PCT/JP2013/076151
Other languages
English (en)
French (fr)
Inventor
陽介 山本
孝彦 一木
知昭 吉岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014051007A1 publication Critical patent/WO2014051007A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0075Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/102The polymethine chain containing an even number of >CH- groups two heterocyclic rings linked carbon-to-carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a photoelectric conversion element, a method for using the photoelectric conversion element, an optical sensor, and an imaging element.
  • a conventional optical sensor is an element in which a photodiode (PD) is formed in a semiconductor substrate such as silicon (Si).
  • PD photodiode
  • Si silicon
  • signal charges generated in each PD are arranged in two dimensions. Are widely used.
  • a structure in which a color filter that transmits light of a specific wavelength is arranged on the light incident surface side of the flat solid-state imaging device is generally used.
  • Color filters that transmit blue (B) light, green (G) light, and red (R) light are regularly arranged on each two-dimensionally arranged PD that is currently widely used in digital cameras and the like.
  • Single-plate solid-state imaging devices are well known.
  • Patent Documents 1 to 6 disclose photoelectric conversion elements including a photoelectric conversion material having a specific structure.
  • Patent Document 7 discloses a photoelectric conversion element using a compound having a specific structure having amine, thiophene, and carbonyl as a photoelectric conversion material.
  • the photoelectric conversion element in order to apply the photoelectric conversion element to various uses such as an imaging element and a photovoltaic cell, the photoelectric conversion element is required to exhibit higher heat resistance from the viewpoint of process suitability.
  • a process for forming an image sensor there are many processes for performing heat treatment such as color filter installation, protective film installation, element soldering, and the like. High photoelectric conversion efficiency and low dark current characteristics) are required. Recently, further improvements in photoelectric conversion efficiency and responsiveness are desired for reasons such as an increase in the number of pixels in the image sensor.
  • the present inventors have studied the photoelectric conversion elements described in Patent Documents 1 to 6, and as a result, the photoelectric conversion efficiency deteriorates before and after the heat treatment (for example, 220 ° C.), and the generation of dark current increases. It became clear that the required heat resistance was not met. Further, the photoelectric conversion efficiency and responsiveness do not always satisfy the level required recently.
  • the 1st aspect of this invention aims at providing the photoelectric conversion element which is excellent in heat resistance and responsiveness, and shows high photoelectric conversion efficiency in view of the said situation.
  • Another object of the first aspect of the present invention is to provide a method of using the photoelectric conversion element, and an optical sensor and an imaging element including the photoelectric conversion element.
  • the 2nd aspect of this invention aims at providing the photoelectric conversion element excellent in the responsiveness and high temperature storage property in view of the said situation.
  • Another object of the second aspect of the present invention is to provide a method for using the photoelectric conversion element, and an optical sensor and an imaging element including the photoelectric conversion element.
  • the present inventor uses a compound (A) represented by the formula (1) described later as a photoelectric conversion material, thereby providing heat resistance and responsiveness.
  • the first aspect of the present invention was completed by finding that a photoelectric conversion element excellent in the process and exhibiting high photoelectric conversion efficiency was obtained. That is, the present inventors have found that the problem of the first aspect can be solved by the following configuration.
  • a conductive film, a photoelectric conversion film containing a photoelectric conversion material, and a transparent conductive film are provided in this order, The photoelectric conversion element in which the said photoelectric conversion material contains the compound (A) represented by Formula (1) mentioned later.
  • An optical sensor comprising the photoelectric conversion element according to any one of (1) to (15).
  • the present inventor uses a compound (B) represented by the formula (11) described later as a photoelectric conversion material, so that responsiveness and The inventors found that a photoelectric conversion element excellent in high-temperature storage stability was obtained, and completed the second aspect of the present invention. That is, the present inventors have found that the problem of the second aspect can be solved by the following configuration.
  • a conductive film, a photoelectric conversion film containing a photoelectric conversion material, and a transparent conductive film are provided in this order,
  • the photoelectric conversion element in which the said photoelectric conversion material contains the compound (B) represented by Formula (11) mentioned later.
  • the conductive film, the electron blocking layer, the photoelectric conversion film, and the transparent conductive film are provided in this order, or the conductive film, the photoelectric conversion film, and the electron blocking layer.
  • An optical sensor comprising the photoelectric conversion element according to any one of (20) to (32).
  • An imaging device including the photoelectric conversion device according to any one of (20) to (32).
  • the first aspect of the present invention it is possible to provide a photoelectric conversion element that is excellent in heat resistance and responsiveness and that exhibits high photoelectric conversion efficiency. Moreover, according to the 1st aspect of this invention, the usage method of the said photoelectric conversion element, the optical sensor which consists of the said photoelectric conversion element, and the image pick-up element containing the said photoelectric conversion element can be provided.
  • the photoelectric conversion element excellent in the responsiveness and high temperature storage property can be provided.
  • the usage method of the said photoelectric conversion element, the optical sensor which consists of the said photoelectric conversion element, and the image pick-up element containing the said photoelectric conversion element can be provided.
  • FIG. 1A and FIG. 1B are schematic cross-sectional views each showing a configuration example of a photoelectric conversion element. It is a cross-sectional schematic diagram for 1 pixel of an image pick-up element. It is a 1 H-NMR spectrum of the compound of (2). It is a 1 H-NMR spectrum of the compound of (4). It is a 1 H-NMR spectrum diagram of the compound of (10).
  • FIG. 1 the cross-sectional schematic diagram of one Embodiment of the photoelectric conversion element of this invention is shown.
  • a photoelectric conversion element 10a shown in FIG. 1A includes a conductive film (hereinafter also referred to as a lower electrode) 11 that functions as a lower electrode, an electron blocking layer 16A formed on the lower electrode 11, and an electron blocking layer 16A.
  • the photoelectric conversion film 12 formed above and a transparent conductive film (hereinafter also referred to as an upper electrode) 15 functioning as an upper electrode are stacked in this order.
  • FIG. 1B shows a configuration example of another photoelectric conversion element.
  • FIGS. 1A and 1B has a configuration in which an electron blocking layer 16A, a photoelectric conversion film 12, a hole blocking layer 16B, and an upper electrode 15 are stacked in this order on a lower electrode 11. Have. Note that the stacking order of the electron blocking layer 16A, the photoelectric conversion film 12, and the hole blocking layer 16B in FIGS. 1A and 1B may be reversed depending on the application and characteristics.
  • the photoelectric conversion element 10 a (10 b) it is preferable that light is incident on the photoelectric conversion film 12 through the transparent conductive film 15. Moreover, when using the photoelectric conversion element 10a (10b), an electric field can be applied. In this case, it is preferable that the conductive film 11 and the transparent conductive film 15 form a pair of electrodes, and an electric field of 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 7 V / cm is applied between the pair of electrodes, It is more preferable to apply an electric field of 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 7 V / cm.
  • an electric field of 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 6 V / cm is preferably applied, and an electric field of 1 ⁇ 10 ⁇ 5 to 5 ⁇ 10 5 V / cm is preferably applied. More preferred.
  • the voltage application method, in FIG. 1 (a) and (b) it is preferable to apply so that the electron blocking layer 16A side may become a cathode and the photoelectric converting film 12 side may become an anode.
  • the photoelectric conversion element 10a (10b) is used as an optical sensor, or when it is incorporated into an image sensor, voltage can be applied by the same method.
  • each layer (a photoelectric conversion film, a lower electrode, an upper electrode, an electron blocking layer, a hole blocking layer, etc.) which comprises the photoelectric conversion element 10a (10b) is explained in full detail.
  • the photoelectric conversion film will be described in detail.
  • the photoelectric conversion film is a film containing a compound (A) represented by the following formula (1) as a photoelectric conversion material.
  • a compound (A) represented by the following formula (1) As a photoelectric conversion material, since the compound (A) mentioned later is used as a photoelectric conversion material, it is thought that it becomes a photoelectric conversion element which is excellent in heat resistance and responsiveness, and shows high photoelectric conversion efficiency. The reason is not clear, but it is presumed that it is as follows.
  • the compound (A) has an amine site having a specific structure (aryl group or heteroaryl group) and an acidic nucleus site having a specific structure (5-membered ring and 6-membered ring).
  • the compound (A) has a structure in which an amine moiety having electron donating properties (donor properties) and an acidic nucleus site having electron accepting properties (acceptor properties) are connected. Good charge separation occurs in the molecule of A).
  • the photoelectric conversion element using the compound (A) as a photoelectric conversion material exhibits high photoelectric conversion efficiency and excellent responsiveness.
  • Ar 11 and Ar 12 each independently represent an aryl group that may have a substituent or a heteroaryl group that may have a substituent. Especially, the aryl group which may have a substituent is preferable from the reason for being excellent in light resistance and heat resistance.
  • Ar 11 or Ar 12 is an aryl group
  • an aryl group having 6 to 30 carbon atoms is preferable, and an aryl group having 6 to 20 carbon atoms is more preferable.
  • Specific examples of the ring constituting the aryl group include benzene ring, naphthalene ring, anthracene ring, pyrene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring, methylphenyl ring, dimethylphenyl ring, biphenyl ring (two A phenyl group may be connected in any connection manner), a terphenyl group (three phenyl groups may be connected in any connection manner), and the like.
  • Examples of the substituent of the aryl group include a substituent W described later.
  • Ar 11 or Ar 12 is a heteroaryl group
  • a heteroaryl group consisting of a 5-membered, 6-membered or 7-membered ring or a condensed ring thereof is preferred.
  • the hetero atom contained in the heteroaryl group include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • ring constituting the heteroaryl group examples include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an imidazoline ring, and an imidazolidine.
  • R 11 to R 13 each independently represents a hydrogen atom or a substituent.
  • substituents include a substituent W described later.
  • R 11 and R 12 are substituents, an alkyl group having 1 to 10 carbon atoms (particularly a methyl group, ethyl group, propyl group, i-propyl group, t-butyl group), an alkenyl group having 2 to 10 carbon atoms (In particular, a vinyl group or an allyl group), an alkoxy group having 1 to 10 carbon atoms, or an alkylthio group having 1 to 10 carbon atoms is preferable.
  • R 13 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (particularly a methyl group or an ethyl group).
  • n represents an integer of 0 or more, preferably 0 or more and 3 or less, and more preferably 0.
  • N 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.
  • L represents the bivalent coupling group remove
  • R 1 to R 6 each independently represents a hydrogen atom or a substituent. Examples of the substituent include a substituent W described later.
  • R 1 to R 4 are preferably hydrogen atoms.
  • X 1 represents an oxygen atom,> CR 1a R 1b , or> NR 1c .
  • R 1a , R 1b, and R 1c each independently represent a hydrogen atom or a substituent (for example, substituent W described later), and among them, a hydrocarbon group or an aryl group is preferable. A hydrocarbon group is more preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
  • X 1 is preferably an oxygen atom or> CR 1a R 1b from the viewpoint of photoelectric conversion efficiency.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 may be bonded to each other to form a ring.
  • the ring formed include a ring R described later. Of these, an aromatic hydrocarbon ring is preferable, and a benzene ring is more preferable.
  • the ring formed may have a substituent. Examples of the substituent include a substituent W described later.
  • R 5 and R 6 may be bonded to each other to form a ring.
  • Examples of the aspect in which R 5 and R 6 may form a ring include compounds represented by the following formula (A).
  • R 1 to R 4 and X 1 have the same meaning as each group in the formula (2).
  • R 5A and R 6A each independently represents a hydrogen atom or a substituent. Examples of the substituent include a substituent W described later.
  • Q represents an aromatic ring.
  • the aromatic ring may be monocyclic or polycyclic. Further, the number of ring members included is not particularly limited, and may be a 5-membered ring or a 6-membered ring. Further, the aromatic ring may contain a hetero atom. In other words, it may be a heteroaromatic ring.
  • aromatic ring examples include a benzene ring, naphthalene ring, anthracene ring, indene ring, fluorene ring, furan ring, benzofuran ring, dibenzofuran ring, pyrrole ring, indole ring, and carbazole ring.
  • p represents 0 or 1.
  • R 5A and R 6A are directly bonded to a 5-membered ring carbon atom containing X 1 .
  • the aromatic ring represented by Q described above is bonded to the 5-membered ring containing X 1 by sharing a carbon atom.
  • Two hydrogen atoms are removed from any possible position of the compound represented by the above formula (2) to form a divalent linking group.
  • R 1 to R 6 are hydrogen atoms and X 1 is an oxygen atom
  • any two of the six hydrogen atoms R 1 to R 6 are removed to form a divalent linking group.
  • R 1 is a methyl group
  • R 2 to R 6 are hydrogen atoms, and X 1 is> C (CH 3 ) 2
  • R 2 to R 6 Any two of five hydrogen atoms, six hydrogen atoms of X 1 (> C (CH 3 ) 2 ), and 14 hydrogen atoms in total are removed to form a divalent linking group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , and R 5 and R 6 may be bonded to each other to form a ring.
  • the combination forms a ring, two hydrogen atoms are removed from any possible position in the compound containing the formed ring.
  • the formed ring further has a substituent, when the hydrogen atom is contained in the substituent, the hydrogen atom may be removed.
  • the compound represented by the above formula (2) is preferably a compound represented by the following formula (3) because it is more excellent in heat resistance and responsiveness and the photoelectric conversion efficiency is increased. That is, in the above formula (1), L is preferably a divalent linking group in which two hydrogen atoms are removed from any possible position of the compound represented by the following formula (3).
  • R 1 to R 4 are the same as those in the above formula (2).
  • X 1 are the same as those in the above formula (2).
  • R 7 to R 10 are the same as R 1 to R 4 in the above formula (2).
  • A represents an acidic nucleus.
  • the acidic nucleus here is a substitution such that the LUMO value of the compound (A) is smaller than ⁇ 2.2 eV when the LUMO value is determined by an electron density functional method (B3LYP / 6-31G (d) level).
  • B3LYP / 6-31G (d) level an electron density functional method
  • (A) 1,3-dicarbonyl nucleus for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6 -Dione etc.
  • (B) pyrazolinone nucleus for example, 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazolyl) -3-methyl-2- Pyrazolin-5-one and the like.
  • (C) isoxazolinone nucleus for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one, etc.
  • (D) Oxindole nucleus For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
  • Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diaryl compounds such as diphenyl, 1,3-di (p-chlorophenyl), 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl such as 1-ethyl-3-phenyl And 1,3-diheteroaryls such as 1,3-di (2-pyridyl) and the like.
  • 2-thio-2,4-thiazolidinedione nucleus for example, rhodanine and derivatives thereof.
  • Examples of the derivatives include 3-alkyl rhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl). And 3-heteroaryl rhodanine such as rhodanine.
  • (J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
  • (M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidine Zeon etc.
  • (N) Imidazolin-5-one nucleus For example, 2-propylmercapto-2-imidazolin-5-one and the like.
  • (O) 3,5-pyrazolidinedione nucleus for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione, etc.
  • (P) Benzothiophene-3 (2H) -one nucleus for example, benzothiophene-3 (2H) -one, oxobenzothiophene-3 (2H) -one, dioxobenzothiophene-3 (2H) -one, etc.
  • (Q) Indanone nucleus for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
  • examples of the substituent include a substituent W described later.
  • A is preferably a group represented by the following general formula (Z1) because of excellent photoelectric conversion efficiency. * Represents the bonding position with the carbon atom to which R 13 in Formula (1) is bonded (in other words, the carbon atom at the root of R 13 ).
  • Z 2 is a ring containing at least 3 carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • A is more preferably a group represented by the following general formula (Z2) or a group represented by the following general formula (Z3), and is represented by the general formula (Z3), because it is excellent in photoelectric conversion efficiency. Groups are more preferred.
  • * Represents a bonding position with the carbon atom to which R 13 in the above formula (1) is bonded.
  • R 111 to R 114 each independently represents a hydrogen atom or a substituent.
  • substituents include a substituent W described later, and are preferably a phenyl group, an alkyl group, and a halogen atom, and more preferably an alkyl group having 1 to 6 carbon atoms and a chlorine atom.
  • R 111 and R 112 , R 112 and R 113 , and R 113 and R 114 may be bonded to each other to form a ring. Examples of the ring formed include a ring R described later.
  • the benzene ring which may have a substituent the naphthalene ring which may have a substituent, the anthracene ring which may have a substituent, etc. are mentioned.
  • the substituent include a substituent W described later.
  • a halogen atom especially chlorine atom
  • R 21 to R 26 each independently represents a hydrogen atom or a substituent.
  • substituents include a substituent W described later, and are preferably a phenyl group, an alkyl group, and a halogen atom, and more preferably an alkyl group having 1 to 6 carbon atoms and a chlorine atom.
  • R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , and R 25 and R 26 may be bonded to each other to form a ring.
  • the ring formed include a ring R described later. The preferred embodiment of the ring formed is the same as the ring formed by combining R 111 and R 112 , R 112 and R 113 , and R 113 and R 114 in general formula (Z2).
  • R 11 and R 12 , R 11 and R 13 may be bonded to each other to form a ring.
  • n is 2 or more
  • a plurality of R 11 s and a plurality of R 12 s may be bonded to each other to form a ring.
  • the ring formed include a ring R described later.
  • Another ring (for example, ring R) may be condensed with the formed ring.
  • Ar 11 and L, Ar 12 and L, Ar 11 and Ar 12 may be bonded to each other to form a ring.
  • Ar 11 and L, and / or Ar 12 and L are preferably bonded to each other to form a ring for the reason of better heat resistance.
  • the ring formed examples include a ring R described later, and a ring formed via a divalent linking group X 2 is preferable from the viewpoint of photoelectric conversion efficiency.
  • the divalent linking group X 2 includes a single bond, an oxygen atom (—O—), a sulfur atom (—S—), an alkylene group (preferably> CR a R b : where R a and R b are hydrogen Atom or hydrocarbon group), a silylene group, an alkenylene group, a cycloalkylene group, a cycloalkenylene group, an arylene group, a divalent heterocyclic group, or an imino group, among which an alkylene group is preferable.
  • L and A, L and R 11 , L and R 12 , and L and R 13 may be bonded to each other to form a ring.
  • the ring formed include a ring R described later.
  • the ring formed by combining L and A, L and R 11 , L and R 12 , and L and R 13 may have a substituent (for example, substituent W described later).
  • the compound (a1) represented by following formula (4) is mentioned, for example.
  • Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • Z 1 is preferably a group represented by the above general formula (Z1), more preferably a group represented by the above general formula (Z2), and represented by the above general formula (Z3). More preferably, the group is
  • a preferred embodiment of the compound (a1) is, for example, a compound (a2) represented by the following formula (5).
  • the definitions, specific examples and preferred embodiments of Ar 11 and Ar 12 are the same as those in the above-described formula (1).
  • the definitions, specific examples and preferred embodiments of R 11 to R 13 are the same as those in the above formula (1).
  • the definition and preferred embodiment of n are the same as those in the above formula (1).
  • the definition, specific examples, and preferred embodiments of L are the same as those in the above-described formula (1).
  • the definitions, specific examples and preferred embodiments of R 51 to R 54 are the same as those of R 111 to R 114 in the above general formula (Z2).
  • a preferred embodiment of the compound (a2) is, for example, a compound (a3) represented by the following formula (6).
  • the definitions, specific examples and preferred embodiments of Ar 11 and Ar 12 are the same as those in the above-described formula (1).
  • the definitions, specific examples and preferred embodiments of R 11 to R 13 are the same as those in the above formula (1).
  • the definition and preferred embodiment of n are the same as those in the above formula (1).
  • the definitions, specific examples and preferred embodiments of R 1 , R 3 and R 4 are the same as those in the above formula (2).
  • the definitions, specific examples and preferred embodiments of R 7 , R 9 and R 10 are the same as R 1 , R 3 and R 4 in the above formula (2), respectively.
  • the definition, specific examples and preferred embodiments of X 1 are the same as those in the above formula (2).
  • the definitions, specific examples and preferred embodiments of R 51 to R 54 are the same as those of R 111 to R 114 in the above general formula (Z2).
  • R 3 and R 4 , R 9 and R 10 may be bonded to each other to form a ring. Examples of the ring formed include a ring R described later.
  • Ar 11 and R 7 , Ar 11 and R 9 , Ar 12 and R 7 , Ar 12 and R 9 , Ar 11 and Ar 12 may be bonded to each other to form a ring.
  • At least one of Ar 11 and Ar 12 is bonded to at least one of R 7 or R 9 to form a ring.
  • the ring formed include a ring R described later, and a ring formed via a divalent linking group X 2 is preferable from the viewpoint of photoelectric conversion efficiency.
  • Specific examples and preferred embodiments of X 2 are the same as the linking group X 2 divalent described above.
  • R 1 and R 11 , R 1 and R 12 , R 1 and R 13 , R 3 and R 11 , R 3 and R 12 , R 3 and R 13 , R 4 and R 11 , R 4 and R 12 , and R 4 and R 13 may be bonded to each other to form a ring.
  • the ring formed include a ring R described later.
  • the ring to be formed may have a substituent (for example, a substituent W described later).
  • the compound (a4) represented by following formula (7) is mentioned, for example.
  • the definition, specific examples and preferred embodiments of Ar 11 are the same as those in the above formula (1).
  • the definitions, specific examples and preferred embodiments of R 11 to R 13 are the same as those in the above formula (1).
  • the definition and preferred embodiment of n are the same as those in the above formula (1).
  • the definitions, specific examples and preferred embodiments of R 1 , R 3 and R 4 are the same as those in the above formula (2).
  • the definitions, specific examples and preferred embodiments of R 7 and R 10 are the same as R 1 and R 4 in the above formula (2), respectively.
  • R 71 to R 74 each independently represents a hydrogen atom or a substituent. Examples of the substituent include a substituent W described later. R 71 to R 74 are preferably hydrogen atoms.
  • specific examples and preferred embodiments of X 2 are the same as the linking group X 2 divalent described above.
  • Ar 11 and R 7 , Ar 11 and R 71 may be bonded to each other to form a ring.
  • the ring formed include a ring R described later.
  • R 1 and R 11 , R 1 and R 12 , R 1 and R 13 , R 3 and R 11 , R 3 and R 12 , R 3 and R 13 , R 4 and R 11 , R 4 and R 12 , and R 4 and R 13 may be bonded to each other to form a ring.
  • Examples of the ring formed include a ring R described later.
  • the ring to be formed may have a substituent (for example, a substituent W described later).
  • R 71 and R 72 , R 72 and R 73 , R 73 and R 74 may be bonded to each other to form a ring. Examples of the ring formed include a ring R described later.
  • Substituent W It describes about the substituent W in this specification.
  • substituent W include a halogen atom, an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, an aryl group, Heterocyclic group (may be referred to as heterocyclic group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl Oxy group, aryloxycarbonyloxy group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonyloxy
  • Ring R It describes about the ring R in this specification.
  • examples of the ring R include an aromatic hydrocarbon ring, an aromatic heterocycle, a non-aromatic hydrocarbon ring, a non-aromatic heterocycle, or a polycyclic fused ring formed by combining these.
  • Compound (A) can be produced by carrying out a partial modification according to a known method. Specific examples of the compound represented by the compound (A) are shown below, but the present invention is not limited thereto.
  • the ionization potential (hereinafter sometimes abbreviated as IP) of the compound (A) is preferably 6.0 ev or less, more preferably 5.8 eV or less, and particularly preferably 5.6 eV or less. If it is this range, when an electrode and another material exist, it is preferable in order to perform transfer of the electron with the material with small electrical resistance. IP can be obtained using AC-2 manufactured by Riken Keiki Co., Ltd.
  • the compound (A) preferably has an absorption maximum at 400 nm or more and less than 720 nm in the UV-visible absorption spectrum, and the peak wavelength (absorption maximum wavelength) of the absorption spectrum is 450 nm or more and 700 nm from the viewpoint of broadly absorbing light in the visible region.
  • the following are preferable, 480 nm or more and 650 nm or less are more preferable, and 510 nm or more and 600 nm or less are more preferable.
  • the absorption maximum wavelength of the compound (A) can be measured using a UV solution 2550 manufactured by Shimadzu Corporation for a chloroform solution of the compound (A).
  • Concentration of the chloroform solution is preferably from 5 ⁇ 10 -5 ⁇ 1 ⁇ 10 -7 mol / l, more preferably 3 ⁇ 10 -5 ⁇ 2 ⁇ 10 -6 mol / l, 2 ⁇ 10 -5 ⁇ 5 ⁇ 10 - 6 mol / l is particularly preferred.
  • the compound (A) preferably has an absorption maximum at 400 nm or more and less than 720 nm in the ultraviolet-visible absorption spectrum, and has a molar extinction coefficient at the absorption maximum wavelength of 10,000 mol ⁇ 1 ⁇ l ⁇ cm ⁇ 1 or more.
  • a material having a high molar extinction coefficient is preferable in order to reduce the thickness of the film and to obtain an element having high charge collection efficiency and high-speed response.
  • 5000mol -1 ⁇ l ⁇ cm -1 or more molar extinction coefficient of the compound (A) more preferably 10000mol -1 ⁇ l ⁇ cm -1 or more, 15000mol -1 ⁇ l ⁇ cm -1 or more is particularly preferred .
  • the molar extinction coefficient of compound (A) is measured with a chloroform solution.
  • the difference between the melting point and the deposition temperature (melting point ⁇ deposition temperature) is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and still more preferably 60 ° C. or higher.
  • 240 degreeC or more is preferable, as for melting
  • the vapor deposition temperature of the compound is such that the crucible is heated at a vacuum of 4 ⁇ 10 ⁇ 4 Pa or less and the vapor deposition rate reaches 0.4 angstrom / s (0.4 ⁇ 10 ⁇ 10 m / s).
  • the glass transition point (Tg) of the compound (A) is preferably 95 ° C. or higher, more preferably 110 ° C. or higher, further preferably 135 ° C. or higher, particularly preferably 150 ° C. or higher, and most preferably 160 ° C. or higher.
  • a higher glass transition point is preferable because the heat resistance of the photoelectric conversion element is further improved.
  • the molecular weight of the compound (A) is preferably 300 to 1500, more preferably 400 to 1000, and particularly preferably 500 to 800.
  • the molecular weight is too large, the deposition temperature becomes high and the molecules are easily decomposed, and when it is too small, the glass transition point of the photoelectric conversion film is lowered and the heat resistance of the photoelectric conversion element is deteriorated.
  • Compound (A) is particularly useful as a material for a photoelectric conversion film used for an image sensor, a photosensor, or a photovoltaic cell.
  • the compound (A) functions as an organic p-type semiconductor (compound) in the photoelectric conversion film.
  • it can also be used as a coloring material, liquid crystal material, organic semiconductor material, organic light emitting device material, charge transport material, pharmaceutical material, fluorescent diagnostic material, and the like.
  • the compound (A) is preferably purified by sublimation before producing a photoelectric conversion element or an imaging element.
  • sublimation purification impurities and residual solvent contained before sublimation can be removed.
  • the performance of the photoelectric conversion element and the imaging element can be stabilized.
  • the purity of the compound (A) before sublimation purification is preferably 99.0% or more, preferably 99.5% or more, and more preferably 99.9% or more by HPLC (high performance liquid chromatography).
  • the content of the residual solvent such as the reaction solvent and the purification solvent used in the steps until obtaining the compound (A) is preferably 3.0% or less, more preferably 1.0% or less, It is further preferably 0.5% or less, and particularly preferably below the detection limit.
  • 1 H-NMR measurement, gas chromatography measurement, Karl Fischer measurement, or the like is used for the measurement of the content of residual solvent (including water).
  • the photoelectric conversion film may further contain an organic p-type semiconductor (compound) or an organic n-type semiconductor (compound) photoelectric conversion material.
  • the organic p-type semiconductor (compound) is a donor-type organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • a triarylamine compound a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, or the like can be used.
  • Organic n-type semiconductors are acceptor organic semiconductors, which are typically represented by electron-transporting organic compounds and refer to organic compounds that easily accept electrons. More specifically, the organic compound having the higher electron affinity when two organic compounds are used in contact with each other. Therefore, any organic compound may be used as the acceptor organic semiconductor as long as it is an organic compound having an electron accepting property.
  • fullerenes selected from the group consisting of fullerenes and derivatives thereof, condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives), nitrogen atoms, oxygen Heterocyclic compounds containing atoms and sulfur atoms (eg, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole , Oxazole, indazole, benzimidazole, benzotriazole, benzoxazole, benzothiazole
  • fullerenes selected from the group consisting of fullerenes and derivatives thereof are preferable.
  • the fullerene, fullerene C 60, fullerene C 70, fullerene C 76, fullerene C 78, fullerene C 80, fullerene C 82, fullerene C 84, fullerene C 90, fullerene C 96, fullerene C 240, fullerene C 540, mixed Fullerene is represented, and the fullerene derivative represents a compound having a substituent added thereto.
  • the substituent an alkyl group, an aryl group, or a heterocyclic group is preferable.
  • the fullerene derivative compounds described in JP-A-2007-123707 are preferred.
  • the photoelectric conversion film preferably has a bulk heterostructure formed by mixing the compound (A) and fullerenes selected from the group consisting of fullerenes and derivatives thereof.
  • a bulk heterostructure is a film in which an organic p-type compound (for example, compound (A)) and an organic n-type compound are mixed and dispersed in a photoelectric conversion film, and can be formed by either a wet method or a dry method. Those formed by vapor deposition are preferred.
  • the heterojunction structure it is possible to make up for the disadvantage that the carrier diffusion length of the photoelectric conversion film is short, and to improve the photoelectric conversion efficiency of the photoelectric conversion film.
  • the bulk heterojunction structure is described in detail in JP-A-2005-303266, [0013] to [0014].
  • the molar ratio of the organic n-type compound to the compound (A) in the photoelectric conversion film is preferably 0.5 or more, and preferably 1 or more and 10 More preferably, it is more preferably 2 or more and 5 or less.
  • the content of fullerenes with respect to the total content of compound (A) and fullerenes is preferably 50% by volume or more, more preferably 55% by volume or more, and more preferably 65% by volume or more. preferable.
  • the upper limit is not particularly limited, but is preferably 95% by volume or less, and more preferably 90% by volume or less.
  • the photoelectric conversion film containing the compound (A) of the present invention and the organic n-type compound is a non-light-emitting film and has characteristics different from those of an organic electroluminescent element (OLED).
  • the non-light-emitting film is a film having an emission quantum efficiency of 1% or less, more preferably 0.5% or less, and still more preferably 0.1% or less.
  • the photoelectric conversion film 12 can be formed by a dry film formation method or a wet film formation method.
  • the dry film forming method include a physical vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, and an MBE method, or a CVD method such as plasma polymerization.
  • a physical vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, and an MBE method, or a CVD method such as plasma polymerization.
  • a wet film formation method a casting method, a spin coating method, a dipping method, an LB method, or the like is used.
  • a dry film forming method is preferred, and a vacuum deposition method is more preferred.
  • the production conditions such as the degree of vacuum and the deposition temperature can be set according to conventional methods.
  • the thickness of the photoelectric conversion film 12 is preferably 10 nm to 1000 nm, more preferably 50 nm to 800 nm, and particularly preferably 100 nm to 500 nm. By setting it to 10 nm or more, a suitable dark current suppressing effect is obtained, and by setting it to 1000 nm or less, suitable photoelectric conversion efficiency is obtained.
  • the electrodes are made of a conductive material.
  • a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof can be used. Since light is incident from the upper electrode 15, the upper electrode 15 needs to be sufficiently transparent to the light to be detected.
  • conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), Metal thin films such as gold, silver, chromium, nickel, etc., and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, organics such as polyaniline, polythiophene, and polypyrrole Examples thereof include conductive materials and laminates of these with ITO. Among these, a transparent conductive metal oxide is preferable from the viewpoint of high conductivity, transparency, and the like.
  • a transparent conductive film such as TCO When a transparent conductive film such as TCO is used as the upper electrode 15, a DC short circuit or an increase in leakage current may occur.
  • a dense film such as TCO
  • conduction with the lower electrode 11 on the opposite side is increased. Therefore, in the case of an electrode having a relatively poor film quality such as aluminum, an increase in leakage current is unlikely to occur.
  • the thickness of the upper electrode 15 is desirably 1/5 or less, preferably 1/10 or less of the thickness of the photoelectric conversion film 12.
  • the sheet resistance is preferably 100 to 10,000 ⁇ / ⁇ .
  • the degree of freedom in the range of film thickness that can be made thin is great.
  • the thickness of the upper electrode (transparent conductive film) 15 decreases, the amount of light absorbed decreases, and the light transmittance generally increases.
  • An increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion film 12 and increases the photoelectric conversion ability.
  • the thickness of the upper electrode 15 is preferably 5 to 100 nm, and more preferably 5 to 20 nm. It is desirable.
  • the lower electrode 11 may have transparency, or conversely, may use a material that does not have transparency and reflects light.
  • conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), Metals such as gold, silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides and nitrides of these metals (for example, titanium nitride (TiN)), and these metals and conductivity Examples include mixtures or laminates with metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO or titanium nitride. .
  • the method for forming the electrode is not particularly limited, and can be appropriately selected in consideration of suitability with the electrode material. Specifically, it can be formed by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • a wet method such as a printing method or a coating method
  • a physical method such as a vacuum deposition method, a sputtering method or an ion plating method
  • a chemical method such as CVD or plasma CVD method.
  • the electrode material is ITO
  • it can be formed by a method such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (such as a sol-gel method), or a dispersion of indium tin oxide.
  • UV-ozone treatment, plasma treatment, or the like can be performed on a film formed using ITO.
  • the electrode material is TiN
  • various methods including a reactive sputtering method can be used, and further, UV-ozone treatment, plasma treatment, and the like can be performed.
  • the photoelectric conversion element of the first aspect of the present invention may have a charge blocking layer. By having this layer, the characteristics (photoelectric conversion efficiency, response speed, etc.) of the obtained photoelectric conversion element are more excellent.
  • Examples of the charge blocking layer include an electron blocking layer and a hole blocking layer. Below, each layer is explained in full detail.
  • An electron donating organic material can be used for the electron blocking layer.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be used. Any compound having transportability can be used, specifically, [0083] to [0089] of JP-A-2008-72090 and [00] of JP-A-2011-176259. 43] to [0063], [0121] to [0148] of JP2011-228614A, and [0108] to [0156] of JP2011-228615A are preferable.
  • the electron blocking layer may be composed of a plurality of layers.
  • An inorganic material can also be used as the electron blocking layer.
  • Materials that can be used as an electron blocking layer include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, and oxide. Examples include indium silver and iridium oxide.
  • the layer can be a layer made of an inorganic material, or in the case of a plurality of layers, one or more layers can be a layer made of an inorganic material. .
  • An electron-accepting organic material can be used for the hole blocking layer.
  • electron-accepting materials include 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene (OXD-7) and other oxadiazole derivatives, anthraquinodimethane derivatives, and diphenylquinone derivatives.
  • a porphyrin compound or a styryl compound such as DCM (4-dicyanomethylene-2-methyl-6- (4- (dimethylaminostyryl))-4H pyran) or a 4H pyran compound can be used.
  • DCM dimethylaminostyryl
  • a 4H pyran compound can be used.
  • compounds described in [0073] to [0078] of JP-A-2008-72090 are preferable.
  • the method for producing the charge blocking layer is not particularly limited, and can be formed by a dry film forming method or a wet film forming method.
  • a dry film forming method a vapor deposition method, a sputtering method, or the like can be used.
  • the vapor deposition may be either physical vapor deposition (PVD) or chemical vapor deposition (CVD), but physical vapor deposition such as vacuum vapor deposition is preferred.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a wet film forming method an inkjet method, a spray method, a nozzle printing method, a spin coating method, a dip coating method, a casting method, a die coating method, a roll coating method, a bar coating method, a gravure coating method, etc. can be used. From the viewpoint of high-precision patterning, the inkjet method is preferable.
  • the thickness of the charge blocking layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, and particularly preferably 50 to 100 nm. This is because if the thickness is too thin, the dark current suppressing effect is lowered, and if it is too thick, the photoelectric conversion efficiency is lowered.
  • the photoelectric conversion element according to the first aspect of the present invention may further include a substrate.
  • the type of the substrate used is not particularly limited, and a semiconductor substrate, a glass substrate, or a plastic substrate can be used.
  • the position of the substrate is not particularly limited, but usually a conductive film, a photoelectric conversion film, and a transparent conductive film are laminated on the substrate in this order.
  • the photoelectric conversion element of the first aspect of the present invention may further include a sealing layer.
  • the performance of photoelectric conversion materials may deteriorate significantly due to the presence of deterioration factors such as water molecules. Ceramics such as dense metal oxides, metal nitrides, and metal nitride oxides that do not penetrate water molecules and diamond-like materials Covering and sealing the entire photoelectric conversion film with a sealing layer such as carbon (DLC) can prevent the deterioration.
  • the material for the sealing layer may be selected and manufactured according to paragraphs [0210] to [0215] of JP2011-082508A.
  • the photoelectric conversion element examples include a photovoltaic cell and an optical sensor, but the photoelectric conversion element of the first aspect of the present invention is preferably used as an optical sensor.
  • the photoelectric conversion element used alone may be used, or a line sensor in which the photoelectric conversion elements are arranged linearly or a two-dimensional sensor arranged on a plane is preferable.
  • the photoelectric conversion element according to the first aspect of the present invention converts optical image information into an electrical signal using an optical system and a drive unit like a scanner in a line sensor, and light like an imaging module in a two-dimensional sensor. The image information is imaged on a sensor by an optical system and converted into an electrical signal to function as an image sensor.
  • the photovoltaic cell is a power generation device, the efficiency of converting light energy into electrical energy is an important performance, but dark current, which is a current in a dark place, is not a functional problem. Further, a subsequent heating step such as installation of a color filter is not necessary. Since it is important for optical sensors to convert light and dark signals to electrical signals with high accuracy, the efficiency of converting light intensity into current is also important, but noise is generated when signals are output in the dark. Low dark current is required. In addition, resistance to subsequent processes is also important.
  • An image sensor is an element that converts optical information of an image into an electric signal.
  • a plurality of photoelectric conversion elements are arranged on a matrix in the same plane, and an optical signal is converted into an electric signal in each photoelectric conversion element (pixel). That can be output to the outside of the imaging device for each pixel sequentially. Therefore, one pixel is composed of one photoelectric conversion element and one or more transistors.
  • FIG. 2 is a schematic cross-sectional view showing a schematic configuration of an image sensor for explaining an embodiment of the present invention.
  • This imaging device is used by being mounted on an imaging device such as a digital camera or a digital video camera, an imaging module such as an electronic endoscope or a mobile phone, or the like.
  • This imaging element has a plurality of photoelectric conversion elements having the configuration shown in FIG. 1 and a circuit board on which a readout circuit for reading a signal corresponding to the charge generated in the photoelectric conversion film of each photoelectric conversion element is formed.
  • a plurality of photoelectric conversion elements are arranged one-dimensionally or two-dimensionally on the same surface above the circuit board.
  • connection electrode 103 includes a connection electrode 103, a pixel electrode (lower electrode) 104, a connection portion 105, a connection portion 106, a photoelectric conversion film 107, and a counter electrode.
  • the pixel electrode 104 has the same function as the lower electrode 11 of the photoelectric conversion element 10a shown in FIG.
  • the counter electrode 108 has the same function as the upper electrode 15 of the photoelectric conversion element 10a shown in FIG.
  • the photoelectric conversion film 107 has the same configuration as the layer provided between the lower electrode 11 and the upper electrode 15 of the photoelectric conversion element 10a illustrated in FIG.
  • the substrate 101 is a glass substrate or a semiconductor substrate such as Si.
  • An insulating layer 102 is formed on the substrate 101.
  • a plurality of pixel electrodes 104 and a plurality of connection electrodes 103 are formed on the surface of the insulating layer 102.
  • the photoelectric conversion film 107 is a layer common to all the photoelectric conversion elements provided on the plurality of pixel electrodes 104 so as to cover them.
  • the counter electrode 108 is one electrode provided on the photoelectric conversion film 107 and common to all the photoelectric conversion elements.
  • the counter electrode 108 is formed up to the connection electrode 103 disposed outside the photoelectric conversion film 107, and is electrically connected to the connection electrode 103.
  • connection part 106 is embedded in the insulating layer 102 and is a plug or the like for electrically connecting the connection electrode 103 and the counter electrode voltage supply part 115.
  • the counter electrode voltage supply unit 115 is formed on the substrate 101 and applies a predetermined voltage to the counter electrode 108 via the connection unit 106 and the connection electrode 103.
  • the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.
  • the readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104.
  • the readout circuit 116 is configured by, for example, a CCD, a CMOS circuit, a TFT circuit, or the like, and is shielded by a light shielding layer (not shown) disposed in the insulating layer 102.
  • the readout circuit 116 is electrically connected to the corresponding pixel electrode 104 via the connection unit 105.
  • the buffer layer 109 is formed on the counter electrode 108 so as to cover the counter electrode 108.
  • the sealing layer 110 is formed on the buffer layer 109 so as to cover the buffer layer 109.
  • the color filter 111 is formed at a position facing each pixel electrode 104 on the sealing layer 110.
  • the partition wall 112 is provided between the color filters 111 and is for improving the light transmission efficiency of the color filter 111.
  • the light shielding layer 113 is formed in a region other than the region where the color filter 111 and the partition 112 are provided on the sealing layer 110, and prevents light from entering the photoelectric conversion film 107 formed outside the effective pixel region.
  • the protective layer 114 is formed on the color filter 111, the partition 112, and the light shielding layer 113, and protects the entire image sensor 100.
  • the imaging device 100 when light is incident, the light is incident on the photoelectric conversion film 107, and charges are generated here. Holes in the generated charges are collected by the pixel electrode 104, and a voltage signal corresponding to the amount is output to the outside of the image sensor 100 by the readout circuit 116.
  • the manufacturing method of the image sensor 100 is as follows. On the circuit board on which the common electrode voltage supply unit 115 and the readout circuit 116 are formed, the connection units 105 and 106, the plurality of connection electrodes 103, the plurality of pixel electrodes 104, and the insulating layer 102 are formed. The plurality of pixel electrodes 104 are arranged on the surface of the insulating layer 102 in a square lattice pattern, for example.
  • a photoelectric conversion film 107 is formed on the plurality of pixel electrodes 104 by, for example, a vacuum heating deposition method.
  • the counter electrode 108 is formed on the photoelectric conversion film 107 under vacuum by, for example, sputtering.
  • the buffer layer 109 and the sealing layer 110 are sequentially formed on the counter electrode 108 by, for example, a vacuum heating deposition method.
  • the protective layer 114 is formed, and the imaging element 100 is completed.
  • the photoelectric conversion element of the second aspect of the present invention is the same layer as the photoelectric conversion element of the first aspect shown in FIGS. 1A and 1B except for the point of the photoelectric conversion material in the photoelectric conversion film. It has a configuration. That is, as one embodiment of the photoelectric conversion element of the second aspect, as shown in FIG. 1A, a conductive film (hereinafter also referred to as a lower electrode) 11 that functions as a lower electrode, and a lower electrode 11 are formed.
  • a conductive film hereinafter also referred to as a lower electrode
  • a structure in which the formed electron blocking layer 16A, the photoelectric conversion film 12 formed on the electron blocking layer 16A, and a transparent conductive film (hereinafter also referred to as an upper electrode) 15 functioning as an upper electrode are stacked in this order.
  • 16 A of electron blocking layers, the photoelectric converting film 12, and a hole are provided on the lower electrode 11.
  • the blocking layer 16B and the upper electrode 15 are stacked in this order.
  • the voltage application method of the photoelectric conversion element of the 2nd aspect of this invention applies the application conditions similar to the voltage application method of the photoelectric conversion element of the 1st aspect mentioned above.
  • the photoelectric conversion element according to the second aspect of the present invention has the same configuration as the photoelectric conversion element according to the first aspect except for the photoelectric conversion material in the photoelectric conversion film.
  • Description of components for example, a lower electrode, a charge blocking layer (electron blocking layer, hole blocking layer), an upper electrode, a substrate, a sealing layer, etc.
  • the photoelectric conversion film will be mainly described in detail below.
  • a photoelectric conversion film is a film
  • the compound (B) mentioned later is used as a photoelectric conversion material, it is thought that it becomes a photoelectric conversion element excellent in responsiveness and high temperature storage property. The reason is not clear, but it is presumed that it is as follows.
  • the compound (B) has a structure in which the amine moiety and the acidic nucleus moiety are linked by a linking moiety containing thiophene, and the amine moiety and the linking moiety are condensed, as can be seen from formula (11) described below.
  • the compound (B) Since the compound (B) has a structure in which the amine moiety and the linking moiety are condensed as described above, the planarity of the molecular structure from the amine moiety to the linking moiety is higher than that in which the ring is not condensed, It has a rigid structure with a small degree of freedom. Due to the high flatness, packing between molecules becomes strong, and electrons or holes can be moved quickly between molecules. As a result, it is thought that the photoelectric conversion element which uses a compound (B) as a photoelectric conversion material shows the outstanding responsiveness.
  • the compound (B) has a structure in which an amine moiety that is electron-donating (donor) and an acidic nucleus that is electron-accepting (acceptor) are linked by a linking site containing thiophene. Good charge separation occurs in the molecule of the compound (B) due to light absorption. As a result, the photoelectric conversion element using the compound (B) as a photoelectric conversion material exhibits high photoelectric conversion efficiency.
  • R 1w and R 2w may each independently have an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. Represents a heteroaryl group. Of these, an aryl group which may have a substituent is preferable from the viewpoint of photoelectric conversion efficiency and responsiveness.
  • R 1w or R 2w is an alkyl group
  • an alkyl group having 1 to 22 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Examples of the substituent of the alkyl group include a substituent W described later.
  • R 1w or R 2w is an aryl group
  • an aryl group having 6 to 30 carbon atoms is preferable, and an aryl group having 6 to 20 carbon atoms is more preferable.
  • the ring constituting the aryl group include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a fluorene ring, a triphenylene ring, a naphthacene ring, and a biphenyl ring. Or a terphenyl group (the three phenyl groups may be connected in an arbitrary connection manner).
  • the substituent of the aryl group include a substituent W described later.
  • R 1w or R 2w is a heteroaryl group
  • a heteroaryl group consisting of a 5-membered, 6-membered or 7-membered ring or a condensed ring thereof is preferred.
  • the hetero atom contained in the heteroaryl group include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • ring constituting the heteroaryl group examples include a furan ring, a thiophene ring, a pyrrole ring, a pyrroline ring, a pyrrolidine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an imidazoline ring, and an imidazolidine.
  • R 3w to R 9w each independently represents a hydrogen atom or a substituent.
  • substituent W examples include the substituent W described above.
  • R 3w to R 8w are substituents, an alkyl group having 1 to 10 carbon atoms (particularly a methyl group, ethyl group, propyl group, i-propyl group, t-butyl group), an alkenyl group having 2 to 10 carbon atoms (In particular, a vinyl group or an allyl group), an alkoxy group having 1 to 10 carbon atoms, or an alkylthio group having 1 to 10 carbon atoms is preferable.
  • R 9w is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (particularly a methyl group or an ethyl group), and more preferably a hydrogen atom.
  • p represents 0 or 1. p is preferably 1 because it shows higher photoelectric conversion efficiency.
  • q represents an integer of 0 or more. q is preferably an integer of 0 to 3, more preferably 0, for the reason that it exhibits better responsiveness.
  • R 1 w and R 2w, R 3w and R 4w, R 3w and R 5w, R 5w and R 6w, R 6w and R 8w, R 7w and R 8w, R 7w and R 9w is Each may be bonded to each other to form a ring.
  • each other a plurality of R 7w, among the plurality of R 8w, may each be bonded to each other to form a ring.
  • the ring formed include a ring R described later.
  • Another ring (for example, the above-described ring R) may be condensed with the formed ring.
  • R 3w and R 5w and / or R 6w and R 8w are preferably bonded to each other to form a ring from the viewpoint of photoelectric conversion efficiency and high-temperature storage stability.
  • the formed ring is an aromatic hydrocarbon ring or an aromatic heterocycle (especially a sulfur atom as a hetero atom).
  • An aromatic heterocyclic ring and more preferably an aromatic hydrocarbon ring (particularly a benzene ring).
  • a 1w represents an acidic nucleus.
  • the acidic nucleus here is a substitution such that the LUMO value of the compound (A) is smaller than ⁇ 2.2 eV when the LUMO value is determined by an electron density functional method (B3LYP / 6-31G (d) level).
  • B3LYP / 6-31G (d) level represents an electron density functional method.
  • examples of the substituent include the substituent W described above.
  • a 1w is preferably a group represented by the following general formula (Z1) because it is more excellent in responsiveness and exhibits high photoelectric conversion efficiency. * Represents the bonding position with the base carbon atom of R 9w in the formula (11) (in other words, the carbon atom to which R 9w is bonded).
  • Z 2 is a ring containing at least 3 carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • a 1w is more preferably a group represented by the following general formula (Z12) or a group represented by the following general formula (Z13), because it is more responsive and exhibits high photoelectric conversion efficiency.
  • a group represented by formula (Z13) is more preferable. * Represents the bonding position of R 9w to the basic carbon atom in the above formula (11).
  • R 11w to R 14w each independently represents a hydrogen atom or a substituent.
  • a halogen atom especially chlorine atom
  • R 11w and R 12w , R 12w and R 13w , and R 13w and R 14w may be bonded to each other to form a ring.
  • the ring formed include the ring R described above.
  • the benzene ring which may have a substituent, the naphthalene ring which may have a substituent, the anthracene ring which may have a substituent, etc. are mentioned.
  • the substituent include the substituent W described above.
  • a halogen atom especially chlorine atom
  • R 21w ⁇ R 26w each independently represent a hydrogen atom or a substituent.
  • substituents include the above-described substituent W and the like, preferably an alkyl group, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • R 21w and R 22w, R 22w and R 23w, R 23w and R 24w, R 24w and R 25 w, R 25 w and R 26w may each be bonded to each other to form a ring.
  • the ring formed include the ring R described above. The preferred embodiment of the ring formed is the same as the ring formed by combining R 11w and R 12w , R 12w and R 13w , and R 13w and R 14w in general formula (Z12).
  • the compound (B) has a structure in which an amine moiety and a linking moiety containing thiophene are condensed.
  • Examples of the ring formed by combining at least one of R 1w and R 2w with any of R 3w , R 4w and R 5w include the ring R described above.
  • the ring formed may have a divalent linking group X. That is, when at least one of R 1w and R 2w is bonded to any one of R 3w , R 4w and R 5w , they may be directly bonded to each other or bonded via a linking group X to form a ring. May be formed.
  • an oxygen atom (—O—), a sulfur atom (—S—), an alkylene group (preferably> CR a R b, where R a and R b are a hydrogen atom or a hydrocarbon group), Silylene group, alkenylene group, cycloalkylene group, cycloalkenylene group, arylene group, divalent heterocyclic group, or —NR C — (R C represents a hydrogen atom or a substituent (for example, the above-described substituent W)) Etc.
  • R C represents a hydrogen atom or a substituent (for example, the above-described substituent W)
  • R 1w and R 2w is bonded to any of R 3w , R 4w and R 5w with an alkylene group to form a ring, and is bonded with a dimethylmethylene group to form a ring. Is more preferred
  • R 10w and R 11w each independently represent a hydrogen atom or a substituent. Examples of the substituent include the substituent W described above. R 10w and R 11w may combine with each other to form a ring. Examples of the ring formed include the ring R described above.
  • preferred forms of the ring formed include 1,3-indandione ring, 1,3-benzoindandione ring, 1,3-cyclohexanedione Ring, 5,5-dimethyl-1,3-cyclohexanedione ring, 1,3-dioxane-4,6-dione ring, 1-phenyl-2-pyrazolin-5-one ring, 3-methyl-1-phenyl- Examples include 2-pyrazolin-5-one ring, 1- (2-benzothiazoyl) -3-methyl-2-pyrazolin-5-one ring, pyrimidine-2,4,6-trione ring and the like.
  • the compound (b5) represented by following formula (15) is mentioned, for example.
  • R 11w and R 12w each independently represent a hydrogen atom or a substituent. Examples of the substituent include the substituent W described above. R 11w and R 12w may combine with each other to form a ring. Examples of the ring formed include the ring R described above. The preferred embodiment of the ring formed is the same as the ring formed by combining R 10w and R 11w in formula (14) above.
  • the compound (b6) represented by following formula (16) is mentioned, for example.
  • R 13w and R 14w each independently represent a hydrogen atom or a substituent. Examples of the substituent include the substituent W described above. R 13w and R 14w may combine with each other to form a ring. Examples of the ring formed include the ring R described above.
  • the benzene ring which may have a substituent the naphthalene ring which may have a substituent, the anthracene ring which may have a substituent, etc. are mentioned.
  • the substituent include the substituent W described above.
  • a halogen atom especially chlorine atom
  • the compound (b2) represented by a following formula (12) is mentioned, for example.
  • R 15w to R 18w each independently represents a hydrogen atom or a substituent.
  • substituent W examples of the substituent
  • a halogen atom especially chlorine atom
  • R 15 w and R 16w, R 16w and R 17w, R 17w and R 18w may each be bonded to each other to form a ring. Examples of the ring formed include the ring R described above. The preferred embodiment of the ring formed is the same as the ring formed by combining R 13w and R 14w in formula (16) above.
  • the compound (b3) represented by following formula (13) is mentioned, for example.
  • the photoelectric conversion efficiency is improved.
  • R 15 w and R 18w ⁇ R 22w each independently represent a hydrogen atom or a substituent.
  • substituent W examples include the substituent W described above.
  • a halogen atom especially chlorine atom
  • R 15 w and R 19w, R 19w and R 20 w, R 20 w and R 21w, R 21w and R 22w, R 22w and R 18w may each be bonded to each other to form a ring.
  • Examples of the ring formed include the ring R described above.
  • the preferred embodiment of the ring formed is the same as the ring formed by combining R 13w and R 14w in formula (16) above.
  • the compound (b7) represented by the following formula (17), the compound (b8) represented by the following formula (18), and the following formula (19) And the compound (b9) for example, the compound (b7) represented by the following formula (17), the compound (b8) represented by the following formula (18), and the following formula (19) And the compound (b9).
  • R 6w to R 9w are the same as those in the above formula (11).
  • the definition of q and the preferred embodiment are the same as those in the above formula (11).
  • R 71w to R 74w each independently represents a hydrogen atom or a substituent. Examples of the substituent include the substituent W described above. Of these, a hydrogen atom is preferable.
  • the definition and preferred range of R 75w are the same as R 1w and R 2w in formula (11) described above.
  • R 71w and R 72w , R 72w and R 73w , R 73w and R 74w , and R 71w and R 75w may be bonded to each other to form a ring.
  • Examples of the ring formed include the ring R described above.
  • X 1w represents an oxygen atom (—O—), a sulfur atom (—S—), a nitrogen atom having a substituent (—NR′—), a carbon atom having a substituent (—CR ′).
  • a sulfur atom is preferable.
  • R ′ and R ′′ each independently represent a substituent, and the definition thereof is the same as that of the substituent W.
  • R ′ and R ′′ an alkyl group is preferable.
  • X 2w represents a single bond or a linking group. Specific examples of the linking group are the same as X described above.
  • the definition and preferred embodiment of A 1w are the same as those in the above formula (11).
  • R 6w to R 9w are the same as those in the above formula (11).
  • the definition of q and the preferred embodiment are the same as those in the above-described formula (11).
  • the definitions and preferred embodiments of R 71w to R 74w are the same as those in the above formula (17).
  • the definition and preferred embodiment of R 75w are the same as those in the above formula (17).
  • R 71w and R 75w , and R 75w and R 81w may be bonded to each other to form a ring. Examples of the ring formed include the ring R described above.
  • X 2w represents a single bond or a linking group.
  • R81w and R82w represent a hydrogen atom or a substituent.
  • substituent W examples of substituent W described above. Of these, a hydrogen atom is preferable.
  • R 81w and R 82w may combine with each other to form a ring. Examples of the ring formed include the ring R described above.
  • R 6w to R 9w are the same as those in the above formula (11).
  • the definition of q and the preferred embodiment are the same as those in the above formula (11).
  • the definitions and preferred embodiments of R 71w to R 74w are the same as those in the above formula (17).
  • the definition and preferred embodiment of R 75w are the same as those in the above formula (17).
  • X 2w represents a single bond or a linking group. Specific examples of the linking group are the same as X described above.
  • the definition and preferred embodiment of A 1w are the same as those in the above-described formula (11).
  • Compound (B) can be produced by carrying out a partial modification according to a known method. Specific examples (1) to (62) of the compound represented by the compound (B) are shown below, but the present invention is not limited thereto.
  • the ionization potential (hereinafter sometimes abbreviated as IP) of the compound (B) is preferably 6.0 ev or less, more preferably 5.8 eV or less, and particularly preferably 5.6 eV or less. If it is this range, when an electrode and another material exist, it is preferable in order to perform transfer of the electron with the material with small electrical resistance.
  • the IP may be AC-2 manufactured by Riken Keiki Co., Ltd.
  • the compound (B) preferably has an absorption maximum at 400 nm or more and less than 720 nm in the ultraviolet-visible absorption spectrum, and the peak wavelength (absorption maximum wavelength) of the absorption spectrum is 450 nm or more and 700 nm from the viewpoint of broadly absorbing light in the visible region.
  • the following are preferable, 480 nm or more and 650 nm or less are more preferable, and 510 nm or more and 600 nm or less are still more preferable.
  • the absorption maximum wavelength of the compound (B) can be measured using a UV solution 2550 manufactured by Shimadzu Corporation for a chloroform solution of the compound (B).
  • Concentration of the chloroform solution is preferably from 5 ⁇ 10 -5 ⁇ 1 ⁇ 10 -7 mol / l, more preferably 3 ⁇ 10 -5 ⁇ 2 ⁇ 10 -6 mol / l, 2 ⁇ 10 -5 ⁇ 5 ⁇ 10 - 6 mol / l is particularly preferred.
  • the compound (B) preferably has an absorption maximum at 400 nm or more and less than 720 nm in the ultraviolet-visible absorption spectrum, and has a molar extinction coefficient at the absorption maximum wavelength of 10,000 mol ⁇ 1 ⁇ l ⁇ cm ⁇ 1 or more.
  • a material having a high molar extinction coefficient is preferable in order to reduce the thickness of the film and to obtain an element having high charge collection efficiency and high-speed response.
  • 5000mol -1 ⁇ l ⁇ cm -1 or more molar extinction coefficient of compound (B), more preferably 10000mol -1 ⁇ l ⁇ cm -1 or more, 15000mol -1 ⁇ l ⁇ cm -1 or more is particularly preferred .
  • the molar extinction coefficient of compound (A) is measured with a chloroform solution.
  • the difference between the melting point and the deposition temperature (melting point ⁇ deposition temperature) is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and still more preferably 60 ° C. or higher.
  • the melting point of the compound (B) is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, and further preferably 240 ° C. or higher. A melting point of 200 ° C.
  • the vapor deposition temperature of the compound is such that the crucible is heated at a vacuum of 4 ⁇ 10 ⁇ 4 Pa or less and the vapor deposition rate reaches 0.4 angstrom / s (0.4 ⁇ 10 ⁇ 10 m / s).
  • the glass transition point (Tg) of the compound (B) is preferably 95 ° C or higher, more preferably 110 ° C or higher, further preferably 135 ° C or higher, particularly preferably 150 ° C or higher, and most preferably 160 ° C or higher.
  • a high glass transition point is preferable because the heat resistance of the photoelectric conversion element is improved.
  • the molecular weight of the compound (B) is preferably 300 to 1500, more preferably 400 to 1000, and particularly preferably 500 to 800.
  • the molecular weight is too large, the deposition temperature becomes high and the molecules are easily decomposed, and when it is too small, the glass transition point of the photoelectric conversion film is lowered and the heat resistance of the photoelectric conversion element is deteriorated.
  • the compound (B) is particularly useful as a material for a photoelectric conversion film used for an image sensor, an optical sensor, or a photovoltaic cell.
  • the compound (B) functions as a p-type organic semiconductor (compound) in the photoelectric conversion film.
  • it can also be used as a coloring material, liquid crystal material, organic semiconductor material, organic light emitting device material, charge transport material, pharmaceutical material, fluorescent diagnostic material, and the like.
  • the photoelectric conversion film may further contain a p-type organic semiconductor (compound) or n-type organic semiconductor (compound) photoelectric conversion material.
  • a p-type organic semiconductor compound
  • n-type organic semiconductor compound
  • photoelectric conversion material examples include the p-type organic semiconductor and the n-type organic semiconductor described in the first aspect.
  • the molar ratio of the n-type organic semiconductor to the compound (B) in the photoelectric conversion film (n-type organic semiconductor / the compound (B)) is preferably 0.5 or more, and more preferably 1 or more and 10 or less. Preferably, it is 2 or more and 5 or less.
  • the content of fullerenes relative to the total content of the compound (B) and fullerenes is preferably 50% by volume or more, more preferably 55% by volume or more, and more preferably 65% by volume or more. preferable.
  • the upper limit is not particularly limited, but is preferably 95% by volume or less, and more preferably 90% by volume or less.
  • the photoelectric conversion film containing the compound (B) of the present invention (which may be mixed with an n-type organic semiconductor) is a non-light-emitting film and has characteristics different from those of an organic electroluminescent element (OLED).
  • the non-light-emitting film is a film having an emission quantum efficiency of 1% or less, more preferably 0.5% or less, and still more preferably 0.1% or less.
  • the photoelectric conversion film can be formed by a dry film formation method or a wet film formation method.
  • the dry film forming method include a physical vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, and an MBE method, or a CVD method such as plasma polymerization.
  • a physical vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, and an MBE method, or a CVD method such as plasma polymerization.
  • a wet film formation method a casting method, a spin coating method, a dipping method, an LB method, or the like is used.
  • a dry film forming method is preferred, and a vacuum deposition method is more preferred.
  • the production conditions such as the degree of vacuum and the deposition temperature can be set according to conventional methods.
  • the thickness of the photoelectric conversion film is preferably 10 nm to 1000 nm, more preferably 50 nm to 800 nm, and particularly preferably 100 nm to 500 nm. By setting it to 10 nm or more, a suitable dark current suppressing effect is obtained, and by setting it to 1000 nm or less, suitable photoelectric conversion efficiency is obtained.
  • the usage of the photoelectric conversion element of the second aspect is the same as that of the photoelectric conversion element of the first aspect, and examples thereof include an optical sensor and an imaging element. Similar to the photoelectric conversion element of the first aspect, the photoelectric conversion element of the second aspect can be applied as an imaging element as shown in FIG.
  • the photoelectric conversion element includes the lower electrode 11, the electron blocking layer 16 ⁇ / b> A, the photoelectric conversion film 12, and the upper electrode 15. Specifically, an amorphous ITO film is formed on a glass substrate by sputtering to form the lower electrode 11 (thickness: 30 nm), and the following compound (EB-1) is vacuum-heated on the lower electrode 11 An electron blocking layer 16 ⁇ / b> A (thickness: 100 nm) was formed by a deposition method.
  • the following compound (1) and fullerene (C 60 ) are vacuum-heat-deposited on the electron blocking layer 16A so as to be 114 nm and 286 nm, respectively, in terms of a single layer.
  • the film was co-evaporated to form a photoelectric conversion film 12.
  • an amorphous ITO film was formed on the photoelectric conversion film 12 by sputtering to form an upper electrode 15 (transparent conductive film) (thickness: 10 nm).
  • An SiO film was formed as a sealing layer on the upper electrode 15 by heating vapor deposition, and then an aluminum oxide (Al 2 O 3 ) layer was formed thereon by ALCVD to produce a photoelectric conversion element.
  • Examples 2 to 17, Comparative Examples 1 to 7 A photoelectric conversion device was produced according to the same procedure as Example 1 except that the following compounds (2) to (17) and comparative compounds 1 to 7 were used instead of the compound (1).
  • the following (1) to (17) correspond to the compound (A) represented by the above formula (1).
  • the compounds (1) to (17) were synthesized by using a known method.
  • the compound was identified by MS spectrum and 1 H-NMR. Specific synthesis schemes for the above compounds (2), (4) and (10) are shown below. Note that the 1 H-NMR spectrum of the compound of the above (2) in FIG. 3 shows the 1 H-NMR spectrum of the compound of the above (4) in FIG. 4.
  • FIG. 5 shows a 1 H-NMR spectrum of the compound (10).
  • each obtained photoelectric conversion element it was confirmed whether it functions as a photoelectric conversion element. Specifically, a voltage was applied to the lower electrode and the upper electrode of the photoelectric conversion element so that the electric field strength was 2.5 ⁇ 10 5 V / cm, and current values in a dark place and a bright place were measured. As a result, each photoelectric conversion element showed a dark current of 100 nA / cm 2 or less in the dark place, but showed a current of 10 ⁇ A / cm 2 or more in the bright place, and it was confirmed that the photoelectric conversion element functions as a photoelectric conversion element.
  • the external quantum efficiency decrease rate and dark current increase rate are both less than 2.0% "A”, both are less than 3.5%, and either one is 2.0% or more " B ”was less than 5.0%, any of which was 3.5% or more as“ C ”, and any of which was 5.0% or more as“ D ”. Practically, A or B is preferable.
  • Examples 1 to 11 and 13 to 17 in which the linking group L is represented by the above formula (3) showed better heat resistance and responsiveness, and higher photoelectric conversion efficiency.
  • An image sensor similar to that shown in FIG. 2 was produced. That is, after forming amorphous TiN 30 nm on a CMOS substrate by sputtering, patterning is performed so that one pixel exists on each photodiode (PD) on the CMOS substrate by photolithography to form a lower electrode, After the formation of the electron blocking material, it was produced in the same manner as in Examples 1 to 17 and Comparative Examples 1 to 7. The evaluation was performed in the same manner, and the same results as in Table 1 were obtained. It was found that the imaging element is suitable for manufacturing and exhibits excellent performance.
  • Exemplified compound (47) was synthesized in the same manner as Exemplified compound (1) using 2-bromothiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 6-bromo-benzothiophene.
  • Exemplified compounds (1), (3), (10), (35), (39), (47), (51), and (56) are compounds represented by the compound (A) described above. It corresponds to specific examples (1), (3), (10), (35), (39), (47), (51), and (56), respectively.
  • the photoelectric conversion element includes the lower electrode 11, the electron blocking layer 16 ⁇ / b> A, the photoelectric conversion film 12, and the upper electrode 15.
  • an amorphous ITO film is formed on a glass substrate by sputtering to form the lower electrode 11 (thickness: 30 nm), and the following compound (EB-1) is vacuum-coated on the lower electrode 11.
  • An electron blocking layer 16A was formed by film formation by a heating vapor deposition method.
  • the exemplary compound (1) and fullerene (C 60 ) are co-deposited on the electron blocking layer 16A by vacuum heating vapor deposition so that the single layer equivalent is 120 nm and 280 nm, respectively.
  • a photoelectric conversion film 12 was formed by vapor deposition. Further, an amorphous ITO film was formed on the photoelectric conversion film 12 by sputtering to form an upper electrode 15 (transparent conductive film) (thickness: 10 nm). An SiO film was formed as a sealing layer on the upper electrode 15 by heating vapor deposition, and then an aluminum oxide (Al 2 O 3 ) layer was formed thereon by ALCVD to produce a photoelectric conversion element.
  • Comparative Examples 1B to 4B A photoelectric conversion element was produced according to the same procedure as Example 1B except that the photoelectric conversion material shown in Table 2 was used instead of the exemplified compound (1).
  • the comparative compounds (63) to (66) used as photoelectric conversion materials in Comparative Examples 1B to 4B are as follows. Comparative compounds (63) to (66) correspond to the compounds disclosed as the photoelectric conversion material in Patent Document 7 described above.
  • each obtained photoelectric conversion element it was confirmed whether it functions as a photoelectric conversion element. Specifically, a voltage was applied to the lower electrode and the upper electrode of the photoelectric conversion element so that the electric field strength was 2.5 ⁇ 10 5 V / cm, and current values in a dark place and a bright place were measured. As a result, each photoelectric conversion element showed a dark current of 100 nA / cm 2 or less in the dark place, but showed a current of 10 ⁇ A / cm 2 or more in the bright place, and it was confirmed that the photoelectric conversion element functions as a photoelectric conversion element.
  • the photoelectric conversion efficiency was evaluated about each obtained photoelectric conversion element. First, a voltage was applied to the photoelectric conversion element so that the electric field strength was 1.0 ⁇ 10 5 V / cm. Then, the external quantum efficiency in 580 nm was measured by irradiating light from the upper electrode (transparent conductive film) side. The external quantum efficiency was measured using an Optel constant energy quantum efficiency measuring device. The amount of light irradiated was 50 uW / cm 2 . Moreover, in order to remove the influence of the reflected light on the surface of the photoelectric conversion element, the external quantum efficiency at 580 nm was divided by the light absorption rate of 580 nm to obtain the external quantum efficiency.
  • Example 1B When the external quantum efficiency of Example 1B is set to 1, the relative value is 0.9 or more, “A”, 0.8 or more and less than 0.9, “B”, 0.7 or more and 0.0. Those less than 8 were designated as “C”, and those less than 0.7 were designated as “D”.
  • An image sensor similar to that shown in FIG. 2 was produced. That is, after forming amorphous TiN 30 nm on a CMOS substrate by sputtering, patterning is performed so that one pixel exists on each photodiode (PD) on the CMOS substrate by photolithography to form a lower electrode, After the formation of the electron blocking material, it was prepared in the same manner as in Examples 1B to 8B and Comparative Examples 1B to 4B. The evaluation was performed in the same manner, and the same results as in Table 2 were obtained. It was found that the image sensor is suitable for manufacturing and exhibits excellent performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

 本発明の第1態様は、耐熱性および応答性に優れ、かつ、高い光電変換効率を示す光電変換素子、並びに、その使用方法、該素子を含む光センサおよび撮像素子を提供することを目的とする。本発明の第1態様の光電変換素子は、導電性膜と、光電変換材料を含有する光電変換膜と、透明導電性膜とをこの順に備え、光電変換材料が、下記式(1)で表される化合物(A)を含む、光電変換素子。

Description

光電変換素子およびその使用方法、光センサ、撮像素子
 本発明は、光電変換素子およびその使用方法、並びに、光センサおよび撮像素子に関する。
 従来の光センサは、シリコン(Si)などの半導体基板中にフォトダイオード(PD)を形成した素子であり、固体撮像素子としては、PDを2次元的に配列し、各PDで発生した信号電荷を回路で読み出す平面型固体撮像素子が広く用いられている。
 カラー固体撮像素子を実現するには、平面型固体撮像素子の光入射面側に、特定の波長の光を透過するカラーフィルタを配した構造が一般的である。現在、デジタルカメラなどに広く用いられている2次元的に配列した各PD上に、青色(B)光、緑色(G)光、赤色(R)光を透過するカラーフィルタを規則的に配した単板式固体撮像素子がよく知られている。
 また、近年、有機光電変換膜を信号読み出し用基板上に形成した構造を有する固体撮像素子の開発が進んでいる。
 このような有機光電変換膜を使用した固体撮像素子や光電変換素子では、特に光電変換効率、応答性および耐熱性の向上、暗電流の低減が課題とされている。
 このようななか、例えば、特許文献1~6には、特定の構造を有する光電変換材料を含む光電変換素子が開示されている。
 また、このような有機光電変換膜を使用した固体撮像素子や光電変換素子では、特に光電変換効率や応答速度の向上、暗電流の低減が課題とされている。
 さらに、素子を種々の用途に応用するというニーズの中で、高温環境下(例えば90℃)に長時間置かれたとしても、特性(高光電変換効率、応答性など)が維持されることが求められている。すなわち、優れた高温保存性が求められている。
 このようななか、例えば、特許文献7には、アミンとチオフェンとカルボニルとを有する特定の構造の化合物を光電変換材料として使用した光電変換素子が開示されている。
特開2011-119745号公報 特開2011-213706号公報 特開2011-77198号公報 特開2009-200482号公報 特開2010-153764号公報 特開2009-88291号公報 特開2011-77198号公報
 一方、光電変換素子を撮像素子や光電池など種々の用途に応用するために、プロセス適性の点から、光電変換素子がより高い耐熱性を示すことが求められている。例えば、撮像素子を形成する場合のプロセスとしては、カラーフィルタ設置、保護膜設置、素子のハンダ付け等、加熱処理を施す工程が数多くあり、光電変換素子はこれらの工程を経ても優れた特性(高光電変換効率、低暗電流特性)を示すことが求められている。
 また、昨今、撮像素子における画素数の増大などの理由から、光電変換効率や応答性のさらなる向上が望まれている。
 本発明者らが、特許文献1~6に記載の光電変換素子について検討を行ったところ、加熱処理(例えば220℃)前後において光電変換効率が悪化すると共に、暗電流の発生が増加し、昨今求められている耐熱性を満たしていないことが明らかになった。また、光電変換効率や応答性についても昨今求められているレベルを必ずしも満たすものでなかった。
 また、本発明者らが、特許文献7に記載の光電変換素子について検討を行ったところ、高速応答性(以下、単に応答性ともいう)が不十分であることが明らかになった。また、長時間高温環境下に置いたときに応答速度が低下することが明らかになった。すなわち、応答速度の高温保存性(以下、単に高温保存性ともいう)が不十分であることが明らかになった。
 そこで本発明の第1態様は、上記実情に鑑みて、耐熱性および応答性に優れ、かつ、高い光電変換効率を示す光電変換素子を提供することを目的とする。
 また、本発明の第1態様は、上記光電変換素子の使用方法、並びに、上記光電変換素子を含む光センサおよび撮像素子を提供することも目的とする。
 また、本発明の第2態様は、上記実情に鑑みて、応答性および高温保存性に優れた光電変換素子を提供することを目的とする。
 また、本発明の第2態様は、上記光電変換素子の使用方法、並びに、上記光電変換素子を含む光センサおよび撮像素子を提供することも目的とする。
 本発明者は、上記第1態様の課題を解決するため鋭意検討した結果、光電変換材料として、後述する式(1)で表される化合物(A)を使用することで、耐熱性および応答性に優れ、かつ、高い光電変換効率を示す光電変換素子が得られることを見出し、本発明の第1態様を完成させた。すなわち、本発明者らは、以下の構成により上記第1態様の課題が解決できることを見出した。
(1) 導電性膜と、光電変換材料を含有する光電変換膜と、透明導電性膜とをこの順に備え、
 上記光電変換材料が、後述する式(1)で表される化合物(A)を含む、光電変換素子。
(2) 上記化合物(A)が、後述する式(4)で表される化合物(a1)である、上記(1)に記載の光電変換素子。
(3) 上記式(4)中、Z1が、後述する一般式(Z1)で表される基である、上記(2)に記載の光電変換素子。
(4) 上記Ar11および/またはAr12が、置換基を有してもよいアリール基である、上記(1)~(3)のいずれかに記載の光電変換素子。
(5) 上記化合物(a1)が、後述する式(5)で表される化合物(a2)である、上記(2)~(4)のいずれかに記載の光電変換素子。
(6) 上記Lが、後述する式(3)で表される化合物の任意の可能な位置から2つの水素原子を除いた2価の連結基である、上記(1)~(5)のいずれかに記載の光電変換素子。
(7) 上記化合物(a2)が、後述する式(6)で表される化合物(a3)である、上記(5)または(6)に記載の光電変換素子。
(8) 上記nが0である、上記(1)~(7)のいずれかに記載の光電変換素子。
(9) 上記光電変換膜が、さらに有機n型化合物を含む、上記(1)~(8)のいずれかに記載の光電変換素子。
(10) 上記有機n型化合物が、フラーレンおよびその誘導体からなる群より選択されるフラーレン類を含む、上記(9)に記載の光電変換素子。
(11) 化合物(A)とフラーレン類との合計含有量に対するフラーレン類の含有量(フラーレン類の単層換算での膜厚/(化合物(A)の単層換算での膜厚+フラーレン類の単層換算での膜厚))が、50体積%以上である、上記(10)に記載の光電変換素子。
(12) 上記導電性膜と上記透明導電性膜との間に、さらに電子ブロッキング層を備える、上記(1)~(11)のいずれかに記載の光電変換素子。
(13) 上記光電変換膜が、真空蒸着法により製膜された、上記(1)~(12)のいずれかに記載の光電変換素子。
(14) 光が上記透明導電性膜を介して上記光電変換膜に入射される、上記(1)~(13)のいずれかに記載の光電変換素子。
(15) 上記透明導電性膜が、透明導電性金属酸化物からなる、上記(1)~(14)のいずれかに記載の光電変換素子。
(16) 上記(1)~(15)のいずれかに記載の光電変換素子からなる光センサ。
(17) 上記(1)~(15)のいずれかに記載の光電変換素子を含む撮像素子。
(18) 上記(1)~(15)のいずれかに記載の光電変換素子の使用方法であって、
 上記導電性膜と上記透明導電性膜とが一対の電極であり、上記一対の電極間に1×10-4~1×107V/cmの電場を印加させる、光電変換素子の使用方法。
(19) 後述する式(5)で表される化合物(a2)。
 また、本発明者は、上記第2態様の課題を解決するため鋭意検討した結果、光電変換材料として、後述する式(11)で表される化合物(B)を使用することで、応答性および高温保存性に優れた光電変換素子が得られることを見出し、本発明の第2態様を完成させた。
 すなわち、本発明者らは、以下の構成により上記第2態様の課題が解決できることを見出した。
(20) 導電性膜と、光電変換材料を含有する光電変換膜と、透明導電性膜とをこの順に備え、
 上記光電変換材料が、後述する式(11)で表される化合物(B)を含む、光電変換素子。
(21) 上記化合物(B)が、後述する式(12)で表される化合物(b2)である、上記(20)に記載の光電変換素子。
(22) 上記式(11)中、R3wとR5w、および/または、R6wとR8wが互いに結合して環を形成する、上記(20)または(21)に記載の光電変換素子。
(23) 上記化合物(B)が、後述する式(13)で表される化合物(b3)である、上記(20)~(22)のいずれかに記載の光電変換素子。
(24) 上記光電変換膜が、さらにn型有機半導体を含む、上記(20)~(23)のいずれかに記載の光電変換素子。
(25) 上記n型有機半導体が、フラーレンおよびその誘導体からなる群より選択されるフラーレン類を含む、上記(24)に記載の光電変換素子。
(26) 導電性膜と透明導電性膜との間に、さらに電子ブロッキング層を備える、上記(20)~(25)のいずれかに記載の光電変換素子。
(27) 上記導電性膜と、上記電子ブロッキング層と、上記光電変換膜と、上記透明導電性膜とをこの順に備え、または、上記導電性膜と、上記光電変換膜と、上記電子ブロッキング層と、上記透明導電性膜とをこの順に備える、上記(26)に記載の光電変換素子。
(28) 上記qが0~3の整数である、上記(20)~(27)のいずれかに記載の光電変換素子。
(29) 上記化合物(B)と上記フラーレン類との合計含有量に対する上記フラーレン類の含有量(=上記フラーレン類の単層換算での膜厚/(上記化合物(B)の単層換算での膜厚+上記フラーレン類の単層換算での膜厚))が、50体積%以上である、、上記(25)に記載の光電変換素子。
(30) 光が上記透明導電性膜を介して上記光電変換膜に入射される、上記(20)~(29)のいずれかに記載の光電変換素子。
(31) 上記透明導電性膜が、透明導電性金属酸化物からなる、上記(20)~(30)のいずれかに記載の光電変換素子。
(32) 上記光電変換膜上に直接、上記透明導電性膜が積層された、上記(20)~(31)のいずれかに記載の光電変換素子。
(33) 上記(20)~(32)のいずれかに記載の光電変換素子からなる光センサ。
(34) 上記(20)~(32)のいずれかに記載の光電変換素子を含む撮像素子。
(35) 上記(20)~(32)のいずれかに記載の光電変換素子の使用方法であって、
 上記導電性膜と上記透明導電性膜とが一対の電極であり、上記一対の電極間に1×10-4~1×107V/cmの電場を印加させる、光電変換素子の使用方法。
(36) 後述する式(12)で表される化合物(b2)。
(37) 後述する式(13)で表される化合物(b3)。
 以下に示すように、本発明の第1態様によれば、耐熱性および応答性に優れ、かつ、高い光電変換効率を示す光電変換素子を提供することができる。
 また、本発明の第1態様によれば、上記光電変換素子の使用方法、並びに、上記光電変換素子からなる光センサおよび上記光電変換素子を含む撮像素子を提供することができる。
 また、以下に示すように、本発明の第2態様によれば、応答性および高温保存性に優れた光電変換素子を提供することができる。
 また、本発明の第2態様によれば、上記光電変換素子の使用方法、並びに、上記光電変換素子からなる光センサおよび上記光電変換素子を含む撮像素子を提供することができる。
図1(a)および図1(b)は、それぞれ光電変換素子の一構成例を示す断面模式図である。 撮像素子の1画素分の断面模式図である。 (2)の化合物の1H-NMRスペクトル図である。 (4)の化合物の1H-NMRスペクトル図である。 (10)の化合物の1H-NMRスペクトル図である。
 以下に、本発明の第1態様および第2態様について、順に説明する。
<<第1態様>>
 以下に、本発明の第1態様の光電変換素子について図面を参照して説明する。図1に、本発明の光電変換素子の一実施形態の断面模式図を示す。
 図1(a)に示す光電変換素子10aは、下部電極として機能する導電性膜(以下、下部電極とも記す)11と、下部電極11上に形成された電子ブロッキング層16Aと、電子ブロッキング層16A上に形成された光電変換膜12と、上部電極として機能する透明導電性膜(以下、上部電極とも記す)15とがこの順に積層された構成を有する。
 図1(b)に別の光電変換素子の構成例を示す。図1(b)に示す光電変換素子10bは、下部電極11上に、電子ブロッキング層16Aと、光電変換膜12と、正孔ブロッキング層16Bと、上部電極15とがこの順に積層された構成を有する。なお、図1(a)、図1(b)中の電子ブロッキング層16A、光電変換膜12、正孔ブロッキング層16Bの積層順は、用途、特性に応じて逆にしても構わない。
 光電変換素子10a(10b)の構成では、透明導電性膜15を介して光電変換膜12に光が入射されることが好ましい。
 また、光電変換素子10a(10b)を使用する場合には、電場を印加することができる。この場合、導電性膜11と透明導電性膜15とが一対の電極をなし、この一対の電極間に、1×10-3~1×107V/cmの電場を印加することが好ましく、1×10-4~1×107V/cmの電場を印加することがより好ましい。性能および消費電力の観点から、1×10-4~1×106V/cmの電場を印加することが好ましく、1×10-5~5×105V/cmの電場を印加することがより好ましい。
 なお、電圧印加方法については、図1(a)および(b)において、電子ブロッキング層16A側が陰極であり、光電変換膜12側が陽極となるように印加することが好ましい。光電変換素子10a(10b)を光センサとして使用した場合、また、撮像素子に組み込んだ場合も、同様の方法により電圧の印加を行うことができる。
 以下に、光電変換素子10a(10b)を構成する各層(光電変換膜、下部電極、上部電極、電子ブロッキング層、正孔ブロッキング層など)の態様について詳述する。
 まず、光電変換膜について詳述する。
[光電変換膜]
 光電変換膜は、光電変換材料として後述する式(1)で表される化合物(A)を含む膜である。
 本発明の第1態様では光電変換材料として後述する化合物(A)を使用するため、耐熱性および応答性に優れ、かつ、高い光電変換効率を示す光電変換素子となると考えられる。
 その理由は明らかではないが、およそ以下のとおりと推測される。
 化合物(A)は、後述する式(1)から分かるように、特定の構造(アリール基またはヘテロアリール基)を有するアミン部位と酸性核部位とが特定の構造(5員環と6員環とが縮環した構造)を含む連結部位(連結基)によって連結された構造を有する。そのため、アミン部位から連結部位にかけての平面性が高く、分子間のパッキングが強い。結果として、高温(例えば220℃)環境下に置かれたとしても光電変換膜中のモルフォロジーの変化が小さく、加熱処理などにより高温環境下に置かれたとしても光電変換効率の低下や暗電流の悪化が抑えられるものと考えられる。すなわち、優れた耐熱性を示すものと考えられる。
 このことは、連結部位が上記特定の構造を有さない後述する比較例1~5や、連結部位が上記特定の構造を有するがアミン部位が特定の構造を有さない比較例6および7は、耐熱性が不十分であることからも推測される。
 なお、上述のとおり、化合物(A)は電子供与性(ドナー性)であるアミン部位と電子受容性(アクセプター性)である酸性核部位とが連結された構造を有するため、光吸収により化合物(A)の分子内では良好な電荷分離が生じる。結果として、化合物(A)を光電変換材料として使用する光電変換素子は高光電変換効率および優れた応答性を示す。
<化合物(A)>
 本発明の第1態様において、光電変換材料として使用される化合物(A)は下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000017
 上記式(1)中、Ar11およびAr12は、それぞれ独立に、置換基を有してもよいアリール基、または、置換基を有してもよいヘテロアリール基を表す。なかでも、耐光性、耐熱性がより優れる理由から、置換基を有してもよいアリール基が好ましい。
 Ar11またはAr12がアリール基である場合、炭素数6~30のアリール基が好ましく、炭素数6~20のアリール基がより好ましい。アリール基を構成する環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、ピレン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、メチルフェニル環、ジメチルフェニル環、ビフェニル環(2個のフェニル基は任意の連結様式で連結してもよい)、ターフェニル基(3個のフェニル基は任意の連結様式で連結してもよい)などが挙げられる。
 アリール基の置換基としては、例えば、後述する置換基Wなどが挙げられる。
 Ar11またはAr12がヘテロアリール基である場合、5員、6員もしくは7員の環またはその縮合環からなるヘテロアリール基が好ましい。ヘテロアリール基に含まれるヘテロ原子としては、酸素原子、硫黄原子、窒素原子など挙げられる。ヘテロアリール基を構成する環の具体例としては、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環、トリアジン環、ベンゾフラン環、イソベンゾフラン環、ベンゾチオフェン環、インドール環、インドリン環、イソインドール環、ベンゾオキサゾール環、ベンゾチアゾール環、インダゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、キサンテン環、アクリジン環、フェナントリジン環、フェナントロリン環、フェナジン環、フェノキサジン環、チアントレン環、インドリジン環、キノリジン環、キヌクリジン環、ナフチリジン環、プリン環、プテリジン環などが挙げられる。
 ヘテロアリール基の置換基としては、例えば、後述する置換基Wなどが挙げられる。
 上記式(1)中、R11~R13は、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、後述する置換基Wなどが挙げられる。
 R11、R12が置換基である場合、炭素数1~10のアルキル基(特にメチル基、エチル基、プロピル基、i-プロピル基、t-ブチル基)、炭素数2~10のアルケニル基(特にビニル基、アリル基)、炭素数1~10のアルコキシ基、または、炭素数1~10のアルキルチオ基であることが好ましい。
 R13は、水素原子または炭素数1~10のアルキル基(特にメチル基、エチル基)であることが好ましい。
 上記式(1)中、nは0以上の整数を表し、好ましくは0以上3以下の整数を表し、より好ましくは0である。nを増大させた場合、吸収波長域が長波長にすることができるが、熱による分解温度が低くなる。可視域に適切な吸収を有し、かつ蒸着成膜時の熱分解を抑制する点でn=0が好ましい。
 上記式(1)中、Lは、下記式(2)で表される化合物の任意の可能な位置から2つの水素原子を除いた2価の連結基を表す。2価の連結基であるLは、上記式(1)中の窒素原子、および、R11(n=0の場合はR13)が結合している炭素原子(言い換えると、R11(n=0の場合はR13)の根元の炭素原子)と結合する。
Figure JPOXMLDOC01-appb-C000018
 上記式(2)中、R1~R6は、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、後述する置換基Wなどが挙げられる。R1~R4は、水素原子であることが好ましい。
 上記式(2)中、X1は、酸素原子、>CR1a1b、または、>NR1cを表す。ここで、R1a、R1bおよびR1cは、それぞれ独立に、水素原子または置換基(例えば、後述する置換基Wなど)を表し、なかでも、炭化水素基またはアリール基であることが好ましく、炭化水素基であることがより好ましく、炭素数1~5のアルキル基であることがさらに好ましい。X1は、光電変換効率の観点から、酸素原子、または、>CR1a1bであることが好ましい。
 上記式(2)中、R1とR2、R2とR3、R3とR4、R5とR6は、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。なかでも、芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。形成される環は置換基を有してもよい。置換基としては、例えば、後述する置換基Wなどが挙げられる。
 上述したように、式(2)においてはR5およびR6はそれぞれ互いに結合して環を形成してもよい。R5およびR6が環を形成してもよい態様としては、例えば、以下式(A)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(A)中、R1~R4、および、X1は、式(2)中の各基と同義である。
 R5AおよびR6Aは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、後述する置換基Wなどが挙げられる。
 Qは、芳香族環を表す。芳香族環は、単環でも多環であってもよい。また、含まれる環の環員数も特に制限されず、5員環であっても、6員環であってもよい。さらに、芳香族環には、ヘテロ原子が含まれていてもよい。言い換えると、複素芳香族環であってもよい。芳香族環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、フラン環、ベンゾフラン環、ジベンゾフラン環、ピロール環、インドール環、カルバゾール環などが挙げられる。
 pは、0または1を表す。pが0の場合は、R5AおよびR6Aは、X1が含まれる5員環の炭素原子に直接結合する。pが1の場合は、上述したQで表される芳香族環が、X1が含まれる5員環と炭素原子を共有して結合する。
 上記式(2)で表される化合物の任意の可能な位置から2つの水素原子が除かれて2価の連結基となる。例えば、R1~R6が水素原子、X1が酸素原子の場合、R1~R6の6つの水素原子の中からいずれか2つが除かれて2価の連結基を形成する。また、例えば、R1がメチル基、R2~R6が水素原子、X1が>C(CH32の場合、R1(メチル基)の3つの水素原子、R2~R6の5つの水素原子、X1(>C(CH32)の6つの水素原子、合わせて14つの水素原子の中からいずれか2つが除かれて2価の連結基を形成する。
 また、上述のとおり、R1とR2、R2とR3、R3とR4、R5とR6は、それぞれ互いに結合して環を形成してもよい。上記組み合わせで環が形成される場合、形成された環を含む化合物中の任意の可能な位置から2つの水素原子が除かれる。なお、形成された環が置換基をさらに有する場合、その置換基中に水素原子が含まれる場合、その水素原子が除かれてもよい。
 上記式(2)で表される化合物は、耐熱性および応答性がより優れ、また、光電変換効率が高くなる理由から、下記式(3)で表される化合物であることが好ましい。すなわち、上記式(1)中、Lは、下記式(3)で表される化合物の任意の可能な位置から2つの水素原子を除いた2価の連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 上記式(3)中、R1~R4の定義、具体例および好適な態様は、上述した式(2)と同じである。
 上記式(3)中、X1の定義、具体例および好適な態様は、上述した式(2)と同じである。
 上記式(3)中、R7~R10の定義、具体例および好適な態様は、上述した式(2)中のR1~R4とそれぞれ同じである。
 上記式(1)中、Aは酸性核を表す。ここでいう酸性核とは、化合物(A)のLUMOの値が、電子密度汎関数法(B3LYP/6-31G(d)レベル)で求めたとき、-2.2eVよりも小さくなるような置換基を表す。
 より具体的には、米国特許3,567,719号、3,575,869号、3,804,634号、3,837,862号、4,002,480号、4,925,777号、特開平3-167546号などに記載されているものが挙げられる。
 式(1)中、Aの具体例としては以下のものなどが挙げられる。
(a)1,3-ジカルボニル核:例えば、1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン、1,3-ジオキサン-4,6-ジオン等。
(b)ピラゾリノン核:例えば、1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン、1-(2-ベンゾチアゾリル)-3-メチル-2-ピラゾリン-5-オン等。
(c)イソオキサゾリノン核:例えば、3-フェニル-2-イソオキサゾリン-5-オン、3-メチル-2-イソオキサゾリン-5-オン等。
(d)オキシインドール核:例えば、1-アルキル-2,3-ジヒドロ-2-オキシインドール等。
(e)2,4,6-トリオキソヘキサヒドロピリミジン核:例えば、バルビツール酸または2-チオバルビツール酸およびその誘導体等。誘導体としては、例えば、1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル、1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)、1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、1,3-ジ(2―ピリジル)等の1,3-ジヘテロアリール体等が挙げられる。
(f)2-チオ-2,4-チアゾリジンジオン核:例えば、ローダニンおよびその誘導体等。誘導体としては、例えば、3-メチルローダニン、3-エチルローダニン、3-アリルローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、3-(2-ピリジル)ローダニン等の3-ヘテロアリールローダニン等が挙げられる。
(g)2-チオ-2,4-オキサゾリジンジオン(2-チオ-2,4-(3H,5H)-オキサゾールジオン核:例えば、3-エチル-2-チオ-2,4-オキサゾリジンジオン等。
(h)チアナフテノン核:例えば、3(2H)-チアナフテノン-1,1-ジオキサイド等。
(i)2-チオ-2,5-チアゾリジンジオン核:例えば、3-エチル-2-チオ-2,5-チアゾリジンジオン等。
(j)2,4-チアゾリジンジオン核:例えば、2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン、3-フェニル-2,4-チアゾリジンジオン等。
(k)チアゾリン-4-オン核:例えば、4-チアゾリノン、2-エチル-4-チアゾリノン等。
(l)2,4-イミダゾリジンジオン(ヒダントイン)核:例えば、2,4-イミダゾリジンジオン、3-エチル-2,4-イミダゾリジンジオン等。
(m)2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば、2-チオ-2,4-イミダゾリジンジオン、3-エチル-2-チオ-2,4-イミダゾリジンジオン等。
(n)イミダゾリン-5-オン核:例えば、2-プロピルメルカプト-2-イミダゾリン-5-オン等。
(o)3,5-ピラゾリジンジオン核:例えば、1,2-ジフェニル-3,5-ピラゾリジンジオン、1,2-ジメチル-3,5-ピラゾリジンジオン等。
(p)ベンゾチオフェン-3(2H)-オン核:例えば、ベンゾチオフェン-3(2H)-オン、オキソベンゾチオフェン-3(2H)-オン、ジオキソベンゾチオフェンー3(2H)-オン等。
(q)インダノン核:例えば、1-インダノン、3-フェニル-1-インダノン、3-メチル-1-インダノン、3,3-ジフェニル-1-インダノン、3,3-ジメチル-1-インダノン等。
(r)ベンゾフラン-3-(2H)-オン核:例えば、ベンゾフラン-3-(2H)-オン等。
(s)2,2-ジヒドロフェナレン-1,3-ジオン核等。
 これらはさらに置換基を有していてもよく、さらに他の環が縮環していてもよい。
 なお、Aが置換基を有する場合、その置換基としては、例えば後述する置換基Wなどが挙げられる。
 Aは、光電変換効率に優れる理由から、下記一般式(Z1)で表される基であることが好ましい。*は上記式(1)におけるR13が結合している炭素原子(言い換えると、R13の根元の炭素原子)との結合位置を表す。
Figure JPOXMLDOC01-appb-C000021
 Z2は少なくとも3つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。
 Aは、光電変換効率に優れる理由から、下記一般式(Z2)で表される基または下記一般式(Z3)で表される基であることがより好ましく、一般式(Z3)で表される基がさらに好ましい。*は上記式(1)におけるR13が結合している炭素原子との結合位置を表す。
Figure JPOXMLDOC01-appb-C000022
 一般式(Z2)で表される基において、R111~R114はそれぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、後述する置換基Wなどが挙げられ、好ましくはフェニル基、アルキル基、ハロゲン原子であり、より好ましくは炭素数1~6のアルキル基、塩素原子である。
 R111とR112、R112とR113、R113とR114は、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。形成される環の好適な態様としては、置換基を有してもよいベンゼン環、置換基を有してもよいナフタレン環、置換基を有してもよいアントラセン環などが挙げられる。置換基としては、例えば、後述する置換基Wなどが挙げられる。置換基の好適な態様としては、ハロゲン原子(特に塩素原子)などが挙げられる。
 一般式(Z3)で表される基において、R21~R26はそれぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、後述する置換基Wなどが挙げられ、好ましくはフェニル基、アルキル基、ハロゲン原子であり、より好ましくは炭素数1~6のアルキル基、塩素原子である。R21とR22、R22とR23、R23とR24、R24とR25、R25とR26は、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。形成される環の好適な態様は、上述した一般式(Z2)中のR111とR112、R112とR113、R113とR114が結合して形成される環と同じである。
 上記式(1)中、R11とR12、R11とR13は、それぞれ互いに結合して環を形成してもよい。nが2以上である場合、複数のR11同士、複数のR12同士は、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。形成される環には他の環(例えば、環R)が縮環してもよい。
 上記式(1)中、Ar11とL、Ar12とL、Ar11とAr12は、互いに結合して環を形成してもよい。Ar11とL、および/または、Ar12とLは、耐熱性がより優れる理由から、互いに結合して環を形成するのが好ましい。形成される環としては、例えば、後述する環Rなどが挙げられ、光電変換効率の観点から、2価の連結基X2を介して形成される環であることが好ましい。2価の連結基X2としては、単結合、酸素原子(-O-)、硫黄原子(-S-)、アルキレン基(好ましくは、>CRab:ここでRaおよびRbは水素原子または炭化水素基)、シリレン基、アルケニレン基、シクロアルキレン基、シクロアルケニレン基、アリーレン基、2価の複素環基、またはイミノ基などが挙げられ、なかでも、アルキレン基が好ましい。
 上記式(1)中、LとA、LとR11、LとR12、LとR13は、互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。LとA、LとR11、LとR12、LとR13が互いに結合して形成される環は置換基(例えば、後述する置換基Wなど)を有してもよい。
 化合物(A)の好適な態様としては、例えば、下記式(4)で表される化合物(a1)が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 上記式(4)中、Ar11およびAr12の定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(4)中、R11~R13の定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(4)中、nの定義および好適な態様は、上述した式(1)と同じである。
 上記式(4)中、Lの定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(4)中、Z1は、少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。Z1は、上述した一般式(Z1)で表される基であることが好ましく、上述した一般式(Z2)で表される基であることがより好ましく、上述した一般式(Z3)で表される基であることがさらに好ましい。
 上記化合物(a1)の好適な態様としては、例えば、下記式(5)で表される化合物(a2)が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 上記式(5)中、Ar11およびAr12の定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(5)中、R11~R13の定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(5)中、nの定義および好適な態様は、上述した式(1)と同じである。
 上記式(5)中、Lの定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(5)中、R51~R54の定義、具体例および好適な態様は、上述した一般式(Z2)中のR111~R114とそれぞれ同じである。
 上記化合物(a2)の好適な態様としては、例えば、下記式(6)で表される化合物(a3)が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記式(6)中、Ar11およびAr12の定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(6)中、R11~R13の定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(6)中、nの定義および好適な態様は、上述した式(1)と同じである。
 上記式(6)中、R1、R3およびR4の定義、具体例および好適な態様は、上述した式(2)と同じである。
 上記式(6)中、R7、R9およびR10の定義、具体例および好適な態様は、上述した式(2)中のR1、R3およびR4とそれぞれ同じである。
 上記式(6)中、X1の定義、具体例および好適な態様は、上述した式(2)と同じである。
 上記式(6)中、R51~R54の定義、具体例および好適な態様は、上述した一般式(Z2)中のR111~R114とそれぞれ同じである。
 上記式(6)中、R3とR4、R9とR10は、互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。
 上記式(6)中、Ar11とR7、Ar11とR9、Ar12とR7、Ar12とR9、Ar11とAr12は、互いに結合して環を形成してもよい。耐熱性がより優れ、また、応答性が優れる理由から、Ar11とAr12のうち少なくとも一方は、R7またはR9のうち少なくとも一方と、互いに結合して環を形成するのが好ましい。形成される環としては、例えば、後述する環Rなどが挙げられ、光電変換効率の観点から、2価の連結基X2を介して形成される環であることが好ましい。X2の具体例および好適な態様は、上述した2価の連結基X2と同じである。
 上記式(6)中、R1とR11、R1とR12、R1とR13、R3とR11、R3とR12、R3とR13、R4とR11、R4とR12、R4とR13は、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。形成される環は置換基(例えば、後述する置換基Wなど)を有してもよい。
 上記化合物(a3)の好適な態様としては、例えば、下記式(7)で表される化合物(a4)が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 上記式(7)中、Ar11の定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(7)中、R11~R13の定義、具体例および好適な態様は、上述した式(1)と同じである。
 上記式(7)中、nの定義および好適な態様は、上述した式(1)と同じである。
 上記式(7)中、R1、R3およびR4の定義、具体例および好適な態様は、上述した式(2)と同じである。
 上記式(7)中、R7およびR10の定義、具体例および好適な態様は、上述した式(2)中のR1およびR4とそれぞれ同じである。
 上記式(7)中、X1の定義、具体例および好適な態様は、上述した式(2)と同じである。
 上記式(7)中、R51~R54の定義、具体例および好適な態様は、上述した一般式(Z2)中のR111~R114とそれぞれ同じである。
 上記式(7)中、R71~R74は、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、後述する置換基Wなどが挙げられる。R71~R74は、水素原子であることが好ましい。
 上記式(7)中、X2の具体例および好適な態様は、上述した2価の連結基X2と同じである。
 上記式(7)中、Ar11とR7、Ar11とR71は、互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。
 上記式(7)中、R1とR11、R1とR12、R1とR13、R3とR11、R3とR12、R3とR13、R4とR11、R4とR12、R4とR13は、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。形成される環は置換基(例えば、後述する置換基Wなど)を有してもよい。
 上記式(7)中、R71とR72、R72とR73、R73とR74は、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、後述する環Rなどが挙げられる。
(置換基W)
 本明細書における置換基Wについて記載する。
 置換基Wとしては、例えば、ハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、スルファト基(-OSO3H)、その他の公知の置換基などが挙げられる。
 なお、置換基の詳細については、特開2007-234651号公報の段落[0023]に記載される。
(環R)
 本明細書における環Rについて記載する。
 環Rとしては、例えば、芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環、非芳香族複素環、またはこれらが組み合わされて形成された多環縮合環などが挙げられる。より具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、フェナジン環、シクロペンタン環、シクロヘキサン環、ピロリジン環、ピペリジン環、テトラヒドロフラン環、テトラヒドロピラン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環などが挙げられる。
 環Rは上記置換基Wを有してもよい。
 化合物(A)は、公知の方法に従い、一部改変して実施することで製造することができる。以下に、化合物(A)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 化合物(A)のイオン化ポテンシャル(以下IPと略すことがある)は6.0ev以下であることが好ましく、5.8eV以下がより好ましく、5.6eV以下が特に好ましい。この範囲であれば、電極および他の材料が存在する場合、その材料との電子の授受を小さな電気抵抗で行うために好ましい。IPは理研計器(株)製AC-2を用いて、求めることができる。
 化合物(A)は、紫外可視吸収スペクトルにおいて400nm以上720nm未満に吸収極大を有するものが好ましく、吸収スペクトルのピーク波長(吸収極大波長)は、可視領域の光を幅広く吸収するという観点から450nm以上700nm以下が好ましく、480nm以上650nm以下がより好ましく、510nm以上600nm以下が更に好ましい。
 化合物(A)の吸収極大波長は、化合物(A)のクロロホルム溶液を、島津製作所社製UV-2550を用いて測定することができる。クロロホルム溶液の濃度は5×10-5~1×10-7mol/lが好ましく、3×10-5~2×10-6mol/lがより好ましく、2×10-5~5×10-6mol/lが特に好ましい。
 化合物(A)は、紫外可視吸収スペクトルにおいて400nm以上720nm未満に吸収極大を有し、その吸収極大波長のモル吸光係数が10000mol-1・l・cm-1以上であるものが好ましく、光電変換膜の膜厚を薄くし、高い電荷捕集効率、高速応答性の素子とするには、モル吸光係数が大きい材料が好ましい。化合物(A)のモル吸光係数としては5000mol-1・l・cm-1以上が好ましく、10000mol-1・l・cm-1以上がより好ましく、15000mol-1・l・cm-1以上が特に好ましい。化合物(A)のモル吸光係数は、クロロホルム溶液で測定したものである。
 化合物(A)は、融点と蒸着温度との差(融点-蒸着温度)が大きいほど蒸着時に分解しにくく、高い温度をかけて蒸着速度を大きくすることができ好ましい。また、融点と蒸着温度の差(融点-蒸着温度)は40℃以上が好ましく、50℃以上がより好ましく、60℃以上が更に好ましい。
 また、化合物(A)の融点は240℃以上が好ましく、280℃以上がより好ましく、300℃以上が更に好ましい。融点が300℃以上であれば蒸着前に融解することが少なく、安定して成膜できることに加え、化合物の分解物が比較的生じにくいため、光電変換性能が低下しにくいため好ましい。
 化合物の蒸着温度は、4×10-4Pa以下の真空度でるつぼを加熱し、蒸着速度が0.4オングストローム/s(0.4×10-10m/s)に到達した温度とする。
 化合物(A)のガラス転移点(Tg)は、95℃以上が好ましく、110℃以上がより好ましく、135℃以上がさらに好ましく、150℃以上が特に好ましく、160℃以上が最も好ましい。ガラス転移点が高くなると、光電変換素子の耐熱性がより向上するため好ましい。
 化合物(A)の分子量は、300~1500であることが好ましく、400~1000であることがより好ましく、500~800が特に好ましい。分子量が大きすぎると、蒸着温度が高くなり、分子が分解しやすくなり、小さすぎると光電変換膜のガラス転移点が低くなり、光電変換素子の耐熱性が悪化する。
 化合物(A)は、撮像素子、光センサ、または光電池に用いる光電変換膜の材料として特に有用である。なお、通常、化合物(A)は、光電変換膜内で有機p型半導体(化合物)として機能する。また、他の用途として、着色材料、液晶材料、有機半導体材料、有機発光素子材料、電荷輸送材料、医薬材料、蛍光診断薬材料、等としても用いることもできる。
 化合物(A)は光電変換素子や撮像素子を作製する前に、昇華精製することが望ましい。昇華精製により、昇華前に含有していた不純物や残存溶媒を除くことができる。その結果、光電変換素子や撮像素子の性能を安定させることができる。また、蒸着速度を一定に保ちやすい。
 昇華精製前の化合物(A)の純度としては、HPLC(高速液体クロマトグラフィー)で99.0%以上が好ましく、99.5%以上が好ましく、99.9%以上であることが更に好ましい。さらに、化合物(A)を得るまでの工程で用いた反応溶媒や精製溶媒などの残存溶媒の含有量は3.0%以下であることが好ましく、1.0%以下であることがより好ましく、0.5%以下であることが更に好ましく、検出限界以下であることが特に好ましい。残存溶媒(水分も含む)の含有量の測定には1H-NMR測定やガスクロマトグラフィー測定、カールフィッシャー測定などが用いられる。純度を高め、残存溶媒を減らすことで、昇華精製時の熱分解を抑制することができる。
<その他材料>
 光電変換膜は、さらに有機p型半導体(化合物)または有機n型半導体(化合物)の光電変換材料を含有してもよい。
 有機p型半導体(化合物)は、ドナー性有機半導体(化合物)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは、2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物等を用いることができる。
 有機n型半導体(化合物)とは、アクセプター性有機半導体であり、主に電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物をいう。更に詳しくは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプター性有機半導体は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。好ましくは、フラーレンおよびその誘導体からなる群より選択されるフラーレン類、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、窒素原子、酸素原子、硫黄原子を含有するヘテロ環化合物(例えば、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。
 上記有機n型半導体(化合物)としては、フラーレンおよびその誘導体からなる群より選択されるフラーレン類が好ましい。フラーレンとは、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレンC540、ミックスドフラーレンを表し、フラーレン誘導体とはこれらに置換基が付加された化合物のことを表す。置換基としては、アルキル基、アリール基、または複素環基が好ましい。フラーレン誘導体としては、特開2007-123707号公報に記載の化合物が好ましい。
 光電変換膜は、上記化合物(A)と、フラーレンおよびその誘導体からなる群より選択されるフラーレン類とが混合された状態で形成されるバルクヘテロ構造をなしていることが好ましい。バルクヘテロ構造は光電変換膜内で、有機p型化合物(例えば、化合物(A))と有機n型化合物が混合、分散している膜であり、湿式法、乾式法のいずれでも形成できるが、共蒸着法で形成するものが好ましい。へテロ接合構造を含有させることにより、光電変換膜のキャリア拡散長が短いという欠点を補い、光電変換膜の光電変換効率を向上させることができる。なお、バルクへテロ接合構造については、特開2005-303266号公報の[0013]~[0014]等において詳細に説明されている。
 光電変換膜における上記化合物(A)に対する有機n型化合物のモル比率(有機n型化合物のモル数/上記化合物(A)のモル数)は、0.5以上であることが好ましく、1以上10以下であることがより好ましく、2以上5以下であることが更に好ましい。
 光電変換素子の応答性の観点から、化合物(A)とフラーレン類との合計の含有量に対するフラーレン類の含有量(=フラーレン類の単層換算での膜厚/(化合物(A)の単層換算での膜厚+フラーレン類の単層換算での膜厚))が、50体積%以上であることが好ましく、55体積%以上であることがより好ましく、65体積%以上であることがさらに好ましい。上限は特に制限されないが、95体積%以下であることが好ましく、90体積%以下であることがより好ましい。
 本発明の化合物(A)および有機n型化合物が含まれる光電変換膜は非発光性膜であり、有機電界発光素子(OLED)とは異なる特徴を有する。非発光性膜とは発光量子効率が1%以下の膜の場合であり、0.5%以下であることがより好ましく、0.1%以下であることが更に好ましい。
<成膜方法>
 光電変換膜12は、乾式成膜法または湿式成膜法により成膜することができる。乾式成膜法の具体例としては、真空蒸着法、スパッタリング法、イオンプレーティング法,MBE法等の物理気相成長法、または、プラズマ重合等のCVD法が挙げられる。湿式成膜法としては、キャスト法、スピンコート法、ディッピング法、LB法等が用いられる。好ましくは乾式成膜法であり、真空蒸着法がより好ましい。真空蒸着法により成膜する場合、真空度、蒸着温度等の製造条件は常法に従って設定することができる。
 光電変換膜12の厚みは、10nm以上1000nm以下が好ましく、50nm以上800nm以下がより好ましく、100nm以上500nm以下が特に好ましい。10nm以上とすることにより、好適な暗電流抑制効果が得られ、1000nm以下とすることにより、好適な光電変換効率が得られる。
[電極]
 電極(上部電極(透明導電性膜)15と下部電極(導電性膜)11)は、導電性材料から構成される。導電性材料としては、金属、合金、金属酸化物、電気伝導性化合物、またはこれらの混合物などを用いることができる。
 上部電極15から光が入射されるため、上部電極15は検知したい光に対し十分透明であることが必要である。具体的には、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属薄膜、更にこれらの金属と導電性金属酸化物との混合物または積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、およびこれらとITOとの積層物などが挙げられる。この中で好ましいのは、高導電性、透明性等の点から、透明導電性金属酸化物である。
 TCOなどの透明導電膜を上部電極15とした場合、DCショート、あるいはリーク電流増大が生じる場合がある。この原因の一つは、光電変換膜12に導入される微細なクラックがTCOなどの緻密な膜によってカバレッジされ、反対側の下部電極11との間の導通が増すためと考えられる。そのため、アルミなど膜質が比較的劣る電極の場合、リーク電流の増大は生じにくい。上部電極15の膜厚を、光電変換膜12の膜厚(すなわち、クラックの深さ)に対して制御することにより、リーク電流の増大を大きく抑制できる。上部電極15の厚みは、光電変換膜12厚みの1/5以下、好ましくは1/10以下であるようにすることが望ましい。
 通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態に係る光電変換素子を組み込んだ固体撮像素子では、シート抵抗は、好ましくは100~10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、上部電極(透明導電性膜)15は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換膜12での光吸収を増大させ、光電変換能を増大させるため、非常に好ましい。薄膜化に伴う、リーク電流の抑制、薄膜の抵抗値の増大、透過率の増加を考慮すると、上部電極15の膜厚は、5~100nmであることが好ましく、更に好ましくは5~20nmであることが望ましい。
 下部電極11は、用途に応じて、透明性を持たせる場合と、逆に透明を持たせず光を反射させるような材料を用いる場合等がある。具体的には、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル、チタン、タングステン、アルミ等の金属およびこれらの金属の酸化物や窒化物などの導電性化合物(一例として窒化チタン(TiN)を挙げる)、更にこれらの金属と導電性金属酸化物との混合物または積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、およびこれらとITOまたは窒化チタンとの積層物などが挙げられる。
 電極を形成する方法は特に限定されず、電極材料との適正を考慮して適宜選択することができる。具体的には、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等により形成することができる。
 電極の材料がITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾル-ゲル法など)、酸化インジウムスズの分散物の塗布などの方法で形成することができる。更に、ITOを用いて作製された膜に、UV-オゾン処理、プラズマ処理などを施すことができる。電極の材料がTiNの場合、反応性スパッタリング法をはじめとする各種の方法が用いられ、更にUV-オゾン処理、プラズマ処理などを施すことができる。
[電荷ブロッキング層:電子ブロッキング層、正孔ブロッキング層]
 本発明の第1態様の光電変換素子は、電荷ブロッキング層を有していてもよい。該層を有することにより、得られる光電変換素子の特性(光電変換効率、応答速度など)がより優れる。電荷ブロッキング層としては、電子ブロッキング層と正孔ブロッキング層とが挙げられる。以下に、それぞれの層について詳述する。
<電子ブロッキング層>
 電子ブロッキング層には、電子供与性有機材料を用いることができる。具体的には、低分子材料では、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィリン、テトラフェニルポルフィリン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポルフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体を用いることができる。電子供与性化合物でなくとも、十分なホール輸送性を有する化合物であれば用いることは可能である。具体的には特開2008-72090号公報の[0083]~[0089]、特開2011-176259号公報の[0043]~[0063]、特開2011-228614号公報の[0121]~[0148]、特開2011-228615号公報の[0108]~[0156]に記載の化合物が好ましい。
 なお、電子ブロッキング層は、複数層で構成してもよい。
 電子ブロッキング層としては無機材料を用いることもできる。一般的に、無機材料は有機材料よりも誘電率が大きいため、電子ブロッキング層に用いた場合に、光電変換膜に電圧が多くかかるようになり、光電変換効率を高くすることができる。電子ブロッキング層となりうる材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、酸化イリジウム等がある。電子ブロッキング層が単層の場合にはその層を無機材料からなる層とすることができ、または、複数層の場合には1つまたは2以上の層を無機材料からなる層とすることができる。
<正孔ブロッキング層)>
 正孔ブロッキング層には、電子受容性有機材料を用いることができる。
 電子受容性材料としては、1,3-ビス(4-tert-ブチルフェニル-1,3,4-オキサジアゾリル)フェニレン(OXD-7)等のオキサジアゾール誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、バソクプロイン、バソフェナントロリン、及びこれらの誘導体、トリアゾール化合物、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、ビス(4-メチル-8-キノリナート)アルミニウム錯体、ジスチリルアリーレン誘導体、シロール化合物などを用いることができる。また、電子受容性有機材料でなくとも、十分な電子輸送性を有する材料ならば使用することは可能である。ポルフィリン系化合物や、DCM(4-ジシアノメチレン-2-メチル-6-(4-(ジメチルアミノスチリル))-4Hピラン)等のスチリル系化合物、4Hピラン系化合物を用いることができる。具体的には特開2008-72090号公報の[0073]~[0078]に記載の化合物が好ましい。
 電荷ブロッキング層の製造方法は特に制限されず、乾式製膜法または湿式製膜法により製膜できる。乾式製膜法としては、蒸着法、スパッタ法等が使用できる。蒸着は、物理蒸着(PVD)、化学蒸着(CVD)のいずれでもよいが、真空蒸着等の物理蒸着が好ましい。湿式製膜法としては、インクジェット法、スプレー法、ノズルプリント法、スピンコート法、ディップコート法、キャスト法、ダイコート法、ロールコート法、バーコート法、グラビアコート法等が使用可能であるが、高精度パターニングの観点からはインクジェット法が好ましい。
 電荷ブロッキング層(電子ブロッキング層および正孔ブロッキング層)の厚みは、それぞれ、10~200nmが好ましく、更に好ましくは30~150nm、特に好ましくは50~100nmである。この厚みが薄すぎると、暗電流抑制効果が低下してしまい、厚すぎると光電変換効率が低下してしまうためである。
[基板]
 本発明の第1態様の光電変換素子は、さらに基板を含んでいてもよい。使用される基板の種類は特に制限されず、半導体基板、ガラス基板、またはプラスチック基板を用いることができる。
 なお、基板の位置は特に制限されないが、通常、基板上に導電性膜、光電変換膜、および透明導電性膜をこの順で積層する。
[封止層]
 本発明の第1態様の光電変換素子は、さらに封止層を含んでいてもよい。光電変換材料は水分子などの劣化因子の存在で顕著にその性能が劣化してしまうことがあり、水分子を浸透させない緻密な金属酸化物・金属窒化物・金属窒化酸化物などセラミクスやダイヤモンド状炭素(DLC)などの封止層で光電変換膜全体を被覆して封止することが上記劣化を防止することができる。
 なお、封止層としては、特開2011-082508号公報の段落[0210]~[0215]に記載に従って、材料の選択および製造を行ってもよい。
[光センサ]
 光電変換素子の用途として、例えば、光電池と光センサが挙げられるが、本発明の第1態様の光電変換素子は光センサとして用いることが好ましい。光センサとしては、上記光電変換素子単独で用いたものでもよいし、上記光電変換素子を直線状に配したラインセンサや、平面上に配した2次元センサの形態とするものが好ましい。本発明の第1態様の光電変換素子は、ラインセンサでは、スキャナー等の様に光学系および駆動部を用いて光画像情報を電気信号に変換し、2次元センサでは、撮像モジュールのように光画像情報を光学系でセンサ上に結像させ電気信号に変換することで撮像素子として機能する。
 光電池は発電装置であるため、光エネルギーを電気エネルギーに変換する効率が重要な性能となるが、暗所での電流である暗電流は機能上問題にならない。更にカラーフィルタ設置等の後段の加熱工程が必要ない。光センサは明暗信号を高い精度で電気信号に変換することが重要な性能となるため、光量を電流に変換する効率も重要な性能であるが、暗所で信号を出力するとノイズとなるため、低い暗電流が要求される。更に後段の工程に対する耐性も重要である。
[撮像素子]
 次に、光電変換素子10aを備えた撮像素子の構成例を説明する。
 なお、以下に説明する構成例において、すでに説明した部材などと同等な構成・作用を有する部材等については、図中に同一符号または相当符号を付すことにより、説明を簡略化或いは省略する。
 撮像素子とは画像の光情報を電気信号に変換する素子であり、複数の光電変換素子が同一平面状でマトリクス上に配置されており、各々の光電変換素子(画素)において光信号を電気信号に変換し、その電気信号を画素ごとに逐次撮像素子外に出力できるものをいう。そのために、画素ひとつあたり、一つの光電変換素子、一つ以上のトランジスタから構成される。
 図2は、本発明の一実施形態を説明するための撮像素子の概略構成を示す断面模式図である。この撮像素子は、デジタルカメラ、デジタルビデオカメラ等の撮像装置、電子内視鏡、携帯電話機等の撮像モジュール等に搭載して用いられる。
 この撮像素子は、図1に示したような構成の複数の光電変換素子と、各光電変換素子の光電変換膜で発生した電荷に応じた信号を読み出す読み出し回路が形成された回路基板とを有し、該回路基板上方の同一面上に、複数の光電変換素子が1次元状または二次元状に配列された構成となっている。
 図2に示す撮像素子100は、基板101と、絶縁層102と、接続電極103と、画素電極(下部電極)104と、接続部105と、接続部106と、光電変換膜107と、対向電極(上部電極)108と、緩衝層109と、封止層110と、カラーフィルタ(CF)111と、隔壁112と、遮光層113と、保護層114と、対向電極電圧供給部115と、読出し回路116とを備える。
 画素電極104は、図1に示した光電変換素子10aの下部電極11と同じ機能を有する。対向電極108は、図1に示した光電変換素子10aの上部電極15と同じ機能を有する。光電変換膜107は、図1に示した光電変換素子10aの下部電極11および上部電極15間に設けられる層と同じ構成である。
 基板101は、ガラス基板またはSi等の半導体基板である。基板101上には絶縁層102が形成されている。絶縁層102の表面には複数の画素電極104と複数の接続電極103が形成されている。
 光電変換膜107は、複数の画素電極104の上にこれらを覆って設けられた全ての光電変換素子で共通の層である。
 対向電極108は、光電変換膜107上に設けられた、全ての光電変換素子で共通の1つの電極である。対向電極108は、光電変換膜107よりも外側に配置された接続電極103の上にまで形成されており、接続電極103と電気的に接続されている。
 接続部106は、絶縁層102に埋設されており、接続電極103と対向電極電圧供給部115とを電気的に接続するためのプラグ等である。対向電極電圧供給部115は、基板101に形成され、接続部106および接続電極103を介して対向電極108に所定の電圧を印加する。対向電極108に印加すべき電圧が撮像素子の電源電圧よりも高い場合は、チャージポンプ等の昇圧回路によって電源電圧を昇圧して上記所定の電圧を供給する。
 読出し回路116は、複数の画素電極104の各々に対応して基板101に設けられており、対応する画素電極104で捕集された電荷に応じた信号を読出すものである。読出し回路116は、例えばCCD、CMOS回路、またはTFT回路等で構成されており、絶縁層102内に配置された図示しない遮光層によって遮光されている。読み出し回路116は、それに対応する画素電極104と接続部105を介して電気的に接続されている。
 緩衝層109は、対向電極108上に、対向電極108を覆って形成されている。封止層110は、緩衝層109上に、緩衝層109を覆って形成されている。カラーフィルタ111は、封止層110上の各画素電極104と対向する位置に形成されている。隔壁112は、カラーフィルタ111同士の間に設けられており、カラーフィルタ111の光透過効率を向上させるためのものである。
 遮光層113は、封止層110上のカラーフィルタ111及び隔壁112を設けた領域以外に形成されており、有効画素領域以外に形成された光電変換膜107に光が入射する事を防止する。保護層114は、カラーフィルタ111、隔壁112、及び遮光層113上に形成されており、撮像素子100全体を保護する。
 このように構成された撮像素子100では、光が入射すると、この光が光電変換膜107に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は、画素電極104で捕集され、その量に応じた電圧信号が読み出し回路116によって撮像素子100外部に出力される。
 撮像素子100の製造方法は、次の通りである。
 対向電極電圧供給部115と読み出し回路116が形成された回路基板上に、接続部105,106、複数の接続電極103、複数の画素電極104、および絶縁層102を形成する。複数の画素電極104は、絶縁層102の表面に例えば正方格子状に配置する。
 次に、複数の画素電極104上に、光電変換膜107を例えば真空加熱蒸着法によって形成する。次に、光電変換膜107上に例えばスパッタ法により対向電極108を真空下で形成する。次に、対向電極108上に緩衝層109、封止層110を順次、例えば真空加熱蒸着法によって形成する。次に、カラーフィルタ111、隔壁112、遮光層113を形成後、保護層114を形成して、撮像素子100を完成する。
 撮像素子100の製造方法においても、光電変換膜107の形成工程と封止層110の形成工程との間に、作製途中の撮像素子100を非真空下に置く工程を追加しても、複数の光電変換素子の性能劣化を防ぐことができる。この工程を追加することで、撮像素子100の性能劣化を防ぎながら、製造コストを抑えることができる。
<<第2態様>>
 以下に、本発明の第2態様の光電変換素子について説明する。本発明の第2態様の光電変換素子は、光電変換膜中の光電変換材料の点を除いて、図1(a)および(b)に示した、第1態様の光電変換素子と同様の層構成を有する。
 つまり、第2態様の光電変換素子の一実施形態としては、図1(a)に示すように、下部電極として機能する導電性膜(以下、下部電極とも記す)11と、下部電極11上に形成された電子ブロッキング層16Aと、電子ブロッキング層16A上に形成された光電変換膜12と、上部電極として機能する透明導電性膜(以下、上部電極とも記す)15とがこの順に積層された構成を有する。
 また、本発明の第2態様の光電変換素子の他の実施形態としては、図1(b)に示すように、下部電極11上に、電子ブロッキング層16Aと、光電変換膜12と、正孔ブロッキング層16Bと、上部電極15とがこの順に積層された構成を有する。
 また、本発明の第2態様の光電変換素子の電圧印加方法は、上述した第1態様の光電変換素子の電圧印加方法と同様の印加条件が適用される。
 上述したように、本発明の第2態様の光電変換素子は、光電変換膜中の光電変換材料以外の点では、第1態様の光電変換素子と同様の構成を有するものであるので、同一の構成要素(例えば、下部電極、電荷ブロッキング層(電子ブロッキング層、正孔ブロッキング層)、上部電極、基板、封止層など)の説明を省略し、以下では主として光電変換膜について詳述する。
[光電変換膜]
 光電変換膜は、光電変換材料として後述する式(11)で表される化合物(B)を含む膜である。
 本発明の第2態様では光電変換材料として後述する化合物(B)を使用するため、応答性および高温保存性に優れた光電変換素子となると考えられる。
 その理由は明らかではないが、およそ以下のとおりと推測される。
 化合物(B)は、後述する式(11)から分かるように、アミン部位と酸性核部位とがチオフェンを含む連結部位によって連結され、上記アミン部位と上記連結部位とが縮環した構造を有する。化合物(B)は上記のとおりアミン部位と上記連結部位とが縮環した構造を有するため、縮環していないものに比べ、アミン部位から連結部位にかけての分子構造の平面性が高く、また、自由度の小さい剛直な構造になっている。平面性の高さから分子間のパッキングが強くなり、分子間での電子またはホールの速やかな移動が可能となる。結果として、化合物(B)を光電変換材料として使用する光電変換素子は優れた応答性を示すものと考えられる。加えて、自由度の小さい剛直な構造になっているため、高温環境下に長時間置かれたとしても光電変換膜中のモルフォロジーの変化が小さく、応答性が優れた状態で維持されるものと考えられる。すなわち、優れた高温保存性を示すものと考えられる。
 このことは、アミン部位と連結部位とが縮環していない化合物を使用した後述する比較例1B~4Bでは、応答性および高温保存性が不十分であることからも推測される。
 なお、上述のとおり、化合物(B)は電子供与性(ドナー性)であるアミン部位と電子受容性(アクセプター性)である酸性核部位とがチオフェンを含む連結部位で連結された構造を有するため、光吸収により化合物(B)の分子内では良好な電荷分離が生じる。結果として、化合物(B)を光電変換材料として使用する光電変換素子は高光電変換効率を示す。
<化合物(B)>
 本発明の第2態様において、光電変換材料として使用される化合物(B)は下記式(11)で表される。
Figure JPOXMLDOC01-appb-C000030
 上記式(11)中、R1wおよびR2wは、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、または、置換基を有してもよいヘテロアリール基を表す。なかでも、光電変換効率および応答性の観点から、置換基を有してもよいアリール基が好ましい。
 R1wまたはR2wがアルキル基である場合、炭素数1~22のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基などが挙げられる。
 アルキル基の置換基としては、例えば、後述する置換基Wなどが挙げられる。
 R1wまたはR2wがアリール基である場合、炭素数6~30のアリール基が好ましく、炭素数6~20のアリール基がより好ましい。アリール基を構成する環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環(2個のフェニル基は任意の連結様式で連結してもよい)、ターフェニル基(3個のフェニル基は任意の連結様式で連結してもよい)などが挙げられる。
 アリール基の置換基としては、例えば、後述する置換基Wなどが挙げられる。
 R1wまたはR2wがヘテロアリール基である場合、5員、6員もしくは7員の環またはその縮合環からなるヘテロアリール基が好ましい。ヘテロアリール基に含まれるヘテロ原子としては、酸素原子、硫黄原子、窒素原子など挙げられる。ヘテロアリール基を構成する環の具体例としては、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環、トリアジン環、ベンゾフラン環、イソベンゾフラン環、ベンゾチオフェン環、インドール環、インドリン環、イソインドール環、ベンゾオキサゾール環、ベンゾチアゾール環、インダゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、キサンテン環、アクリジン環、フェナントリジン環、フェナントロリン環、フェナジン環、フェノキサジン環、チアントレン環、インドリジン環、キノリジン環、キヌクリジン環、ナフチリジン環、プリン環、プテリジン環などが挙げられる。
 ヘテロアリール基の置換基としては、例えば、後述する置換基Wなどが挙げられる。
 上記式(11)中、R3w~R9wは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられる。
 R3w~R8wが置換基である場合、炭素数1~10のアルキル基(特にメチル基、エチル基、プロピル基、i-プロピル基、t-ブチル基)、炭素数2~10のアルケニル基(特にビニル基、アリル基)、炭素数1~10のアルコキシ基、または、炭素数1~10のアルキルチオ基であることが好ましい。
 R9wは、水素原子または炭素数1~10のアルキル基(特にメチル基、エチル基)であることが好ましく、水素原子であることがより好ましい。
 上記式(11)中、pは0または1を表す。pは、より高い光電変換効率を示すことから、1であることが好ましい。
 上記式(11)中、qは0以上の整数を表す。qは、より優れた応答性を示す理由から、0~3の整数であることが好ましく、0であることがより好ましい。
 上記式(11)中、R1wとR2w、R3wとR4w、R3wとR5w、R5wとR6w、R6wとR8w、R7wとR8w、R7wとR9wは、それぞれ互いに結合して環を形成してもよい。qが2以上である場合、複数のR7w同士、複数のR8w同士は、それぞれ互いに結合して環を形成してもよい。
 形成される環としては、例えば、後述する環Rなどが挙げられる。形成される環には他の環(例えば、上述した環R)が縮環してもよい。
 pまたはqが1以上である場合、R3wとR5w、および/または、R6wとR8wは、光電変換効率、高温保存性の観点から、互いに結合して環を形成するのが好ましい。R3wとR5w、および/または、R6wとR8wが互いに結合して環を形成する場合、形成される環は、芳香族炭化水素環または芳香族複素環(特にヘテロ原子として硫黄原子を有する芳香族複素環)であることが好ましく、芳香族炭化水素環(特にベンゼン環)であることがより好ましい。
 上記式(11)中、A1wは酸性核を表す。ここでいう酸性核とは、化合物(A)のLUMOの値が、電子密度汎関数法(B3LYP/6-31G(d)レベル)で求めたとき、-2.2eVよりも小さくなるような置換基を表す。
 より具体的には、米国特許3,567,719号、3,575,869号、3,804,634号、3,837,862号、4,002,480号、4,925,777号、特開平3-167546号などに記載されているものが挙げられる。
 式(11)中、A1wの具体例としては、上記第1態様のA1で述べた(a)~(s)などが挙げられる。
 なお、A1wが置換基を有する場合、その置換基としては、例えば上述した置換基Wなどが挙げられる。
 A1wは、応答性がより優れ、また高い光電変換効率を示す理由から、下記一般式(Z1)で表される基であることが好ましい。*は上記式(11)におけるR9wの根元の炭素原子(言い換えると、R9wが結合している炭素原子)との結合位置を表す。
Figure JPOXMLDOC01-appb-C000031
 Z2は少なくとも3つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。
 A1wは、応答性がより優れ、また高い光電変換効率を示す理由から、下記一般式(Z12)で表される基または下記一般式(Z13)で表される基であることがより好ましく、一般式(Z13)で表される基がさらに好ましい。*は上記式(11)におけるR9wの根本の炭素原子との結合位置を表す。
Figure JPOXMLDOC01-appb-C000032
 一般式(Z12)で表される基において、R11w~R14wはそれぞれ独立に、水素原子または置換基を表す。置換基の好適な態様としては、ハロゲン原子(特に塩素原子)などが挙げられる。
 R11wとR12w、R12wとR13w、R13wとR14wは、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。形成される環の好適な態様としては、置換基を有してもよいベンゼン環、置換基を有してもよいナフタレン環、置換基を有してもよいアントラセン環などが挙げられる。置換基としては、例えば、上述した置換基Wなどが挙げられる。置換基の好適な態様としては、ハロゲン原子(特に塩素原子)などが挙げられる。
 一般式(Z13)で表される基において、R21w~R26wはそれぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられ、好ましくはアルキル基であり、より好ましくは炭素数1~6のアルキル基である。R21wとR22w、R22wとR23w、R23wとR24w、R24wとR25w、R25wとR26wは、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。形成される環の好適な態様は、上述した一般式(Z12)中のR11wとR12w、R12wとR13w、R13wとR14wが結合して形成される環と同じである。
 上記式(11)中、R1wおよびR2wのうち少なくとも一方は、R3w、R4wおよびR5wのいずれかと結合して環を形成する。これにより、化合物(B)は、アミン部位とチオフェンを含む連結部位とが縮環した構造を有することになる。結果として、上述のとおり、本発明の第2態様の効果(優れた応答性および高温保存性)が得られるものと考えられる。
 R1wおよびR2wのうち少なくとも一方が、R3w、R4wおよびR5wのいずれかと結合して形成される環としては、例えば、上述した環Rなどが挙げられる。
 形成される環は、2価の連結基Xを有していてもよい。つまり、R1wおよびR2wのうち少なくとも一方が、R3w、R4wおよびR5wのいずれかと結合する際には、それぞれ互いに直接結合してもよいし、連結基Xを介して結合して環を形成してもよい。連結基Xとしては、酸素原子(-O-)、硫黄原子(-S-)、アルキレン基(好ましくは、>CRab:ここでRaおよびRbは水素原子または炭化水素基)、シリレン基、アルケニレン基、シクロアルキレン基、シクロアルケニレン基、アリーレン基、2価の複素環基、または-NRC-(RCは水素原子または置換基(例えば、上述した置換基W)を表す)などが挙げられる。
 なお、R1wおよびR2wのうち少なくとも一方が、R3w、R4wおよびR5wのいずれかとアルキレン基で結合して環を形成することが好ましく、ジメチルメチレン基で結合して環を形成することがさらに好ましい
 化合物(B)の好適な態様としては、例えば、下記式(14)で表される化合物(b4)が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 上記式(14)中、R1w~R9wの定義、具体例および好適な態様は、上述した式(11)と同じである。
 上記式(14)中、pおよびqの定義および好適な態様は、上述した式(11)と同じである。
 上記式(14)中、R10wおよびR11wは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられる。
 R10wとR11wは、互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。
 R10wとR11wが互いに結合して環を形成する場合、形成される環の好適な態様としては、1,3-インダンジオン環、1,3-ベンゾインダンジオン環、1,3-シクロヘキサンジオン環、5,5-ジメチル-1,3-シクロヘキサンジオン環、1,3-ジオキサン-4,6-ジオン環、1-フェニル-2-ピラゾリン-5-オン環、3-メチル-1-フェニル-2-ピラゾリン-5-オン環、1-(2-ベンゾチアゾイル)-3-メチル-2-ピラゾリン-5-オン環、ピリミジン-2,4,6-トリオン環などが挙げられる。
 上記化合物(b4)の好適な態様としては、例えば、下記式(15)で表される化合物(b5)が挙げられる。
Figure JPOXMLDOC01-appb-C000034
 上記式(15)中、R1w~R9wの定義、具体例および好適な態様は、上述した式(11)と同じである。
 上記式(15)中、pおよびqの定義および好適な態様は、上述した式(11)と同じである。
 上記式(15)中、R11wおよびR12wは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられる。
 R11wとR12wは、互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。形成される環の好適な態様は、上述した式(14)中のR10wとR11wが互いに結合して形成される環と同じである。
 上記化合物(b5)の好適な態様としては、例えば、下記式(16)で表される化合物(b6)が挙げられる。
Figure JPOXMLDOC01-appb-C000035
 上記式(16)中、R1w~R9wの定義、具体例および好適な態様は、上述した式(11)と同じである。
 上記式(16)中、pおよびqの定義および好適な態様は、上述した式(11)と同じである。
 上記式(16)中、R13wおよびR14wは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられる。
 R13wとR14wは、互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。形成される環の好適な態様としては、置換基を有してもよいベンゼン環、置換基を有してもよいナフタレン環、置換基を有してもよいアントラセン環などが挙げられる。置換基としては、例えば、上述した置換基Wなどが挙げられる。置換基の好適な態様としては、ハロゲン原子(特に塩素原子)などが挙げられる。
 上記化合物(b6)の好適な態様としては、例えば、下記式(12)で表される化合物(b2)が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 上記式(12)中、R1w~R9wの定義、具体例および好適な態様は、上述した式(11)と同じである。
 上記式(12)中、pおよびqの定義および好適な態様は、上述した式(11)と同じである。
 上記式(12)中、R15w~R18wは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられる。置換基の好適な態様としては、ハロゲン原子(特に塩素原子)などが挙げられる。
 R15wとR16w、R16wとR17w、R17wとR18wは、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。形成される環の好適な態様は、上述した式(16)中のR13wとR14wが互いに結合して形成される環と同じである。
 上記化合物(b2)の好適な態様としては、例えば、下記式(13)で表される化合物(b3)が挙げられる。上記化合物(b2)が上記化合物(b3)であると光電変換効率が向上する。
Figure JPOXMLDOC01-appb-C000037
 上記式(13)中、R1w~R9wの定義、具体例および好適な態様は、上述した式(11)と同じである。
 上記式(13)中、pおよびqの定義および好適な態様は、上述した式(11)と同じである。
 上記式(13)中、R15wおよびR18w~R22wは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられる。置換基の好適な態様としては、ハロゲン原子(特に塩素原子)などが挙げられる。
 R15wとR19w、R19wとR20w、R20wとR21w、R21wとR22w、R22wとR18wは、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。形成される環の好適な態様は、上述した式(16)中のR13wとR14wが互いに結合して形成される環と同じである。
 化合物(B)の別の好適な態様としては、例えば、下記式(17)で表される化合物(b7)、下記式(18)で表される化合物(b8)、下記式(19)で表される化合物(b9)などが挙げられる。
Figure JPOXMLDOC01-appb-C000038
 上記式(17)中、R6w~R9wの定義、具体例および好適な態様は、上述した式(11)と同じである。
 上記式(17)中、qの定義および好適な態様は、上述した式(11)と同じである。
 上記式(17)中、R71w~R74wは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられる。なかでも、水素原子であることが好ましい。
 上記式(17)中、R75wの定義および好適な範囲は、上述した式(11)のR1wおよびR2wと同じである。
 R71wとR72w、R72wとR73w、R73wとR74w、R71wとR75wは、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。
 上記式(17)中、X1wは、酸素原子(-O-)、硫黄原子(-S-)、置換基を有する窒素原子(-NR’-)、置換基を有する炭素原子(-CR’R’’-)、置換基を有するケイ素(-SiR’R’’-)原子を表す。なかでも、硫黄原子であることが好ましい。R’およびR’’は、それぞれ独立に置換基を表し、その定義は上記置換基Wと同様である。なかでも、R’およびR’’としては、アルキル基が好ましい。
 上記式(17)中、X2wは、単結合または連結基を表す。連結基の具体例は、上述したXと同じである。
 上記式(17)中、A1wの定義および好適な態様は、上述した式(11)と同じである。
Figure JPOXMLDOC01-appb-C000039
 上記式(18)中、R6w~R9wの定義、具体例および好適な態様は、上述した式(11)と同じである。
 上記式(18)中、qの定義および好適な態様は、上述した式(11)と同じである。
 上記式(18)中、R71w~R74wの定義および好適な態様は、上述した式(17)と同じである。
 上記式(18)中、R75wの定義および好適な態様は、上述した式(17)と同じである。
 R71wとR75w、R75wとR81wは、それぞれ互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。
 上記式(18)中、X2wは、単結合または連結基を表す。連結基の具体例は、上述したXと同じである。
 上記式(18)中、A1wの定義および好適な態様は、上述した式(11)と同じである。
 上記式(18)中、R81wおよびR82wは、水素原子または置換基を表す。置換基としては、例えば、上述した置換基Wなどが挙げられる。なかでも水素原子であることが好ましい。R81wとR82wは、互いに結合して環を形成してもよい。形成される環としては、例えば、上述した環Rなどが挙げられる。
Figure JPOXMLDOC01-appb-C000040
 上記式(19)中、R6w~R9wの定義、具体例および好適な態様は、上述した式(11)と同じである。
 上記式(19)中、qの定義および好適な態様は、上述した式(11)と同じである。
 上記式(19)中、R71w~R74wの定義および好適な態様は、上述した式(17)と同じである。
 上記式(19)中、R75wの定義および好適な態様は、上述した式(17)と同じである。
 上記式(19)中、X2wは、単結合または連結基を表す。連結基の具体例は、上述したXと同じである。
 上記式(19)中、A1wの定義および好適な態様は、上述した式(11)と同じである。
 化合物(B)は、公知の方法に従い、一部改変して実施することで製造することができる。以下に、化合物(B)で表される化合物の具体例(1)~(62)を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 化合物(B)のイオン化ポテンシャル(以下IPと略すことがある)は6.0ev以下であることが好ましく、5.8eV以下がより好ましく、5.6eV以下が特に好ましい。この範囲であれば、電極および他の材料が存在する場合、その材料との電子の授受を小さな電気抵抗で行うために好ましい。IPは理研計器(株)製AC-2を用いればよい。
 化合物(B)は、紫外可視吸収スペクトルにおいて400nm以上720nm未満に吸収極大を有するものが好ましく、吸収スペクトルのピーク波長(吸収極大波長)は、可視領域の光を幅広く吸収するという観点から450nm以上700nm以下が好ましく、480nm以上650nm以下がより好ましく、510nm以上600nm以下が更に好ましい。
 化合物(B)の吸収極大波長は、化合物(B)のクロロホルム溶液を、島津製作所社製UV-2550を用いて測定することができる。クロロホルム溶液の濃度は5×10-5~1×10-7mol/lが好ましく、3×10-5~2×10-6mol/lがより好ましく、2×10-5~5×10-6mol/lが特に好ましい。
 化合物(B)は、紫外可視吸収スペクトルにおいて400nm以上720nm未満に吸収極大を有し、その吸収極大波長のモル吸光係数が10000mol-1・l・cm-1以上であるものが好ましく、光電変換膜の膜厚を薄くし、高い電荷捕集効率、高速応答性の素子とするには、モル吸光係数が大きい材料が好ましい。化合物(B)のモル吸光係数としては5000mol-1・l・cm-1以上が好ましく、10000mol-1・l・cm-1以上がより好ましく、15000mol-1・l・cm-1以上が特に好ましい。化合物(A)のモル吸光係数は、クロロホルム溶液で測定したものである。
 化合物(B)は、融点と蒸着温度との差(融点-蒸着温度)が大きいほど蒸着時に分解しにくく、高い温度をかけて蒸着速度を大きくすることができ好ましい。また、融点と蒸着温度の差(融点-蒸着温度)は40℃以上が好ましく、50℃以上がより好ましく、60℃以上が更に好ましい。
 また、化合物(B)の融点は200℃以上が好ましく、220℃以上がより好ましく、240℃以上が更に好ましい。融点が200℃以上であれば蒸着前に融解することが少なく、安定して成膜できることに加え、化合物の分解物が生じにくいため、光電変換性能が低下しにくいため好ましい。
 化合物の蒸着温度は、4×10-4Pa以下の真空度でるつぼを加熱し、蒸着速度が0.4オングストローム/s(0.4×10-10m/s)に到達した温度とする。
 化合物(B)のガラス転移点(Tg)は、95℃以上が好ましく、110℃以上がより好ましく、135℃以上がさらに好ましく、150℃以上が特に好ましく、160℃以上が最も好ましい。ガラス転移点が高くなると、光電変換素子の耐熱性が向上するため好ましい。
 化合物(B)の分子量は、300~1500であることが好ましく、400~1000であることがより好ましく、500~800が特に好ましい。分子量が大きすぎると、蒸着温度が高くなり、分子が分解しやすくなり、小さすぎると光電変換膜のガラス転移点が低くなり、光電変換素子の耐熱性が悪化する。
 化合物(B)は、撮像素子、光センサ、または光電池に用いる光電変換膜の材料として特に有用である。なお、通常、化合物(B)は、光電変換膜内でp型有機半導体(化合物)として機能する。また、他の用途として、着色材料、液晶材料、有機半導体材料、有機発光素子材料、電荷輸送材料、医薬材料、蛍光診断薬材料、等としても用いることもできる。
<その他材料>
 光電変換膜は、さらにp型有機半導体(化合物)またはn型有機半導体(化合物)の光電変換材料を含有してもよい。
 p型有機半導体およびn型有機半導体としては、上述した第1態様で説明したp型有機半導体およびn型有機半導体が挙げられる。
 光電変換膜における上記化合物(B)に対するn型有機半導体のモル比率(n型有機半導体/上記化合物(B))は、0.5以上であることが好ましく、1以上10以下であることがより好ましく、2以上5以下であることが更に好ましい。
 光電変換素子の応答性の観点から、化合物(B)とフラーレン類との合計の含有量に対するフラーレン類の含有量(=フラーレン類の単層換算での膜厚/(化合物(B)の単層換算での膜厚+フラーレン類の単層換算での膜厚))が、50体積%以上であることが好ましく、55体積%以上であることがより好ましく、65体積%以上であることがさらに好ましい。上限は特に制限されないが、95体積%以下であることが好ましく、90体積%以下であることがより好ましい。
 本発明の化合物(B)が含まれる光電変換膜(なお、n型有機半導体が混合されていてもよい)は非発光性膜であり、有機電界発光素子(OLED)とは異なる特徴を有する。非発光性膜とは発光量子効率が1%以下の膜の場合であり、0.5%以下であることがより好ましく、0.1%以下であることが更に好ましい。
<成膜方法>
 光電変換膜は、乾式成膜法または湿式成膜法により成膜することができる。乾式成膜法の具体例としては、真空蒸着法、スパッタリング法、イオンプレーティング法,MBE法等の物理気相成長法、または、プラズマ重合等のCVD法が挙げられる。湿式成膜法としては、キャスト法、スピンコート法、ディッピング法、LB法等が用いられる。好ましくは乾式成膜法であり、真空蒸着法がより好ましい。真空蒸着法により成膜する場合、真空度、蒸着温度等の製造条件は常法に従って設定することができる。
 光電変換膜の厚みは、10nm以上1000nm以下が好ましく、50nm以上800nm以下がより好ましく、100nm以上500nm以下が特に好ましい。10nm以上とすることにより、好適な暗電流抑制効果が得られ、1000nm以下とすることにより、好適な光電変換効率が得られる。
 第2態様の光電変換素子の用途としては、第1態様の光電変換素子の用途と同じで、例えば、光センサや、撮像素子が挙げられる。
 第2態様の光電変換素子は、第1態様の光電変換素子と同様に、図2に示すように撮像素子として適用することができる。
 以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。
<<第1態様>>
<実施例1~17、比較例1~7>
 図1(a)の形態の光電変換素子を作製した。ここで、光電変換素子は、下部電極11、電子ブロッキング層16A、光電変換膜12および上部電極15からなる。
 具体的には、ガラス基板上に、アモルファス性ITOをスパッタ法により成膜して、下部電極11(厚み:30nm)を形成し、さらに下部電極11上に下記化合物(EB-1)を真空加熱蒸着法により成膜して、電子ブロッキング層16A(厚み:100nm)を形成した。さらに、基板の温度を25℃に制御した状態で、電子ブロッキング層16A上に、下記(1)の化合物とフラーレン(C60)とをそれぞれ単層換算で114nm、286nmとなるように真空加熱蒸着により共蒸着して成膜し、光電変換膜12を形成した。さらに、光電変換膜12上に、アモルファス性ITOをスパッタ法により成膜して、上部電極15(透明導電性膜)(厚み:10nm)を形成した。上部電極15上に、加熱蒸着により封止層としてSiO膜を形成した後、その上にALCVD法により酸化アルミニウム(Al23)層を形成し、光電変換素子を作製した。
Figure JPOXMLDOC01-appb-C000048
<実施例2~17、比較例1~7>
 (1)の化合物の代わりに、下記(2)~(17)の化合物、比較化合物1~7をそれぞれ使用した以外は、実施例1と同様の手順に従って、光電変換素子を作製した。
 なお、下記(1)~(17)は上記式(1)で表される化合物(A)に該当する。
Figure JPOXMLDOC01-appb-C000049
 上記(1)~(17)の化合物は公知の方法を利用することで合成した。化合物の同定はMSスペクトルおよび1H-NMRにより行った。
 以下に、上記(2)、(4)および(10)の化合物について具体的な合成スキームを示す。なお、図3に上記(2)の化合物の1H-NMRスペクトル図を、図4に上記(4)の化合物の1H-NMRスペクトル図を示す。図5に上記(10)の化合物の1H-NMRスペクトル図を示す。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
<素子駆動の確認(暗電流の測定)>
 得られた各光電変換素子について、光電変換素子として機能するかどうかの確認を行った。具体的には、光電変換素子の下部電極および上部電極に、2.5×105V/cmの電界強度となるように電圧を印加して、暗所と明所における電流値を測定した。結果、いずれの光電変換素子においても、暗所では100nA/cm2以下の暗電流を示すが、明所では10μA/cm2以上の電流を示し、光電変換素子として機能することが確認された。
<光電変換効率(外部量子効率)の評価>
 得られた各光電変換素子について光電変換効率を評価した。
 具体的には、光電変換素子に2.0×105V/cmの電界強度となるように電圧を印加し、この電圧での最大吸収波長での外部量子効率を測定した。結果を第1表に示す。
 なお、実施例1の外部量子効率を1としたときの相対値が0.90以上のものを「A」、0.85以上0.90未満のものを「B」、0.80以上0.85未満のものを「C」、0.70以上0.80未満のものを「D」、0.70未満のものを「E」とした。実用上、A~Cであることが好ましい。
<応答性の評価>
 得られた各光電変換素子について応答性を評価した。
 具体的には、光電変換素子に1.5×105V/cmの電場を印加し、上部電極(透明導電性膜)側から光を照射したときの光電流を測定して、0から90%信号強度への立ち上がり時間を求めた。結果を第1表に示す。
 なお、実施例1の立ち上がり時間を1としたときの相対値が0.8未満のものを「A」、0.8以上1.3未満のものを「B」、1.3以上2.0未満のものを「C」、2.0以上3.0未満のものを「D」、3.0以上のものを「E」とした。実用上、A~Cであることが好ましい。
 相対値は以下の式より計算される。
(相対値)=(各実施例または各比較例における0~90%信号強度の立ち上がり時間/実施例1における0~90%信号強度の立ち上がり時間)
<耐熱性の評価>
 得られた各光電変換素子について耐熱性(220℃)を評価した。
 具体的には、熱アニール処理(加熱処理)前後の外部量子効率および暗電流の変化を調べた。熱アニール処理は220℃のホットプレート上に光電変換素子を30分間保持することで行った。外部量子効率および暗電流の測定の際は、下部電極および上部電極に2.5×105V/cmの電界強度となるように電圧を印加した。熱アニール処理後の外部量子効率および暗電流の測定は、室温に戻してから行った。
 熱アニール処理前後の外部量子効率から、熱アニール処理による外部量子効率の低下率(=(熱アニール処理前の外部量子効率-熱アニール処理後の外部量子効率)/熱アニール処理前の外部量子効率×100(%))を求めた。
 また、熱アニール処理前後の暗電流値から、熱アニール処理による暗電流の増加率(=(熱アニール処理後の暗電流値-熱アニール処理前の暗電流値)/熱アニール処理前の暗電流値×100(%))を求めた。
 結果を第1表に示す。
 なお、外部量子効率の低下率および暗電流の増加率が、共に2.0%未満のものを「A」、共に3.5%未満であり、いずれかが2.0%以上のものを「B」、共に5.0%未満であり、いずれかが3.5%以上のものを「C」、いずれかが5.0%以上のものを「D」とした。実用上、AまたはBであることが好ましい。
Figure JPOXMLDOC01-appb-T000053
 第1表から分かるように、光電変換材料として、上記式(1)で表される化合物(A)の代わりに、特定の連結基Lを有さない化合物を使用した比較例1~5や、特定の連結基Lを有するがアミン部位が特定の構造を有さない化合物を使用した比較例6および7(特許文献1~6の態様)は、いずれも耐熱性が不十分であった。
 一方、光電変換材料として、特定の連結基Lを有し、アミン部位が特定の構造を有する上記式(1)で表される化合物(A)を使用した本願実施例は、いずれも優れた耐熱性を示した。また、高い光電変換効率と優れた応答性を示した。
 なかでも、連結基Lが上記式(3)で表される実施例1~11、および、13~17はより優れた耐熱性および応答性、並びに、より高い光電変換効率を示した。そのなかでも、Ar11とL、および/または、Ar12とL、が互いに結合して形成される環がアルキレン基を介して形成される環であり、X1が>CR1a1bであり、n=0である、実施例4、5、13および14はより優れた効果を示した。
<撮像素子の作製>
 図2に示す形態と同様の撮像素子を作製した。すなわち、CMOS基板上に、アモルファス性TiN30nmをスパッタ法により成膜後、フォトリソグラフィーによりCMOS基板上のフォトダイオード(PD)の上にそれぞれ1つずつ画素が存在するようにパターニングして下部電極とし、電子ブロッキング材料の製膜以降は実施例1~17、比較例1~7と同様に作製した。その評価も同様に行い、第1表と同様な結果が得られ、撮像素子においても製造に適していることと、優れた性能を示すことが分かった。
<<第2態様>>
(例示化合物(1)の合成)
 2-iso-プロペニルアニリン(18.6g、140mmol)、酢酸パラジウム(1.57g、7.00mmol)、トリ(t-ブチル)ホスフィン(2.83g、14.0mmol)、ナトリウム-t-ブトキシド(33.64g、350mmol)、および6-ブロモ-ベンゾチオフェン(14.9g、70mmol)をトルエン(560mL)に溶解させ、窒素雰囲気下、2時間沸点還流にて反応させた。室温に戻した後、これに飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出を行った。油層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させ、ろ過を行った。濃縮後、反応混合物をシリカゲルカラム(展開溶媒:塩化メチレン/ヘキサン=1/14)によって分離することで化合物1(16.2g)を得た。
 化合物1(7.96g,30.0mmol)を酢酸(270mL)と塩酸(30mL)との混合溶媒中に加え、70℃で1.5時間攪拌した。室温に戻した後、反応溶液を水(1500mL)へ添加し、析出した固体をろ過、乾燥した。この反応混合物をシリカゲルカラム(展開溶媒:酢酸エチル/ヘキサン=1/9)によって分離することで化合物2(3.80g)を得た。
 ヨードベンゼン(3.67g,18.0mmol)、酢酸パラジウム(269mg,1.20mmol)、トリ(t-ブチル)ホスフィンの1Mトルエン溶液(2.40mL,2.40mmol)、ナトリウム-t-ブトキシド(5.76g,60.0mmol)、および化合物2(3.18g,12.0mmol)をトルエン(96mL)に溶解させ、窒素雰囲気下、1.5時間沸点還流にて反応させた。室温に戻した後、これに飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出を行った。油層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させ、ろ過を行った。濃縮後、反応混合物をシリカゲルカラム(展開溶媒:クロロホルム/ヘキサン=1/9)によって分離することで化合物3(3.45g)を得た。
 化合物3(2.75mg,8.05mmol)を窒素雰囲気下、THF(120mL)に溶解させ、-78℃に冷却した。この反応溶液へn-ブチルリチウム(1.6Mヘキサン溶液)(8.05mL,12.9mmol)を滴下し、1時間撹拌後、N,N-ジメチルホルムアミド(2.0mL,25.9mmol)を滴下した。反応溶液を室温まで昇温後、飽和塩化アンモニウム水溶液(50mL)でクエンチし、酢酸エチルで抽出を行った。油層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させ、ろ過を行った。濃縮後、アセトニトリルから再結晶することで化合物4(2.1g)得た。
 化合物4(500mg、1.35mmol)、1,3-ベンゾインダンジオン(292mg、1.49mmol)、N-メチルピペラジン(4.10mg,0.041mmol)をオクタン(10mL)に溶解させ、125℃で4時間反応させた。室温に戻した後、ろ過を行い、ヘキサンで洗浄した。ろ過物をアニソールから再結晶することで例示化合物(1)(610mg)得た。
Figure JPOXMLDOC01-appb-C000054
(例示化合物(3)の合成)
 化合物4(500mg、1.35mmol)、6,7-ジクロロ-1,3-インダンジオン(320mg、1.49mmol)、N-メチルピペラジン(4.10mg,0.041mmol)をオクタン(10mL)に溶解させ、125℃で4時間反応させた。室温に戻した後、ろ過を行い、ヘキサンで洗浄した。ろ過物をアニソールから再結晶することで例示化合物(3)(580mg)得た。
(例示化合物(10)の合成)
 化合物4(1.98g、5.35mmol)、o-ヒドロキシアセトフェノン(874mg、6.42mmol)、ピペリジン(547mg、6.42mmol)をエタノール(40mL)に溶解させ、90℃で12時間反応させた。室温に戻した後、ろ過し、ろ過物をシリカゲルカラム(展開溶媒:クロロホルム/ヘキサン=9/1)によって分離することすることで化合物5を(1.56g)得た。
 化合物5(1.22g、2.50mmol)、ヨウ素(1.02g、4.00mmol)をピリジンに溶解させ、90℃で4時間反応させた。室温に戻した後、これに1M亜硫酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。油層を飽和食塩水で洗浄したのち、硫酸マグネシウムで乾燥させ、ろ過を行った。濃縮後、反応混合物をシリカゲルカラム(展開溶媒:クロロホルム/ヘキサン=9/1)によって分離することで化合物6(724mg)を得た。
 化合物6(710mg、1.46mmol)、1,3-インダンジオン(320mg、2.19mmol)、および、N-メチルピペラジン(4.10mg,0.041mmol)を無水酢酸(10mL)に溶解させ、100℃で6時間反応させた。室温に戻した後、ろ過物をアニソールから再結晶することで例示化合物(10)を(542mg)得た。
Figure JPOXMLDOC01-appb-C000055
(例示化合物(35)の合成)
 チエノ[3,2-b]チオフェン(1.40g、10.0mmol)、N-ブロモスクシンイミド(1.78g、10.0mmol)をN,N-ジメチルホルムアミド(20mL)に溶解させ、氷浴で4時間反応させた。水を加え、酢酸エチルで抽出を行い、油層を飽和食塩水で洗浄したのち、硫酸マグネシウムで乾燥させ、ろ過を行った。濃縮後、反応混合物をシリカゲルカラム(展開溶媒:トルエン/ヘキサン=1/9)によって分離することで2-ブロモチエノ[3,2-b]チオフェン(1.56g)を得た。
 6-ブロモ-ベンゾチオフェンの代わりに2-ブロモチエノ[3,2-b]チオフェンを用いて、例示化合物(1)と同様の方法で、例示化合物(35)を合成した。
(例示化合物(47)の合成)
 6-ブロモ-ベンゾチオフェンの代わりに2-ブロモチオフェン(東京化成工業(株)製)を用いて、例示化合物(1)と同様の方法で、例示化合物(47)を合成した。
(例示化合物(51)の合成)
  6-ブロモ-ベンゾチオフェンの代わりに2-ブロモチオフェン(東京化成工業(株)製)を用い、かつ、1,3-インダンジオンの代わりに1,3-ベンゾインダンジオンを用いて、例示化合物(10)と同様の方法で、例示化合物(51)を合成した。
(例示化合物(56)の合成)
 6-ブロモベンゾチオフェン(東京化成工業(株)製)を用いて、特許文献1に記載の方法と例示化合物(1)の合成法の組み合わせで例示化合物(56)を合成した。
 なお、例示化合物(1)、(3)、(10)、(35)、(39)、(47)、(51)、および(56)は、上述した化合物(A)で表される化合物の具体例(1)、(3)、(10)、(35)、(39)、(47)、(51)、および(56)にそれぞれ該当する。
<実施例1B>
 図1(a)の形態の光電変換素子を作製した。ここで、光電変換素子は、下部電極11、電子ブロッキング層16A、光電変換膜12および上部電極15からなる。
 具体的には、ガラス基板上に、アモルファス性ITOをスパッタ法により成膜して、下部電極11(厚み:30nm)を形成し、さらに下部電極11上に下記の化合物(EB-1)を真空加熱蒸着法により成膜して、電子ブロッキング層16A(厚み:100nm)を形成した。さらに、基板の温度を25℃に制御した状態で、電子ブロッキング層16A上に例示化合物(1)とフラーレン(C60)とをそれぞれ単層換算で120nm、280nmとなるように真空加熱蒸着により共蒸着して成膜し、光電変換膜12を形成した。さらに、光電変換膜12上に、アモルファス性ITOをスパッタ法により成膜して、上部電極15(透明導電性膜)(厚み:10nm)を形成した。上部電極15上に、加熱蒸着により封止層としてSiO膜を形成した後、その上にALCVD法により酸化アルミニウム(Al23)層を形成し、光電変換素子を作製した。
Figure JPOXMLDOC01-appb-C000056
<実施例2B~8B、比較例1B~4B>
 例示化合物(1)の代わりに、第2表に示す光電変換材料を使用した以外は、実施例1Bと同様の手順に従って、光電変換素子を作製した。
 なお、比較例1B~4Bで光電変換材料として使用した比較化合物(63)~(66)は以下のとおりである。比較化合物(63)~(66)は、上述した特許文献7で光電変換材料として開示される化合物に該当する。
Figure JPOXMLDOC01-appb-C000057
<駆動の確認(暗電流の測定)>
 得られた各光電変換素子について、光電変換素子として機能するかどうかの確認を行った。具体的には、光電変換素子の下部電極および上部電極に、2.5×105V/cmの電界強度となるように電圧を印加して、暗所と明所における電流値を測定した。結果、いずれの光電変換素子においても、暗所では100nA/cm2以下の暗電流を示すが、明所では10μA/cm2以上の電流を示し、光電変換素子として機能することが確認された。
<光電変換効率(外部量子効率)の評価>
 得られた各光電変換素子について光電変換効率を評価した。
 まず、光電変換素子に1.0×105V/cmの電界強度となるように電圧を印加した。その後、上部電極(透明導電性膜)側から光を照射して580nmでの外部量子効率を測定した。外部量子効率は、オプテル製定エネルギー量子効率測定装置を用いて測定した。照射した光量は50uW/cm2であった。また、光電変換素子表面の反射光の影響を除くため、580nmでの外部量子効率を580nmの光吸収率で除算することで外部量子効率とした。結果を第2表に示す。
 なお、実施例1Bの外部量子効率を1としたときの相対値が0.9以上のものを「A」、0.8以上0.9未満のものを「B」、0.7以上0.8未満のものを「C」、0.7未満のものを「D」とした。
 <応答性の評価>
 得られた各光電変換素子について応答性を評価した。
 具体的には、光電変換素子に2.0×105V/cmの電界強度となるように電圧を印加した。その後、LEDを瞬間的に点灯させて上部電極(透明導電性膜)側から光を照射し、そのときの光電流をオシロスコープで測定して、0から95%信号強度までの立ち上がり時間を求めた。結果を第2表に示す。
 なお、実施例1Bの立ち上がり時間を1としたときの相対値が1.5未満のものを「A」、1.5以上2.0未満のものを「B」、2.0以上3.0未満のものを「C」、3.0以上のものを「D」とした。実用上、AまたはBであることが好ましい。
 相対値は以下の式より計算される。
(相対値)=(各実施例または各比較例における0~95%信号強度の立ち上がり時間/実施例1Bにおける0~95%信号強度の立ち上がり時間)
<高温保存性の評価>
 得られた各光電変換素子について高温保存性を評価した。
 具体的には、光電変換素子を90℃に保った恒温槽内で1000時間保管し、その後、上記応答性の評価と同じ方法で0から90%信号強度までの立ち上がり時間を求めた。
 高温保管前後の立ち上がり時間から、高温保管による応答性の変化率(悪化率)(=高温保管後の立ち上がり時間/高温保管前の立ち上がり時間)を求めた。変化率が小さいほど高温保存性に優れる。結果を第2表に示す。
 なお、実施例1Bの変化率を1としたときの相対値が1.2未満のものを「A」、1.2以上1.5未満のものを「B」、1.5以上2.0未満のものを「C」、2.0以上のものを「D」とした。実用上、AまたはBであることが好ましい。
 なお、相対値は以下の式より計算される。
(相対値)=(各実施例または各比較例における悪化率/実施例1Bにおける悪化率)
Figure JPOXMLDOC01-appb-T000058
 第2表から分かるように、光電変換材料として、上記式(11)で表される化合物(B)の代わりに、アミン部位と連結部位とが縮環していない化合物を使用した比較例1B~4B(特許文献7の態様)は、いずれも応答性および高温保存性が不十分であった。
 一方、光電変換材料として、アミン部位と連結部位とが縮環する上記式(11)で表される化合物(B)を使用した本願実施例は、いずれも優れた応答性および高温保存性を示した。なかでも、上記式(11)中のR3wとR5w、および/または、R6wとR8wが互いに結合して環を形成する実施例1B~5Bおよび8Bは、より高い光電変換効率を示した。そのなかでも、形成される環が芳香族炭化水素環である実施例1B~3Bは、より優れた高温保存性を示した。
 実施例1Bと2Bとの対比から、化合物(B)が上記式(13)で表される化合物(b3)である実施例1Bの方が、より高い光電変換効率を示した。
 実施例1Bと6Bとの対比から、上記式(11)中のmが1である実施例1Bの方が、より高い光電変換効率、および、より優れた高温保存性を示した。
 実施例1B~3Bの対比、および、実施例6B~8Bの対比から、q=0である実施例1B、2Bおよび6Bの方が、より優れた応答性を示した。
<撮像素子の作製>
 図2に示す形態と同様の撮像素子を作製した。すなわち、CMOS基板上に、アモルファス性TiN30nmをスパッタ法により成膜後、フォトリソグラフィーによりCMOS基板上のフォトダイオード(PD)の上にそれぞれ1つずつ画素が存在するようにパターニングして下部電極とし、電子ブロッキング材料の製膜以降は実施例1B~8B、比較例1B~4Bと同様に作製した。その評価も同様に行い、第2表と同様な結果が得られ、撮像素子においても製造に適していることと、優れた性能を示すことが分かった。
 10a、10b  光電変換素子
 11  下部電極(導電性膜)
 12  光電変換膜
 15  上部電極(透明導電性膜)
 16A  電子ブロッキング層
 16B  正孔ブロッキング層
 100  撮像素子
 101  基板
 102  絶縁層
 103  接続電極
 104  画素電極(下部電極)
 105  接続部
 106  接続部
 107  光電変換膜
 108  対向電極(上部電極)
 109  緩衝層
 110  封止層
 111  カラーフィルタ(CF)
 112  隔壁
 113  遮光層
 114  保護層
 115  対向電極電圧供給部
 116  読出し回路
 

Claims (37)

  1.  導電性膜と、光電変換材料を含有する光電変換膜と、透明導電性膜とをこの順に備え、
     前記光電変換材料が、下記式(1)で表される化合物(A)を含む、光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Ar11およびAr12は、それぞれ独立に、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R11~R13は、それぞれ独立に、水素原子または置換基を表す。nは0以上の整数を表す。Lは、下記式(2)で表される化合物の任意の可能な位置から2つの水素原子を除いた2価の連結基を表す。Aは酸性核を表す。R11とR12、R11とR13は、それぞれ互いに結合して環を形成してもよい。nが2以上である場合、複数のR11同士、複数のR12同士は、それぞれ互いに結合して環を形成してもよい。Ar11とL、Ar12とL、Ar11とAr12は、互いに結合して環を形成してもよい。LとA、LとR11、LとR12、LとR13は、互いに結合して環を形成してもよい。LとA、LとR11、LとR12、LとR13が互いに結合して形成される環は置換基を有してもよい。)
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中、R1~R6は、それぞれ独立に、水素原子または置換基を表す。X1は、酸素原子、>CR1a1b、または、>NR1cを表す(ここで、R1a、R1bおよびR1cは、それぞれ独立に、水素原子または置換基を表す。)。R1とR2、R2とR3、R3とR4、R5とR6は、それぞれ互いに結合して環を形成してもよい。式(2)中のR1とR2、R2とR3、R3とR4、R5とR6が互いに結合して形成される環は置換基を有してもよい。)
  2.  前記化合物(A)が、下記式(4)で表される化合物(a1)である、請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003

    (式(4)中、Ar11およびAr12は、それぞれ独立に、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R11~R13は、それぞれ独立に、水素原子または置換基を表す。nは0以上の整数を表す。Lは、下記式(2)で表される化合物の任意の可能な位置から2つの水素原子を除いた2価の連結基を表す。Z1は、少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。R11とR12、R11とR13は、それぞれ互いに結合して環を形成してもよい。nが2以上である場合、複数のR11同士、複数のR12同士は、それぞれ互いに結合して環を形成してもよい。Ar11とL、Ar12とL、Ar11とAr12は、互いに結合して環を形成してもよい。LとR11、LとR12、LとR13は、互いに結合して環を形成してもよい。LとR11、LとR12、LとR13が互いに結合して形成される環は置換基を有してもよい。)
    Figure JPOXMLDOC01-appb-C000004

    (式(2)中、R1~R6は、それぞれ独立に、水素原子または置換基を表す。X1は、酸素原子、>CR1a1b、または、>NR1cを表す(ここで、R1a、R1bおよびR1cは、それぞれ独立に、水素原子または置換基を表す。)。R1とR2、R2とR3、R3とR4、R5とR6は、それぞれ互いに結合して環を形成してもよい。R1とR2、R2とR3、R3とR4、R5とR6が互いに結合して形成される環は置換基を有してもよい。)
  3.  前記式(4)中、Z1が、下記一般式(Z1)で表される基である、請求項2に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000005

    (一般式(Z1)中、Z2は、少なくとも3つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。*は前記式(4)におけるR13が結合している炭素原子との結合位置を表す。)
  4.  前記Ar11および/またはAr12が、置換基を有してもよいアリール基である、請求項1~3のいずれか1項に記載の光電変換素子。
  5.  前記化合物(a1)が、下記式(5)で表される化合物(a2)である、請求項2~4のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000006

    (式(5)中、Ar11およびAr12は、それぞれ独立に、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R11~R13は、それぞれ独立に、水素原子または置換基を表す。nは0以上の整数を表す。Lは、下記式(2)で表される化合物の任意の可能な位置から2つの水素原子を除いた2価の連結基を表す。R51~R54は、それぞれ独立に、水素原子または置換基を表す。R11とR12、R11とR13は、それぞれ互いに結合して環を形成してもよい。nが2以上である場合、複数のR11同士、複数のR12同士は、それぞれ互いに結合して環を形成してもよい。Ar11とL、Ar12とL、Ar11とAr12は、互いに結合して環を形成してもよい。LとR11、LとR12、LとR13は、互いに結合して環を形成してもよい。LとR11、LとR12、LとR13が互いに結合して形成される環は置換基を有してもよい。R51とR52、R52とR53、R53とR54は、それぞれ互いに結合して環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000007

    (式(2)中、R1~R6は、それぞれ独立に、水素原子または置換基を表す。X1は、酸素原子、>CR1a1b、または、>NR1cを表す(ここで、R1a、R1bおよびR1cは、それぞれ独立に、水素原子または置換基を表す。)。R1とR2、R2とR3、R3とR4、R5とR6は、それぞれ互いに結合して環を形成してもよい。式(2)中のR1とR2、R2とR3、R3とR4、R5とR6が互いに結合して形成される環は置換基を有してもよい。)
  6.  前記Lが、下記式(3)で表される化合物の任意の可能な位置から2つの水素原子を除いた2価の連結基である、請求項1~5のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000008

    (式(3)中、R1~R4およびR7~R10は、それぞれ独立に、水素原子または置換基を表す。X1は、酸素原子、>CR1a1b、または、>NR1cを表す(ここで、R1a、R1bおよびR1cは、それぞれ独立に、水素原子または置換基を表す。)。R1とR2、R2とR3、R3とR4、R7とR8、R8とR9、R9とR10は、それぞれ互いに結合して環を形成してもよい。R1とR2、R2とR3、R3とR4、R7とR8、R8とR9、R9とR10が互いに結合して形成される環は置換基を有してもよい。)
  7.  前記化合物(a2)が、下記式(6)で表される化合物(a3)である、請求項5または6に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000009

    (式(6)中、Ar11およびAr12は、それぞれ独立に、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R11~R13は、それぞれ独立に、水素原子または置換基を表す。nは0以上の整数を表す。R1、R3、R4、R7、R9およびR10は、それぞれ独立に、水素原子または置換基を表す。X1は、酸素原子、>CR1a1b、または、>NR1cを表す(ここで、R1a、R1bおよびR1cは、それぞれ独立に、水素原子または置換基を表す。)。R51~R54は、それぞれ独立に、水素原子または置換基を表す。R11とR12、R11とR13は、それぞれ互いに結合して環を形成してもよい。nが2以上である場合、複数のR11同士、複数のR12同士は、それぞれ互いに結合して環を形成してもよい。R3とR4、R9とR10は、互いに結合して環を形成してもよい。Ar11とR7、Ar11とR9、Ar12とR7、Ar12とR9、Ar11とAr12は、互いに結合して環を形成してもよい。R1とR11、R1とR12、R1とR13、R3とR11、R3とR12、R3とR13、R4とR11、R4とR12、R4とR13は、互いに結合して環を形成してもよい。R1とR11、R1とR12、R1とR13、R3とR11、R3とR12、R3とR13、R4とR11、R4とR12、R4とR13が互いに結合して形成される環は置換基を有してもよい。R51とR52、R52とR53、R53とR54は、それぞれ互いに結合して環を形成してもよい。)
  8.  前記nが0である、請求項1~7のいずれか1項に記載の光電変換素子。
  9.  前記光電変換膜が、さらに有機n型化合物を含む、請求項1~8のいずれか1項に記載の光電変換素子。
  10.  前記有機n型化合物が、フラーレンおよびその誘導体からなる群より選択されるフラーレン類を含む、請求項9に記載の光電変換素子。
  11.  前記化合物(A)と前記フラーレン類との合計含有量に対する前記フラーレン類の含有量(=前記フラーレン類の単層換算での膜厚/(前記化合物(A)の単層換算での膜厚+前記フラーレン類の単層換算での膜厚))が、50体積%以上である、請求項10に記載の光電変換素子。
  12.  前記導電性膜と前記透明導電性膜との間に、さらに電子ブロッキング層を備える、請求項1~11のいずれか1項に記載の光電変換素子。
  13.  前記光電変換膜が、真空蒸着法により製膜された、請求項1~12のいずれか1項に記載の光電変換素子。
  14.  光が前記透明導電性膜を介して前記光電変換膜に入射される、請求項1~13のいずれか1項に記載の光電変換素子。
  15.  前記透明導電性膜が、透明導電性金属酸化物からなる、請求項1~14のいずれか1項に記載の光電変換素子。
  16.  請求項1~15のいずれか1項に記載の光電変換素子からなる光センサ。
  17.  請求項1~15のいずれか1項に記載の光電変換素子を含む撮像素子。
  18.  請求項1~15のいずれか1項に記載の光電変換素子の使用方法であって、
     前記導電性膜と前記透明導電性膜とが一対の電極であり、前記一対の電極間に1×10-4~1×107V/cmの電場を印加させる、光電変換素子の使用方法。
  19.  下記式(5)で表される化合物(a2)。
    Figure JPOXMLDOC01-appb-C000010

    (式(5)中、Ar11およびAr12は、それぞれ独立に、置換基を有してもよいアリール基または置換基を有してもよいヘテロアリール基を表す。R11~R13は、それぞれ独立に、水素原子または置換基を表す。nは0以上の整数を表す。Lは、下記式(2)で表される化合物の任意の可能な位置から2つの水素原子を除いた2価の連結基を表す。R51~R54は、それぞれ独立に、水素原子または置換基を表す。R11とR12、R11とR13は、それぞれ互いに結合して環を形成してもよい。nが2以上である場合、複数のR11同士、複数のR12同士は、それぞれ互いに結合して環を形成してもよい。Ar11とL、Ar12とL、Ar11とAr12は、互いに結合して環を形成してもよい。LとR11、LとR12、LとR13は、互いに結合して環を形成してもよい。LとR11、LとR12、LとR13が互いに結合して形成される環は置換基を有してもよい。R51とR52、R52とR53、R53とR54は、それぞれ互いに結合して環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000011

    (式(2)中、R1~R6は、それぞれ独立に、水素原子または置換基を表す。X1は、酸素原子、>CR1a1b、または、>NR1cを表す(ここで、R1a、R1bおよびR1cは、それぞれ独立に、水素原子または置換基を表す。)。R1とR2、R2とR3、R3とR4、R5とR6は、それぞれ互いに結合して環を形成してもよい。式(2)中のR1とR2、R2とR3、R3とR4、R5とR6が互いに結合して形成される環は置換基を有してもよい。)
  20.  導電性膜と、光電変換材料を含有する光電変換膜と、透明導電性膜とをこの順に備え、
     前記光電変換材料が、下記式(11)で表される化合物(B)を含む、光電変換素子。
    Figure JPOXMLDOC01-appb-C000012

    (式(11)中、R1wおよびR2wは、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、または、置換基を有してもよいヘテロアリール基を表す。R3w~R9wは、それぞれ独立に、水素原子または置換基を表す。pは0または1を表す。qは0以上の整数を表す。R1wとR2w、R3wとR4w、R3wとR5w、R5wとR6w、R6wとR8w、R7wとR8w、R7wとR9wは、それぞれ互いに結合して環を形成してもよい。qが2以上である場合、複数のR7w同士、複数のR8w同士は、それぞれ互いに結合して環を形成してもよい。A1wは酸性核を表す。R1wおよびR2wのうち少なくとも一方は、R3w、R4wおよびR5wのいずれかと結合して環を形成する。)
  21.  前記化合物(B)が、下記式(12)で表される化合物(b2)である、請求項20に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000013

    (式(12)中、R1wおよびR2wは、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、または、置換基を有してもよいヘテロアリール基を表す。R3w~R9wは、それぞれ独立に、水素原子または置換基を表す。pは0または1を表す。qは0以上の整数を表す。R1wとR2w、R3wとR4w、R3wとR5w、R5wとR6w、R6wとR8w、R7wとR8w、R7wとR9wは、それぞれ互いに結合して環を形成してもよい。qが2以上である場合、複数のR7w同士、複数のR8w同士は、それぞれ互いに結合して環を形成してもよい。R1wおよびR2wのうち少なくとも一方は、R3w、R4wおよびR5wのいずれかと結合して環を形成する。R15w~R18wは、それぞれ独立に、水素原子または置換基を表す。R15wとR16w、R16wとR17w、R17wとR18wは、それぞれ互いに結合して環を形成してもよい。)
  22.  前記式(11)中、R3wとR5w、および/または、R6wとR8wが互いに結合して環を形成する、請求項20または21に記載の光電変換素子。
  23.  前記化合物(B)が、下記式(13)で表される化合物(b3)である、請求項20~22のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000014

    (式(13)中、R1wおよびR2wは、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、または、置換基を有してもよいヘテロアリール基を表す。R3w~R9wは、それぞれ独立に、水素原子または置換基を表す。pは0または1を表す。qは0以上の整数を表す。R1wとR2w、R3wとR4w、R3wとR5w、R5wとR6w、R6wとR8w、R7wとR8w、R7wとR9wは、それぞれ互いに結合して環を形成してもよい。qが2以上である場合、複数のR7w同士、複数のR8w同士は、それぞれ互いに結合して環を形成してもよい。R1wおよびR2wのうち少なくとも一方は、R3w、R4wおよびR5wのいずれかと結合して環を形成する。R15wおよびR18w~R22wは、それぞれ独立に、水素原子または置換基を表す。R15wとR19w、R19wとR20w、R20wとR21w、R21wとR22w、R22wとR18wは、それぞれ互いに結合して環を形成してもよい。)
  24.  前記光電変換膜が、さらにn型有機半導体を含む、請求項20~23のいずれか1項に記載の光電変換素子。
  25.  前記n型有機半導体が、フラーレンおよびその誘導体からなる群より選択されるフラーレン類を含む、請求項24に記載の光電変換素子。
  26.  前記導電性膜と前記透明導電性膜との間に、さらに電子ブロッキング層を備える、請求項20~25のいずれか1項に記載の光電変換素子。
  27.  前記導電性膜と、前記電子ブロッキング層と、前記光電変換膜と、前記透明導電性膜とをこの順に備え、または、前記導電性膜と、前記光電変換膜と、前記電子ブロッキング層と、前記透明導電性膜とをこの順に備える、請求項26に記載の光電変換素子。
  28.  前記qが0~3の整数である、請求項20~27のいずれか1項に記載の光電変換素子。
  29.  前記化合物(B)と前記フラーレン類との合計含有量に対する前記フラーレン類の含有量(=前記フラーレン類の単層換算での膜厚/(前記化合物(B)の単層換算での膜厚+前記フラーレン類の単層換算での膜厚))が、50体積%以上である、請求項25に記載の光電変換素子。
  30.  光が前記透明導電性膜を介して前記光電変換膜に入射される、請求項20~29のいずれか1項に記載の光電変換素子。
  31.  前記透明導電性膜が、透明導電性金属酸化物からなる、請求項20~30のいずれか1項に記載の光電変換素子。
  32.  前記光電変換膜上に直接、前記透明導電性膜が積層された、請求項20~31のいずれか1項に記載の光電変換素子。
  33.  請求項20~32のいずれか1項に記載の光電変換素子からなる光センサ。
  34.  請求項20~32のいずれか1項に記載の光電変換素子を含む撮像素子。
  35.  請求項20~32のいずれか1項に記載の光電変換素子の使用方法であって、
     前記導電性膜と前記透明導電性膜とが一対の電極であり、前記一対の電極間に1×10-4~1×107V/cmの電場を印加させる、光電変換素子の使用方法。
  36.  下記式(12)で表される化合物(b2)。
    Figure JPOXMLDOC01-appb-C000015

    (式(12)中、R1wおよびR2wは、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、または、置換基を有してもよいヘテロアリール基を表す。R3w~R9wは、それぞれ独立に、水素原子または置換基を表す。pは0または1を表す。qは0以上の整数を表す。R1wとR2w、R3wとR4w、R3wとR5w、R5wとR6w、R6wとR8w、R7wとR8w、R7wとR9wは、それぞれ互いに結合して環を形成してもよい。qが2以上である場合、複数のR7w同士、複数のR8w同士は、それぞれ互いに結合して環を形成してもよい。R1wおよびR2wのうち少なくとも一方は、R3w、R4wおよびR5wのいずれかと結合して環を形成する。R15w~R18wは、それぞれ独立に、水素原子または置換基を表す。R15wとR16w、R16wとR17w、R17wとR18wは、それぞれ互いに結合して環を形成してもよい。)
  37.  下記式(13)で表される化合物(b3)。
    Figure JPOXMLDOC01-appb-C000016

    (式(13)中、R1wおよびR2wは、それぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、または、置換基を有してもよいヘテロアリール基を表す。R3w~R9wは、それぞれ独立に、水素原子または置換基を表す。pは0または1を表す。qは0以上の整数を表す。R1wとR2w、R3wとR4w、R3wとR5w、R5wとR6w、R6wとR8w、R7wとR8w、R7wとR9wは、それぞれ互いに結合して環を形成してもよい。qが2以上である場合、複数のR7w同士、複数のR8w同士は、それぞれ互いに結合して環を形成してもよい。R1wおよびR2wのうち少なくとも一方は、R3w、R4wおよびR5wのいずれかと結合して環を形成する。R15wおよびR18w~R22wは、それぞれ独立に、水素原子または置換基を表す。R15wとR19w、R19wとR20w、R20wとR21w、R21wとR22w、R22wとR18wは、それぞれ互いに結合して環を形成してもよい。)
     
PCT/JP2013/076151 2012-09-28 2013-09-26 光電変換素子およびその使用方法、光センサ、撮像素子 WO2014051007A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012216180 2012-09-28
JP2012-217034 2012-09-28
JP2012217034 2012-09-28
JP2012-216180 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014051007A1 true WO2014051007A1 (ja) 2014-04-03

Family

ID=50388402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076151 WO2014051007A1 (ja) 2012-09-28 2013-09-26 光電変換素子およびその使用方法、光センサ、撮像素子

Country Status (2)

Country Link
TW (1) TW201419511A (ja)
WO (1) WO2014051007A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160089809A (ko) * 2015-01-20 2016-07-28 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자장치
WO2019049946A1 (ja) * 2017-09-11 2019-03-14 富士フイルム株式会社 光電変換素子、光センサ、撮像素子、化合物
CN109937489A (zh) * 2016-11-11 2019-06-25 佳能株式会社 光电转换元件、摄像元件和摄像设备
WO2019230562A1 (ja) * 2018-05-31 2019-12-05 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
US11286244B2 (en) * 2018-07-10 2022-03-29 Ambient Photonics, Inc. Solar cell dyes for copper redox based dye sensitized solar cells and combinations thereof
US11895910B2 (en) * 2017-08-23 2024-02-06 Canon Kabushiki Kaisha Organic compound and photoelectric conversion element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715736B (zh) * 2016-09-27 2021-08-24 保土谷化学工业株式会社 增感色素、光电转换用增感色素及使用了其的光电转换元件以及色素增感太阳能电池
CN111094298A (zh) * 2017-09-13 2020-05-01 默克专利股份有限公司 有机半导体化合物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077198A (ja) * 2009-09-29 2011-04-14 Fujifilm Corp 光電変換素子、光電変換素子材料、光センサ、及び撮像素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077198A (ja) * 2009-09-29 2011-04-14 Fujifilm Corp 光電変換素子、光電変換素子材料、光センサ、及び撮像素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANNAH BURCKSTUMMER ET AL.: "Efficient Solution-Processed Bulk Heterojunction Solar Cells by Antiparallel Supramolecular Arrangement of Dipolar Donor-Acceptor Dyes", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 50, no. ISSUE, 2 December 2011 (2011-12-02), pages 11628 - 11632 *
NILS M. KRONENBERG ET AL.: "Bulk heterojunction organic solar cells based on merocyanine colorants", CHEMICAL COMMUNICATIONS, 28 December 2008 (2008-12-28), pages 6489 - 6491 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427157B1 (ko) 2015-01-20 2022-07-29 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자장치
KR20160089809A (ko) * 2015-01-20 2016-07-28 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자장치
CN109937489A (zh) * 2016-11-11 2019-06-25 佳能株式会社 光电转换元件、摄像元件和摄像设备
CN109937489B (zh) * 2016-11-11 2024-03-08 佳能株式会社 光电转换元件、摄像元件和摄像设备
US11895910B2 (en) * 2017-08-23 2024-02-06 Canon Kabushiki Kaisha Organic compound and photoelectric conversion element
US11201294B2 (en) 2017-09-11 2021-12-14 Fujifilm Corporation Photoelectric conversion element, optical sensor, imaging element, and compound
WO2019049946A1 (ja) * 2017-09-11 2019-03-14 富士フイルム株式会社 光電変換素子、光センサ、撮像素子、化合物
JPWO2019049946A1 (ja) * 2017-09-11 2020-12-17 富士フイルム株式会社 光電変換素子、光センサ、撮像素子、化合物
JP7077326B2 (ja) 2017-09-11 2022-05-30 富士フイルム株式会社 光電変換素子、光センサ、撮像素子、化合物
JPWO2019230562A1 (ja) * 2018-05-31 2021-07-01 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
JP7011056B2 (ja) 2018-05-31 2022-01-26 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
KR102378449B1 (ko) 2018-05-31 2022-03-23 후지필름 가부시키가이샤 광전 변환 소자, 촬상 소자, 광 센서, 화합물
US20210135121A1 (en) * 2018-05-31 2021-05-06 Fujifilm Corporation Photoelectric conversion element, imaging element, optical sensor, and compound
KR20210002584A (ko) * 2018-05-31 2021-01-08 후지필름 가부시키가이샤 광전 변환 소자, 촬상 소자, 광 센서, 화합물
CN112154549A (zh) * 2018-05-31 2020-12-29 富士胶片株式会社 光电转换元件、成像元件、光传感器及化合物
WO2019230562A1 (ja) * 2018-05-31 2019-12-05 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
US11286244B2 (en) * 2018-07-10 2022-03-29 Ambient Photonics, Inc. Solar cell dyes for copper redox based dye sensitized solar cells and combinations thereof

Also Published As

Publication number Publication date
TW201419511A (zh) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5938028B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
JP5925234B2 (ja) 光電変換材料、光電変換素子およびその使用方法、光センサ、撮像素子
WO2014051007A1 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
WO2013133218A1 (ja) 光電変換素子およびその使用方法、撮像素子、光センサ、化合物
JP6010567B2 (ja) 光電変換材料、光電変換素子、光センサおよび撮像素子
JP5840187B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
JP6918109B2 (ja) 光電変換素子、光センサ、撮像素子、および、化合物
JP6029606B2 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子の使用方法
JP2015153911A (ja) 光電変換素子、光センサ、撮像素子
JP2015043362A (ja) 光電変換素子および撮像素子
JP6077426B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
JP5992378B2 (ja) 光電変換素子、光センサおよび撮像素子
JP7411073B2 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
WO2022014721A1 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
JP6059616B2 (ja) 光電変換材料、光電変換素子およびその使用方法、光センサ、撮像素子
WO2014157009A1 (ja) 光電変換素子、撮像素子、光センサ
JP6114606B2 (ja) 光電変換材料、光電変換素子およびその使用方法、光センサ、撮像素子
JP5890366B2 (ja) 光電変換素子、撮像素子、光センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841518

Country of ref document: EP

Kind code of ref document: A1