WO2014050990A1 - 漏洩判定方法、漏洩判定装置、測定端末及びプログラム - Google Patents

漏洩判定方法、漏洩判定装置、測定端末及びプログラム Download PDF

Info

Publication number
WO2014050990A1
WO2014050990A1 PCT/JP2013/076111 JP2013076111W WO2014050990A1 WO 2014050990 A1 WO2014050990 A1 WO 2014050990A1 JP 2013076111 W JP2013076111 W JP 2013076111W WO 2014050990 A1 WO2014050990 A1 WO 2014050990A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
measurement signal
leakage
time
frequency spectrum
Prior art date
Application number
PCT/JP2013/076111
Other languages
English (en)
French (fr)
Inventor
友督 小野
宝珠山 治
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2014050990A1 publication Critical patent/WO2014050990A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/003Arrangement for testing of watertightness of water supply conduits

Definitions

  • the present invention relates to a leakage determination method, a leakage determination device, a measurement terminal, and a program.
  • an inspector confirms vibration by ear and detects a water leak position in a pipe or the like.
  • the inspector listens to the water leakage sound from the surface of the earth, identifies the position where the water leakage sound is best heard, and checks the piping or the like to confirm whether or not the leakage has occurred.
  • Patent Document 1 An apparatus for detecting water leaks in water pipes using vibration noise has been developed (for example, Patent Document 1).
  • the above water leak detection device adopts the time-integrated water leak detection theory for water leak detection.
  • a sensor is applied to the water pipe to detect vibration noise.
  • a low-level signal that does not reach a certain level is discriminated as noise by discriminating the peak value from the vibration sound signal.
  • the time integration rate is calculated. If the calculated time integration rate is equal to or higher than the determination level, it is determined that there is water leakage.
  • the present invention has been invented in view of the above problems, and its object is to provide a leakage determination method capable of correctly determining the presence or absence of leakage sound even in an environment where continuous noise is generated. Another object is to provide a leak determination device, a measurement terminal, and a program.
  • the present invention is a leakage determination method for removing a signal level peak of a measurement signal and determining leakage using the measurement signal from which the peak has been removed.
  • the present invention is a leak determination device having a peak removal unit that removes a peak of a signal level of a measurement signal, and a leak determination unit that determines a leak using the measurement signal from which the peak has been removed.
  • the present invention is a measurement terminal having a peak removing unit that removes a peak of a signal level of a measurement signal and a leakage determination unit that determines leakage using the measurement signal from which the peak has been removed.
  • the present invention is a program for causing a computer to execute processing for removing a peak of a signal level of a measurement signal and processing for determining leakage using the measurement signal from which the peak has been removed.
  • the present invention can correctly determine the presence or absence of leaking sound even in an environment where continuous noise is generated.
  • FIG. 1 is a block diagram of a leakage determination apparatus according to the first embodiment.
  • FIG. 2 is a diagram for explaining the peak removing unit 3.
  • FIG. 3 is a block diagram of a leakage determination apparatus according to the second embodiment.
  • FIG. 4 is a diagram for explaining the frequency spectrum smoothing unit 12.
  • FIG. 5 is a diagram for explaining the time-series data smoothing unit 14.
  • FIG. 6 is a block diagram of a leakage determination apparatus according to the third embodiment.
  • FIG. 7 is a diagram for explaining the peak removing unit 30.
  • FIG. 8 is a diagram for explaining a specific example 2 according to the third embodiment.
  • FIG. 9 is a diagram for explaining Example 1 in the first embodiment.
  • FIG. 10 is a diagram for explaining Example 1 in the first embodiment.
  • the present invention is characterized in that leakage is determined after removing stationary ambient noise from a measurement signal such as vibration acceleration measured from a pipe or the like so that continuous noise is not erroneously determined as leakage sound. And Specifically, the present invention removes the peak of the signal level of the measurement signal, and determines leakage using the measurement signal from which the peak has been removed.
  • the signal level of the measurement signal is an index indicating the magnitude of the measurement signal, that is, amplitude, power, sound pressure, etc., or time direction dispersion indicating the magnitude of the time change of these indices.
  • Examples of a method for removing the signal level peak of the measurement signal include the following methods. (1) The frequency spectrum of the measurement signal is calculated, and the peak is removed by smoothing the frequency spectrum. (2) Peaks are removed by removing signals in a frequency band where the signal level of the measurement signal exceeds a predetermined threshold.
  • One specific method of the method (1) is a method of smoothing by taking the minimum value in a predetermined frequency width of the frequency spectrum.
  • the measurement signal from which the peak of the signal level is removed may be converted into time-series data, the peak in the time direction may be removed, and the leakage may be determined using the measurement signal from which the peak in the time direction has been removed.
  • the peak in the time direction of the frequency spectrum sequence in which the frequency spectra are arranged in time series may be further removed.
  • the peak is removed by taking a minimum value in a predetermined time width of the frequency spectrum series.
  • leakage is determined using the measurement signal from which noise has been removed.
  • Leakage determination method does not matter, but for example, when the time integration method, correlation function determination method, average value of power of measurement signal after removal, maximum value or minimum value exceeds a predetermined level, leakage It is also possible to determine that.
  • FIG. 1 is a block diagram of a leakage determination apparatus according to the first embodiment.
  • the leak determination apparatus includes a signal input unit 1 that inputs a measurement signal, a spectrum calculation unit 2 that calculates a frequency spectrum of the measurement signal, a peak removal unit 3 that removes a peak (noise) of the measurement signal, and a time integration rate. It has a time integration rate calculation unit 4 for calculating and a leakage determination unit 5 for determining leakage.
  • the peak removing unit 3 removes the peak by smoothing the frequency spectrum calculated by the spectrum calculating unit 2. Specifically, as shown in FIG. 2, the peak of the measurement signal is removed by taking the amplitude for each predetermined frequency width (frame width), for example, the minimum value of the sound pressure. However, the present invention is not limited to this, and a moving average, order statistical filter, or the like may be used. Then, the time-series data is calculated by performing inverse Fourier transform on the signal after the peak removal.
  • the spectrum calculating unit 2 and the peak removing unit 3 constitute a peak removing unit.
  • the time integration rate calculation unit 4 calculates the time integration rate of the time series data calculated by the peak removal unit 3. For example, the absolute value of the time-series measurement signal after peak removal is compared with a predetermined setting level E. The setting level E is determined from the actually acquired leakage sound. Then, a rectangular wave with a time exceeding the set level is generated. The time t of all rectangular waves obtained within the predetermined time T is added. Then, the time integration rate R is calculated as in equation (1). The leak determination unit 5 determines that there is a leak if the calculated time integration rate R is equal to or greater than the threshold y percent. The threshold value y is determined from the actually acquired leakage sound.
  • the time integration rate calculation unit 4 and the leakage determination unit 5 constitute a leakage determination unit.
  • the spectrum of the sound of water leakage is flat, but the spectrum of noise uses the property that there is a peak in the frequency direction, so that gas sounds, running water sounds, machine operating sounds, train and car running Since leakage determination is performed after removing continuous noise generated during measurement such as sound, there is an effect that erroneous determination of leakage sound is reduced. Therefore, in addition to the environment where sudden noise is generated, it is possible to correctly determine the presence or absence of leaked sound even in an environment where continuous noise is generated, for example, in the daytime.
  • Example 1 Example 1 corresponding to the first embodiment will be described.
  • Example 1 the water leak sound of the water pipe and the machine operation sound data (total of 6 types) which are continuous noise were acquired by the vibration sensor, and the conventional method (time integration method) was applied to them.
  • An example will be described in which the error determination rate in the case is compared with the error determination rate when the method of the first embodiment (the time integration method is applied after the peak removal) is applied.
  • FIG. 9 is a diagram showing a comparison of the frequency spectrum between the water leakage sound before the peak removal and the machine operation sound. As shown in FIG. 9, it can be seen that a number of sharp peaks of operating sound are observed before peak removal.
  • FIG. 10 is a diagram showing a frequency spectrum after peak removal. As shown in FIG. 10, in the frequency spectrum after the peak removal, the power of the machine operating sound is small, but it can be seen that the water leakage sound hardly changes.
  • the time integration rate calculation unit 4 calculates the time integration rate of the time series data obtained by performing inverse Fourier transform on the signal after the peak removal.
  • the set level E was set so that 22 data (about 35% data) out of all 64 measured data exceeded 60% of the time integration rate.
  • the misjudgment rate due to noise (continuous machine operating noise, etc.) (ratio of data in which noise was mistakenly determined as leaking sound) was 61% for the conventional method (time integration method). There was 51% in the case of the method of the first embodiment (the time integration method was applied after peak removal). As a result, according to the method of the first embodiment of the present invention, it was proved that the misjudgment rate can be reduced by 10%.
  • FIG. 3 is a block diagram of the leakage determination apparatus according to the second embodiment.
  • the leak determination apparatus removes peaks in the time direction in addition to removing peaks by smoothing the frequency spectrum of the leak determination apparatus according to the first embodiment. It is characterized by that. For this reason, in the leak determination apparatus of the second embodiment, instead of the spectrum calculation unit 2 and the peak removal unit 3, a time division unit 10, a plurality of spectrum calculation units 11, and a plurality of frequency spectrum smoothing units 12 are used. A time-series data generation unit 13, a time-series data smoothing unit 14, and a leakage determination unit 15.
  • the time division unit 10 divides the total measurement time of the measurement signal into constant time intervals, and outputs measurement signals at constant time intervals.
  • the spectrum calculation unit 11 is provided corresponding to the number of divisions divided by the time division unit 10 and calculates the frequency spectrum of each time interval.
  • the frequency spectrum smoothing unit 12 is provided corresponding to the spectrum calculating unit 11 and smoothes the frequency spectrum every time. For example, as shown in FIG. 4, smoothing is performed by taking an amplitude for each predetermined frame width, for example, a minimum value of sound pressure. Note that the smoothing method is not limited to this, and may be a moving average, an order statistical filter, or the like.
  • the time series data generation unit 13 calculates power by integrating the frequency spectrum every time, that is, generates time series data of power.
  • the time series data smoothing unit 14 smoothes the time series data generated by the time series data generating unit 13. For example, as shown in FIG. 5, the influence of sudden noise is reduced by taking the minimum value for each predetermined time interval (frame interval).
  • the smoothing method is not limited to this, and may be a moving average, an order statistical filter, or the like.
  • the time division unit 10, the plurality of spectrum calculation units 11, the plurality of frequency spectrum smoothing units 12, the time series data generation unit 13, and the time series data smoothing unit 14 constitute a peak removing unit.
  • Leakage determination unit 15 determines that there is leakage if the average value in the time direction of the power output from time series data smoothing unit 14 is equal to or greater than threshold value E.
  • the maximum value or the minimum value may be used instead of the average value.
  • the threshold E is determined from the actually acquired leaked sound.
  • the second embodiment can suppress the influence of both sudden noise and continuous noise, and further requires no inverse Fourier transform processing as compared with the first embodiment using the time integration method. There is an effect that the calculation amount is small.
  • FIG. 6 is a block diagram of a leakage determination apparatus according to the third embodiment.
  • the third embodiment has a peak removal unit 30 instead of the peak removal unit 3 of the first embodiment.
  • the peak removing unit 30 filters out the frequency band in which the amplitude of the measurement signal, for example, the sound pressure, or the time direction dispersion of the amplitude, for example, the time direction dispersion of the sound pressure is greater than or equal to a threshold value. It has a filter as a filter. That is, the signal in the frequency band that is equal to or higher than the threshold is set to zero. Note that the threshold is determined such that, for example, the amplitude or the time-direction variance of the amplitude is the upper X percent. Alternatively, X percentage of the entire frequency band is determined to be the stop band. Then, time series data is calculated by inverse Fourier transform for a signal whose frequency band equal to or greater than the threshold is cut.
  • the leak determination unit 5 determines that there is a leak if the calculated time integration rate R is greater than or equal to the threshold y percent.
  • the threshold value y is determined from the actually acquired leakage sound.
  • the signal is converted into time-series data, and the peak in the time direction is removed. good.
  • FIG. 8 is a diagram showing a frequency spectrum of a measurement signal obtained by measuring water leakage sound, train running sound, and background noise at a certain point.
  • the solid line indicates the water leakage sound
  • the dotted line indicates the train running sound
  • the alternate long and short dash line indicates the background noise.
  • the water leakage sound has the same level of power over the entire frequency band. That is, the spectrum is flat.
  • train running sound has particularly high power in the low frequency band (around 40-400 Hz), and its spectrum is biased.
  • the threshold value X of the filter of the peak removing unit 30 is about 60% of the entire frequency band (log scale).
  • the accuracy of the determination of leaked sound was measured when the leaked water was determined by the time integration method using the time integration method (third embodiment).
  • the threshold value y of the leakage determination unit 5 is set to 70%.
  • the time integration rate R was 60.8%. Moreover, when it determined using all the frequency bands of the measurement signal which measured the train running sound, the time integration rate R was 95.3%. Since the threshold value y is 70%, the leakage sound is erroneously determined as no leakage, and the train traveling sound is erroneously determined as leakage.
  • the time integration rate R of the third embodiment was 99.7%.
  • the time integration rate R was 20.1%. Therefore, the water leakage sound was correctly determined as having water leakage, and the train running sound was correctly determined as having no water leakage.
  • each unit is configured by hardware, but may be configured by a program that causes an information processing apparatus (CPU) to perform the above-described operation processing.
  • CPU information processing apparatus
  • Additional remark 3 The leak determination method of Additional remark 2 which removes a peak by taking the minimum value in the predetermined frequency width of the said frequency spectrum.
  • Additional remark 4 The leak determination method of Additional remark 1 which removes a peak by removing the signal of the frequency band where the signal level of the said measurement signal exceeds a predetermined threshold value.
  • the leak determination method according to any one of 4 above.
  • Additional remark 6 The leak determination method of Additional remark 5 which removes the peak of the time direction of the frequency spectrum series which arranged the said frequency spectrum in time series.
  • Peak removal means for removing the peak of the signal level of the measurement signal;
  • a leak determination apparatus comprising: a leak determination unit that determines leak using a measurement signal from which a peak has been removed.
  • the peak removing means includes Spectrum calculation means for calculating a frequency spectrum of the measurement signal;
  • the leakage determination apparatus according to appendix 9, further comprising a smoothing unit that removes a peak by smoothing the frequency spectrum.
  • the said smoothing means is a leak determination apparatus of Additional remark 10 which removes a peak by taking the minimum value in the predetermined frequency width of the said frequency spectrum.
  • the said peak removal means is a leak determination apparatus of Additional remark 9 which has a filter means to remove the signal of the frequency band where the signal level of the said measurement signal exceeds a predetermined threshold value.
  • the said peak removal means is a leak determination apparatus in any one of Additional remark 9 to Additional remark 12 which converts the measurement signal from which the peak of the signal level was removed into time series data, and removes the peak of a time direction.
  • the said peak removal means is a leak determination apparatus of Additional remark 13 which removes the peak of the time direction of the frequency spectrum series which arranged the said frequency spectrum in time series.
  • the said peak removal means is a leakage determination apparatus of Additional remark 14 which removes a peak by taking the minimum value in the predetermined time width of the said frequency spectrum series.
  • Peak removal means for removing the peak of the signal level of the measurement signal;
  • a measurement terminal having leakage determination means for determining leakage using a measurement signal from which a peak has been removed.

Abstract

本発明は、測定信号の信号レベルのピークを除去するピーク除去手段と、ピークが除去された測定信号を用いて、漏洩を判定する漏洩判定手段とを有する漏洩判定装置である。

Description

漏洩判定方法、漏洩判定装置、測定端末及びプログラム
 本発明は、漏洩判定方法、漏洩判定装置、測定端末及びプログラムに関する。
 従来から、地中に埋設された水道管やガス管等における漏水等の漏洩が問題にされている。そこで、配管等における漏洩位置を検出する方法が検討されている。
 その一つの方法として、検査員が耳で振動を確かめ、配管等における漏水位置を検出する方法がある。この方法は、検査員が地表から耳で漏水音を聞いて、その漏水音が一番良く聞こえる位置を特定し、配管等を調べて漏洩が生じているか否かを確認するものである。
 しかし、この方法は、配管等の振動を検査員が耳で調べているので、漏水位置を高精度に検出するためには熟練した技能が必要とされていた。
 そこで、水道管の漏水を振動音により感知する装置が開発されている(例えば、特許文献1)。
 上記の漏水検出装置では、漏水検出のために時間積分式漏水発見理論を採用している。水道管にセンサを当てて、振動音を検出している。この振動音の信号から波高値弁別により、一定の大きさに達しない低レベルの信号は、雑音として除外される。残った高レベルの信号により、時間積分率が算出され、算出された時間積分率が、判定レベル以上であれば、漏水有りと判定している。
特開2009-020024号公報
 特許文献1で用いられている時間積分法では、「周囲雑音は突発的」という仮定の下で、漏水音を判定している。すなわち、パワーが一定以上の状態が継続するほど、漏水音と判定されやすい。
 しかし、実際の測定環境は、ガス音、流水音、機械の稼働音、電車や車の走行音などの継続的な雑音も多く存在する。従って、これらの継続的な雑音が測定信号に混入すると、一定以上のパワーを持ち、漏洩と誤判定されるという課題があった。
 そこで、本発明は上記課題に鑑みて発明されたものであって、その目的は、継続的な雑音が発生しているような環境下でも正しく漏洩音の有無を判定することができる漏洩判定方法、漏洩判定装置、測定端末及びプログラムを提供することにある。
 本発明は、測定信号の信号レベルのピークを除去し、ピークが除去された測定信号を用いて、漏洩を判定する漏洩判定方法である。
 本発明は、測定信号の信号レベルのピークを除去するピーク除去手段と、ピークが除去された測定信号を用いて、漏洩を判定する漏洩判定手段とを有する漏洩判定装置である。
 本発明は、測定信号の信号レベルのピークを除去するピーク除去手段と、ピークが除去された測定信号を用いて、漏洩を判定する漏洩判定手段とを有する測定端末である。
 本発明は、測定信号の信号レベルのピークを除去する処理と、ピークが除去された測定信号を用いて、漏洩を判定する処理とをコンピュータに実行させるプログラムである。
 本発明は、継続的な雑音が発生しているような環境下でも正しく漏洩音の有無を判定することができる。
図1は第1の実施の形態における漏洩判定装置のブロック図である。 図2はピーク除去部3を説明するための図である。 図3は第2の実施の形態の漏洩判定装置のブロック図である。 図4は周波数スペクトル平滑部12を説明するための図である。 図5は時系列データ平滑部14を説明するための図である。 図6は第3の実施の形態の漏洩判定装置のブロック図である。 図7はピーク除去部30を説明するための図である。 図8は第3の実施の形態における具体的な実施例2を説明するための図である。 図9は第1の実施の形態における実施例1を説明するための図である。 図10は第1の実施の形態における実施例1を説明するための図である。
 本発明は、継続的な雑音を漏洩音と誤判定しないように、配管等から測定された振動加速度等の測定信号から定常的な周囲の雑音を除去した後、漏洩の判定を行うことを特徴とする。具体的には、本発明は、測定信号の信号レベルのピークを除去し、ピークが除去された測定信号を用いて、漏洩を判定する。尚、測定信号の信号レベルとは、測定信号の大きさを示す指標、すなわち振幅、電力、音圧等、または、それらの指標の時間変化の大きさを示す時間方向分散等である。
 測定信号の信号レベルのピークを除去する方法としては、例えば、以下の方法がある。
(1) 測定信号の周波数スペクトルを算出し、前記周波数スペクトルを平滑化することにより、ピークを除去する。
(2) 測定信号の信号レベルが所定の閾値を超える周波数帯の信号を除去することにより、ピークを除去する。
 (1)の方法の具体的な手法のひとつは、周波数スペクトルの所定の周波数幅における最小値をとることにより、平滑化する手法である。
 更に、信号レベルのピークが除去された測定信号を時系列データに変換し、時間方向のピークを除去し、時間方向のピークを除去した測定信号を用いて漏洩を判定するようにしても良い。例えば、周波数方向のピークを除去した後に、更に、周波数スペクトルを時系列に並べた周波数スペクトル系列の時間方向のピークを除去するようにしても良い。具体的には、周波数スペクトル系列が所定の時間幅における最小値をとることにより、ピークを除去する。
 このようにして、雑音が除去された測定信号を用いて、漏洩の判定を行う。漏洩判定の方法は問わないが、例えば、時間積分法、相関関数による判定方法や、除去後の測定信号の電力の平均値や、最大値又は最小値が所定のレベルを超えている場合に漏洩と判定する方法でも良い。
 以下、具体的な実施の形態を説明する。
 <第1の実施の形態>
 図1は第1の実施の形態における漏洩判定装置のブロック図である。
 漏洩判定装置は、測定信号を入力する信号入力部1と、測定信号の周波数スペクトルを算出するスペクトル算出部2と、測定信号のピーク(ノイズ)を除去するピーク除去部3と、時間積分率を算出する時間積分率算出部4と、漏洩を判定する漏洩判定部5とを有する。
 ピーク除去部3は、スペクトル算出部2で算出された周波数スペクトルを平滑化することにより、ピークを除去する。具体的には、図2に示すように、所定の周波数幅(フレーム幅)毎の振幅、例えば、音圧の最小値をとることで、測定信号のピークを除去する。尚、これに限ることなく、移動平均、順序統計フィルタなどでもよい。そして、ピーク除去後の信号を逆フーリエ変換して時系列データを算出する。
 尚、スペクトル算出部2と、ピーク除去部3とで、ピーク除去手段を構成する。
 時間積分率算出部4は、ピーク除去部3により算出された時系列データの時間積分率を算出する。例えば、ピーク除去後の時系列の測定信号の絶対値が、予め定められた設定レベルEと比較される。尚、設定レベルEは、実際に取得した漏洩音から定める。そして、設定レベルをオーバーした時間の矩形波が生成される。所定時間T内に得られる全矩形波の時間tが加算される。そして、時間積分率Rが式(1)のように算出される。
Figure JPOXMLDOC01-appb-I000001
 漏洩判定部5は、算出された時間積分率Rが閾値yパーセント以上であれば、漏洩があると判定する。尚、閾値yは、実際に取得した漏洩音から定める。
 尚、時間積分率算出部4と漏洩判定部5とで、漏洩判定手段を構成する。
 第1の実施の形態は、漏水音のスペクトルはフラットだが、雑音のスペクトルは、周波数方向にピークがあるとい性質を利用して、ガス音、流水音、機械の稼働音、電車や車の走行音といった測定時に発生する継続的な雑音を除去した後に漏洩の判定を行うので、漏洩音の誤判定が少なくなるという効果を有する。従って、突発的な雑音が発生している環境下に加えて、継続的な雑音が発生しているような環境下、例えば昼間などでも正しく漏洩音の有無を判定できる。
 (実施例1)
 第1の実施の形態に対応する実施例1を説明する。
 実施例1では、水道管の漏水音と、継続的な雑音である機械の稼働音データ(計6種類)を、振動センサにより取得し、それらに対し、従来法(時間積分法)を適用した場合の誤判定率と、第1の実施の形態の方法(ピーク除去後に時間積分法を適用)を適用した場合の誤判定率とを比較した例を説明する。
 図9は、ピーク除去前の漏水音と機械稼働音との周波数スペクトルの比較を示した図である。図9に示される如く、ピーク除去前には、稼働音の鋭いピークが多数みられることが分かる。
 次に、上述した第1の実施の形態におけるピーク除去部3により、図9に示される周波数スペクトルを平滑化することにより、ピークを除去する。図10は、ピーク除去後の周波数スペクトルを示した図である。図10に示されるように、ピーク除去後の周波数スペクトルでは、機械稼働音のパワーは小さくなっているが、漏水音はほとんど変化ないことがわかる。
 続いて、時間積分率算出部4により、ピーク除去後の信号を逆フーリエ変換して得られた時系列データの時間積分率を算出する。尚、設定レベルEは、実測した全64データのうち、22データ(約35%のデータ)が時間積分率60%を超えるように設定した。そして、漏洩判定部5が60%以上のものを漏水音として判定するように、閾値y(y=60%)を設定した。
 実験の結果、雑音(継続的な機械の稼働音等)に起因する誤判定率(雑音が漏水音と誤って判定されたデータの割合)は、従来法(時間積分法)の場合が61%であり、第1の実施の形態の方法(ピーク除去後に時間積分法を適用)の場合が51%であった。結果として、本発明の第1の実施の形態の方法によれば、誤判定率を10%も低減することができることを立証することができた。
 <第2の実施の形態>
 第2の実施の形態を説明する。
 図3は第2の実施の形態の漏洩判定装置のブロック図である。
 第2の実施の形態の漏洩判定装置は、第1の実施の形態の漏洩判定装置の周波数スペクトルを平滑化することによってピークを除去することに加えて、時間方向に対してのピークも除去することを特徴とする。このため、第2の実施の形態の漏洩判定装置は、スペクトル算出部2とピーク除去部3とに代えて、時間分割部10と、複数のスペクトル算出部11と、複数の周波数スペクトル平滑部12と、時系列データ生成部13と、時系列データ平滑部14と、漏洩判定部15とを有する。
 時間分割部10は、測定信号の全測定時間を一定の時間間隔に分割し、一定の時間間隔の測定信号を出力する。
 スペクトル算出部11は、時間分割部10で分割された分割数に対応して設けられ、各時間間隔の周波数スペクトルを算出する。
 周波数スペクトル平滑部12は、スペクトル算出部11に対応して設けられ、時間ごとに周波数スペクトルを平滑化する。例えば、図4に示すように、所定のフレーム幅ごとの振幅、例えば、音圧の最小値をとることで、平滑化する。尚、平滑化の方法はこれに限らず、例えば、移動平均、順序統計フィルタなどでもよい。
 時系列データ生成部13は、各時間ごとに周波数スペクトルを積分することで、電力を算出、つまり電力の時系列データを生成する。
 時系列データ平滑部14は、時系列データ生成部13により生成された時系列データを平滑化する。例えば、図5のように、所定の時間間隔(フレーム間隔)ごとの最小値をとることで、突発的雑音の影響を小さくする。尚、平滑化の方法はこれに限らず、例えば、移動平均、順序統計フィルタなどでもよい。
 尚、時間分割部10と、複数のスペクトル算出部11と、複数の周波数スペクトル平滑部12と、時系列データ生成部13と、時系列データ平滑部14とで、ピーク除去手段を構成する。
 漏洩判定部15は、時系列データ平滑部14の出力の電力の時間方向の平均値が閾値E以上であれば、漏洩があると判定する。尚、平均値でなく、最大値や最小値でもよい。また、閾値Eは、実際に取得した漏洩音から定める。
 第2の実施形態は、突発的な雑音と継続的な雑音の両方の影響を抑えることができ、さらに、時間積分法を用いた第1の実施形態に比べて、逆フーリエ変換の処理が不要な分、演算量が少なくて済むという効果を有する。
 <第3の実施の形態>
 第3の実施の形態を説明する。
 図6は第3の実施の形態の漏洩判定装置のブロック図である。
 第3の実施の形態は、第1の実施の形態のピーク除去部3に代えて、ピーク除去部30を有する。
 ピーク除去部30は、図7に示すように、測定信号の振幅、例えば、音圧、又は、振幅の時間方向分散、例えば、音圧の時間方向分散が閾値以上である周波数帯をフィルタ阻止域フィルタとするフィルタを有する。すなわち、閾値以上である周波数帯の信号をゼロにするのである。尚、閾値は、例えば、振幅又は振幅の時間方向分散が上位Xパーセントとなるように決定する。または、全周波数帯のXパーセントが阻止域となるように決める。そして、閾値以上である周波数帯がカットされた信号について、逆フーリエ変換により時系列データを算出する。
 時間積分率算出部4については、第1の実施の形態と同様なものでもかまわないが、ピーク除去部30のフィルタ阻止域の大きさによっては、時間積分率の値も変わってしまうため、フィルタリング後に正規化を行うことが好ましい。例えば、時間積分率を求める際の設定レベルEについて、実際に取得した漏洩音から閾値E’を定め、設定レベルEを
設定レベルE=E’×(フィルタ阻止域幅÷全周波数帯域幅)
とする。
 漏洩判定部5は、算出された時間積分率Rが閾値yパーセント以上であれば、漏洩があると判定する。尚、閾値yは、実際に取得した漏洩音から定める。
 尚、第3の実施の形態において、第2の実施の形態のように、閾値以上である周波数帯の信号を除去後、時系列データに変換し、時間方向のピークを除去するようにしても良い。
 (実施例2)
 次に、第3の実施の形態の具体的な実施例2を説明する。
 図8はある地点における漏水音、電車走行音、暗騒音を測定した測定信号の周波数スペクトルを示した図である。図8中、実線が漏水音、点線が電車走行音、一点鎖線が暗騒音を示している。図8に示されるように、漏水音は、全周波数帯域に渡って、同程度のパワーである。すなわち、スペクトルがフラットである。一方、電車走行音は、低周波数帯(40-400Hz付近)で特にパワーが大きくなっており、スペクトルに偏りがある。
 従って、全周波数帯域を用いて漏水を判定すると、電車走行音等のノイズの影響が大きく、漏水の誤判定が起きやすく、400Hz以上の信号で時間積分法を用いれば、ノイズの影響を小さくすることができるということが判る。
 そこで、測定信号の全周波数帯域を用いて時間積分法により漏水を判定する場合(従来)とピーク除去部30のフィルタの閾値Xを、全周波数帯(logスケール)の約60パーセントが阻止域(400Hz未満の周波数帯を阻止)となるよう定め、フィルタ後の測定信号を時間積分法により漏水を判定する場合(第3の実施の形態)とで、漏水音の判定の正誤率を測定した。尚、漏洩判定部5の閾値yは70パーセントに設定した。
 その結果、漏水音を測定した測定信号の全周波数帯域を用いて判定した場合、時間積分率Rは、60.8パーセントであった。また、電車走行音を測定した測定信号の全周波数帯域を用いて判定した場合、時間積分率Rは95.3パーセントであった。閾値yは70パーセントのため、漏水音は漏水なしと誤判定され、電車走行音は漏水ありと誤判定されてしまった。
 これに対して、第3の実施の形態によるものは、漏水音を測定した測定信号の場合、時間積分率Rは99.7パーセントであった。また、電車走行音を測定した測定信号の場合、時間積分率Rは20.1パーセントであった。そのため、漏水音は正しく漏水ありと判定され、電車走行音は正しく漏水なしと判定された。
 上記結果からわかるように、電車走行音等の継続的な雑音による誤判定を防ぐことができる。
 以上の如く、本実施の形態によれば、突発的な雑音と継続的な雑音に対する漏洩の判定への影響を抑えることができる。
 尚、上述した各実施の形態における漏洩判定装置を、配管等の振動を測定端末に組み込んでも良い。
 また、上述した実施の形態では、各部をハードウェアで構成したが、上述した動作の処理を情報処理装置(CPU)に行わせるプログラムによっても構成できる。
 また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1) 測定信号の信号レベルのピークを除去し、
 ピークが除去された測定信号を用いて、漏洩を判定する
漏洩判定方法。
 (付記2) 前記測定信号の周波数スペクトルを算出し、前記周波数スペクトルを平滑化することにより、ピークを除去する
付記1に記載の漏洩判定方法。
 (付記3) 前記周波数スペクトルの所定の周波数幅における最小値をとることにより、ピークを除去する
付記2に記載の漏洩判定方法。
 (付記4) 前記測定信号の信号レベルが所定の閾値を超える周波数帯の信号を除去することにより、ピークを除去する
付記1に記載の漏洩判定方法。
 (付記5) 信号レベルのピークが除去された測定信号を時系列データに変換し、時間方向のピークを除去し、時間方向のピークを除去した測定信号を用いて漏洩を判定する
付記1から付記4のいずれかに記載の漏洩判定方法。
 (付記6) 前記周波数スペクトルを時系列に並べた周波数スペクトル系列の時間方向のピークを除去する
付記5に記載の漏洩判定方法。
 (付記7) 前記周波数スペクトル系列の所定の時間幅における最小値をとることにより、ピークを除去する
付記6に記載の漏洩判定方法。
 (付記8) 前記信号レベルが、振幅、または、振幅の時間方向分散である
付記1と付記7のいずれかに記載の漏洩判定方法。
 (付記9) 測定信号の信号レベルのピークを除去するピーク除去手段と、
 ピークが除去された測定信号を用いて、漏洩を判定する漏洩判定手段と
を有する漏洩判定装置。
 (付記10) 前記ピーク除去手段は、
 前記測定信号の周波数スペクトルを算出するスペクトル算出手段と、
 前記周波数スペクトルを平滑化することにより、ピークを除去する平滑化手段と
を有する付記9に記載の漏洩判定装置。
 (付記11) 前記平滑化手段は、前記周波数スペクトルの所定の周波数幅における最小値をとることにより、ピークを除去する
付記10に記載の漏洩判定装置。
 (付記12) 前記ピーク除去手段は、前記測定信号の信号レベルが所定の閾値を超える周波数帯の信号を除去するフィルタ手段を有する
付記9に記載の漏洩判定装置。
 (付記13) 前記ピーク除去手段は、信号レベルのピークが除去された測定信号を時系列データに変換し、時間方向のピークを除去する
付記9から付記12のいずれかに記載の漏洩判定装置。
 (付記14) 前記ピーク除去手段は、前記周波数スペクトルを時系列に並べた周波数スペクトル系列の時間方向のピークを除去する
付記13に記載の漏洩判定装置。
 (付記15) 前記ピーク除去手段は、前記周波数スペクトル系列の所定の時間幅における最小値をとることにより、ピークを除去する
付記14に記載の漏洩判定装置。
 (付記16) 前記信号レベルが、振幅、または、振幅の時間方向分散である
付記9から付記15のいずれかに記載の漏洩判定装置。
 (付記17) 測定信号の信号レベルのピークを除去するピーク除去手段と、
 ピークが除去された測定信号を用いて、漏洩を判定する漏洩判定手段と
を有する測定端末。
 (付記18) 測定信号の信号レベルのピークを除去する処理と、
 ピークが除去された測定信号を用いて、漏洩を判定する処理と
をコンピュータに実行させるプログラム。
 以上好ましい実施の形態をあげて本発明を説明したが、本発明は必ずしも上記実施の形態に限定されるものではなく、その技術的思想の範囲内において様々に変形し実施することが出来る。
 本出願は、2012年9月27日に出願された日本出願特願2012-214281号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1   信号入力部
2   スペクトル算出部
3   ピーク除去部
4   時間積分率算出部
5   漏洩判定部
10  時間分割部
11  スペクトル算出部
12  周波数スペクトル平滑部
13  時系列データ生成部
14  時系列データ平滑部
15  漏洩判定部
30  ピーク除去部

Claims (18)

  1.  測定信号の信号レベルのピークを除去し、
     ピークが除去された測定信号を用いて、漏洩を判定する
    漏洩判定方法。
  2.  前記測定信号の周波数スペクトルを算出し、前記周波数スペクトルを平滑化することにより、ピークを除去する
    請求項1に記載の漏洩判定方法。
  3.  前記周波数スペクトルの所定の周波数幅における最小値をとることにより、ピークを除去する
    請求項2に記載の漏洩判定方法。
  4.  前記測定信号の信号レベルが所定の閾値を超える周波数帯の信号を除去することにより、ピークを除去する
    請求項1に記載の漏洩判定方法。
  5.  信号レベルのピークが除去された測定信号を時系列データに変換し、時間方向のピークを除去し、時間方向のピークを除去した測定信号を用いて漏洩を判定する
    請求項1から請求項4のいずれかに記載の漏洩判定方法。
  6.  前記周波数スペクトルを時系列に並べた周波数スペクトル系列の時間方向のピークを除去する
    請求項5に記載の漏洩判定方法。
  7.  前記周波数スペクトル系列の所定の時間幅における最小値をとることにより、ピークを除去する
    請求項6に記載の漏洩判定方法。
  8.  前記信号レベルが、振幅、または、振幅の時間方向分散である
    請求項1と請求項7のいずれかに記載の漏洩判定方法。
  9. 測定信号の信号レベルのピークを除去するピーク除去手段と、
     ピークが除去された測定信号を用いて、漏洩を判定する漏洩判定手段と
    を有する漏洩判定装置。
  10.  前記ピーク除去手段は、
     前記測定信号の周波数スペクトルを算出するスペクトル算出手段と、
     前記周波数スペクトルを平滑化することにより、ピークを除去する平滑化手段と
    を有する請求項9に記載の漏洩判定装置。
  11.  前記平滑化手段は、前記周波数スペクトルの所定の周波数幅における最小値をとることにより、ピークを除去する
    請求項10に記載の漏洩判定装置。
  12.  前記ピーク除去手段は、前記測定信号の信号レベルが所定の閾値を超える周波数帯の信号を除去するフィルタ手段を有する
    請求項9に記載の漏洩判定装置。
  13.  前記ピーク除去手段は、信号レベルのピークが除去された測定信号を時系列データに変換し、時間方向のピークを除去する
    請求項9から請求項12のいずれかに記載の漏洩判定装置。
  14.  前記ピーク除去手段は、前記周波数スペクトルを時系列に並べた周波数スペクトル系列の時間方向のピークを除去する
    請求項13に記載の漏洩判定装置。
  15.  前記ピーク除去手段は、前記周波数スペクトル系列の所定の時間幅における最小値をとることにより、ピークを除去する
    請求項14に記載の漏洩判定装置。
  16.  前記信号レベルが、振幅、または、振幅の時間方向分散である
    請求項9から請求項15のいずれかに記載の漏洩判定装置。
  17.  測定信号の信号レベルのピークを除去するピーク除去手段と、
     ピークが除去された測定信号を用いて、漏洩を判定する漏洩判定手段と
    を有する測定端末。
  18.  測定信号の信号レベルのピークを除去する処理と、
     ピークが除去された測定信号を用いて、漏洩を判定する処理と
    をコンピュータに実行させるプログラム。
PCT/JP2013/076111 2012-09-27 2013-09-26 漏洩判定方法、漏洩判定装置、測定端末及びプログラム WO2014050990A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012214281 2012-09-27
JP2012-214281 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050990A1 true WO2014050990A1 (ja) 2014-04-03

Family

ID=50388385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076111 WO2014050990A1 (ja) 2012-09-27 2013-09-26 漏洩判定方法、漏洩判定装置、測定端末及びプログラム

Country Status (1)

Country Link
WO (1) WO2014050990A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370138A (ja) * 1986-09-11 1988-03-30 Hitachi Ltd 漏洩検出器
JPH0783787A (ja) * 1993-09-20 1995-03-31 Hitachi Ltd 音響監視方法及び装置
JP3688400B2 (ja) * 1996-08-23 2005-08-24 東京瓦斯株式会社 配管漏洩位置特定方法における信号処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370138A (ja) * 1986-09-11 1988-03-30 Hitachi Ltd 漏洩検出器
JPH0783787A (ja) * 1993-09-20 1995-03-31 Hitachi Ltd 音響監視方法及び装置
JP3688400B2 (ja) * 1996-08-23 2005-08-24 東京瓦斯株式会社 配管漏洩位置特定方法における信号処理方法

Similar Documents

Publication Publication Date Title
Liu et al. Experimental study on a de-noising system for gas and oil pipelines based on an acoustic leak detection and location method
JPWO2015146082A1 (ja) 漏洩検知装置、漏洩検知方法、およびプログラム
WO2015072130A1 (ja) 漏洩判定システムおよび漏洩判定方法
CN103730110A (zh) 一种检测语音端点的方法和装置
CN105516876A (zh) 一种基于谱熵的啸叫检测方法
US10458878B2 (en) Position determination device, leak detection system, position determination method, and computer-readable recording medium
JP2019527831A5 (ja)
EP3054707A1 (en) Device, method, and program for measuring sound field
US9970840B2 (en) Leak inspection device, leak inspection method, and leak inspection program
KR101381469B1 (ko) 매설배관 누설 탐지용 상호상관함수기법의 정확도 향상을 위한 기계 잡음 제거 방법
CN109074814B (zh) 一种噪声检测方法及终端设备
US10948376B2 (en) Apparatus and method of detecting leak sound in plant equipment using time-frequency transformation
JP5807107B1 (ja) 分析データ作成方法、周波数フィルター作成方法、異常音発生位置の特定方法、分析データ作成装置、周波数フィルター作成装置および異常音発生位置の特定装置
WO2014050990A1 (ja) 漏洩判定方法、漏洩判定装置、測定端末及びプログラム
EP3848689B1 (en) Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and fluid leakage diagnosing program
JP4460423B2 (ja) 漏洩探知における雑音除去方法
JP6557576B2 (ja) 異常音の発生位置特定方法および異常音の発生位置特定装置
WO2016152131A1 (ja) 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体
CN115388343B (zh) 一种高效的海洋油气管线泄漏检测与定位方法及系统
CN108596215B (zh) 多模态信号解析分离方法、装置、设备及存储介质
Dietel et al. Fault detection in rotating machinery using spectral modeling
JP6541179B2 (ja) 信号処理装置
WO2014170673A1 (en) Pipe inspection system and related methods
CN102667508A (zh) 检测由检测器接收到的信号中的对应于事件的波前的方法
US20210263125A1 (en) Wave-source-direction estimation device, wave-source-direction estimation method, and program storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP