JPH0783787A - 音響監視方法及び装置 - Google Patents

音響監視方法及び装置

Info

Publication number
JPH0783787A
JPH0783787A JP5233297A JP23329793A JPH0783787A JP H0783787 A JPH0783787 A JP H0783787A JP 5233297 A JP5233297 A JP 5233297A JP 23329793 A JP23329793 A JP 23329793A JP H0783787 A JPH0783787 A JP H0783787A
Authority
JP
Japan
Prior art keywords
peak
acoustic
amplitude
acoustic signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5233297A
Other languages
English (en)
Inventor
Izumi Yamada
泉 山田
Yuji Matsui
祐二 松井
Haruo Fujimori
治男 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5233297A priority Critical patent/JPH0783787A/ja
Publication of JPH0783787A publication Critical patent/JPH0783787A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】 【目的】プラントの異常事象の監視において、ピークの
幅やピークの数に制限を受けにくい共鳴状雑音を除去し
て異常検出感度向上を図る音響監視装置を提供する。 【構成】漏洩音を含む音響信号を検出して電気信号に変
換するマイクロホン11と、この電気信号を適切なレベ
ルに増幅する増幅器20と漏洩音以外の共鳴状雑音を除
去する雑音除去部3と、漏洩音の検出音響信号レベルの
大きさから異常の有無を判別する異常判別部9で構成す
る。 【効果】プラント正常運転時にも発生し異常音検出の感
度低下要因になる複数の共鳴状雑音が自動的に除去でき
ので、異常音検出の感度向上が可能となり、音響監視装
置の性能向上が可能となる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はプラントおよびプラント
機器の運転状態が正常であるか異常であるかの判定をお
こなうためのプラント監視装置に係り、特に、プラント
の音響を用いる監視に好適で、共鳴状雑音を除去して異
常検出感度向上を図る音響監視方法とその装置に関する
ものである。
【0002】
【従来の技術】プラントやプラント機器の異常を音で判
定しようとする事例は多いが、音の発生源が数多くある
ため、対象とする異常音をその他の雑音と区別すること
はなかなか難しい。本発明の音響監視方法及び装置は、
雑音のうち共鳴状雑音(通常、共鳴音は周波数スペクト
ル上でみるとある幅をもったピークとして認識される。
しかし、周波数スペクトル上のある幅を持ったピークす
べてが共鳴で発生するわけではない。例えば後述する電
磁音のように加振力そのものが周波数スペクトル上で極
めて狭い幅のピークとして観察される場合もある。本明
細書では、音の発生メカニズムを無視して、周波数スペ
クトル上である幅を持って観察される成分を共鳴状雑音
と呼ぶことにする。)を除去して異常検出感度を向上し
ようとするものであり、従来この種の音響監視装置の例
として、特開平3ー29831号公報に記載のような、
隣あう二つの周波数点間の振幅の差(パワーの変化率)
が基準値を超えて大きいときピークと判断して除去する
共鳴状雑音除去方式からなる漏洩検出器がある。
【0003】
【発明が解決しようとする課題】上記、従来技術は、狭
帯域のピークとして表れる雑音の除去を目的としてお
り、やや幅広の共鳴状雑音の除去の目的には必ずしも適
さないという点に問題があった。共鳴状雑音としては、
例えばモータの回転数とコイルの極数から決まる電磁音
(川井ほか:「回転機械の振幅騒音 その原因と対策・
解析・調査・診断」経営開発センタ、1978−1
2)、気中共鳴音(小林、船川:「熱交換器における管
群の振動と気中の共鳴」 日本機械学会誌 VOL.8
2,NO 728、1976−6)、細隙部を流体が通
過することによる共鳴音(半田、豊永:「ポンプウェア
リング部で発生した高周波音とその対策」 ターボ機械
VOL.18、NO 4、1990−4)等各種あ
る。また、メカニズム不明な共鳴状の雑音も現場におい
て観測されることがある。このような、共鳴状の雑音
は、必ずしもその発生周波数や、その周波数帯域が明瞭
でない場合も多く、その高調波の存在も考えられ(フー
リェ変換による周波数分析では、相対的に高周波の方が
周波数分解能が高くなるので、ピークが複数の周波数点
間に渡ることが多い)、従来法のように、単に隣あう二
つの周波数点間でピークを判別する方式では共鳴状雑音
を除去しきれない場合があるという点に問題があった。
【0004】従って、本発明の目的は、ピークの幅やピ
ークの数に制限を受けにくい共鳴状雑音の除去法により
異常検出感度向上を図る音響監視方法及び装置を提供す
ることにある。
【0005】
【課題を解決するための手段】上記目的を解決するため
に、本発明は、プラントの監視対象の音響信号を計測す
るステップと、該計測された音響信号を増幅するステッ
プと、該増幅された音響信号を周波数領域に変換するス
テップと、該変換された音響信号の周波数スペクトルの
計測振幅の極小値から前記周波数スペクトルのピーク領
域の始点及び終点を求め、前記始点と前記終点間の平均
振幅を算出し、前記平均振幅と予め設定した基準値を比
較し、該比較結果からピークを判別するステップと、前
記ピーク領域の前記始点と前記終点を補完しピーク除去
を行うステップと、該ピ−ク除去した周波数領域上の音
響信号から補正振幅を算出するステップと、該算出され
た補正振幅の大きさにより前記監視対象の異常の有無を
判別するステップを有することを特徴とする音響監視方
法を提供する。
【0006】また、本発明の他の解決手段として、プラ
ントの監視対象の音響信号を計測する音響計測部と、該
音響計測部で計測された前記音響信号を増幅する増幅部
と、該増幅部で増幅された前記音響信号を周波数領域に
変換し、ピーク除去して補正振幅を算出する雑音除去部
と、該雑音除去部で算出された前記補正振幅の大きさに
より前記監視対象の異常の有無を判別する異常判別部を
備えた音響監視装置において、前記雑音除去部は、前記
増幅部で増幅された前記音響信号をアナログ信号からデ
ジタル信号に変換するAD変換部と、前記AD変換部で
デジタル信号に変換された前期音響信号を周波数領域に
変換する周波数分析部と、該周波数分析部で変換された
前記音響信号の周波数スペクトルの計測振幅の極小値か
ら前記周波数スペクトルのピーク領域の始点及び終点を
求め、前記始点と前記終点間の平均振幅を算出し、前記
平均振幅と予め設定した基準値を比較し、該比較結果か
らピークを判別し、前記ピーク領域の前記始点と前記終
点を補完しピーク除去を行うピーク自動除去部と、該ピ
−ク除去した周波数領域上の前記音響信号から補正振幅
を算出する補正振幅演算部とを有することを特徴とする
音響監視装置を提供する。
【0007】
【作用】音響計測部で計測された音響信号を周波数領域
に変換する周波数分析部は、音響信号の時間領域上では
判然としない共鳴状の成分をピークとして見ることがで
きるようにする。周波数領域上で計測振幅の極小値から
ピーク領域の始点、終点を求め、ピーク領域の平均振幅
とピーク領域周辺の平均振幅との比較からピークを判別
し、ピーク領域の始点と終点を補完しピーク除去を行う
ピーク自動除去部は、ピークの幅やピークの数に制限を
受けにくいピーク検索、ピーク除去を実現するのに効果
がある。また、ピ−ク除去した周波数領域上の前記音響
信号から補正振幅を算出する補正振幅演算部は、共鳴状
雑音が無い場合の音響信号の周波数スペクトルを生成す
る。これにより正常時でも発生している音響信号振幅を
支配する共鳴状雑音を除くことが可能となる。また、音
響信号の正常時の振幅を見かけ上小さくできるので、こ
れに異常判別部を付加することで異常検出の感度向上を
図ることができる。更に、上記のピーク自動除去部は、
高い信頼度でのピーク除去性能が期待できるので、ピー
クの判定に人が介在する必要が無くなり、ピーク除去処
理の自動化が可能になり、リアルタイムでの音響監視が
実現できる。
【0008】
【実施例】以下、本発明に係る第一の実施例、第二の実
施例について説明する。
【0009】まず、第一の実施例について説明する。
【0010】図1は、原子力発電プラントの冷却材の漏
洩検出に用いた、本発明の1実施例に係る音響監視装置
を示す。高温・高圧水の流れる冷却材配管103を通る
冷却材は、漏洩点102から漏洩するときには音をとも
なって噴出する。この音をマイクロホン11で検出して
電気信号に変換し、増幅部20で適当な信号レベルに増
幅するとともに、雑音除去部3で漏洩音以外の雑音を低
減し、異常判別部9で漏洩音の音響信号レベルが設定値
を越えたときに異常と判定する装置構成としてある。
【0011】冷却材が微小な漏洩点102から漏洩する
場合、ジェット流となり、発生する音の周波数帯域は広
くブロードになる。一方、ここで除去対象となる共鳴状
雑音としては、前述したように、モータの回転数とコイ
ルの極数から決まる電磁音、気中共鳴音、流体が隙間を
流れることで生じる共鳴音、メカニズム不明な共鳴状の
音等である。このような、共鳴状雑音は、その音源のパ
ワーが小さい場合でも、比較的狭い幅の周波数帯域に音
のパワーが集中するため、結果的にブロードな周波数帯
域の音源に比べて大きな音圧振幅となることが多い。図
1の装置構成で、このような共鳴状雑音だけを除去し
て、ブロードな周波数帯域を有する漏洩音だけを選択的
に抽出して、音の大きさから漏洩判定をすることが可能
となる。
【0012】図2は、図1の雑音除去部3の構成を示
す。雑音除去処理部3は、AD変換部30、周波数分析
部32、スペクトルスムージング部34、ピーク自動除
去部36、補正振幅演算部38から構成される。AD変
換部30ではアナログ信号である音響信号をデジタル信
号に変換する。周波数分析部32では、デジタル信号に
変換された音響信号を周波数領域に変換する。スペクト
ルスムージング部34では、時々刻々と変化する周波数
スペクトルの時間変化を時間軸上でスムージングする。
ピーク自動除去部36では、周波数領域上の音響信号の
ピークを検出して、ピーク領域をそのベースラインに置
き換えることでピーク除去を行う。補正振幅演算部38
では、ピーク除去した周波数領域上の音響信号から補正
振幅を算出する機能を有する。
【0013】以下、各部の機能及び詳細構成について必
要に応じて図を用いて説明する。
【0014】図2において、増幅部20で増幅された音
響信号をAD変換し、周波数分析して周波数領域に変換
することで、時間領域上では判然としない共鳴状雑音の
発生を周波数軸上のピークの有無でとらえることができ
るようになる。
【0015】図3に、図2のスペクトルスムージング部
34の詳細構成を示す。スペクトルスムージング部34
は、周波数分析点数に等しい数のローパスフィルタから
なる。周波数分析結果として得た各周波数毎の計測振幅
を時間軸上で平滑化を図っている。これにより、ランダ
ムな変動にともなう不要な周波数スペクトルのピークを
除くことができる。
【0016】図4に、図2のピーク自動除去部36で用
いたピーク除去処理の方法を示す。周波数スペクトル上
の計測振幅の極小値をピーク始点候補(ピーク領域下限
周波数)、ピーク終点候補(ピーク領域上限周波数)と
し、ピークとピーク周辺の平均振幅を比較してピーク領
域の平均振幅があらかじめ設定したKp倍を越えて大き
いときにピークと判定する方式としている。本方式で
は、計測振幅の極小値を単純に振幅が小さくなった後で
大きくなる点として探索しているため、ピークの緩やか
さや急峻さの影響を受けない点が、従来の放射線計測等
で用いられるピーク探索法に比べて良い点である。ま
た、従来法ではピークの幅を半値幅の係数倍にとれば良
いとか、ピークをガウス分布等の基本形状に近似できる
という知見が必要であったが、本発明ではそのような前
提があてはまらない形状のピークも除去可能である。
【0017】図5は、図4のピーク除去処理方法を具体
化したフローチャートを示す。始めに、ステップ362
で音響信号の周波数スペクトルの低周波側端部をピーク
探索の開始点に設定すると共に、ステップ363で計測
振幅の最初の極小値として始点候補に設定し、ピーク除
去の処理を始める。ステップ364で始点以降の高周波
側の極小値を探索し、ステップ366で最初に見つけた
極小値を終点候補とする。勾配が負から正に変化する点
が極小値である。ステップ368で始点・終点候補間の
平均振幅を算出する。ステップ370で始点・終点候補
周辺の平均振幅を算出する。ステップ372で始点・終
点候補間の平均振幅と始点・終点候補周辺の平均振幅と
を比較し、あらかじめ設定して有る係数Kp倍より始点
・終点候補間の平均振幅が大きいときにピーク有りと判
定する。ステップ372でピーク有りと判定した場合
は、ステップ374で始点・終点候補間を直線補完し
て、これをベースラインと見てピークと置き換える。ス
テップ374でベースライン置き換え処理後もしくはス
テップ372でピークと判断できない場合は、ステップ
376でピーク検索処理が終点に達したかどうかを判定
し、終点に達したならば処理を終了し、終点に達してな
いときは、ステップ378で現在の終点候補を検索開始
始点に置き換えて同様の処理を行う。
【0018】図6の周波数スペクトルを例にしてピーク
除去処理の手順を説明する。始めに、音響信号の周波数
スペクトルの低周波側端部f1をピーク探索の始点に設
定してピーク除去の処理を始める。始点以降の高周波側
の計測振幅の極小値を探索し、最初に見つけた極小値f
2を終点候補とする。f1、f2の周辺とf1、f2の中間
の平均振幅とを比較する。この場合は、Kp倍より小さ
いのでベースラインの置き換えは行わない。次に、f2
を始点に置き換えて同様の処理を行う。f3が終点候補
となり、平均振幅比較によりベースラインの置き換えを
行う。このように、高周波側端部までベースラインの置
き換えの判断を進めて処理を終える。上記の手順によ
り、幅の狭いピークも幅の広いピークも同じように除去
できる。これにより、検出音響信号に共鳴状雑音が含ま
れていれば、それを自動的に除去できる。
【0019】図7に、ピーク自動除去処理前後の周波数
スペクトルを示す。(a)は処理前の音響信号の周波数
スペクトルであり、(b)は処理後の周波数スペクトル
である。ピーク成分が除去できていることがわかる。
【0020】図8に、図2の補正振幅演算部38の詳細
構成を示す。本実施例においては周波数分析結果とし
て、音響信号のパワーを出力する構成としている。この
ため、補正振幅の算出においては、加算部381で各解
析点のパワーの総和を求め、ローパスフィルタ382を
通して適当な応答の補正振幅を求めている。本実施例の
補正振幅は、いわゆる音圧信号の実効値を2乗した値で
ある。
【0021】図9は、共鳴状雑音の除去処理の効果を示
す。共鳴状雑音の除去前後の周波数スペクトルから振幅
を算出して、時間軸上での振幅の変化を示したものであ
る。(a)は共鳴状雑音除去処理前の計測振幅の時間変
化を示している。共鳴状雑音の発生のタイミングで計測
振幅が急激に増加しているが、漏洩音の発生のタイミン
グでは計測振幅変化はわからない。一方、(b)は共鳴
状雑音除去処理後の時間軸上での補正振幅変化であり、
共鳴状雑音の発生のタイミングでは補正振幅の変化はな
いが、漏洩音の発生のタイミングでは明瞭な補正振幅変
化が生じていることがわかる。(a)と(b)の比較か
らわかるように振幅の増加は共鳴状雑音の方が大きい
が、共鳴状雑音除去処理により雑音より十分小さい漏洩
音が検出できていることがわかる。このように、本発明
の共鳴状雑音除去処理のSN比の改善効果は極めて高
い。
【0022】すでに述べたように異常判別部9では、共
鳴状雑音を除いてもなお基準値を越えて音響信号の補正
振幅が大きくなったときに漏洩発生と判別する機能を有
している。基準値は、入力が音圧信号の実効値の2乗で
あることを考慮して設定してある。
【0023】以上、本発明の音響監視方法および装置を
冷却材漏洩検出器に適用した例を説明した。本実施例の
漏洩検出器においては、比較的漏洩検出の応答が速いこ
とが要求されているためAD変換器32以降はデジタル
信号処理専用LSIを採用して、リアルタイム処理を実
現している。また、実施例の周波数分析はフーリェ変換
によっているが、その他の周波数分析法例えばウェーブ
レット変換等も適用可能である。
【0024】次に、第二の実施例について説明する。適
用の対称は第一の実施例と同様である。装置構成も同様
である。第一の実施例に比較して、異常検出の応答性を
速くすることを目的に音響監視装置を構築してある。応
答性を速めるために図2に示すスペクトルスムージング
部34のローパスフィルタの時定数を小さくする必要が
ある。このため、得られる周波数分析結果は第一の実施
例の場合よりも小さなピークが多く存在するようにな
る。第二の実施例では、応答性を速くした代償としてあ
らわれるこのような小さなピークに影響されないピーク
除去をするようにしている。第二の実施例におけるピー
ク除去処理方式を図10、図11により説明する。
【0025】図10に、ピーク除去処理方法を具体化し
たフローチャートを示す。始めに、ステップ382で音
響信号の周波数スペクトルの低周波側端部をピーク探索
の開始点に設定すると共に、ステップ383で計測振幅
の最初の極小値として始点候補に設定し、ピーク除去の
処理を始める。ステップ384で始点以降の高周波側の
各極小値を探索し、ステップ385で始点候補から各極
小値までの平均振幅を算出する。ステップ386で始点
から各極小値毎の平均振幅を順に比較して、最初の平均
振幅が極大となる極小値を終点候補とする。次に、ステ
ップ388で始点・終点候補間の平均振幅を算出し、ス
テップ390で始点・終点候補周辺の平均振幅を算出す
る。ステップ392で始点・終点候補間の平均振幅と始
点・終点候補周辺の平均振幅とを比較し、あらかじめ設
定して有る係数Kp倍より始点・終点候補間の平均振幅
が大きいときにピーク有りと判定する。ステップ392
でピーク有りと判定した場合は、ステップ394で始点
・終点候補間を直線補完して、これをベースラインと見
てピークと置き換える。ステップ394でベースライン
置き換え処理後もしくはステップ392でピークと判断
できない場合は、ステップ396でピーク検索処理が終
点に達したかどうかを判定し、終点に達したならば処理
を終了し、終点に達してないときは、ステップ398で
現在の終点候補を検索開始始点に置き換えて同様の処理
を行う。以上のように、第一の実施例とは、終点候補の
設定法に違いがある。すなわち、第一の実施例では終点
候補を始点候補に隣あう極小値としていたのに対し、第
二の実施例では複数の極小値と始点間の平均振幅を求
め、始点に近い平均振幅の極大値に対する極小値を終点
候補に設定している。
【0026】図11の周波数スペクトルを例にしてピー
ク除去処理の手順を説明する。f2を始点候補とする。
計測振幅の極小値探索によりf2〜f5の極小値を見つけ
る。f6はスペクトルの端部であり、ここでは極小値と
同等に扱う。f2〜f3、f2〜f4、f2〜f5、f2〜f6
間の平均面積を求める。f2〜f3間の平均振幅が始点か
ら始めて最初の極大であるため、f3を終点候補に設定
する。以下は、第一の実施例と同様に始点及び終点候補
周辺の平均振幅と、f2〜f3間の平均振幅を比較してピ
ークかどうかの判定を行う。この場合は、ピークと判定
してf2〜f3間をベースラインに置き換える。次に、始
点候補をf3に設定して同様の処理を行う。終点候補と
して、f5を設定しf3〜f5間をベースラインに置き換
える。第一の実施例においてはf3〜f4、f4〜f5間そ
れぞれについてピーク判別を行っており、場合によって
はf3〜f4間を除去できないような場合もあるが、第二
の実施例ではこのような小さなピークも除けるようにな
っており、小さなピークが存在するような場合にも正し
くピーク除去ができる。なお、第二の実施例ではピーク
除去を低周波側から高周波側に進めている。低周波側か
ら高周波側に向かってピーク除去処理をした後、高周波
側から低周波側に向かって同様の処理を行えば、さらに
ピーク除去性能は向上する。特に、幅広ピークに狭いピ
ークが重畳した複雑ピークの除去に適する。
【0027】第一の実施例、第二の実施例のような監視
系においては、設計段階で異常音が発生したときにどの
程度の時間で異常が検知できるか定量的に示すことが必
要とされることがある。そこで、第一の実施例、第二の
実施例においては、上述したように基本的な信号処理は
リアルタイムで実施し、スペクトルスムージング部34
のローパスフィルタ34−1〜34−nと補正振幅演算
部38のローパスフィルタ382は双一次変換で求めた
解析的な表現が可能なフィルタをデジタル的に実現して
いる。解析的な表現が可能なデジタルフィルタの表現方
法としては、アナログフィルタを標準Z変換する方法や
双一次変換する方法等がある。
【0028】当然のことであるが、本発明を流体が隙間
を通ることで生じる共鳴状雑音が発生している機器のケ
ーシング電播音を用いる音響監視に適用すれば、従来隙
間共鳴状雑音に隠れていた異常音響の監視が可能とな
る。さらに、共鳴状雑音除去後の音響監視に従来の音響
異常識別手法を適用することで、詳細な音響監視も可能
となる。なお、本発明を共鳴状の雑音である電磁音、気
中共鳴音、細隙部を流体が通過することによる共鳴音等
の雑音除去に用いることで、これら雑音に埋もれた異常
徴候を示す音響成分をSN比良く検出できるようになる
のは勿論である。本明細書では単に音響と記述している
が、これは可聴音のみを指しているのではなく、いわゆ
る振動、超音波等の弾性波も含んでおり、例えばポンプ
等の機器壁を伝わる弾性波を用いる監視にも本発明が適
用できる。
【0029】本発明の特有の効果として下記の項目が挙
げられる。
【0030】(1)ピーク自動除去ステップを解析的に表
現できるような構成とする事により、音響監視装置の性
能把握が解析的に実現でき、設計のマンパワー削減が可
能となり、音響監視装置の性能向上の効果がある。
【0031】(2)音響信号を周波数領域に変換し、周波
数領域上でピークの有無を正確にかつ詳細に判別する機
構を採用することにより、複雑なピークも確実に除くこ
とが可能となり、音響監視装置の誤動作低減に寄与で
き、音響監視装置の信頼性向上の効果がある。
【0032】(3)図5のピーク除去方式を採用すること
で、音響監視装置の簡単化が図れ、経済性向上の効果が
ある。
【0033】(4)従来のアナログ方式の漏洩検出器では
共鳴音発生周波数の成分はすべて除去する処理を行って
いたが、本実施例ではベースラインを残すようにしてあ
る。これにより信号である漏洩音成分の信号処理による
除去が少なくなるので、より漏洩検出器の高感度化に寄
与でき、音響監視装置の性能向上の効果がある。
【0034】
【発明の効果】本発明によれば、プラント正常運転時に
も発生し異常音検出の感度低下要因になる複数の共鳴状
雑音が自動的に除去できるので、異常音検出の感度向上
が可能となり、音響監視装置の性能向上の効果がある。
【図面の簡単な説明】
【図1】原子力発電プラントの冷却材の漏洩検出に用い
た、本発明の一実施例に係る音響監視装置を示す図であ
る。
【図2】図1の雑音除去部3の構成を示す図である。
【図3】図2のスペクトルスムージング部34の詳細構
成を示す図である。
【図4】図2のピーク自動除去部36で用いたピーク除
去処理の方法を示す図である。
【図5】図4のピーク除去処理方法を具体化したフロー
チャートを示す図である。
【図6】音響信号の周波数スペクトルを示す図である。
【図7】ピーク自動除去処理前後の周波数スペクトルを
示す図である。
【図8】図2の補正振幅演算部38の詳細構成を示す図
である。
【図9】共鳴状雑音の除去処理の効果を示す図である。
【図10】第二の実施例のピーク除去処理方法を具体化
したフローチャートを示す図である。
【図11】第二の実施例の音響信号の周波数スペクトル
を示す図である。
【符号の説明】
3…雑音除去部、9…異常判別部、11…マイクロホ
ン、20…増幅部、30…AD変換部、32…周波数分
析部、34…スペクトルスムージング部、36…ピーク
自動除去部、38…補正振幅演算部、102…漏洩点、
103…冷却材配管、381…加算部、382…ローパ
スフィルタ

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】プラントの監視対象の音響信号を計測する
    ステップと、該計測された音響信号を増幅するステップ
    と、該増幅された音響信号を周波数領域に変換するステ
    ップと、該変換された音響信号の周波数スペクトルの計
    測振幅の極小値から前記周波数スペクトルのピーク領域
    の始点及び終点を求め、前記始点と前記終点間の平均振
    幅を算出し、前記平均振幅と予め設定した基準値を比較
    し、該比較結果からピークを判別するステップと、前記
    ピーク領域の前記始点と前記終点を補完しピーク除去を
    行うステップと、該ピ−ク除去した周波数領域上の音響
    信号から補正振幅を算出するステップと、該算出された
    補正振幅の大きさにより前記監視対象の異常の有無を判
    別するステップを有することを特徴とする音響監視方
    法。
  2. 【請求項2】プラントの監視対象の音響信号を計測する
    ステップと、該計測された音響信号を増幅するステップ
    と、該増幅された音響信号を周波数領域に変換するステ
    ップと、該変換された音響信号の周波数スペクトルの計
    測振幅の極小値から前記周波数スペクトルのピーク領域
    の始点及び終点を求め、前記始点と前記終点間の平均振
    幅を算出し、前記平均振幅と予め設定した基準値を比較
    し、該比較結果からピークを判別するステップと、前記
    ピーク領域を前記始点と前記終点とを補完したベースラ
    インに置き換えることでピーク除去を行うステップと、
    該ピ−ク除去した周波数領域上の音響信号から補正振幅
    を算出するステップと、該算出された補正振幅の大きさ
    により前記監視対象の異常の有無を判別するステップを
    有することを特徴とする音響監視方法。
  3. 【請求項3】請求項1、請求項2の音響監視方法におい
    て、前記ピークを判別するステップで設定した前記基準
    値は、前記ピーク領域の前記始点及び前記終点周辺の平
    均振幅と所定のピーク判別係数とで決めることを特徴と
    する音響監視方法。
  4. 【請求項4】請求項1ないし請求項3の音響監視装置に
    おいて、前記平均振幅は、前記計測振幅の積分値から算
    出することを特徴とする音響監視方法。
  5. 【請求項5】請求項1、請求項2の音響監視方法におい
    て、前記ピークを判別するステップが、前記終点の候補
    を複数定め、候補毎のピーク領域平均振幅を始点の近く
    から順に比較し最初の極大の終点候補を終点にし、前記
    ピーク領域平均振幅が前記設定した基準値よりも所定係
    数倍大きいかどうか判別することを特徴とする音響監視
    方法。
  6. 【請求項6】請求項1、請求項2の音響監視方法におい
    て、前記ピークを判別するステップと前記ピーク除去を
    行うステップを、前記周波数スペクトルの低周波側と高
    周波側の両方から行うことを特徴とする音響監視方法。
  7. 【請求項7】プラントの監視対象の音響信号を計測する
    音響計測部と、該音響計測部で計測された前記音響信号
    を増幅する増幅部と、該増幅部で増幅された前記音響信
    号を周波数領域に変換し、ピーク除去して補正振幅を算
    出する雑音除去部と、該雑音除去部で算出された前記補
    正振幅の大きさにより前記監視対象の異常の有無を判別
    する異常判別部を備えた音響監視装置において、前記雑
    音除去部は、前記増幅部で増幅された前記音響信号をア
    ナログ信号からデジタル信号に変換するAD変換部と、
    前記AD変換部でデジタル信号に変換された前期音響信
    号を周波数領域に変換する周波数分析部と、該周波数分
    析部で変換された前記音響信号の周波数スペクトルの計
    測振幅の極小値から前記周波数スペクトルのピーク領域
    の始点及び終点を求め、前記始点と前記終点間の平均振
    幅を算出し、前記平均振幅と予め設定した基準値を比較
    し、該比較結果からピークを判別し、前記ピーク領域の
    前記始点と前記終点を補完しピーク除去を行うピーク自
    動除去部と、該ピ−ク除去した周波数領域上の前記音響
    信号から補正振幅を算出する補正振幅演算部とを有する
    ことを特徴とする音響監視装置。
  8. 【請求項8】請求項7の音響監視装置において、前記雑
    音除去部に前記周波数スペクトルを時間軸上でスムージ
    ング処理するスペクトルスムージング部を付加すること
    を特徴とする音響監視装置。
  9. 【請求項9】請求項7の音響監視装置において、ピーク
    除去して前記補正振幅を算出する前記雑音除去部が、解
    析的に表現可能な雑音除去部であることを特徴とする音
    響監視装置。
JP5233297A 1993-09-20 1993-09-20 音響監視方法及び装置 Pending JPH0783787A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5233297A JPH0783787A (ja) 1993-09-20 1993-09-20 音響監視方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5233297A JPH0783787A (ja) 1993-09-20 1993-09-20 音響監視方法及び装置

Publications (1)

Publication Number Publication Date
JPH0783787A true JPH0783787A (ja) 1995-03-31

Family

ID=16952903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5233297A Pending JPH0783787A (ja) 1993-09-20 1993-09-20 音響監視方法及び装置

Country Status (1)

Country Link
JP (1) JPH0783787A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106926A (ja) * 2001-09-27 2003-04-09 Hitachi Ltd 気体漏れ検査方法及びその装置
WO2014050990A1 (ja) * 2012-09-27 2014-04-03 日本電気株式会社 漏洩判定方法、漏洩判定装置、測定端末及びプログラム
JP2015017894A (ja) * 2013-07-11 2015-01-29 株式会社デンソー ハニカム構造体の欠陥検査方法
KR20160027351A (ko) * 2014-08-28 2016-03-10 주식회사 아이티매직 사운드 신호에서 진단 신호를 추출하는 방법 및 진단 장치
CN107942027A (zh) * 2018-01-08 2018-04-20 江苏省农业科学院 一种蟹类水下生活环境适宜性检测方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106926A (ja) * 2001-09-27 2003-04-09 Hitachi Ltd 気体漏れ検査方法及びその装置
WO2014050990A1 (ja) * 2012-09-27 2014-04-03 日本電気株式会社 漏洩判定方法、漏洩判定装置、測定端末及びプログラム
JP2015017894A (ja) * 2013-07-11 2015-01-29 株式会社デンソー ハニカム構造体の欠陥検査方法
KR20160027351A (ko) * 2014-08-28 2016-03-10 주식회사 아이티매직 사운드 신호에서 진단 신호를 추출하는 방법 및 진단 장치
CN107942027A (zh) * 2018-01-08 2018-04-20 江苏省农业科学院 一种蟹类水下生活环境适宜性检测方法及装置
CN107942027B (zh) * 2018-01-08 2023-03-28 江苏省农业科学院 一种蟹类水下生活环境适宜性检测方法及装置

Similar Documents

Publication Publication Date Title
JP2002022617A (ja) 軸受診断装置
JPH09166483A (ja) 機器監視方法及びその装置
US10365297B2 (en) System and method for generation of a tachometer signal and reduction of jitter
JP2009229184A (ja) 高調波探査方法および高調波探査装置
CN101763853A (zh) 噪声检测装置、噪声去除装置和噪声检测方法
WO2020057066A1 (zh) 基于增强调制双谱分析的滚动轴承故障诊断方法
JP2013224847A (ja) 状態監視装置、及び回転機械
US20170350919A1 (en) Tachometer signal jitter reduction system and method
JP7162740B2 (ja) 振動検出装置、異常判定方法および異常判定システム
Zhao et al. Vibration health monitoring of rolling bearings under variable speed conditions by novel demodulation technique
JP3688400B2 (ja) 配管漏洩位置特定方法における信号処理方法
Wang et al. Application of RSSD-OCYCBD strategy in enhanced fault detection of rolling bearing
Berntsen et al. Enhanced demodulation band selection based on Operational Modal Analysis (OMA) for bearing diagnostics
JPH0783787A (ja) 音響監視方法及び装置
Alfayez et al. Detection of incipient cavitation and determination of the best efficiency point for centrifugal pumps using acoustic emission
JPH03291539A (ja) 電動機のころがり軸受の異常検出方法
JPH10185745A (ja) 配管漏洩位置特定方法における信号処理方法
JPH10221197A (ja) 漏洩検知方法及びその装置
RU2754620C1 (ru) Способ контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом
JP2907921B2 (ja) 弁漏洩監視装置
WO2022152336A1 (en) A method for monitoring turbine blade vibration
JP2012177653A (ja) 音響診断方法、プログラム及び装置
JPH0656349B2 (ja) 漏洩検出器
JP2932996B2 (ja) 高調波ピッチ検出装置
US20230114896A1 (en) Noise detection device and method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131108

LAPS Cancellation because of no payment of annual fees