WO2014050954A1 - 熱延鋼板およびその製造方法 - Google Patents

熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014050954A1
WO2014050954A1 PCT/JP2013/076027 JP2013076027W WO2014050954A1 WO 2014050954 A1 WO2014050954 A1 WO 2014050954A1 JP 2013076027 W JP2013076027 W JP 2013076027W WO 2014050954 A1 WO2014050954 A1 WO 2014050954A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
less
rolled steel
total
Prior art date
Application number
PCT/JP2013/076027
Other languages
English (en)
French (fr)
Inventor
丸山 直紀
龍雄 横井
棚橋 浩之
瀬戸 厚司
淳 伊丹
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2014501767A priority Critical patent/JP5574070B1/ja
Priority to BR112015005020A priority patent/BR112015005020B1/pt
Priority to IN2550DEN2015 priority patent/IN2015DN02550A/en
Priority to KR1020157007425A priority patent/KR101654492B1/ko
Priority to MX2015002759A priority patent/MX2015002759A/es
Priority to US14/430,410 priority patent/US9903023B2/en
Priority to CN201380050693.9A priority patent/CN104704136B/zh
Priority to PL13841281T priority patent/PL2902520T3/pl
Priority to EP13841281.2A priority patent/EP2902520B1/en
Priority to ES13841281T priority patent/ES2714316T3/es
Publication of WO2014050954A1 publication Critical patent/WO2014050954A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a hot-rolled steel sheet having a tensile strength of 720 MPa or more and excellent in corrosion resistance, fatigue characteristics and bending workability after electrodeposition coating, and a method for producing the same.
  • the present invention relates to a hot-rolled steel sheet suitable for materials such as building materials and industrial machines, as well as frames and members of automobiles and trucks to which electrodeposition coating is applied, suspension arms, wheels, etc., and a method for manufacturing the same.
  • This application claims priority based on Japanese Patent Application No. 2012-213728 for which it applied to Japan on September 27, 2012, and uses the content here.
  • Hot-rolled steel plates are often used for members such as automobile and truck chassis or wheels, and bending workability and excellent fatigue durability are required.
  • Patent Documents 1 to 3 As a method for improving the formability and fatigue properties of hot-rolled steel sheets, as shown in Patent Documents 1 to 3, so-called dual phase steel, in which a structure containing hard martensite is dispersed in a soft ferrite-based metal structure.
  • a method is disclosed. These methods are characterized by adding an alloy element such as Si or Al, which has an effect of promoting ferrite formation during cooling after finish rolling in the hot rolling process.
  • the fatigue characteristics of the punched parts are also required for steel plates used in automobiles and truck chassis and wheels. This is because the roughness of the end face punched by the shear or the punch is often larger than the roughness of the steel sheet surface, and the punched end face is the preferential occurrence position of the fatigue crack.
  • Patent Documents 4 and 5 disclose high-strength hot-rolled steel sheets that prevent damage to the punched end faces.
  • Patent Documents 6 and 7 disclose steel sheets having excellent notch fatigue strength. These steel sheets are mainly composed of ferrite and bainite.
  • Patent Document 8 is based on a metal structure having ferrite as a main phase, and has a structure form in which martensite and retained austenite are dispersed in an appropriate amount while increasing strength while utilizing precipitation strengthening of alloy carbide.
  • a method is disclosed in which the roughness of the punched fracture surface is significantly reduced and the occurrence of fatigue cracks from the punched portion is remarkably suppressed.
  • Patent Document 9 discloses a steel sheet excellent in paint adhesion and punching fatigue characteristics, which has been improved in strength by a martensite and bainite structure as a metal structure having a ferrite phase as a main phase.
  • the bending fatigue endurance of the original plate and the punched portion may be low, and if electrodeposition coating is performed after pickling, good post-coating corrosion resistance may not always be obtained. was there. Further, when bending or drawing / bending composite molding is performed, cracks may occur or the fatigue characteristics of these molded members may deteriorate.
  • Patent Document 9 is mainly intended to improve the paint adhesion of the black skin material. When severe processing such as drawing is applied to the steel sheet, scale peeling or cracking occurs, or bending fatigue property of the base material. There was also a problem.
  • the present invention has been made in view of the above problems, and even when electrodeposition coating is applied to a high-strength hot-rolled steel sheet having a maximum tensile strength of 720 MPa or more, good corrosion resistance and fatigue characteristics of the base material It is an object of the present invention to provide a hot-rolled steel sheet that can obtain fatigue characteristics of a punched portion and has good bending workability, and a method for manufacturing the hot-rolled steel sheet.
  • the inventors first focused on hot-rolled steel sheets having a maximum tensile strength of 720 MPa or more, which can be expected to significantly reduce the weight of the members, and studied a method for reducing the roughness of the punched end face.
  • FIG. 1 shows a state of a hot rolled steel sheet with a scale in which a black skin (scale) 3 is attached to the surface 1 a of the base material 1.
  • the oxide 2 containing one kind or two or more kinds is precipitated.
  • the present inventors investigated the cause of bending workability deterioration using a hot-rolled steel sheet that had been pickled to remove scale. As a result, it was found that the bendability deteriorates when a network-like oxide containing one or more of Si, Al, Mn, and Fe remains in the surface layer of the steel sheet. The cause of this is not clear, but it is considered that the presence of oxides at the grain boundaries reduces the grain boundary strength, and that part is the starting point for crack initiation during the bending test.
  • the present inventors diligently studied a method for suppressing the formation of a network-like oxide containing one or more of Si, Al, Mn, and Fe. As a result, the amount of addition of Mn, Al, Si, Ti, Nb, etc. is optimized, and the water surface of the steel sheet surface during hot rolling (the presence of water on the steel sheet surface), rolling conditions and cooling conditions. It has been found that the formation of this oxide can be suppressed by controlling.
  • the present inventors conducted extensive studies based on the results of the above experiments. Then, by adding martensite and residual austenite to the metal structure mainly composed of precipitation strengthened ferrite, and further optimizing the addition amount of the alloy element, Si, Al existing in the surface layer portion of the base material It has been found that the formation of an oxide containing one or more of Mn and Fe can be suppressed. As a result, it is possible to obtain excellent bending formability, draw bending workability and stretch formability, excellent fatigue characteristics at the punched portion, stable bending fatigue characteristics, and excellent tensile resistance after electrodeposition coating. A high-strength hot-rolled steel sheet having a strength of 720 MPa or more was completed. That is, the gist of the present invention is as follows.
  • Average cooling rate between finish rolling finish temperature and Ar 3 temperature is 25 ° C./s or more
  • average cooling rate between Ar 3 temperature and 730 ° C. is 30 ° C./s or more
  • average between 730 ° C. and 670 ° C. Cooling at a cooling rate of 12 ° C./s or less and an average cooling rate between 670 ° C. and 550 ° C. of 20 ° C./s or more,
  • a method for producing a hot-rolled steel sheet wherein the hot-rolled steel sheet obtained by the method according to [10] is pickled, heated to 800 ° C. or lower, and immersed in a plating bath.
  • the hot-rolled steel sheet of the present invention excellent bending formability, paint corrosion resistance, bending fatigue characteristics of the base material, and fatigue characteristics of the punched portion can be obtained by the above configuration.
  • the thickness of the component plate was set in consideration of the amount of thickness reduction due to corrosion.
  • the hot-rolled steel sheet of the present invention has excellent coating corrosion resistance, it is possible to reduce the thickness of parts, and to reduce the weight of automobiles or trucks. Further, even when the conventional steel sheet is given high strength, the fatigue strength of the punched portion is hardly improved.
  • the hot-rolled steel sheet of the present invention has excellent bending fatigue characteristics of the base metal and fatigue characteristics of the punched portion, and thus is extremely suitable for reducing the weight of the member.
  • FIG. 1 is a photomicrograph of the periphery of the surface layer portion of a dual phase steel sheet containing Si, Al, and Mn.
  • FIG. 1 the state of the hot rolled steel plate with a scale in which the black skin (scale) adhered to the surface of the base material is shown.
  • the hot-rolled steel sheet according to the embodiment of the present invention is mass%, C: 0.05 to 0.15%, Si: 0 to 0.2%, Al: 0.5 to 3.0%, Mn: 1.2 to 2.5% P: 0.1% or less, S: 0.01% or less, N: 0.007% or less, Ti: 0.03-0.10%, Nb: 0.008 to 0.06%, V: 0 to 0.12%, One or more of Cr, Cu, Ni, and Mo: 0 to 2.0% in total, B: 0 to 0.005%, One or more of Ca, Mg, La, and Ce: 0 to 0.01% in total And Total amount of Si and Al: 0.8 ⁇ (Mn ⁇ 1)% or more, Total amount of Ti and Nb: 0.04 to 0.14% And The balance is Fe and impurities,
  • the steel structure has a total area ratio of martensite and retained austenite of 3 to 20%, an area ratio of ferrite of 50 to 96%, and an area ratio of pearlite of 3% or
  • C Carbon 0.05 to 0.15%
  • C is used for tissue control. If the C content is less than 0.05%, it is difficult to ensure 3% or more of martensite and retained austenite in total area ratio. On the other hand, if the C content exceeds 0.15%, a pearlite structure appears and the fatigue characteristics of the punched portion are deteriorated. Therefore, in the present invention, the appropriate range of C is limited to the range of 0.05 to 0.15%. Note that the lower limit of the amount of C is preferably 0.055%, and more preferably 0.06%. Further, the upper limit of the C content is preferably 0.14%, and more preferably 0.13%.
  • Si: silicon 0-0.2%
  • the inclusion of Si is not essential, but the ferrite fraction can be increased by containing Si.
  • the Si content exceeds 0.2%, the surface layer portion of the network oxide increases, and the zinc phosphate crystals formed by the chemical conversion treatment in the electrodeposition coating process (electrodeposition coating base film) Is not densely formed.
  • the adhesion between the steel sheet and the paint deteriorates after electrodeposition coating, and it becomes difficult to ensure the corrosion resistance after electrodeposition coating.
  • a large amount of Si—Mn oxide is formed on the surface layer during the hot rolling process, and fatigue characteristics and bending workability deteriorate. For this reason, the appropriate range was made 0.2% or less.
  • the Si content is preferably 0.18% or less, and more preferably 0.15% or less.
  • the lower limit of the Si content is not particularly limited, but if it is less than 0.001%, the production cost increases, so 0.001% or more is preferable.
  • Al Aluminum
  • Al 0.5-3.0%
  • Al is an element that increases the ferrite fraction. If the Al content is less than 0.5%, the ferrite fraction cannot be secured, and the strength, formability, and fatigue characteristics of the punched end face cannot be secured. On the other hand, if the Al content exceeds 3.0%, a large amount of oxide containing Al and Mn is formed in the surface layer portion, and the fatigue characteristics and bending workability deteriorate. 3.0%.
  • the lower limit of the Al content is preferably 0.6%.
  • the upper limit of the Al content is preferably 2.0%, more preferably 1.5%.
  • Mn Manganese 1.2-2.5% Mn is used for structure control and strength adjustment. If the Mn content is less than 1.2%, it becomes difficult to secure 3% or more of martensite and retained austenite in the total area ratio, and the fatigue characteristics of the punched portion are deteriorated. On the other hand, if the content of Mn exceeds 2.5%, it becomes difficult to secure 50% or more of ferrite in area ratio, the fatigue characteristics of the punched portion are lowered, and the thickness of the network-like oxide is reduced. Increases and decreases bending fatigue properties. Therefore, the appropriate range is limited to 1.2 to 2.5%. The lower limit of the Mn content is preferably 1.3%, more preferably 1.5%. Moreover, about the upper limit of content of Mn, it is preferable to set it as 2.4%, and 2.3% or less is a more preferable range.
  • P Phosphorus 0.1% or less P can be used for securing the strength of steel. However, if the content exceeds 0.1%, the roughness of the punched end surface is increased and the fatigue characteristics of the punched portion are lowered, so the proper range of P is set to 0.1% or less.
  • the lower limit of the P content is not particularly limited, and may be 0%. However, if it is less than 0.001%, the production cost increases, so 0.001% is a substantial lower limit. Note that the P content is preferably 0.05% or less, and more preferably 0.03% or less.
  • S Sulfur 0.01% or less S is an element that affects the fatigue characteristics of the base material. However, if the S content exceeds 0.01%, the roughness of the punched fracture surface increases and good punched portion fatigue characteristics cannot be obtained, so the appropriate range is set to 0.01% or less. Further, the lower limit of the S content is not particularly limited, and may be 0%. However, if it is less than 0.0002%, the manufacturing cost increases, so 0.0002% is a substantial lower limit. Note that the S content is preferably 0.006% or less, and more preferably 0.003% or less.
  • N Nitrogen
  • the N content is preferably 0.006% or less, and more preferably 0.005% or less.
  • Ti Titanium 0.03-0.10% Ti is used for precipitation strengthening of steel. Moreover, there exists an effect which suppresses formation of the network-like oxide formed in a surface layer part during a hot rolling process. However, when the Ti content is less than 0.03%, there is no effect of suppressing the network oxide, and it becomes difficult to secure a tensile strength of 720 MPa or more. On the other hand, if it exceeds 0.10%, the effect is saturated, the roughness of the punched portion is increased, the fatigue property of the punched portion is lowered, the yield ratio YR is further increased, and the formability is lowered. Therefore, the appropriate range is limited to 0.03 to 0.10%.
  • the lower limit of the Ti content is preferably 0.04%, more preferably 0.05%. Further, the upper limit of the Ti content is preferably 0.09%, more preferably 0.08%.
  • Nb: Niobium 0.008 to 0.06% Nb is used for microstructure control and precipitation strengthening of steel. Moreover, there exists an effect which suppresses formation of the network-like oxide formed in a surface layer part during a hot rolling process. However, when the Nb content is less than 0.008%, the effect is not obtained, and when it exceeds 0.06%, the roughness of the punched portion increases, and the fatigue properties of the punched portion are deteriorated. Therefore, the appropriate range is limited to 0.008 to 0.06%.
  • the lower limit of the Nb content is preferably 0.009%, and more preferably 0.10%.
  • the upper limit of the Nb content is preferably 0.055%, more preferably 0.05%.
  • Total amount of Si + Al Si and Al are both elements that increase the ferrite fraction. By containing 0.8% (Mn-1) mass% or more of Si and Al in total, ferrite having an area ratio of 50% or more can be secured, and good bending fatigue characteristics of the punched portion can be obtained. Furthermore, by making the total amount of Si and Al appropriate, the depth in the sheet thickness direction where the network-like oxide formed in the surface layer portion is present is optimized, and the bending fatigue characteristics of the steel sheet are improved.
  • the upper limit of the total amount of Si + Al is not particularly limited, but if the total amount of Si and Al exceeds 3.0%, the toughness decreases, so it is desirable that the upper limit is 3.0% or less.
  • Total amount of Ti + Nb Ti and Nb are used to increase the strength of steel by forming an alloy carbide of an appropriate size.
  • the total amount of Ti and Nb is less than 0.04%, it becomes difficult to ensure the maximum tensile strength of 720 MPa or more.
  • the total amount of Ti and Nb exceeds 0.14%, the roughness of the punched portion increases and the fatigue characteristics of the punched portion are deteriorated. For this reason, the appropriate range of the total amount of Ti + Nb is limited to 0.04 to 0.14%.
  • the following elements may be selectively contained as steel components.
  • V Vanadium 0-0.12%
  • V may be used for adjusting the strength of steel. If the V content is less than 0.01%, the effect is not obtained. Therefore, when V is contained, the V content is preferably 0.01% or more. On the other hand, if the V content exceeds 0.12%, the punched end surface roughness increases, and the fatigue characteristics of the punched portion may decrease. For this reason, the content of V is set to 0.12% or less.
  • the inclusion of Cr, Cu, Ni, and Mo is not essential, but Cr, Cu, Ni, and Mo may be used for controlling the structure of steel.
  • the total content of one or more of these elements is less than 0.02%, there is no effect due to the addition, so when containing one or more of these elements, It is desirable that the total content is 0.02% or more.
  • the total content of these exceeds 2.0%, the coating corrosion resistance decreases. For this reason, the appropriate range of the total content of these elements is set to 2.0% or less.
  • B Boron 0 to 0.005%
  • B is not essential, but B may be used for the structure control of the steel sheet. If the B content is less than 0.0003, the effect is not exhibited. Therefore, when B is contained, the B content is preferably 0.0003% or more. On the other hand, if the content of B exceeds 0.005%, it becomes difficult to secure 50% or more of ferrite, and the bending fatigue characteristics may be deteriorated. For this reason, content of B shall be 0.005% or less.
  • the inclusion of Ca, Mg, La, and Ce is not essential, but Ca, Mg, La, and Ce may be used for deoxidation of steel. If the total amount of one or more of these elements is less than 0.0003%, there is no effect, so when these elements are contained, the total content is 0.0003% or more. It is desirable. On the other hand, if it exceeds 0.01%, the fatigue characteristics are degraded. For this reason, the appropriate range of the total content of these elements is set to 0.01% or less.
  • the balance other than the above elements is Fe and impurities.
  • impurities include those contained in raw materials such as ores and scrap, and those contained in the production process, but are not particularly limited, and appropriately contain various elements within a range that does not impair the effects of the present invention. May be.
  • the appropriate range of the total area ratio of martensite and retained austenite is limited to 3 to 20%.
  • the total area ratio of martensite and retained austenite is preferably 5% or more, and more preferably 7% or more. Further, the total area ratio of martensite and retained austenite is preferably 18% or less, and more preferably 15% or less.
  • martensite has an effect of smoothing the punched end face even if it is tempered martensite.
  • the martensite includes both so-called fresh martensite and tempered martensite.
  • the effect of reducing the roughness of the punched end face is slightly greater in retained austenite, so it is preferable that a certain amount of retained austenite is contained. If the area ratio of the retained austenite is less than 1%, the effect is not clear. On the other hand, if it exceeds 6%, the fatigue characteristics of the base metal are reduced. Therefore, the area ratio of the retained austenite is preferably 1 to 6%.
  • the ferrite In order to ensure the martensite or retained austenite that contributes to the improvement of the fatigue properties of the base metal and the improvement of the roughness of the punched end face, the ferrite needs to be contained in an appropriate area ratio. When the area ratio of ferrite is less than 50%, it becomes difficult to make martensite or retained austenite in the appropriate amount as described above, and the fatigue characteristics of the punched portion are deteriorated. On the other hand, when the area ratio of ferrite exceeds 96%, the roughness of the punched end surface increases, and the bending fatigue characteristics of the punched portion are deteriorated. For this reason, the appropriate range of the area ratio of ferrite is limited to 50 to 96%.
  • the ferrite fraction is preferably 70% or more, more preferably 75% or more. Further, the area ratio of ferrite is preferably 93% or less, and more preferably 90% or less.
  • ferrite is “steel bainite photo collection-1” Japan Iron and Steel Association (1992)
  • p. 4 may be any of the polygonal ferrite ( ⁇ p), pseudopolygonal ferrite ( ⁇ q), and granular bainitic ferrite ( ⁇ B).
  • Perlite area ratio Perlite increases the roughness of the punched portion. If the area ratio exceeds 3%, the bending fatigue characteristics of the punched portion tend to decrease and the tensile strength tends to decrease. Therefore, the appropriate range is limited to 3% or less. The smaller the amount of pearlite, the better. The lower limit is 0%. In the present invention, pearlite includes pearlite and pseudo-pearlite.
  • the remainder of the metal structure may be bainite.
  • the bainitic ferrite ( ⁇ ° B) described in 4 is classified into bainite.
  • the area ratio of ferrite, bainite, pearlite, and martensite can be measured by a point count method or image analysis using a structure photograph taken with an optical microscope or a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the distinction between granular bainitic ferrite ( ⁇ B) and bainitic ferrite ( ⁇ ° B) is made based on Reference 1 by observing the structure with an SEM and a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the fraction of retained austenite is measured by the X-ray diffraction method.
  • ⁇ Reticulated network oxide> A network-like oxide containing one or more of Si, Al, Mn, and Fe formed during the hot rolling process in the surface layer of the steel sheet deteriorates bending fatigue properties and corrosion resistance after coating. Let If the thickness (depth) in the thickness direction of the area where the network-like oxide exists is 0.5 ⁇ m or more, the bending workability, the bending fatigue characteristics, and the corrosion resistance after coating are lowered. Was limited to 0.5 ⁇ m or less. Note that oxides that affect bending workability and bending fatigue properties are network oxides formed at the grain boundaries near the surface of the base metal in the hot rolling process, and are formed in the steel during the refining and casting processes. It does not include oxides that are uniformly dispersed.
  • the alloy carbide containing Ti and the alloy carbide containing Nb are precipitates that contribute to precipitation strengthening. However, if the average particle diameter exceeds 10 nm, it becomes difficult to ensure a maximum tensile strength of 720 MPa or more, so it is desirable to limit the appropriate range to 10 nm or less. Even if the alloy carbide contains a small amount of N, V, and Mo, the effect on precipitation strengthening does not change at all.
  • the alloy carbide containing Ti may contain N, V, and Mo in addition to Ti and C.
  • the alloy carbide containing Nb may contain N, V, and Mo in addition to Nb and C. In addition to both Ti and Nb and C, N, V, and Mo may be contained.
  • the particle size of the alloy carbide containing Ti and the alloy carbide containing Nb can be determined by observing precipitates in steel with a TEM for a sample thinned by electrolytic polishing or ion polishing, or using TEM for residues extracted by electrolysis. Observe and calculate as equivalent circle diameter of 100 or more alloy carbides.
  • ⁇ Maximum tensile strength of steel plate> when the maximum tensile strength of the steel sheet is less than 720 MPa, the effect of reducing the weight of the member is reduced, so the range is set to 720 MPa or more.
  • ⁇ Yield ratio 0.82 or less>
  • YP Yield stress
  • TS Tensile strength
  • cooling and 670 ° C. is 12 ° C./s or less, and the average cooling rate between 670 and 550 ° C.
  • cooling is performed at 20 ° C./s or more, and the film is wound at 530 ° C. or less.
  • a slab having the above component composition is heated, and then rough rolling and finish rolling are sequentially performed.
  • the heating conditions of slab and the conditions of rough rolling are not specifically limited, Each condition conventionally used can be employ
  • water existing on the surface of the steel sheet after the descaling before the finish rolling until the end of the finish rolling forms a network oxide in the surface layer portion of the steel sheet. It is an important factor that affects Usually, in the finish rolling process, the high-pressure water used for descaling, the water used for cooling the rolling roll, and the water for cooling the steel sheet between the rolling rolls are on the surface of the steel sheet. become. If the state in which no water is on the surface of the steel sheet between the end of descaling and the end of finish rolling is less than 3 seconds, the network oxide in the surface layer portion will remain excessively, and the bending fatigue characteristics will be descend. For this reason, the appropriate range of the holding time in a state where water is not on the surface of the steel sheet is set to 3 seconds or more. Preferably, hold for 4 seconds or more.
  • the finish rolling finish temperature FT is an important manufacturing parameter in controlling the oxidation behavior in the surface layer and the metal structure of the steel sheet.
  • the finishing temperature of finish rolling is less than 850 ° C., the thickness of the network-like oxide in the surface layer portion increases, and it becomes difficult to optimize the metal structure as described above.
  • the appropriate range of the finish rolling end temperature is limited to 850 ° C. or higher.
  • it shall be 870 degreeC or more.
  • the cooling rate between the finish rolling finish temperature FT to Ar 3 temperature is an important production parameter affecting the microstructure and strength of the steel. If the average cooling rate between these temperatures is less than 25 ° C./s, the area ratio of ferrite cannot be optimized. Therefore, in the present invention, the appropriate range of the average cooling rate between the FT and Ar 3 temperatures is set to 25 ° C./s or more. Preferably it shall be 45 degrees C / s or more.
  • the Ar 3 temperature is calculated by the following equation (1).
  • Ar 3 (° C.) 910-310 ⁇ C + 33 (Si + Al) ⁇ 80 ⁇ Mn-20 ⁇ Cu-15 ⁇ Cr-55 ⁇ Ni-80 ⁇ Mo (1)
  • each element symbol shows content (mass%) of each element.
  • the cooling rate between the Ar 3 temperature and 730 ° C. is an important production parameter that affects the formation of a network-like oxide in the surface layer portion.
  • the appropriate range of the average cooling rate between the Ar 3 temperature and 730 ° C. is set to 30 ° C./s or more. Preferably, it is set to 35 ° C./s or more.
  • the cooling rate between 730 and 670 ° C. is an important production parameter for securing the area ratio of ferrite in steel.
  • the appropriate range is set to 12 ° C./s or less.
  • it shall be 10 degrees C / s or less.
  • the cooling rate between 670 and 550 ° C. is an important production parameter for making the area ratio of martensite and retained austenite appropriate.
  • the appropriate range was 20 degrees C / s or more.
  • it shall be 25 degrees C / s or more.
  • the temperature at which the steel sheet is wound is an important production parameter for obtaining an appropriate amount of martensite and retained austenite.
  • the coiling temperature exceeds 530 ° C.
  • proper amounts of martensite and retained austenite cannot be obtained, and pearlite is easily formed.
  • the appropriate range of the coiling temperature of a steel plate was restrict
  • it is set as 510 degrees C or less.
  • Skin pass rolling or leveler rolling is not essential. However, since these are effective in improving shape correction, aging, and fatigue properties, they may be performed after pickling or after pickling as described later. When performing skin pass rolling, it is desirable that the upper limit of the rolling reduction be 3%. This is because if it exceeds 3%, the formability of the steel sheet is impaired.
  • pickling is performed to remove the black skin (scale) attached to the surface of the base material.
  • Pickling after the end of hot rolling has the effect of removing the network grain boundary oxide to some extent.
  • the manufacturing method as described above is not performed, it is difficult to reduce the target network grain boundary oxide layer thickness only by the pickling step after the end of hot rolling.
  • the above-described hot-rolled steel sheet may be further subjected to plating treatment or alloying plating treatment.
  • the steel sheet is heated using, for example, a continuous galvanizing facility or a continuous annealing galvanizing facility.
  • the steel sheet is immersed in a plating bath to perform hot dipping, and a plated layer is formed on the surface of the hot rolled steel sheet.
  • the heating temperature of the steel plate exceeds 800 ° C.
  • the metal structure of the steel plate changes, and the thickness in the thickness direction of the region containing the network-like oxide in the surface layer portion increases, ensuring fatigue characteristics. become unable.
  • the appropriate range of heating temperature is limited to 800 ° C. or less.
  • a plating alloying treatment may be performed to form an alloyed hot-dip galvanized layer.
  • the type of plating is not particularly limited. Any kind of plating may be used as long as the upper limit of the heating temperature is 800 ° C. or lower.
  • the fatigue limit ratio was calculated from ⁇ fatigue limit / TS (tensile strength) ⁇ .
  • a fatigue limit ratio of 0.45 or more can be ensured.
  • the fatigue limit ratio 0.36 or more can be secured. In the present invention, the fatigue limit ratio: 0.39 or more is a more preferable range.
  • the bending property of the steel sheet was tested according to the method described in JIS Z2248 at a bending angle of 180 ° and an inner radius of 1.5 t (t is the thickness of the steel sheet) by a push bending method.
  • t is the thickness of the steel sheet
  • the hot-rolled steel sheet according to the present invention as described above, excellent bending workability, paint corrosion resistance and fatigue durability can be obtained by the above configuration.
  • the thickness of the component plate was set in consideration of the thickness reduction due to corrosion.
  • the hot-rolled steel sheet of the present invention since the hot-rolled steel sheet of the present invention has excellent coating corrosion resistance, it is possible to reduce the thickness of parts, and to reduce the weight of automobiles or trucks.
  • the fatigue strength of the punched portion was hardly improved even when the strength was increased.
  • the hot-rolled steel sheet of the present invention has excellent bending fatigue characteristics of the base metal and fatigue characteristics of the punched portion, and further has excellent bending workability, so it is extremely suitable for reducing the weight of the member. .
  • thermoforming a hot-rolled steel sheet of the present invention by adopting the above procedure and conditions, hot-rolling with a maximum tensile strength of 720 MPa or more excellent in bending workability, corrosion resistance after electrodeposition coating and fatigue durability is achieved.
  • a steel plate can be manufactured.
  • this slab was reheated within a range of 1050 to 1300 ° C. and subjected to rough rolling.
  • finish rolling, cooling, and winding were performed under the conditions shown in Table 2 to produce a hot-rolled steel sheet.
  • the time during which there was no water on the surface of the steel sheet from the descaling before finish rolling to the end of finish rolling, the finish rolling finish temperature, the cooling conditions, and the coiling temperature were changed. Subsequently, the pickling process was performed and the evaluation test was done about what removed the scale of the surface of the steel plate.
  • test number A-12 the hot-rolled steel sheet obtained in test number A-1 was pickled, annealed at 650 ° C., and subsequently galvanized.
  • test number A-13 the hot-rolled steel sheet obtained in test number A-1 was pickled and then annealed at 600 ° C., followed by galvanization and galvanization alloying.
  • the fatigue limit ratio was calculated from ⁇ fatigue limit / TS (tensile strength) ⁇ .
  • the punching process for providing the pierced hole was performed under the condition of a clearance of 10% using a new punch with a diameter of 10 mm.
  • the fatigue limit ratio of 0.39 or more was evaluated as having good fatigue characteristics at the punched portion.
  • the bending properties of the steel sheet were collected so that the length of the test piece was perpendicular to the rolling direction, and according to the method described in JIS Z2248, the bending angle was 180 ° by the push bending method, and the inner radius was 1.5 t (t is the thickness of the steel sheet). (Thickness) was tested. A case where no crack or fracture at the top of the bending head was observed was evaluated as good (good).
  • the tensile properties of the steel plates were evaluated by collecting JIS No. 5 test pieces from each steel plate and conducting a tensile test under the conditions such that the tensile direction was perpendicular to the rolling direction (C direction).
  • the thickness of the region where the network-like oxide exists in the surface layer portion of the steel plate was determined as an average value of three or more observation regions by observing the metal structure of the cross section of the steel plate by SEM observation.
  • the hot-rolled steel sheet pickled is degreased, then zinc phosphate treatment (chemical conversion treatment) is performed as a pretreatment, and then cationic electrodeposition coating is performed at a thickness of 25 ⁇ m.
  • a baking process was performed at 20 ° C. for 20 minutes.
  • the 200h salt spray test SST test
  • the coating film at the time of performing a tape peeling test after this test The peeling width of was measured.
  • variety of the coating film of 2 mm or less was evaluated in two steps as "(circle) (good corrosion resistance)" and the thing exceeding 2 mm was evaluated as "x (poor corrosion resistance)".
  • Table 1 shows a list of steel components
  • Table 2 shows the thickness of the hot-rolled steel sheet from the surface of the mesh-like oxide, bending fatigue characteristics, fatigue characteristics of the punched portion, tensile strength (TS), yield.
  • TS tensile strength
  • the hot-rolled steel sheet of the comparative example is inferior in at least one of bending workability, paint corrosion resistance or punched portion fatigue characteristics because at least any one of the above-mentioned regulations in the present invention is out of the range. As a result.
  • test number A-4 the finish rolling finish temperature FT was below the appropriate range, so that the area where the network-like oxide was present was thick, the bending fatigue characteristics of the steel plate and the punched portion were low, and the corrosion resistance after coating was poor. became.
  • K-1, M-1, N-1, S-1, and W-1 are not suitable steel components, so that the internal oxide layer on the surface layer of the steel is thick and the bending fatigue characteristics of the original plate and the punched portion are low. The corrosion resistance after painting was poor.
  • Test Nos. A-10, A-11, D-3, and D-4 had a slow cooling rate between Ar 3 and 730 ° C., and the network-like oxide existing in the surface layer portion became thick. Fatigue properties decreased.
  • Test Nos. J-1, L-1, and U-1 are not suitable steel components, so the area ratio of ferrite is low, the area ratio of martensite and retained austenite is outside the proper range, or the area ratio of pearlite , The roughness of the punched fracture surface increased, and the bending fatigue characteristics of the punched portion decreased.
  • the hot-rolled steel sheet of the present invention and the method for producing the same show good bending even when electrodeposition coating is applied to a high-strength hot-rolled steel sheet having a maximum tensile strength of 720 MPa or more. It is clear that processing characteristics, good corrosion resistance and bending fatigue characteristics of the base metal and the punched part can be obtained.
  • a high-strength hot-rolled steel sheet excellent in bending workability, paint corrosion resistance, and fatigue characteristics of a base material and a punched portion, which is suitable as a material for a frame or member of an automobile or a truck, a chassis, etc. can be provided.
  • the present invention by applying the present invention to automobile and truck frames, members, chassis, and other members, it is possible to improve the corrosion resistance after painting, the fatigue strength of the stamped member, and the weight reduction. Can be fully enjoyed, and the industrial effect is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 質量%でC:0.05~0.15%、Si:0~0.2%、Al:0.5~3.0%、Mn:1.2~2.5%、P:0.1%以下、S:0.01%以下、N:0.007%以下、Ti:0.03~0.10%、Nb:0.008~0.06%、V:0~0.12%、Cr、Cu、Ni、Moの1種又は2種以上:合計で0~2.0%、B:0~0.005%、Ca、Mg、La、Ceの1種又は2種以上:合計で0~0.01%であり、SiおよびAlの合計量:0.8×(Mn-1)%以上、TiおよびNbの合計量:0.04~0.14%であり、残部がFeおよび不純物であり、鋼組織がマルテンサイトと残留オーステナイトの面積率が合計で3~20%、フェライトの面積率が50~96%、パーライトの面積率が3%以下であり、表層部において網目状の酸化物が存在する領域の板厚方向の厚さが0.5μm未満であり、最大引張強度が720MPa以上である熱延鋼板。

Description

熱延鋼板およびその製造方法
 本発明は、電着塗装後の耐食性と疲労特性と曲げ加工性に優れた引張強度720MPa以上の熱延鋼板およびその製造方法に関する。本発明は、特に、電着塗装を施す自動車やトラックのフレームやメンバー、サスペンションアーム、ホイールなどの他、建材や産業機械などの素材として好適な熱延鋼板およびその製造方法に関する。本願は、2012年9月27日に日本に出願された特願2012-213728号に基づき優先権を主張し、その内容をここに援用する。
 自動車やトラックのシャシーあるいはホイールといった部材には熱延鋼板が多く用いられ、曲げ加工性や優れた疲労耐久性が求められている。
 熱延鋼板の成形性と疲労特性を向上させる方法として、特許文献1~3に示すように、軟質なフェライト主体の金属組織の中に硬質なマルテンサイトを含む組織を分散させる、いわゆるDual Phase鋼にする方法が開示されている。これらの方法では、熱延工程の仕上げ圧延後の冷却中においてフェライト形成を促す効果を有するSiあるいはAlといった合金元素を添加することが特徴となっている。
 しかしながら、特許文献1~3に記載されているような鋼を実操業ラインで製造すると安定的に良好な曲げ疲労特性が得られない場合がある。さらにSiを添加した鋼に関しては、電着塗装を施した後の塗装耐食性(以下、単に「塗装耐食性」、「塗装後耐食性」ともいう。)が確保できない場合や、鋼板の表面粗さが大きくなるために期待通りの曲げ疲労特性が得られない場合があるという問題点があった。
 さらに、自動車やトラックのシャシーやホイールに用いられる鋼板には、打抜き部の疲労特性が併せて求められる。これは、シャーあるいは打ち抜きパンチによって打ち抜いた端面の粗さは鋼板表面の粗さに比べて大きい場合が多く、打ち抜き端面が疲労亀裂の優先発生位置になるためである。
 上記課題を解決する方法として、例えば、特許文献4、5には、打ち抜き端面の損傷を防止した高強度熱延鋼板が開示されている。
 また、特許文献6、7には、切り欠き疲労強度に優れる鋼板が開示されている。これらの鋼板は、フェライトとベイナイトを主組織とするものである。
 また、特許文献8にはフェライトを主相とする金属組織をベースとして、合金炭化物の析出強化を活用しながら高強度化を図る一方で、マルテンサイトと残留オーステナイトを適正量分散させる組織形態とすることにより、打抜き破断面の粗さを大幅に軽減し、打抜き部からの疲労亀裂発生が顕著に抑制する方法が開示されている。
 更に、特許文献9には、フェライト相を主相とする金属組織として、マルテンサイトおよびベイナイト組織によって高強度化をはかった、塗装密着性および打ち抜き疲労特性に優れた鋼板が開示されている。
特開平10-280096号公報 特開2007-321201号公報 特開2007-9322号公報 特開2005-298924号公報 特開2008-266726号公報 特開平05-179346号公報 特開2002-317246号公報 特願2010-159672号公報 特開2012-021192号公報
 しかしながら、特許文献4、5に記載の鋼板の場合、これらの方法による打ち抜き端面粗さの改善は、疲労特性を改善するには十分でなく、また、塗装耐食性も得られない場合があった。
 また、特許文献6、7に記載の鋼板の場合、曲げ疲労特性や塗装後耐食性が劣位になる場合があり、さらに降伏比が高いために張り出し成形性は必ずしも十分ではないという問題があった。
 さらに、特許文献8に記載の鋼板の場合では、原板および打ち抜き部の曲げ疲労耐久限が低い場合があり、さらに酸洗後に電着塗装を行うと、必ずしも良好な塗装後耐食性が得られない場合があった。また、曲げ加工や絞りと曲げの複合成形加工を行うと、割れが発生したり、これら成形後の部材の疲労特性が低下する場合があった。
 また、特許文献9は、黒皮材の塗装密着性の改善が主な目的で、鋼板に絞り加工等の厳しい加工を加えた場合、スケール剥離や割れが発生したり、母材の曲げ疲労性にも問題があった。
 上述のような理由により、成形性の優れる高強度の熱延鋼板において、電着塗装後の耐食性を確保し、且つ、母材の曲げ疲労特性と打抜き部の疲労特性に優れる技術の開発が望まれていた。特に、酸洗板は曲げなどの加工を施されて使用される場合も多く曲げ加工性は重要である。
 本発明は上記問題に鑑みてなされたものであり、最大引張強度が720MPa以上の高強度の熱延鋼板に電着塗装を施した場合であっても、良好な耐食性並びに母材の疲労特性と打抜き部の疲労特性を得ることが可能であるとともに、良好な曲げ加工性を具備した熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、まず、部材の大幅な軽量化が期待できる最大引張強度が720MPa以上の熱延鋼板に対象を絞り、打抜き端面の粗さを小さくするための方法について検討を行った。その結果、フェライトを主相とする金属組織をベースとして、TiC、NbCに代表される合金炭化物の析出強化を活用しながら高強度化を図る一方で、マルテンサイトと残留オーステナイトを適正量分散させる組織形態とすることにより、打抜き破断面の粗さが大幅に軽減し、打抜き部からの疲労亀裂発生が顕著に抑制されることを見出した。また、合金炭化物の析出強化を利用してもDual Phase鋼の有する優れた張り出し成形性は確保できることを確認した。
 上記のようなフェライトを主相とする金属組織を得るためには、Si、Al、Mn量を適当量含有させることが有効である。しかしながら、熱延鋼板の電着塗装後の耐食性を評価したところ、耐食性が劣位になる場合があることを知見した。発明者らは、その原因を調査し、母材の表層部に存在する、Si、Al、Mn、Feのうちの1種又は2種以上を含有する網目状の酸化物が電着塗装後の耐食性に影響を及ぼしていることを明らかにした。そして、これらのような場合、Si、Al、Mnの量比を最適化することにより、良好な耐食性が得られうる条件が存在することを知見した。
 さらに、本発明者等は、Si、Al、Mnを含有するDual Phase鋼で時々観察される疲労特性の劣化原因を明らかにすべく、詳細に金属組織の観察を行った。その結果、図1に示すように、母材1の表面1aの直下(表層部)にSi、Al、Mn、Feのうちの1種又は2種以上を含有する網目状の酸化物2が存在すると、その酸化物2が疲労破壊の起点となり疲労特性が低下することを知見した。なお、図1は、母材1の表面1aには黒皮(スケール)3が付着した、スケールつき熱延鋼板の状態を示している。母材1の表層部(母材1の表面1aから母材1の内部に向かって所定範囲の領域)には、母材1の結晶粒界に沿ってSi、Al、Mn、Feのうちの1種又は2種以上を含有する網目状の酸化物2が析出する。本発明では、このように母材1の表層部において、母材1の結晶粒界に沿って析出するSi、Al、Mn、Feのうちの1種又は2種以上を含有する酸化物2を「網目状の酸化物」という。
 さらに、本発明者等は、酸洗してスケールを除去した熱延鋼板を用いて、曲げ加工性が劣化する原因について調査を行った。その結果、鋼板の表層部にSi、Al、Mn、Feのうちの1種又は2種以上を含有する網目状の酸化物が過剰に残留していると曲げ性が劣化することを知見した。この原因は定かではないが、粒界に酸化物が存在することにより粒界強度が低下し、その部分が曲げ試験時のき裂発生起点になっていると考えられる。
 本発明者等は、このSi、Al、Mn、Feのうちの1種又は2種以上を含有する網目状の酸化物の形成を抑制する方法について鋭意検討を行った。その結果、Mn、Al、Si、Ti、Nb等の添加量を最適化すると共に、熱間圧延時の鋼板表面の水乗り(鋼板表面に水が存在していること)と圧延条件と冷却条件を制御することにより、この酸化物の形成を抑制しうることを見出した。
 本発明者等は、上記各実験の結果を基に鋭意検討を行った。そして、析出強化したフェライトを主体とした金属組織にマルテンサイトおよび残留オーステナイトを含有させ、さらに、合金元素の添加量を最適化することで、母材の表層部に網目状に存在するSi、Al、Mn、Feのうちの1種又は2種以上を含有する酸化物の形成を抑制できることを見出した。その結果、良好な曲げ成形性、絞り曲げ加工性や張り出し成形性を確保しつつ、打ち抜き部の疲労特性に優れ、かつ安定した曲げ疲労特性が得られ、さらに電着塗装後の耐食性に優れる引張強度720MPa以上の高強度の熱延鋼板を完成させた。即ち、本発明の要旨は以下のとおりである。
[1]
 質量%で、
C:0.05~0.15%、
Si:0~0.2%、
Al:0.5~3.0%、
Mn:1.2~2.5%、
P:0.1%以下、
S:0.01%以下、
N:0.007%以下、
Ti:0.03~0.10%、
Nb:0.008~0.06%、
V:0~0.12%、
Cr、Cu、Ni、Moの1種又は2種以上:合計で0~2.0%、
B:0~0.005%、
Ca、Mg、La、Ceの1種又は2種以上:合計で0~0.01%
であり、
SiおよびAlの合計量:0.8×(Mn-1)%以上、
TiおよびNbの合計量:0.04~0.14%
であり、
残部がFeおよび不純物であり、
 鋼組織が、マルテンサイトと残留オーステナイトの面積率が合計で3~20%、フェライトの面積率が50~96%、パーライトの面積率が3%以下であり、
 表層部において網目状の酸化物が存在する領域の板厚方向の厚さが0.5μm未満であり、最大引張強度が720MPa以上である、熱延鋼板。
[2]
 Tiを含有する合金炭化物とNbを含有する合金炭化物の平均粒子径が10nm以下である、[1]に記載の熱延鋼板。
[3] 降伏比が0.82以下である、[1]または[2]に記載の熱延鋼板。
[4]
 質量%で、Si:0.001~0.2%である、[1]~[4]の何れか1項に記載の熱延鋼板。
 [5]
 質量%で、V:0.01~0.12%である、[1]~[4]の何れか1項に記載の熱延鋼板。
[6]
 質量%で、Cr、Cu、Ni、Moの1種又は2種以上:合計で0.02~2.0%である、[1]~[5]の何れか1項に記載の熱延鋼板。
[7]
 質量%で、B:0.0003~0.005%である、[1]~[6]の何れか1項に記載の熱延鋼板。
[8]
 質量%で、Ca、Mg、La、Ceの1種又は2種以上:合計で0.0003~0.01%である、[1]~[7]の何れか1項に記載の熱延鋼板。
[9]
 表面にめっきあるいは合金化めっきが施されている、[1]~[8]の何れか1項に記載の熱延鋼板。
[10]
 質量%で、
C:0.05~0.15%、
Si:0~0.2%、
Al:0.5~3.0%、
Mn:1.2~2.5%、
P:0.1%以下、
S:0.01%以下、
N:0.007%以下、
Ti:0.03~0.10%、
Nb:0.008~0.06%、
V:0~0.12%、
Cr、Cu、Ni、Moの1種又は2種以上:合計で0~2.0%、
B:0~0.005%、
Ca、Mg、La、Ceの1種又は2種以上:合計で0~0.01%
であり、
SiおよびAlの合計量:0.8×(Mn-1)%以上、
TiおよびNbの合計量:0.04~0.14%
であり、
残部がFeおよび不純物であるスラブを加熱して、粗圧延、仕上げ圧延を順次行い、
 前記仕上げ圧延前のデスケーリングを行った後から前記仕上げ圧延の終了までの間において、鋼板の表面上に水が無い状態で3s以上保持し、前記仕上げ圧延の終了温度を850℃以上とし、
 仕上げ圧延の終了温度~Ar温度の間の平均冷却速度が25℃/s以上、Ar温度~730℃の間の平均冷却速度が30℃/s以上、730℃~670℃の間の平均冷却速度が12℃/s以下、670~550℃の間の平均冷却速度が20℃/s以上である冷却を行い、
 530℃以下で巻き取る、熱延鋼板の製造方法。
[11]
 [10]に記載の方法で得られた熱延鋼板を酸洗後、800℃以下に加熱し、めっき浴中に浸漬させる、熱延鋼板の製造方法。
[12]
 さらに、めっきの合金化処理を行う、[11]に記載の熱延鋼板の製造方法。
 本発明の熱延鋼板によれば、上記構成により、優れた曲げ成形性と塗装耐食性と母材の曲げ疲労特性と打抜き部の疲労特性が得られる。従来の鋼板は、腐食による減肉量を見込んだ部品板厚が設定されていた。これに対し、本発明の熱延鋼板は、優れた塗装耐食性が得られることから部品の板厚を薄くすることが可能となり、自動車あるいはトラック等の軽量化が可能となる。また、従来の鋼板は、高強度化を施した場合でも打抜き部の疲労強度がほとんど改善されなかった。これに対し、本発明の熱延鋼板は、優れた母材の曲げ疲労特性と打抜き部の疲労特性を具備するから、部材の軽量化に極めて好適である。
 また、本発明の製造方法によれば、合金元素の添加量を最適化すると共に、熱間圧延時の条件を制御することにより、優れた曲げ加工性と電着塗装後の耐食性と疲労耐久性に優れた最大引張強度720MPa以上の熱延鋼板を製造することが可能となる。
図1は、Si、Al、Mnを含有するDual Phase鋼板の表層部の周辺の顕微鏡写真である。なお、図1では、母材の表面には黒皮(スケール)が付着した、スケールつき熱延鋼板の状態を示している。
 以下、本発明の熱延鋼板およびその製造方法の一実施形態について詳細に説明する。なお、本実施形態は、本発明の熱延鋼板およびその製造方法の趣旨をより良く理解させるために詳細に説明するものであるから、本発明を限定するものではない。
[熱延鋼板]
 本発明の実施形態にかかる熱延鋼板は、 質量%で、
C:0.05~0.15%、
Si:0~0.2%、
Al:0.5~3.0%、
Mn:1.2~2.5%、
P:0.1%以下、
S:0.01%以下、
N:0.007%以下、
Ti:0.03~0.10%、
Nb:0.008~0.06%、
V:0~0.12%、
Cr、Cu、Ni、Moの1種又は2種以上:合計で0~2.0%、
B:0~0.005%、
Ca、Mg、La、Ceの1種又は2種以上:合計で0~0.01%
であり、
SiおよびAlの合計量:0.8×(Mn-1)%以上、
TiおよびNbの合計量:0.04~0.14%
であり、
残部がFeおよび不純物であり、
 鋼組織が、マルテンサイトと残留オーステナイトの面積率が合計で3~20%、フェライトの面積率が50~96%、パーライトの面積率が3%以下であり、
 表層部において網目状の酸化物が存在する領域の板厚方向の厚さが0.5μm未満であり、最大引張強度が720MPa以上である、
 以下、本実施形態の鋼材成分を限定した理由について説明する。
<鋼成分>
 本発明の熱延鋼板の鋼成分について説明する。なお、鋼成分に関する%の表記は特に断りがない場合は質量%を意味する。
「C:炭素」0.05~0.15%
 本発明において、Cは、組織制御のために用いられる。Cの含有量が0.05%未満であると、マルテンサイトと残留オーステナイトを面積率の合計で3%以上確保することが難しくなる。また、Cの含有量が0.15%を超えると、パーライト組織が出現して打抜き部の疲労特性が低下する。このため、本発明においては、Cの適正範囲を0.05~0.15%の範囲に限定した。なお、C量の下限は、0.055%とすることが好ましく、0.06%がより好ましい。また、C量の上限は、0.14%とすることが好ましく、0.13%がより好ましい。
「Si:ケイ素」0~0.2%
 本発明において、Siの含有は必須ではないが、Siを含有することにより、フェライト分率を増加させることができる。しかし、Siの含有量が0.2%を超えると、表層部の網目状の酸化物が増加し、電着塗装工程での化成処理で形成されるリン酸亜鉛結晶(電着塗装下地皮膜)が密に形成されない。その結果、電着塗装後において鋼板と塗料の密着性が悪くなり、電着塗装後の耐食性を確保することが困難となる。また熱延工程中に表層部に多量のSi―Mn酸化物を形成し、疲労特性や曲げ加工性が劣化する。このため、その適正範囲を0.2%以下とした。Siの含有量は、0.18%以下とすることが好ましく、0.15%以下がより好ましい。Siの含有量の下限は特に限定しないが、0.001%未満であると製造コストが増大するため、0.001%以上が好ましい。
「Al:アルミニウム」0.5~3.0%
 Alは、Siと同様にフェライト分率を増加させる元素である。Alの含有量が0.5%未満であると、フェライト分率を確保することが出来ず、強度と成形性と打ち抜き端面の疲労特性が確保できない。一方、Alの含有量が3.0%を超えると表層部にAlとMnを含有する酸化物が多量に形成され、疲労特性や曲げ加工性が劣化するので、その適正範囲を0.5~3.0%とした。なお、Al量の下限は、0.6%とすることが好ましい。また、Al量の上限は、2.0%とすることが好ましく、1.5%がより好ましい。
「Mn:マンガン」1.2~2.5%
 Mnは、組織制御と強度調整のために用いられる。Mnの含有量が1.2%未満であると、マルテンサイトと残留オーステナイトを面積率の合計で3%以上確保することが困難になり、打抜き部の疲労特性が低下する。一方、Mnの含有量が2.5%を超えると、フェライトを面積率で50%以上確保することが困難になり、打ち抜き部の疲労特性が低下するとともに、網目状の酸化物の厚さが増加し、曲げ疲労特性が低下する。このため、その適正範囲を1.2~2.5%に限定した。なお、Mnの含有量の下限は、1.3%とすることが好ましく、1.5%がより好ましい。また、Mnの含有量の上限については、2.4%とすることが好ましく、2.3%以下がより好ましい範囲である。
「P:リン」0.1%以下
 Pは、鋼の強度確保のために用いることができる。しかしながら、0.1%を超えて含有すると打ち抜き端面の粗さが増大して打ち抜き部の疲労特性が低下するので、Pの適正範囲を0.1%以下とする。Pの含有量の下限は特に限定されず、0%でも構わないが、0.001%未満であると製造コストが増大するため、0.001%が実質的な下限である。なお、Pの含有量は、0.05%以下とすることが好ましく、0.03%以下がより好ましい。
「S:硫黄」0.01%以下
 Sは、母材の疲労特性に影響する元素である。しかしながら、0.01%を超えてSを含有すると、打抜き破断面の粗さが増大し、良好な打抜き部疲労特性が得られないため、その適正範囲を0.01%以下とする。また、Sの含有量の下限は特に限定されず、0%でも構わないが、0.0002%未満であると製造コストが増大するため、0.0002%が実質的な下限である。なお、Sの含有量は、0.006%以下とすることが好ましく、0.003%以下がより好ましい。
「N:窒素」0.007%以下
 Nの含有量が0.007%を超えると、粗大なTi-Nb系窒化物を形成し、TiおよびNbの合金炭化物の形成を抑制してしまうため、最大引張強度720MPa以上を得ることができない。このため、その上限を0.007%に制限した。また、Nの含有量の下限は特に限定されず、0%でも構わないが、0.0003%未満であると製造コストが増大するため、0.0003%が実質的な下限である。なお、Nの含有量は、0.006%以下とすることが好ましく、0.005%以下がより好ましい。
「Ti:チタン」0.03~0.10%
 Tiは、鋼の析出強化のために用いる。また、熱延工程中に表層部に形成される網目状の酸化物の形成を抑制する効果がある。しかしながら、Tiの含有量が0.03%未満であると、網目状の酸化物を抑制する効果がなく、また、引張強度で720MPa以上を確保することが困難になる。また、0.10%を超えると効果が飽和するとともに打抜き部の粗さが増大し、打抜き部疲労特性が低下し、さらに降伏比YRが増加し、成形性が低下する。このため、その適正範囲を0.03~0.10%に限定した。なお、Tiの含有量の下限は、0.04%とすることが好ましく、0.05%がより好ましい。また、Tiの含有量の上限は、0.09%とすることが好ましく、0.08%がより好ましい。
「Nb:ニオブ」0.008~0.06%
 Nbは、組織制御および鋼の析出強化のため用いられる。また、熱延工程中に表層部に形成される網目状の酸化物の形成を抑制する効果がある。しかしながら、Nbの含有量が0.008%未満であるとその効果がなく、また、0.06%を超えると打抜き部の粗さが増大し、打抜き部疲労特性が低下する。このため、その適正範囲を0.008~0.06%に限定した。なお、Nbの含有量の下限は、0.009%とすることが好ましく、0.10%がより好ましい。また、Nbの含有量の上限は、0.055%とすることが好ましく、0.05%がより好ましい。
「Si+Alの合計量」
 SiとAlは、ともにフェライト分率を増加させる元素である。SiとAlを合計量で0.8×(Mn-1)質量%以上含有させることで、面積率で50%以上のフェライトを確保でき、良好な打抜き部の曲げ疲労特性を得ることができる。さらに、SiとAlの合計量を適正にすることで表層部に形成される網目状の酸化物の存在する板厚方向の深さを適正化し、鋼板の曲げ疲労特性が改善される。Si+Alの合計量の上限は特に限定しないが、SiとAlの合計量が3.0%を超えると、靭性が低下するため、3.0%以下であることが望ましい。
「Ti+Nbの合計量」
 TiとNbは、適正なサイズの合金炭化物を形成させることで、鋼を高強度化するために用いられる。しかしながら、TiとNbの合計量が0.04%未満であると、最大引張強度720MPa以上を確保することが困難になる。一方、TiとNbの合計量が0.14%を超えると、打抜き部の粗さが増大して打抜き部の疲労特性が低下する。このため、Ti+Nbの合計量の適正範囲を0.04~0.14%に限定した。
 本実施形態においては、鋼成分として、上記各元素に加え、さらに、以下に示すような元素を選択的に含有しても良い。
「V:バナジウム」0~0.12%
 本発明において、Vの含有は必須ではないが、Vは、鋼の強度調整のために用いてもよい。Vの含有量が0.01%未満であると、その効果がないので、Vを含有する場合は、Vの含有量が0.01%以上であることが望ましい。一方、Vの含有量が0.12%を超えると打ち抜き端面粗さが増大し、打ち抜き部の疲労特性が低下するおそれがある。このため、Vの含有量は0.12%以下とする。
「Cr、Cu、Ni、Moの1種又は2種以上:合計で0~2.0%」
 本発明において、Cr、Cu、Ni、Moの含有は必須ではないが、Cr、Cu、Ni、Moは、鋼の組織制御のために用いてもよい。これらの元素の1種又は2種以上の合計の含有量が0.02%未満であると、添加に伴う上記効果が無いので、これらの元素の1種又は2種以上を含有する場合は、合計の含有量が0.02%以上であることが望ましい。一方、これらの合計の含有量が2.0%を超えると塗装耐食性が低下する。このため、これら元素の合計の含有量の適正範囲を2.0%以下とする。
「B:ボロン」0~0.005%
 本発明において、Bの含有は必須ではないが、Bは鋼板の組織制御に用いてもよい。Bの含有量が0.0003未満であると、その効果は発現しないので、Bを含有する場合は、Bの含有量が0.0003%以上であることが望ましい。一方、Bの含有量が0.005%を超えると、フェライトを50%以上確保することが困難になり、曲げ疲労特性が低下するおそれがある。このため、Bの含有量は0.005%以下とする。
「Ca、Mg、La、Ceの1種又は2種以上:合計で0~0.01%」
 本発明において、Ca、Mg、La、Ceの含有は必須ではないが、Ca、Mg、La、Ceは、鋼の脱酸のために用いてもよい。これらの元素の1種又は2種以上の合計量が0.0003%未満であると、その効果は無いので、これらの元素を含有する場合は、合計の含有量が0.0003%以上であることが望ましい。一方、0.01%を超えると疲労特性が低下する。このため、これら元素の合計の含有量の適正範囲を0.01%以下とする。
 本発明の熱延鋼板の鋼成分は、上記した元素以外の残部はFeおよび不純物である。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示されるが、特に限定はなく、本発明の作用効果を害さない範囲で、各種元素を適宜含有しても良い。
<鋼組織>
「マルテンサイトと残留オーステナイトの合計の面積率」
 マルテンサイトと残留オーステナイトは、打抜き部の局所変形領域において延性破壊を促進し、その結果として、析出強化鋼においても打ち抜き端面の粗さを平滑化させる効果がある。すなわち、打ち抜き部の疲労特性を向上させることを目的とする本発明においては、重要なパラメータである。また、マルテンサイトと残留オーステナイトは、張り出し成形性および延性を高める効果をも有する。
 マルテンサイトと残留オーステナイトの合計の面積率が3%未満であると、それらの効果が発現しない。一方、20%を超えると、打ち抜き端面粗さが再び増加する傾向がある。このため、マルテンサイトと残留オーステナイトの合計の面積率の適正範囲を3~20%に限定した。マルテンサイトと残留オーステナイトの合計の面積率は、5%以上であることが好ましく、7%以上であることがより好ましい。また、マルテンサイトと残留オーステナイトの合計の面積率は、18%以下であることが好ましく、15%以下であることがより好ましい。
 なお、マルテンサイトは、焼き戻しされたマルテンサイトであっても打ち抜き端面を平滑化する効果がある。マルテンサイトは、いわゆるフレッシュマルテンサイト, 焼き戻しされたマルテンサイトのいずれも含む。
 ここで、マルテンサイトと残留オーステナイトを比較した場合、打ち抜き端面の粗さを低減する効果は残留オーステナイトの方が若干大きいことから、残留オーステナイトは一定量含有した方が好ましい。残留オーステナイトの面積率が1%未満であると、その効果が明確ではなく、一方、6%を超えると母材疲労特性の低下を引き起こすので、残留オーステナイトの面積率は1~6%が好ましい。
「フェライトの面積率」
 母材の疲労特性の向上に寄与するとともに、打抜き端面の粗さ改善に寄与するマルテンサイトあるいは残留オーステナイトの確保のために、フェライトは、適正な面積率で含まれる必要がある。フェライトの面積率が50%未満であると、マルテンサイトあるいは残留オーステナイトを上述したような適正量にすることが困難になり、打抜き部疲労特性が低下する。一方、フェライトの面積率が96%を超えた場合も打ち抜き端面の粗さが増大し、打ち抜き部の曲げ疲労特性が低下する。このため、フェライトの面積率の適正範囲を50~96%に限定した。フェライト分率は70%以上が好ましく、75%以上であることがより好ましい下限である。また、フェライトの面積率は、93%以下であることが好ましく、90%以下であることがより好ましい。
 なお、ここでフェライトとは、「鋼のベイナイト写真集-1」日本鉄鋼協会(1992年)p.4に記載のポリゴナルフェライト(αp)、擬ポリゴナルフェライト(αq)、粒状ベイニティックフェライト(αB)の何れであっても構わない。
「パーライトの面積率」
 パーライトは打ち抜き部の粗さを増大させる。面積率が3%を超えると、打ち抜き部の曲げ疲労特性が低下し、引張強度も低下する傾向があることから、その適正範囲を3%以下に限定した。パーライト量は少ないほど好ましく、下限は0%である。
 本発明においてパーライトとは、パーライトおよび疑似パーライトを含む。
 なお、本発明の熱延鋼板において、金属組織の残部はベイナイトであっても良い。ここで、上記「鋼のベイナイト写真集-1」日本鉄鋼協会(1992年)p.4に記載のベイニティックフェライト(α°B)はベイナイトに区分される。
 フェライト、ベイナイト、パーライト、マルテンサイトの面積率は、光学顕微鏡または走査電子顕微鏡(SEM)によって撮影した組織写真を用いて、ポイントカウント法又は画像解析によって測定できる。粒状ベイニティックフェライト(αB)とベイニティックフェライト(α°B)の判別は、SEMおよび透過電子顕微鏡(TEM)による組織観察を行い、参考文献1を元に判別する。残留オーステナイトの分率は、X線回折法により測定する。
<表層部の網目状の酸化物>
 鋼板の表層部において熱延工程中に形成される、Si、Al、MnおよびFeのうちの1種又は2種以上を含有する網目状の酸化物は、曲げ疲労特性および塗装後の耐食性を劣化させる。この網目状の酸化物が存在する領域の板厚方向の厚さ(深さ)が0.5μm以上であると曲げ加工性と曲げ疲労特性と塗装後の耐食性が低下することから、その適正範囲を0.5μm以下と限定した。なお、曲げ加工性や曲げ疲労特性に影響を与える酸化物は熱延工程で母材の表面近傍の結晶粒界に形成される網目状の酸化物であり、精錬・鋳造工程で形成され鋼中に一様に分散する酸化物は含まない。また、内部酸化物(結晶粒の内部に析出する酸化物)は、粒状の形態のものも表層部には存在するが、母材の結晶粒界に析出する網目状の形態のものよりは曲げ加工性や曲げ疲労特性に及ぼす影響は小さいと考えられる。そのため、本発明においては、粒状の内部酸化物については特に限定せず、表層部の結晶粒界に形成される網目状の酸化物について限定する。
<Tiを含有する合金炭化物とNbを含有する合金炭化物の平均粒子径>
 Tiを含有する合金炭化物とNbを含有する合金炭化物は、析出強化に寄与する析出物である。しかしながら、その平均粒子径が10nmを超えると、最大引張強度720MPa以上を確保することが困難になるため、その適正範囲を10nm以下に制限することが望ましい。なお、上記合金炭化物中には、N、V、Moを少量含んでいても析出強化への効果は何ら変わることは無い。Tiを含有する合金炭化物は、TiとCの他にN、V、Moを含有しても構わない。同様に、Nbを含有する合金炭化物は、NbとCの他にN、V、Moを含有しても構わない。また、TiとNbの両方とCの他にN、V、Moを含有しても構わない。
 なお、Tiを含有する合金炭化物とNbを含有する合金炭化物の粒子径は、電解研磨あるいはイオン研磨により薄膜化したサンプルについて鋼中の析出物をTEMで観察するか、電解抽出した残渣をTEMで観察し、100個以上の合金炭化物の円相当粒子径として算出する。
<鋼板の最大引張強度>
 本発明においては、鋼板の最大引張強度が720MPa未満であると、部材の軽量化効果が小さくなることから、その範囲を720MPa以上とする。
<降伏比:0.82以下>
 疲労特性が要求される自動車やトラックの部材に適用するためには、優れた伸びや張り出し成形性や曲げ加工性を有する必要がある。YP/TS(YP:降伏応力、TS:引張強度)で定義される降伏比YRが0.82を超えると、成形中に破断あるいは割れを生じて部材の成形が出来ない場合があるので、降伏比は0.82以下であることが好ましい。
[高強度熱延鋼板の製造方法]
 次に、本発明の熱延鋼板を製造する方法について説明する。本発明の製造方法は、上記成分組成からなるスラブを加熱して、粗圧延、仕上げ圧延を順次行い、前記仕上げ圧延前のデスケーリングを行った後から前記仕上げ圧延の終了までの間において、鋼板の表面上に水(板上水)が無い状態で3s以上保持し、前記仕上げ圧延の終了温度を850℃以上とし、仕上げ圧延の終了温度~Ar温度の間の平均冷却速度が25℃/s以上、Ar~730℃の間の平均冷却速度が30℃/s以上、730℃~670℃の間の平均冷却速度が12℃/s以下、670~550℃の間の平均冷却速度が20℃/s以上である冷却を行い、530℃以下で巻き取る方法である。
 まず、上記成分組成からなるスラブを加熱し、その後、粗圧延、仕上げ圧延を順次行う。この際、スラブの加熱条件、粗圧延の条件は特に限定されるものではなく、従来から用いられている各条件を採用することができる。
 本発明において、仕上げ圧延前のデスケーリングを行った後から仕上げ圧延の終了までの間に鋼板の表面上に存在する水(板上水)は、鋼板の表層部における網目状の酸化物の形成に影響を与える重要な因子である。通常、仕上げ圧延工程においては、デスケーリングで使用した高圧水や、圧延ロールを冷却するために使用した水、および圧延ロール間で鋼板を冷却するための水が鋼板の表面上に乗っている状態になる。デスケーリングの終了から仕上げ圧延の終了までの間に鋼板の表面上に水が乗っていない状態が3秒未満であると、表層部における網目状の酸化物が過剰に残留し、曲げ疲労特性が低下する。このため、鋼板の表面上に水が乗っていない状態の保持時間の適正範囲を3秒以上とした。好ましくは4秒以上保持する。
 なお、鋼板の表面上に水が乗っていない状態を実現し、その状態を保持する方法については特に限定しない。例えば、鋼板の進行方向に対して直交する方向(側面側の方向)から空気等の気体を噴射して鋼板の表面上の水分を除去する方法がある。
 仕上げ圧延の終了温度FTは、表層部における酸化の挙動と鋼板の金属組織を制御する上で重要な製造パラメータである。仕上げ圧延の終了温度が850℃未満であると、表層部における網目状の酸化物の厚さが増大すると共に、上述したような金属組織を適正化することが困難になる。このため、本発明では、仕上げ圧延の終了温度の適正範囲を850℃以上に制限した。なお、好ましくは870℃以上とする。
 仕上げ圧延の終了温度FT~Ar温度の間の冷却速度は、鋼のミクロ組織と強度に影響を及ぼす重要な製造パラメータである。この温度間の平均冷却速度が25℃/s未満であると、フェライトの面積率を適正化できなくなる。このため、本発明では、FT~Ar温度の間における平均冷却速度の適正範囲を25℃/s以上とした。好ましくは45℃/s以上とする。
 なお、Ar温度は下記(1)式によって計算する。
Ar(℃) = 910-310×C+33(Si+Al)-80×Mn-20×Cu-15×Cr-55×Ni-80×Mo ・・・ (1)
但し、上記(1)式において、各元素記号は、各元素の含有量(質量%)を示す。
 Ar温度~730℃間の冷却速度は、表層部における網目状の酸化物の形成に影響を及ぼす重要な製造パラメータである。この温度間の平均冷却速度が30℃/s未満であると、網目状の酸化物が形成される表面からの深さが大きくなる。このため、本発明では、Ar温度~730℃間における平均冷却速度の適正範囲を30℃/s以上とした。好ましくは、35℃/s以上とする。
 730~670℃間の冷却速度は、鋼中のフェライトの面積率を確保するための重要な製造パラメータである。この温度間の平均冷却速度が12℃/sを超えると、50%以上のフェライトを確保することが困難になるため、その適正範囲を12℃/s以下とした。好ましくは10℃/s以下とする。
 670~550℃間の冷却速度は、マルテンサイトと残留オーステナイトの面積率を適正にするための重要な製造パラメータである。この温度範囲の平均冷却速度が20℃/s未満であると、パーライトが形成され、打抜き破断面の粗さが増大する結果、打抜き部疲労特性が低下する。このため、本発明では、その適正範囲を20℃/s以上とした。好ましくは25℃/s以上とする。
 次に、本発明の製造方法において、鋼板を巻き取る際の温度は、適正なマルテンサイト量と残留オーステナイト量を得るために重要な製造パラメータである。巻き取り温度が530℃を超えると、適正量のマルテンサイトと残留オーステナイトが得られず、パーライトも形成されやすくなる。その結果、打抜き破断面の粗さが増大し、打抜き部の疲労特性が低下する。このため、本発明では、鋼板の巻き取り温度の適正範囲を530℃以下の範囲内に制限した。好ましくは510℃以下とする。
 スキンパス圧延あるいはレベラー圧延は特に必須ではない。しかし、これらは形状矯正や時効性、さらには疲労特性の改善に奏効するので、後述する酸洗後、または酸洗前に行ってもよい。スキンパス圧延を行う場合には、圧下率の上限を3%とすることが望ましい。3%を超えると、鋼板の成形性が損なわれるからである。
 熱間圧延の終了後に酸洗を行い、母材の表面に付着した黒皮(スケール)を除去する。熱間圧延の終了後の酸洗は網目状の粒界酸化物をある程度除去する効果を有する。しかし、前記したような製造方法を行わなければ、熱間圧延の終了後の酸洗工程のみで目的とする網目状の粒界酸化物層厚さを低減することは困難である。
 次に、上述してきた熱延鋼板にさらにめっき処理あるいは合金化めっき処理を施しても良い。
 まず、熱延鋼板を酸洗後、例えば連続亜鉛めっき設備あるいは連続焼鈍亜鉛めっき設備を用いて、鋼板を加熱する。次いで、鋼板をめっき浴中に浸漬させて溶融めっきを施し、熱延鋼板の表面にめっき層を形成する。
 この場合、鋼板の加熱温度が800℃を超えると、鋼板の金属組織が変化し、さらに表層部において網目状の酸化物を含有する領域の板厚方向の厚さが増加し、疲労特性が確保できなくなる。このため、加熱温度の適正範囲を800℃以下に制限する。
 さらに溶融めっきを施した後に、めっき合金化処理を行い、合金化溶融亜鉛めっき層としてもよい。
 なお、めっきの種類は特に限定するものではない。前記加熱温度の上限が800℃以下であれば、いずれのめっきの種類であっても構わない。
 次に、本発明の熱延鋼板について各特性の評価方法を説明する。
 本発明の熱延鋼板の曲げ疲労特性は、JIS Z2275に記載の方法に従い、応力比=-1の条件下で平面曲げ疲労試験を行い、200万回疲労限度(200万回の繰返し応力を受けても疲労破壊に至らない応力の限度値)で評価し、{疲労限度/TS(引張強度)}から疲労限度比を算出した。本発明の熱延鋼板では疲労限度比で0.45以上を確保することが出来る。
 また、打抜き部の疲労特性は、簡易的に以下の方法で評価することができる。
 即ち、ピアス穴を中心部に有する曲げ試験片を作製し、平面曲げ疲労試験により、200万回疲労限度あるいは疲労限度比(=疲労限度/TS)を評価する。ここで、φ10mmの新品パンチを用いて、クリアランス10%の条件でピアス穴を打ち抜き、試験片幅30mmの試験片を用いて曲げ疲労試験を行った場合、本発明の熱延鋼板においては、疲労限度比:0.36以上を確保することができる。また、本発明においては、疲労限度比:0.39以上がより好ましい範囲である。
 また、鋼板の曲げ加工特性は、JIS Z2248に記載の方法に従い、押し曲げ法により曲げ角度180°、内側半径1.5t(tは鋼板の板厚)での試験を行った。本発明の熱延鋼板においては、曲げ頭頂部におけるき裂または破断が観察されずに良好な曲げ加工性を確保できる。
 以上説明したような本発明に係る熱延鋼板によれば、上記構成により、優れた曲げ加工性と塗装耐食性と疲労耐久性が得られる。従来の鋼板では、腐食による減肉量を見込んだ部品板厚が設定されていた。これに対し、本発明の熱延鋼板は、優れた塗装耐食性が得られることから部品の板厚を薄くすることが可能となり、自動車あるいはトラック等の軽量化が可能となる。また、従来の鋼板においては、高強度化を施した場合でも打抜き部の疲労強度がほとんど改善されなかった。これに対し、本発明の熱延鋼板は、優れた母材の曲げ疲労特性と打抜き部の疲労特性を具備し、さらに優れた曲げ加工性を有することから、部材の軽量化に極めて好適である。
 また、本発明の熱延鋼板の製造方法によれば、上記手順並びに条件を採用することにより、曲げ加工性と電着塗装後の耐食性と疲労耐久性に優れた最大引張強度720MPa以上の熱延鋼板を製造することが可能となる。
 以下、本発明に係る熱延鋼板の実施例を挙げ、本発明をより具体的に説明する。但し、本発明は、下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 まず、表1に示す鋼成分を有するA~Xのスラブを鋳造した後、このスラブを1050~1300℃の範囲内で再加熱し、粗圧延を行った。次いで、表2に示す条件で仕上げ圧延、冷却、巻取りを行って熱延鋼板を製造した。仕上げ圧延前のデスケーリングから仕上げ圧延の終了までの間における鋼板の表面に水が無い状態の時間、仕上げ圧延の終了温度、冷却条件、巻取り温度を変化させた。次いで、酸洗処理を行い、鋼板の表面のスケールを取り除いたものについて評価試験を行った。
 また、試験番号A-12については、試験番号A-1で得られた熱延鋼板を、酸洗後、650℃で焼鈍処理を行い、引き続き亜鉛めっき処理を行った。試験番号A-13については、試験番号A-1で得られた熱延鋼板を、酸洗後、600℃で焼鈍処理を行い、引き続き亜鉛めっき処理及び亜鉛めっきの合金化処理を行った。
 そして、上記手順で得られた本発明例の熱延鋼板及び比較例の熱延鋼板について、以下に説明するような評価試験を行った。なお、表2に示す「試験番号」の先頭に付しているアルファベットは、表1に示した鋼記号に対応している。
 そして、上記手順で得られた本発明例の熱延鋼板及び比較例の熱延鋼板について、以下に説明するような評価試験を行った。
 鋼板の疲労特性は、JIS Z2275に記載の方法に従って、応力比=-1の条件下で平面曲げ疲労試験を行い、200万回疲労限度で評価し、{疲労限度/TS(引張強度)}から疲労限度比を算出した。なお、この疲労限度比が0.45以上のものを良好として評価した。
 打抜き部の疲労特性は、ピアス穴を中心部に有する曲げ試験片を用いて、JIS Z2275に記載の方法に従って、応力比=-1の条件下で平面曲げ疲労試験を行い、200万回疲労限度で評価し、{疲労限度/TS(引張強度)}から疲労限度比を算出した。ここで、ピアス穴を設ける打抜き加工は、φ10mmの新品パンチを用いて、クリアランス10%の条件で行った。なお、この疲労限度比が0.39以上を打抜き部の疲労特性が良好なものとして評価した。
 鋼板の曲げ加工特性は、試験片の長手が圧延方向に直角になるように採取し、JIS Z2248に記載の方法に従い、押し曲げ法により曲げ角度180°、内側半径1.5t(tは鋼板の板厚)での試験を行った。曲げ頭頂部におけるき裂または破断が観察されないものを○(良好)と評価した。
 鋼板の引張特性は、各々の鋼板からJIS5号試験片を採取し、引張方向が圧延方向垂直方向(C方向)になるような条件で引張試験を行い評価した。
 鋼板の表層部において網目状の酸化物が存在する領域の厚さは、SEM観察により鋼板断面の金属組織を観察し、3か所以上の観察領域の平均値として決定した。
 塗装耐食性については、まず、酸洗した熱延鋼板を脱脂し、次いで、前処理としてリン酸亜鉛処理(化成処理)を行った後、カチオン電着塗装を25μmの厚さで行い、最後に170℃で20分間の焼き付け処理を行った。そして、電着塗装の表面に線状の疵を付与した後、JIS Z2371に記載の方法に従って200hの塩水噴霧試験(SST試験)を行い、この試験後に、テープ剥離試験を行った際の塗膜の剥離幅を測定した。そして、塗膜の剥離幅が2mm以下のものを「○(耐食性良好)」、2mmを超えるものを「×(耐食性不良)」として二段階評価した。
 表1に鋼成分の一覧を示すとともに、表2に、作製した熱延鋼板の網目状の酸化物の表面からの厚み、曲げ疲労特性、打抜き部の疲労特性、引張強さ(TS)、降伏比、曲げ加工性の評価結果の一覧を示す。なお、表2において、各見出しは以下の項目を示す。
t:デスケーリングから仕上げ圧延の終了までの間で鋼板の上に水が存在しない時間(秒)
FT:仕上げ圧延の終了温度(℃)
CR1:FT~Ar温度の間の平均冷却速度(℃/s)
CR2:Ar温度~670℃の間の平均冷却速度(℃/s)
CR3:730~670℃の間の平均冷却速度(℃/s)
CR4:670~550℃の間の平均冷却速度(℃/s)
CT:巻き取り温度(℃)
MC:Tiを含有する合金炭化物とNbを含有する合金炭化物の平均粒子径(nm)
:フェライトの面積率(%)
:マルテンサイトの面積率(%)
γ:残留オーステナイトの体積率(%)
:パーライトの面積率(%)
hox:表層部において網目状の酸化物が存在する領域の板厚方向の厚さ(μm)
EL:鋼板の全伸び(%)
σw/TS:疲労限度比
σwp/TS:ピアス穴付き試験片での疲労限度比
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の範囲内である本発明例の熱延鋼板は、何れも、曲げ疲労限度比が0.45以上であり、ピアス穴打ち抜きした曲げ疲労限度比が0.39以上であり、塗装後の耐食性の評価が「○」であり、曲げ加工性の評価が「○」であり、鋼板の引張強度TSが720MPa以上であった。これにより、本発明の熱延鋼板が、曲げ加工性と塗装耐食性と鋼板および打抜き部の曲げ疲労特性に優れていることが明らかとなった。
 これに対して、比較例の熱延鋼板は、本発明における上記各規定の少なくとも何れかが範囲外となっていることから、曲げ加工性か塗装耐食性か打抜き部疲労特性の少なくとも何れかが劣る結果となった。
 試験番号A-3、D-1は、鋼板の上に水が存在していない時間tが短いために、母材の表層部における網目状の酸化物が存在する領域が厚く、鋼板および打ち抜き部の曲げ疲労特性が低く、塗装後耐食性も不良となった。
 試験番号A-4は、仕上げ圧延の終了温度FTが適正範囲以下であったため、網目状の酸化物が存在する領域が厚く、鋼板および打ち抜き部の曲げ疲労特性が低く、塗装後耐食性も不良となった。
 試験番号K-1、M-1、N-1、S-1、W-1は、鋼成分が適正でないために、地鉄表層の内部酸化層が厚く、原板および打ち抜き部の曲げ疲労特性が低く、塗装後耐食性も不良となった。
 試験番号A-10、A-11、D-3、D-4は、Ar~730℃間の冷却速度が遅く、表層部に存在する網目状の酸化物が厚くなったため、曲げ加工性と疲労特性が低下した。
 試験番号A-5は、FT~Ar間の冷却速度が遅く、730~670℃間の冷却速度が速かったため、フェライト分率が低く、打ち抜き部の曲げ疲労特性が低下した。
 試験番号A-6、A-7、I-1、V-1は、マルテンサイトと残留オーステナイトの面積率が少ないため、打抜き破断面の粗さが増大し、打抜き部の曲げ疲労特性が低下した。
 試験番号J-1、L-1、U-1は、鋼成分が適正でないために、フェライトの面積率が低いか、マルテンサイトと残留オーステナイトの面積率が適正範囲外か、あるいはパーライトの面積率が高くなり、打抜き破断面の粗さが増大し、打抜き部の曲げ疲労特性が低下した。
 試験番号I-1、Q-1、S-1は鋼成分が適正でないために、最大引張強度(TS)が適正範囲外になった。
 試験番号O-1、P-1は、P量あるいはS量が過大であったために、打抜き破断面の粗さが増大し、打抜き部の曲げ疲労特性が低下した。
 試験番号R-1、T-1は、Ti量、Nb量、あるいはTi+Nbの合計量が過大であったために、打抜き破断面の粗さが増大し、打抜き部の曲げ疲労特性が低下した。
 試験番号X-1は、疲労特性は良好であったものの、Ti+Nbの合計量が過少あったために、最大引張強度(TS)が適正範囲外になった。
 以上説明した実施例の結果より、本発明の熱延鋼板およびその製造方法が、最大引張強度が720MPa以上の高強度の熱延鋼板に電着塗装を施した場合であっても、良好な曲げ加工特性、良好な耐食性並びに母材及び打抜き部の曲げ疲労特性が得られることが明らかである。
 本発明によれば、例えば、自動車やトラックのフレームやメンバー、シャシー等の素材として好適な、曲げ加工性と、塗装耐食性と、母材及び打抜き部の疲労特性に優れた高強度の熱延鋼板を提供することが可能となる。このように、自動車やトラックのフレームやメンバー、シャシー等の部材に本発明を適用することにより、塗装後の耐食性や、打抜き加工を施した部材の疲労強度の向上、さらに、軽量化等のメリットを十分に享受することができ、産業上の効果は極めて高い。
1 母材
1a 表面
2 網目状の酸化物
3 スケール

Claims (12)

  1.  質量%で、
    C:0.05~0.15%、
    Si:0~0.2%、
    Al:0.5~3.0%、
    Mn:1.2~2.5%、
    P:0.1%以下、
    S:0.01%以下、
    N:0.007%以下、
    Ti:0.03~0.10%、
    Nb:0.008~0.06%、
    V:0~0.12%、
    Cr、Cu、Ni、Moの1種又は2種以上:合計で0~2.0%、
    B:0~0.005%、
    Ca、Mg、La、Ceの1種又は2種以上:合計で0~0.01%
    であり、
    SiおよびAlの合計量:0.8×(Mn-1)%以上、
    TiおよびNbの合計量:0.04~0.14%
    であり、
    残部がFeおよび不純物であり、
     鋼組織が、マルテンサイトと残留オーステナイトの面積率が合計で3~20%、フェライトの面積率が50~96%、パーライトの面積率が3%以下であり、
     表層部において網目状の酸化物が存在する領域の板厚方向の厚さが0.5μm未満であり、最大引張強度が720MPa以上である、熱延鋼板。
  2.  Tiを含有する合金炭化物とNbを含有する合金炭化物の平均粒子径が10nm以下である、請求項1に記載の熱延鋼板。
  3.  降伏比が0.82以下である、請求項1または2に記載の熱延鋼板。
  4.  質量%で、Si:0.001~0.2%である、請求項1~請求項3の何れか1項に記載の熱延鋼板。
  5.  質量%で、V:0.01~0.12%である、請求項1~請求項4の何れか1項に記載の熱延鋼板。
  6.  質量%で、Cr、Cu、Ni、Moの1種又は2種以上:合計で0.02~2.0%である、請求項1~請求項5の何れか1項に記載の熱延鋼板。
  7.  質量%で、B:0.0003~0.005%である、請求項1~請求項6の何れか1項に記載の熱延鋼板。
  8.  質量%で、Ca、Mg、La、Ceの1種又は2種以上:合計で0.0003~0.01%である、請求項1~請求項7の何れか1項に記載の熱延鋼板。
  9.  表面にめっきあるいは合金化めっきが施されている、請求項1~請求項8の何れか1項に記載の熱延鋼板。
  10.  質量%で、
    C:0.05~0.15%、
    Si:0~0.2%、
    Al:0.5~3.0%、
    Mn:1.2~2.5%、
    P:0.1%以下、
    S:0.01%以下、
    N:0.007%以下、
    Ti:0.03~0.10%、
    Nb:0.008~0.06%、
    V:0~0.12%、
    Cr、Cu、Ni、Moの1種又は2種以上:合計で0~2.0%、
    B:0~0.005%、
    Ca、Mg、La、Ceの1種又は2種以上:合計で0~0.01%
    であり、
    SiおよびAlの合計量:0.8×(Mn-1)%以上、
    TiおよびNbの合計量:0.04~0.14%
    であり、
    残部がFeおよび不純物であるスラブを加熱して、粗圧延、仕上げ圧延を順次行い、
     前記仕上げ圧延前のデスケーリングを行った後から前記仕上げ圧延の終了までの間において、鋼板の表面上に水が無い状態で3s以上保持し、前記仕上げ圧延の終了温度を850℃以上とし、
     仕上げ圧延の終了温度~Ar温度の間の平均冷却速度が25℃/s以上、Ar温度~730℃の間の平均冷却速度が30℃/s以上、730℃~670℃の間の平均冷却速度が12℃/s以下、670~550℃の間の平均冷却速度が20℃/s以上である冷却を行い、
     530℃以下で巻き取る、熱延鋼板の製造方法。
  11.  請求項10に記載の方法で得られた熱延鋼板を酸洗後、800℃以下に加熱し、めっき浴中に浸漬させる、熱延鋼板の製造方法。
  12.  さらに、めっきの合金化処理を行う、請求項11に記載の熱延鋼板の製造方法。
PCT/JP2013/076027 2012-09-27 2013-09-26 熱延鋼板およびその製造方法 WO2014050954A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2014501767A JP5574070B1 (ja) 2012-09-27 2013-09-26 熱延鋼板およびその製造方法
BR112015005020A BR112015005020B1 (pt) 2012-09-27 2013-09-26 chapa de aço laminada a quente e método para fabricar a mesma
IN2550DEN2015 IN2015DN02550A (ja) 2012-09-27 2013-09-26
KR1020157007425A KR101654492B1 (ko) 2012-09-27 2013-09-26 열연 강판 및 그 제조 방법
MX2015002759A MX2015002759A (es) 2012-09-27 2013-09-26 Lamina de acero laminada en caliente y metodo de produccion de la misma.
US14/430,410 US9903023B2 (en) 2012-09-27 2013-09-26 Hot rolled steel sheet and method for manufacturing the same
CN201380050693.9A CN104704136B (zh) 2012-09-27 2013-09-26 热轧钢板及其制造方法
PL13841281T PL2902520T3 (pl) 2012-09-27 2013-09-26 Blacha stalowa walcowana na gorąco i sposób jej wytwarzania
EP13841281.2A EP2902520B1 (en) 2012-09-27 2013-09-26 Hot-rolled steel sheet, and production method therefor
ES13841281T ES2714316T3 (es) 2012-09-27 2013-09-26 Chapa de acero laminada en caliente y método para su producción

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-213728 2012-09-27
JP2012213728 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050954A1 true WO2014050954A1 (ja) 2014-04-03

Family

ID=50388349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076027 WO2014050954A1 (ja) 2012-09-27 2013-09-26 熱延鋼板およびその製造方法

Country Status (12)

Country Link
US (1) US9903023B2 (ja)
EP (1) EP2902520B1 (ja)
JP (1) JP5574070B1 (ja)
KR (1) KR101654492B1 (ja)
CN (1) CN104704136B (ja)
BR (1) BR112015005020B1 (ja)
ES (1) ES2714316T3 (ja)
IN (1) IN2015DN02550A (ja)
MX (1) MX2015002759A (ja)
PL (1) PL2902520T3 (ja)
TW (1) TWI475115B (ja)
WO (1) WO2014050954A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002366A (ja) * 2015-06-11 2017-01-05 新日鐵住金株式会社 冷間加工性に優れた熱延鋼板及びその製造方法
CN107614728A (zh) * 2015-05-26 2018-01-19 新日铁住金株式会社 钢板及其制造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869009B2 (en) * 2013-11-15 2018-01-16 Gregory Vartanov High strength low alloy steel and method of manufacturing
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
WO2016132542A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
ES2769224T3 (es) 2015-02-25 2020-06-25 Nippon Steel Corp Chapa de acero laminada en caliente
JP6179584B2 (ja) 2015-12-22 2017-08-16 Jfeスチール株式会社 曲げ性に優れた高強度鋼板およびその製造方法
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
JP6358406B2 (ja) 2016-08-05 2018-07-18 新日鐵住金株式会社 鋼板及びめっき鋼板
BR112019000766B8 (pt) 2016-08-05 2023-03-14 Nippon Steel & Sumitomo Metal Corp Chapa de aço
CN106566986B (zh) * 2016-11-10 2019-01-25 武汉钢铁有限公司 用于制造挖掘机动臂的高表面质量热轧钢板及制造方法
KR102325874B1 (ko) * 2017-01-27 2021-11-12 닛폰세이테츠 가부시키가이샤 강판 및 도금 강판
CN107419177A (zh) * 2017-08-07 2017-12-01 武汉钢铁有限公司 用于汽车的抗拉强度为540MPa级的热轧酸洗钢及其制造方法
CN107587054A (zh) * 2017-09-06 2018-01-16 河钢股份有限公司承德分公司 一种低碳当量易焊接380cl轮辋用钢及其生产方法
KR102020381B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 내마모성이 우수한 강재 및 그 제조방법
CN109594012A (zh) * 2018-11-05 2019-04-09 包头钢铁(集团)有限责任公司 一种700MPa级稀土耐腐蚀车用钢带及其制备方法
CN110747390B (zh) * 2019-04-16 2021-05-25 敬业钢铁有限公司 一种高强度耐腐蚀船舶用钢及其制备方法
CN110129681B (zh) * 2019-06-20 2021-05-28 新疆八一钢铁股份有限公司 一种超高强度汽车结构钢生产方法
CN112522608A (zh) * 2020-11-18 2021-03-19 山东钢铁集团日照有限公司 一种590MPa以上级别增强成型性热镀锌双相钢及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179346A (ja) 1991-12-31 1993-07-20 Sumitomo Metal Ind Ltd 切欠き疲労強度の高い熱延鋼板の製造方法
JPH10280096A (ja) 1997-04-04 1998-10-20 Nippon Steel Corp 高強度熱延鋼板とその製造方法
JP2002317246A (ja) 2001-04-19 2002-10-31 Nippon Steel Corp 切り欠き疲労強度とバーリング加工性に優れる自動車用薄鋼板およびその製造方法
JP2004204326A (ja) * 2002-12-26 2004-07-22 Nippon Steel Corp 穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板及びその製造方法
JP2005298924A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2007009322A (ja) 2005-05-30 2007-01-18 Jfe Steel Kk 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法
JP2007023339A (ja) * 2005-07-15 2007-02-01 Sumitomo Metal Ind Ltd 高張力熱延鋼板及びその製造方法
JP2007321201A (ja) 2006-06-01 2007-12-13 Kobe Steel Ltd 強度−伸びバランスと疲労特性に優れた高強度熱延鋼板
JP2008266726A (ja) 2007-04-20 2008-11-06 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2010159672A (ja) 2009-01-07 2010-07-22 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2012021192A (ja) 2010-07-14 2012-02-02 Nippon Steel Corp 塗装耐食性と打抜き部疲労特性に優れた高強度熱延鋼板およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967868B2 (ja) * 2000-05-25 2007-08-29 新日本製鐵株式会社 成形性に優れた高強度熱延鋼板及び高強度溶融亜鉛めっき鋼板並びに高強度合金化溶融亜鉛めっき鋼板とその製造方法
WO2004059024A1 (ja) 2002-12-26 2004-07-15 Nippon Steel Corporation 穴拡げ性、延性及び化成処理性に優れた高強度薄鋼板及びその製造方法
JP4317418B2 (ja) 2003-10-17 2009-08-19 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度薄鋼板
JP4469269B2 (ja) 2004-12-20 2010-05-26 新日本製鐵株式会社 高周波磁気特性の優れた電磁鋼板とその製造方法
JP4469268B2 (ja) 2004-12-20 2010-05-26 新日本製鐵株式会社 高強度電磁鋼板の製造方法
TW200801208A (en) * 2004-12-20 2008-01-01 Nippon Steel Corp A high strength electrical steel sheet and a method for producing the same
EP1975266B1 (en) * 2005-12-28 2012-07-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ultrahigh-strength steel sheet
TWI406966B (zh) 2007-10-25 2013-09-01 Jfe Steel Corp 加工性優異之高強度熔融鍍鋅鋼板及其製造方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5167487B2 (ja) 2008-02-19 2013-03-21 Jfeスチール株式会社 延性に優れる高強度鋼板およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179346A (ja) 1991-12-31 1993-07-20 Sumitomo Metal Ind Ltd 切欠き疲労強度の高い熱延鋼板の製造方法
JPH10280096A (ja) 1997-04-04 1998-10-20 Nippon Steel Corp 高強度熱延鋼板とその製造方法
JP2002317246A (ja) 2001-04-19 2002-10-31 Nippon Steel Corp 切り欠き疲労強度とバーリング加工性に優れる自動車用薄鋼板およびその製造方法
JP2004204326A (ja) * 2002-12-26 2004-07-22 Nippon Steel Corp 穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板及びその製造方法
JP2005298924A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2007009322A (ja) 2005-05-30 2007-01-18 Jfe Steel Kk 伸び特性、伸びフランジ特性および引張疲労特性に優れた高強度熱延鋼板およびその製造方法
JP2007023339A (ja) * 2005-07-15 2007-02-01 Sumitomo Metal Ind Ltd 高張力熱延鋼板及びその製造方法
JP2007321201A (ja) 2006-06-01 2007-12-13 Kobe Steel Ltd 強度−伸びバランスと疲労特性に優れた高強度熱延鋼板
JP2008266726A (ja) 2007-04-20 2008-11-06 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2010159672A (ja) 2009-01-07 2010-07-22 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2012021192A (ja) 2010-07-14 2012-02-02 Nippon Steel Corp 塗装耐食性と打抜き部疲労特性に優れた高強度熱延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Steel Bainite Photobook -1", 1992, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614728A (zh) * 2015-05-26 2018-01-19 新日铁住金株式会社 钢板及其制造方法
CN107614728B (zh) * 2015-05-26 2020-04-21 日本制铁株式会社 钢板及其制造方法
JP2017002366A (ja) * 2015-06-11 2017-01-05 新日鐵住金株式会社 冷間加工性に優れた熱延鋼板及びその製造方法

Also Published As

Publication number Publication date
MX2015002759A (es) 2015-05-15
CN104704136A (zh) 2015-06-10
ES2714316T3 (es) 2019-05-28
EP2902520A4 (en) 2016-03-16
BR112015005020A2 (pt) 2017-07-04
CN104704136B (zh) 2016-08-24
US20150218708A1 (en) 2015-08-06
US9903023B2 (en) 2018-02-27
PL2902520T3 (pl) 2019-06-28
KR20150038730A (ko) 2015-04-08
JPWO2014050954A1 (ja) 2016-08-22
TW201425601A (zh) 2014-07-01
EP2902520B1 (en) 2019-01-02
EP2902520A1 (en) 2015-08-05
TWI475115B (zh) 2015-03-01
JP5574070B1 (ja) 2014-08-20
BR112015005020B1 (pt) 2020-05-05
IN2015DN02550A (ja) 2015-09-11
KR101654492B1 (ko) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5574070B1 (ja) 熱延鋼板およびその製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
TWI438285B (zh) 高強度鋼板及其製造方法
EP2554705B1 (en) Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
WO2019106895A1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
US8911567B2 (en) High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing of high-strength steel sheet
JP5842515B2 (ja) 熱延鋼板およびその製造方法
US20160060722A1 (en) Hot-stamped steel, cold-rolled steel sheet and method for producing hot-stamped steel
WO2010150919A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013046476A1 (ja) 高強度鋼板およびその製造方法
TWI518186B (zh) 高強度熱軋鋼板及其製造方法
JP2012021192A (ja) 塗装耐食性と打抜き部疲労特性に優れた高強度熱延鋼板およびその製造方法
TWI518187B (zh) 高強度熱軋鋼板及其製造方法
CN108603262B (zh) 高屈服比型高强度镀锌钢板及其制造方法
JP5272412B2 (ja) 高強度鋼板およびその製造方法
TWI515309B (zh) 高強度熱軋鋼板及其製造方法
JP5659604B2 (ja) 高強度鋼板およびその製造方法
JPWO2018163871A1 (ja) 高強度熱延めっき鋼板
JP5286986B2 (ja) 降伏強度が低く、焼付硬化性の高い高強度溶融亜鉛めっき鋼板およびその製造方法
TWI464279B (zh) 高強度鋼板及其製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014501767

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013841281

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/002759

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14430410

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157007425

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201501726

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015005020

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015005020

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150306