WO2014050183A1 - 蛍光体含有封止材の製造方法、蛍光体含有封止材、発光装置の製造方法およびディスペンサー - Google Patents

蛍光体含有封止材の製造方法、蛍光体含有封止材、発光装置の製造方法およびディスペンサー Download PDF

Info

Publication number
WO2014050183A1
WO2014050183A1 PCT/JP2013/061025 JP2013061025W WO2014050183A1 WO 2014050183 A1 WO2014050183 A1 WO 2014050183A1 JP 2013061025 W JP2013061025 W JP 2013061025W WO 2014050183 A1 WO2014050183 A1 WO 2014050183A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
containing sealing
silicone resin
temperature
sealing resin
Prior art date
Application number
PCT/JP2013/061025
Other languages
English (en)
French (fr)
Inventor
正宏 小西
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2014538215A priority Critical patent/JP5744338B2/ja
Priority to US14/431,036 priority patent/US9404035B2/en
Priority to EP13841712.6A priority patent/EP2902432B1/en
Priority to CN201380047641.6A priority patent/CN104662069B/zh
Priority to KR1020157009174A priority patent/KR101629622B1/ko
Publication of WO2014050183A1 publication Critical patent/WO2014050183A1/ja
Priority to US15/180,172 priority patent/US9577159B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • B29C48/155Partial coating thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/244Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a method for producing a phosphor-containing encapsulant for encapsulating a light-emitting element, a phosphor-containing encapsulant, a method for producing a light-emitting device, and a dispenser.
  • a current light emitting device that emits white light including an LED chip, a blue LED chip and a YAG phosphor that emits yellow fluorescence when excited by light emitted from the blue LED chip (see Patent Document 1) are used.
  • the blue light emitted from the blue LED chip and the yellow light emitted from the YAG phosphor are mixed to emit white light.
  • the LED chip is sealed with, for example, a silicone resin, and the phosphor is dispersed in the silicone resin.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 10-242513 (published on Sep. 11, 1998)”
  • the liquid silicone resin containing the phosphor is filled into each cavity using a dispenser or the like.
  • the phosphor may settle in the syringe of the dispenser due to the specific gravity difference between the ricone resin and the phosphor.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide phosphor-containing sealing that can equalize the phosphor content between light-emitting devices and reduce chromaticity variation. It is in providing the manufacturing method of a material, the fluorescent substance containing sealing material, the manufacturing method of a light-emitting device, and a dispenser.
  • a method for producing a phosphor-containing encapsulant includes a mixing step of mixing a powder of a silicone resin semi-cured by primary crosslinking and a phosphor powder. And kneading the powder mixture mixed in the mixing step with a kneading and extruding apparatus equipped with a screw of one or more shafts while being heated and melted at a temperature lower than the secondary crosslinking temperature at which the silicone resin forms secondary crosslinking.
  • a kneading step, and an extruding step of extruding the kneaded material kneaded in the kneading step from a discharge port of the kneading extrusion device in which at least one through-hole is formed The viscosity is reversibly changed in a temperature range up to a temperature lower than the secondary cross-linking temperature, and is fully cured in a temperature range higher than the secondary cross-linking temperature.
  • the phosphor-containing encapsulant according to one embodiment of the present invention is a phosphor-containing encapsulant that is semi-cured by a primary cross-linking silicone resin,
  • the viscosity is reversibly changed in a temperature range from room temperature to a temperature lower than the secondary cross-linking temperature, which is a temperature for forming a secondary cross-link, and the temperature is higher than the secondary cross-linking temperature. It is characterized by being fully cured.
  • a method for manufacturing a light-emitting device corresponds to the cavity above a substrate in which light-emitting elements are mounted in a plurality of cavities that open upward.
  • the mounting step and the phosphor-containing encapsulant are placed from the through hole while being melted by heating at a room temperature or below a secondary cross-linking temperature, which is a temperature at which the silicone resin forms a secondary cross-link.
  • An extrusion step of extruding the substrate toward the substrate, a filling step of cutting the phosphor-containing sealing material extruded into a strand into a predetermined length and filling the cavity, and the fluorescence filling the cavity Including body
  • a dispenser mounts a phosphor-containing sealing material in which a phosphor powder is dispersed in a silicone resin semi-cured by primary crosslinking on a substrate.
  • a dispenser for discharging the phosphor-containing sealing material to the light-emitting element, and the housing includes a heating mechanism capable of heating the phosphor-containing sealing material.
  • the viscosity of the silicone resin reversibly changes in a temperature range from room temperature to a temperature lower than the secondary crosslinking temperature, which is a temperature at which the silicone resin forms secondary crosslinking, and a temperature range equal to or higher than the secondary crosslinking temperature. It is characterized by being completely cured.
  • a method for manufacturing a phosphor-containing encapsulant that can equalize the phosphor content between light emitting devices and reduce variations in chromaticity.
  • FIG. 1 is a perspective view showing an external configuration of a light emitting device manufactured by the method for manufacturing a light emitting device according to Embodiment 1.
  • FIG. FIGS. 2A to 2D are schematic views showing a process of mounting a light emitting element in the cavity 12 in the manufacturing process of the light emitting device shown in FIG.
  • FIGS. 3A to 3C are schematic views showing a process of filling the cavity with a phosphor-containing sealing resin.
  • FIG. 4 is a graph conceptually showing the viscosity characteristics of the silicone resin contained in the phosphor-containing sealing resin shown in FIG. FIGS.
  • FIGS. 9A to 9C are schematic views showing a method for producing a block-shaped phosphor-containing sealing resin.
  • FIGS. 10 (a) and 10 (b) are graphs for explaining changes in the viscosity of the silicone resin in the steps shown in FIGS. 9 (a) to 9 (c).
  • FIG. 10 (a) and 10 (b) are graphs for explaining changes in the viscosity of the silicone resin in the steps shown in FIGS. 9 (a) to 9 (c).
  • FIG. 11 is a cross-sectional view showing a modification of the filling process.
  • FIG. 12 is a cross-sectional view showing a step of filling a cavity with a phosphor-containing sealing resin using a dispenser.
  • FIGS. 13A to 13D are schematic views showing a method for manufacturing the string-like phosphor-containing sealing resin according to the second embodiment.
  • 14 (a) to 14 (d) are schematic views showing a molding method for processing a string-like phosphor-containing sealing resin into a sheet shape.
  • FIGS. 15A and 15B are cross-sectional views showing a method for manufacturing a light-emitting device using a sheet-like phosphor-containing sealing resin.
  • FIG. 16 is a perspective view illustrating an external configuration of a light-emitting device manufactured by the method for manufacturing a light-emitting device according to Embodiment 3.
  • FIGS. 17A to 17C are schematic views showing a process of filling the cavity with a phosphor-containing sealing resin.
  • FIG. 18 is a cross-sectional view showing the extrusion process shown in FIG.
  • FIGS. 19A to 19C are schematic views showing a method for producing a block-shaped phosphor-containing sealing resin.
  • 20 (a) and 20 (b) are graphs for explaining changes in the viscosity of the silicone resin in the steps shown in FIGS. 19 (a) to 19 (c).
  • FIG. 21 is a table showing changes in the viscosity and elastic modulus of the silicone resin depending on whether or not a plasticizer is added.
  • FIG. 22 is a cross-sectional view showing a modification of the filling process.
  • FIG. 23 is a cross-sectional view showing a step of filling a cavity with a phosphor-containing sealing resin using a dispenser.
  • 24 (a) to 24 (d) are schematic views showing a method for producing the string-like phosphor-containing sealing resin according to the fourth embodiment.
  • FIGS. 25A to 25D are schematic views showing a molding method for processing a string-like phosphor-containing sealing resin into a sheet shape.
  • 26 (a) and 26 (b) are cross-sectional views showing a method for manufacturing a light emitting device using a sheet-like phosphor-containing sealing resin.
  • FIG. 1 is a perspective view showing an external configuration of a light emitting device 1a manufactured by the method for manufacturing a light emitting device according to the present embodiment.
  • a light emitting device 1 a has a rectangular shape that opens upward on a circuit board (substrate) 11 that is a rectangular parallelepiped MID (Molded Interconnection Device) having a side of about 1 mm.
  • a cavity 12 is formed.
  • the cavity 12 is a recess formed on the upper surface of the circuit board 11.
  • a light emitting element 13 such as an LED chip is mounted in the cavity 12.
  • the lower surface of the light emitting element 13 is connected to a mounting wiring pattern 14 provided at the bottom of the cavity 12 by a conductive adhesive 15 (die bonding). Further, the upper surface of the light emitting element 13 is connected to a connection wiring pattern 16 provided at the bottom of the cavity 12 by a conductive wire 17 constituted by a gold wire or the like (wire bonding).
  • a phosphor-containing sealing resin (phosphor-containing sealing material) 20 made of a light-transmitting silicone resin.
  • the inner surface of the cavity 12 of the circuit board 11 may have a reflector function. Thereby, the utilization efficiency of the light in the light emitting device 1a can be improved.
  • the method for mounting the light emitting element 13 on the circuit board 11 is not particularly limited, and the light emitting element 13 may be mounted on the circuit board 11 by, for example, a flip chip method instead of the wire bonding method.
  • the circuit board 11 is also replaced with a structure in which a lead frame is insert-molded with a light-reflecting resin that functions as a reflector, or a structure in which a cavity is formed by attaching a reflector member on a circuit board with a flat surface. Also good.
  • 2 (a) to 2 (d) are schematic diagrams showing a process of mounting the light emitting element 13 in the cavity 12 in the manufacturing process of the light emitting device 1a shown in FIG.
  • a multiple cavity circuit board (substrate) 10 in which a large number of cavities 12 are formed in a matrix in the vertical and horizontal directions is used.
  • the multi-cavity circuit board 10 has a thickness of 1.0 mm, for example, and the depth of each cavity 12 is 0.6 mm.
  • the mount wiring pattern 14 and the connection wiring pattern 16 are provided side by side at the bottom of each cavity 12.
  • a conductive adhesive 15 is applied on the wiring pattern 14 for mounting provided at the bottom of each cavity 12 of the multiple cavity circuit board 10.
  • the light emitting element 13 is die-bonded on the conductive adhesive 15 applied on the mounting wiring pattern 14. Then, as shown in FIG. 2D, the upper surface of the light emitting element 13 and the connection wiring pattern 16 provided on the bottom of the cavity 12 are wire-bonded by a conductive wire 17 made of a gold wire or the like.
  • each cavity 12 of the multiple cavity circuit board 10 After mounting the light emitting element 13 in each cavity 12 of the multiple cavity circuit board 10 by die bonding and wire bonding, the inside of each cavity 12 is sealed with the phosphor-containing sealing resin 20.
  • FIG. 3 (a) to 3 (c) are schematic views showing a process of filling the cavity 12 with the phosphor-containing sealing resin 20.
  • FIG. FIG. 4 is a graph conceptually showing the viscosity characteristics of the silicone resin contained in the phosphor-containing sealing resin 20 shown in FIG.
  • FIGS. 5A to 5D are graphs conceptually showing changes in the viscosity of the silicone resin in a series of steps from filling of the phosphor-containing sealing resin 20 into the cavity 12 until curing. .
  • the multiple cavity circuit board 10 on which the light emitting element 13 is mounted is placed on the heater plate 31, and the cut plate 32 and the porous plate are placed above the multiple cavity circuit board 10.
  • the plate 33 and the heater block 34 are laminated in this order (installation process).
  • the block-shaped phosphor-containing sealing resin 20 is placed on the porous plate 33 and in the opening 34a of the heater block 34 (placement step).
  • the phosphor-containing sealing resin 20 is obtained by uniformly dispersing a phosphor in a silicone resin.
  • This silicone resin undergoes primary crosslinking by adding a predetermined temperature and time lower than the secondary crosslinking temperature described later, and completely settles even if particles (for example, a phosphor) having a specific gravity greater than that of the silicone resin are contained.
  • a non-liquid state having a viscosity (100 Pa ⁇ S or more and 1E + 5 Pa ⁇ S or less) that can be processed is maintained.
  • the primary cross-linking refers to a state that has a cross-linking point and is not liquid at room temperature where the curing can proceed further under predetermined curing conditions (addition of a predetermined temperature and time).
  • this silicone resin has a viscosity V 0 at room temperature T 0 (about 25 ° C.) (see P 0 in the figure).
  • the viscosity V 0 is a viscosity capable of maintaining the shape of the phosphor-containing sealing resin 20 at room temperature T 0 .
  • Viscosity change of the silicone resin in the temperature range of the secondary below crosslinking temperature T 1 of from room temperature T 0 is a heat reversible change. Therefore, when the temperature is lowered from the vicinity of the secondary crosslinking temperature T 1 to the room temperature T 0 , the viscosity of the silicone resin increases and returns to the original viscosity V 0 at the room temperature T 0 . Therefore, the viscosity of the silicone resin can be repeatedly adjusted between the viscosity V 0 and the viscosity V 1 by changing the temperature in the temperature range from room temperature T 0 to less than the secondary crosslinking temperature T 1 .
  • the viscosity of the silicone resin after curing can not be substantially defined viscosity if the viscosity of the silicone resin after curing when conceptually defined as the viscosity V 2, the viscosity of the silicone resin is from viscosity V 1 It rises to V 2 (see P 2 in the figure). That is, the viscosity V 2 conceptually defines the viscosity at the secondary crosslinking temperature T 1 when the silicone resin forms secondary crosslinking.
  • the silicone resin after secondary crosslinking when the secondary crosslinking temperature T 1 of raising or lowering the temperature, the viscosity of the secondary crosslinking temperature T 1 of, but occurs change in physical properties such as elasticity (polymer properties) , as compared to the second pre-crosslinking of the silicone resin, the viscosity and the elastic modulus is relatively high (provided that the P 3 in FIG convenience, are described as maintaining the viscosity V 2).
  • the secondary cross-linking is not limited to this, but it means that the curing further proceeds due to a cross-linking reaction with a reaction catalyst different from that at the time of synthesis, and a state in which a reversible viscosity change does not occur depending on the temperature as described above.
  • the phosphor-containing sealing resin 20 various phosphors are kneaded according to necessary optical characteristics to adjust the concentration (content ratio) of the phosphor. If this silicone resin is used, 2 Since the viscosity can be repeatedly adjusted in the state before the next crosslinking, the phosphor-containing sealing resin 20 in which the phosphor is uniformly dispersed can be formed as described later.
  • silicone resin contained in the phosphor-containing sealing resin 20 for example, a trade name “TX-2506 series” manufactured by Dow Corning can be suitably used.
  • the manufacturing method of the block-shaped fluorescent substance containing sealing resin 20 is mentioned later.
  • the heater block 34 has a temperature adjustment function including a temperature range lower than the secondary cross-linking temperature T 1 at which the phosphor-containing sealing resin 20 can be heated and melted from room temperature T 0 .
  • the heater block 34 is a frame-like member having an opening 34a that penetrates, and the phosphor-containing sealing resin 20 is disposed in the opening 34a.
  • the perforated plate 33 is formed with a plurality of perforated plate through holes (through holes) 33a.
  • the perforated plate through-holes 33a are formed at positions corresponding to the cavities 12, and as will be described later, the phosphor-containing sealing resin 20 enters the cavities 12 from the perforated plate through-holes 33a by pressurization by the plunger 35. It is pushed out.
  • the cut plate 32 cuts the phosphor-containing sealing resin 20 extruded from the perforated plate through-hole 33a into a predetermined length.
  • a cut plate through hole 32a corresponding to the perforated plate through hole 33a is formed in the cut plate 32.
  • the cut plate 32 is provided in the cut plate through hole 32a by eccentrically moving the cut plate 32 in the direction of the arrow in the figure.
  • the phosphor-containing sealing resin 20 is cut into a predetermined length by the blade 32b (see FIG. 7).
  • the heater plate 31 heats the placed multiple cavity circuit board 10. Heater plate 31, for example, heating the multiple-cavity circuit board 10 in the secondary crosslinking temperature T 1 of the following temperature range.
  • the phosphor-containing sealing resin 20 placed on the porous plate 33 is heated and melted by the heater block 34 to reduce the viscosity of the phosphor-containing sealing resin 20.
  • the phosphor-containing sealing resin 20 is heated from room temperature T 0 to a temperature T 4 in the vicinity of the secondary crosslinking temperature T 1 (for example, 80 ° C. or higher and lower than 120 ° C.).
  • T 1 for example, 80 ° C. or higher and lower than 120 ° C.
  • the phosphor-containing sealing resin 20 placed on the perforated plate 33 is pressurized toward the multi-cavity circuit board 10 using the plunger 35.
  • the phosphor-containing sealing resin 20 is extruded from the perforated plate through-hole 33a of the perforated plate 33 toward the cavities 12 in a thread shape (extrusion step).
  • FIG. 6 is a cross-sectional view showing the extrusion process shown in FIG.
  • the phosphor-containing sealing resin 20 is pushed out from the perforated plate through-hole 33 a of the perforated plate 33 in a thread shape by pressurization of the plunger 35.
  • the thread-like phosphor-containing sealing resin 20 reaches a predetermined length
  • the phosphor-containing sealing resin 20 pushed out in a thread shape from the perforated plate through-hole 33a is rotated by rotating the cut plate 32 eccentrically. Disconnect.
  • each cavity 12 can be simultaneously filled with the phosphor-containing sealing resin 20 that has been cut to a predetermined length and has the same phosphor content (filling step).
  • FIG. 7 is a cross-sectional view showing the cut plate 32 shown in FIG. As shown in FIG. 7, in the cut plate 32, the edge of the cut plate through hole 32a on the porous plate 33 side is a blade (blade) 32b. Therefore, by rotating the cut plate 32 eccentrically, the phosphor-containing sealing resin 20 extruded into a thread shape by the blade 32b can be cut. At this time, the heater plate 31 heats the multiple cavity circuit board 10 so that the phosphor-containing sealing resin 20 disposed in the cavity 12 is in close contact with the inner surface of the cavity 12, and the phosphor-containing sealing resin 20. Softens.
  • Temperature of the multiple-cavity circuit board 10 in the filling process does not have to reach the secondary crosslinking temperature T 1, to the extent that the phosphor-containing sealing resin 20 tends to close the interior of the cavity 12, the phosphor Any temperature that softens the encapsulating resin 20 may be used.
  • each cavity 12 is filled with the phosphor-containing sealing resin 20, as shown in FIG. 5B, it is heated by the heater plate 31 at the secondary crosslinking temperature T 1 (for example, 125 ° C.) (in the drawing). see P 1).
  • T 1 for example, 125 ° C.
  • FIG as shown in (c) of 5 cured silicone resin to form a secondary crosslinking begins (curing step: see figure P 2).
  • the phosphor-containing sealing resin 20 filled in the cavity 12 starts to be cured from the bottom side of the cavity 12 by the heater plate 31.
  • FIG. 8 is a schematic view showing a process of dividing the multiple cavity circuit board 10. As shown in FIG. 8, when the light emitting element 13 mounted in each cavity 12 is sealed with the phosphor-containing sealing resin 20 in which secondary crosslinking is formed, the multiple cavity circuit board 10 is replaced with one cavity 12. Divide each time. Thereby, the some light emitting device 1a with uniform fluorescent substance content can be manufactured simultaneously.
  • the chromaticity distribution range between the light emitting devices 1a manufactured in this way can satisfy the McAdam ellipse 2-step chromaticity management standard.
  • the MacAdam ellipse is an xy chromaticity diagram showing the standard deviation of identification variation with respect to a specific central color, and can realize a level at which variations in chromaticity cannot be identified by human eyes.
  • the phosphor content between the light emitting devices 1a can be equalized, and the variation in chromaticity (range of chromaticity distribution) can be reduced. it can.
  • FIGS. 9 (a) to 9 (c) are schematic views showing a method for producing the block-shaped phosphor-containing sealing resin 20, and FIG. 10 (a) and FIG. 10 (b) 10 is a graph for explaining a change in viscosity of a silicone resin in the steps shown in FIGS. 9 (a) to 9 (c).
  • FIG. 10 (a) and FIG. 10 (b) 10 is a graph for explaining a change in viscosity of a silicone resin in the steps shown in FIGS. 9 (a) to 9 (c).
  • the powder of the silicone resin 21 on which the primary cross-links are formed and the powder of the phosphor 22 are sufficiently dry-mixed until the mixed state becomes uniform, to obtain a powder mixture 24. Get.
  • the powder mixture 24 is accommodated in a container, and as shown in FIG. 10A, the room temperature T 0 to the temperature T 5 (for example, 40 to less than 60 ° C.). ) melting the silicone resin 21 by heating up, see medium P 5 ((a in FIG. 10) is lowered to a kneadable viscosity V 5 while suppressing the sedimentation of the phosphor 22), fluorescent silicone resin 21 The body 22 is kneaded.
  • the heat-melted silicone resins 21 are fused and kneaded while the phosphor 22 is involved.
  • the dispersion state of the phosphor 22 in the silicone resin 21 is changed by kneading the viscosity of the silicone resin 21 to a viscosity V 5 that can be kneaded while suppressing sedimentation of the phosphor 22. Can be maintained.
  • the phosphor 22 contained in the phosphor-containing sealing resin 20 is one type, but two or more types of phosphors 22 having different emission colors, particle sizes, specific gravity, and the like may be used.
  • a phosphor-containing sealing resin 20 including a combination of a red light-emitting phosphor and a green light-emitting phosphor may be manufactured and applied to a blue LED chip (light-emitting element 13).
  • a phosphor-containing sealing resin 20 including a combination of a blue light-emitting phosphor and a yellow light-emitting phosphor may be manufactured and applied to a blue-violet LED chip.
  • the powder of the silicone resin 21 on which the primary crosslinking is formed and the powder of the two or more kinds of phosphors 22 are dry-mixed until the mixed state becomes uniform to obtain the powder mixture 24.
  • the silicone resin 21 is heated and melted in less than secondary crosslinking temperature T 1, 2 or more is lowered until kneadable viscosity while suppressing the sedimentation of the phosphor 22, the silicone resin 21 2 or more kinds of phosphors 22 Knead.
  • the heat-melted silicone resins 21 are fused and kneaded while two or more kinds of phosphors 22 are rolled into the fused silicone resin 21. Further, as described above, two or more types of fluorescence in the silicone resin 21 are obtained by kneading in a state where the viscosity of the silicone resin 21 is reduced to a viscosity that allows kneading while suppressing sedimentation of the two or more types of phosphors 22. The dispersed state of the body 22 can be maintained.
  • the phosphor 22 is used as the wavelength converting substance, but other wavelength converting substances may be used.
  • the wavelength converting substance has a function of converting light emitted from the light emitting element 13 to emit light having different wavelengths.
  • the multiple cavity circuit board 10 having a large number of cavities 12 is used.
  • a planar circuit board having a flat surface may be used instead of the multiple cavity circuit board 10.
  • the method for manufacturing the light emitting device 1a according to the present embodiment corresponds to the cavity 12 above the multiple cavity circuit board 10 in which the light emitting elements 13 are mounted in the plurality of cavities 12 opening upward.
  • An extrusion process for extruding in a thread shape from 33a toward the multi-cavity circuit board 10 and the phosphor-containing sealing resin 20 extruded in a thread shape are cut into a predetermined length to obtain the cavity 1 Includes a filling step of filling a 2, a sealing resin containing fluorescent material 20 filled in the cavity 12, and a curing step of curing by heating in the secondary crosslinking temperature or higher, the silicone resin, the secondary from room T 0 reversibly viscosity change in a temperature range of up
  • the method of manufacturing the light emitting device 1a according to this embodiment due to the use of silicone resin having the above characteristics, by varying the temperature in a temperature range of from room temperature T 0 to less than secondary crosslinking temperature T 1, The viscosity of the silicone resin can be adjusted repeatedly.
  • the viscosity of the silicone resin 21 is adjusted to such an extent that the dispersed state of the kneaded phosphor 22 can be maintained. Sedimentation of the phosphor 22 can be suppressed. Therefore, the phosphor-containing sealing resin 20 in which the phosphor 22 is uniformly dispersed in the silicone resin 21 can be obtained.
  • each cavity 12 can be filled (potted) with the same amount of the phosphor-containing sealing resin 20 at the same time.
  • the phosphor-containing encapsulating resin 20 is heated at the secondary crosslinking temperature or higher.
  • the perforated plate through-hole 33a is formed in the perforated plate 33 according to the number, size, etc. of the cavities 12 formed in the multiple cavity circuit board 10. As a result, it is possible to easily cope with the manufacture of various light emitting devices 1a, so that the manufacturing cost of the light emitting devices 1a can be reduced.
  • FIG. 11 is a cross-sectional view showing a modification of the filling process. As shown in FIG. 11, the perforated plate 33 is moved away from the multi-cavity circuit board 10 in a direction perpendicular to the multi-cavity circuit board 10 to form a thread from the perforated plate through-hole 33a. The extruded phosphor-containing sealing resin 20 may be cut.
  • the multiple cavity circuit board 10 it is preferable to heat the multiple cavity circuit board 10 in advance.
  • the lower end part of the phosphor-containing sealing resin 20 that has reached the multi-cavity circuit board 10 and is extruded in a thread shape can be attached to the bottom part of the cavity 12 by the heat. Therefore, when the lower end of the thread-like phosphor-containing sealing resin 20 reaches the cavities 12, the perforated plate 33 is raised to cut the thread-like phosphor-containing sealing resin 20 to each cavity 12. Can be filled. Instead of the perforated plate 33, the phosphor-containing sealing resin 20 may be cut by lowering the multiple cavity circuit board 10.
  • the phosphor-containing sealing resin 20 can be cut without using the cut plate 32 and a drive device that eccentrically rotates the cut plate 32.
  • each cavity 12 can be filled.
  • FIG. 12 is a cross-sectional view showing a step of filling the cavity 12 with the phosphor-containing sealing resin 20 using the dispenser 36. As shown in FIG. 12, the phosphor-containing sealing resin 20 may be filled into the cavity 12 using a dispenser 36 having a syringe 36a.
  • the dispenser 36 reprocesses the phosphor-containing sealing resin 20 in which a phosphor powder is kneaded with a silicone resin semi-cured by primary crosslinking into a shape that can be accommodated in the syringe 36a, and contains the phosphor contained in the syringe 36a.
  • the sealing resin 20 is discharged in a thread shape onto the light emitting element 13 mounted on the multiple cavity circuit board 10.
  • the dispenser 36 includes a syringe (accommodating portion) 36 a that accommodates the phosphor-containing sealing resin 20.
  • the dispenser 36 pressurizes the syringe 36a with air or a piston, discharges the stored phosphor-containing sealing resin 20, and fills the cavity 12 with the phosphor-containing sealing resin 20 (discharge process).
  • discharge process when pressurized with air or piston may be ejected while heated and melted sealing resin containing fluorescent material 20 is less than the secondary crosslinking temperature of the silicone resin may be discharged remain at room temperature T 0.
  • the viscosity of the phosphor-containing sealing resin 20 accommodated in the syringe 36a does not precipitate the phosphor.
  • the heating temperature by the syringe 36a is controlled so as to be approximately. Thereby, it is possible to suppress the precipitation of the phosphor in the syringe 36a due to the difference in specific gravity between the silicone resin and the phosphor as in the prior art, and the substantially uniform dispersion state of the phosphor can be maintained.
  • the phosphor-containing sealing resin 20 can be filled in each cavity 12 with almost no change in the phosphor concentration of the phosphor-containing sealing resin 20 at the beginning and end of the discharge process using the dispenser 36. Further, when discharging at the room temperature T 0 , the viscosity of the phosphor-containing sealing resin 20 does not decrease. Therefore, the phosphor-containing sealing resin 20 is contained at the beginning and the end of the discharging process using the dispenser 36 as in the case of heating and melting. The phosphor-containing sealing resin 20 can be filled in each cavity 12 with almost no change in the phosphor concentration of the sealing resin 20.
  • each light emitting element 13 can be sealed with the phosphor-containing sealing resin 20 in which the phosphor content is equalized between the cavities 12.
  • each light emitting element 13 is individually or several light emitting elements 13 with respect to the several light emitting element 13 mounted in the circuit board with the flat surface using the dispenser 36 in which the cavity 12 is not formed. You may discharge the fluorescent substance containing sealing resin 20 so that it may seal for every unit.
  • each light emitting element 13 can be sealed with the phosphor-containing sealing resin 20 in which the phosphor content is equalized.
  • the string-like phosphor-containing sealing resin 20 is manufactured, and the light-emitting element 13 is manufactured using the string-like phosphor-containing sealing resin 20 processed.
  • the point of sealing is different from the first embodiment.
  • FIG. 13 (a) to 13 (d) are schematic diagrams showing a method for manufacturing the string-like phosphor-containing sealing resin 20.
  • FIG. 13 (a) to 13 (d) are schematic diagrams showing a method for manufacturing the string-like phosphor-containing sealing resin 20.
  • the powder of the silicone resin 21 on which the primary cross-link is formed and the powder of the phosphor 22 are dry-mixed until the mixed state becomes uniform to obtain a powder mixture 24. (Mixing process).
  • a powder mixture 24 was placed in a twin-screw extruder (kneading extruder apparatus) 37, and kneaded while heating melt below the secondary crosslinking temperature T 1 (kneading Process).
  • the twin-screw extruder 37 includes two screws 37a provided in parallel, and the two screws 37a rotate in opposite directions to melt the silicone resin by heating, while the powder mixture 24 is melted. Knead.
  • the powder mixture 24 becomes a kneaded material 25 in which the phosphor is uniformly dispersed in the molten silicone resin.
  • the phosphor was uniformly dispersed in the silicone resin as shown in FIG. 13 (d).
  • the string-like phosphor-containing sealing resin 20 can be manufactured.
  • the string-shaped phosphor-containing sealing resin 20 has the same length.
  • a plurality of phosphor-containing sealing resins 20 having the same phosphor content can be easily obtained. Therefore, by sealing the light emitting element 13 using these phosphor-containing sealing resins 20, it is possible to equalize the phosphor content between the light emitting devices and reduce the chromaticity variation.
  • the melting efficiency of the silicone resin at the time of heating can be improved as compared with the bulk phosphor-containing sealing resin 20. Therefore, by heating and melting a string-like sealing resin containing fluorescent material 20 is less than the secondary crosslinking temperature T 1 of so as not to settle the phosphor, while maintaining the state of the phosphor is uniformly dispersed in the silicone resin
  • the string-like phosphor-containing sealing resin 20 can be easily processed into a desired shape.
  • the twin screw extruder 37 provided with two screws 37a is used.
  • a single screw extruder provided with one screw 37a may be used. good.
  • it may replace with the biaxial screw extrusion apparatus 37, and may use the multiaxial screw extrusion apparatus provided with the three or more screws 37a.
  • the number, size, and shape of the discharge ports 37b of the twin screw extruder 37 are not particularly limited, and can be appropriately changed as necessary.
  • the phosphor 22 contained in the phosphor-containing sealing resin 20 is one type, but two or more types of phosphors 22 having different emission colors, particle sizes, specific gravity, and the like may be used.
  • a phosphor-containing sealing resin 20 including a combination of a red light-emitting phosphor and a green light-emitting phosphor may be manufactured and applied to a blue LED chip (light-emitting element 13).
  • a phosphor-containing sealing resin 20 including a combination of a blue light-emitting phosphor and a yellow light-emitting phosphor may be manufactured and applied to a blue-violet LED chip.
  • the powder of the silicone resin 21 on which the primary crosslinking is formed and the powder of the two or more kinds of phosphors 22 are dry-mixed until the mixed state becomes uniform to obtain the powder mixture 24.
  • twin-screw extruder (kneading extruder apparatus) 37, and kneaded while heating melt below the secondary crosslinking temperature T 1.
  • the twin-screw extruder 37 includes two screws 37a provided in parallel, and the two screws 37a rotate in opposite directions, whereby the silicone resin 21 is melted by heating and the powder mixture. 24 is kneaded.
  • the powder mixture 24 becomes a kneaded material 25 in which two or more kinds of phosphors 22 are uniformly dispersed in the molten silicone resin 21.
  • the kneaded material 25 is extruded in a string form from the discharge port 37 b of the twin screw extruder 37, whereby two or more kinds of phosphors 22 are uniformly dispersed in the silicone resin 21 and the string-like phosphor-containing sealing resin 20. Can be manufactured.
  • the phosphor 22 is used as the wavelength conversion material, but other wavelength conversion materials may be used.
  • the wavelength converting substance has a function of converting light emitted from the light emitting element 13 to emit light having different wavelengths.
  • FIG. 14 (a) to 14 (d) are schematic views showing a molding method for processing the string-like phosphor-containing sealing resin 20 into a sheet shape.
  • molding method which processes the string-like fluorescent substance containing sealing resin 20 to a sheet form by heat press is demonstrated.
  • a string-like phosphor-containing sealing resin 20 is disposed on the heater plate 31. Then, as shown in FIG. 14 (b), the string-like phosphor-containing sealing resin 20 is heated and melted at a temperature lower than the secondary cross-linking temperature T, and the viscosity of the silicone resin is lowered to such an extent that the phosphor 22 is not settled.
  • FIG. 15 (a) and 15 (b) are cross-sectional views showing a method for manufacturing the light-emitting device 1b using the sheet-like phosphor-containing sealing resin 20.
  • FIG. 10a the planar circuit board 10a in which the light emitting elements 13 are mounted in a matrix in the vertical direction and the horizontal direction on the flat surface of the planar circuit board 10a is used. By using this planar circuit board 10a, a large number of light emitting devices 1b can be manufactured simultaneously.
  • the planar circuit board 10a with which the several light emitting element 13 was mounted on the heater plate 31, and the sheet-like fluorescent substance containing sealing resin 20 are laminated
  • a sheet-shaped phosphor-containing sealing resin 20 is heated melt below the secondary crosslinking temperature T 1, contained in the phosphor-containing sealing resin 20 with lowering the viscosity of the silicone resin so as not to precipitate the phosphor 22 that is, the secondary crosslinking temperature T 1 of less than in a heated pressure plate 39 planar circuit board a sheet-shaped phosphor-containing sealing resin 20 by Pressurize in the direction of 10a.
  • the sheet-like phosphor-containing sealing resin 20 can be brought into close contact with the upper surface and the side surface of the light emitting element 13.
  • planar circuit board 10a is each divided
  • the method (sheet method) of this embodiment using the sheet-like phosphor-containing sealing resin 20 is applied to sealing each light emitting element 13 in the light emitting device before division in which a plurality of light emitting devices are connected.
  • the method of Embodiment 1 (plunger method) in which the phosphor-containing sealing resin 20 is extruded into a thread shape using the plunger 35 is not only for sealing each light-emitting element 13 in the light-emitting device before splitting, but also individually.
  • the present invention is also applicable to sealing each light emitting element 13 in the divided light emitting device.
  • the manufacturing method of the string-like phosphor-containing sealing resin 20 is a mixing step in which the powder of the silicone resin 21 semi-cured by the primary crosslinking and the powder of the phosphor 22 are mixed.
  • the mixed powder mixture 24 obtained by mixing in step, and a extrusion step extruding the string-like from the discharge port 37b of the twin-screw extruder 37 the silicone resin 21, the secondary crosslinking temperature T less than 1 from room temperature T 0 reversibly viscosity change in a temperature region up, is to completely cured in the secondary crosslinking temperature T 1 of more temperature regions.
  • the viscosity of the silicone resin 21 is adjusted to such an extent that the dispersed state of the kneaded phosphor 22 can be maintained.
  • the sedimentation of the phosphor 22 at 25 can be suppressed.
  • the kneaded material 25 is extruded in the form of a string from the discharge port 37b formed with at least one or more through-holes, so that the phosphor 22 is uniformly dispersed in the silicone resin 21 and contains a string-like phosphor-containing sealing.
  • Resin 20 can be manufactured.
  • the string-like phosphor-containing sealing resin 20 thus manufactured, for example, a plurality of phosphors having the same phosphor content can be obtained by cutting the phosphor-containing sealing resin 20 into the same length.
  • the contained sealing resin 20 can be easily obtained. Therefore, the phosphor content between the light emitting devices can be equalized by sealing the light emitting element 13 using these phosphor containing sealing resins 20.
  • the manufacturing method of the string-like phosphor-containing sealing resin 20 according to the present embodiment, by forming the phosphor-containing sealing resin 20 into a string shape, for example, a bulk phosphor-containing sealing resin Compared to 20, the melting efficiency of the silicone resin 21 during heating can be improved. Therefore, while adjusting the viscosity of the silicone resin 21 so as not to settle the phosphor efficiently melted by heating the string-like sealing resin containing fluorescent material 20 is less than the secondary crosslinking temperature T 1, application It becomes possible to process into a desired shape according to the above.
  • the phosphor 22 is processed into a sheet-like phosphor-containing sealing resin 20 uniformly dispersed in the silicone resin 21, and the light-emitting element 13 is sealed using the phosphor-containing sealing resin 20.
  • the phosphor content between the light emitting devices 1b can be equalized.
  • the phosphor content between the light emitting devices 1b can be equalized and the chromaticity variation can be reduced.
  • the containing sealing resin 20 can be manufactured.
  • the manufacturing method of the light emitting device according to the present embodiment is different from the first and second embodiments in that the manufacturing method of the phosphor-containing sealing resin 20 is different.
  • FIG. 16 is a perspective view showing an external configuration of a light emitting device 1c manufactured by the method for manufacturing a light emitting device according to this embodiment.
  • the light emitting device 1 c includes a phosphor containing sealing resin (phosphor containing sealing material) 20 c instead of the phosphor containing sealing resin 20 from the light emitting device 1 a shown in FIG. 1. It is a configuration. As will be described later, the phosphor-containing sealing resin 20c is different from the phosphor-containing sealing resin 20 in that a plasticizer that decreases the elastic modulus after secondary crosslinking of the silicone resin is added.
  • the configuration other than the phosphor-containing sealing resin 20c is the same as that of the light emitting device 1a.
  • the inside of the cavity 12 of the circuit board 11 is sealed with a phosphor-containing sealing resin 20c made of a light-transmitting silicone resin.
  • the light emitting element 13 is mounted in the cavity 12.
  • the step of mounting the light emitting element 13 in the cavity 12 is the same as that described with reference to FIGS. To do.
  • 17 (a) to 17 (c) are schematic views showing a process of filling the cavity 12 with the phosphor-containing sealing resin 20c.
  • the silicone resin and the phosphor included in the phosphor-containing sealing resin 20c are the same as the silicone resin and the phosphor included in the phosphor-containing sealing resin 20.
  • the viscosity characteristics of the silicone resin contained in the phosphor-containing sealing resin 20c are represented by the graph shown in FIG.
  • the multiple cavity circuit board 10 on which the light emitting element 13 is mounted is placed on the heater plate 31, and the cut plate 32 and the porous plate are placed above the multiple cavity circuit board 10.
  • the plate 33 and the heater block 34 are laminated in this order (installation process).
  • the block-shaped phosphor-containing sealing resin 20c is placed on the porous plate 33 and in the opening 34a of the heater block 34 (placement step).
  • the phosphor-containing sealing resin 20c is obtained by uniformly dispersing a phosphor in a silicone resin.
  • This silicone resin undergoes primary crosslinking by adding a predetermined temperature and time lower than the secondary crosslinking temperature described later, and completely settles even if particles (for example, a phosphor) having a specific gravity greater than that of the silicone resin are contained.
  • a non-liquid state having a viscosity (100 Pa ⁇ S or more and 1E + 5 Pa ⁇ S or less) that can be processed is maintained.
  • the phosphor-containing sealing resin 20c various phosphors are kneaded according to necessary optical characteristics to adjust the concentration (content ratio) of the phosphor. If this silicone resin is used, 2 Since the viscosity can be adjusted repeatedly as long as it is in the state before the next crosslinking, the phosphor-containing sealing resin 20c in which the phosphor is uniformly dispersed can be formed as described later.
  • silicone resin contained in the phosphor-containing sealing resin 20c for example, the trade name “TX-2506 series” of Dow Corning can be suitably used.
  • the manufacturing method of block-shaped fluorescent substance containing sealing resin 20c is mentioned later.
  • the heater block 34 has a temperature adjustment function including a temperature range lower than the secondary cross-linking temperature T 1 in which the phosphor-containing sealing resin 20 c can be heated and melted from room temperature T 0 .
  • the heater block 34 is a frame-like member having an opening 34a that penetrates, and the phosphor-containing sealing resin 20c is disposed in the opening 34a.
  • the perforated plate 33 is formed with a plurality of perforated plate through holes (through holes) 33a.
  • the perforated plate through-holes 33a are formed at positions corresponding to the cavities 12, and as will be described later, the phosphor-containing sealing resin 20c is introduced into each cavity 12 from the perforated plate through-holes 33a by pressurization by the plunger 35. It is pushed out.
  • the cut plate 32 cuts the phosphor-containing sealing resin 20c extruded from the perforated plate through-hole 33a into a predetermined length.
  • a cut plate through hole 32a corresponding to the perforated plate through hole 33a is formed in the cut plate 32.
  • the cut plate 32 is provided in the cut plate through hole 32a by eccentrically moving the cut plate 32 in the direction of the arrow in the figure. Then, the phosphor-containing sealing resin 20c is cut into a predetermined length by the blade 32b (see FIG. 7).
  • the heater plate 31 heats the placed multiple cavity circuit board 10. Heater plate 31 to heat the multiple-cavity circuit board 10 in the secondary crosslinking temperature T 1.
  • the phosphor-containing sealing resin 20c placed on the porous plate 33 is heated and melted by the heater block 34 to reduce the viscosity of the phosphor-containing sealing resin 20c.
  • the phosphor-containing sealing resin 20 c placed on the perforated plate 33 is pressurized toward the multiple cavity circuit substrate 10 using the plunger 35.
  • the phosphor-containing sealing resin 20c is extruded from the perforated plate through-hole 33a of the perforated plate 33 toward the cavities 12 in a thread shape (extrusion step).
  • FIG. 18 is a cross-sectional view showing the extrusion process shown in FIG.
  • the phosphor-containing sealing resin 20 c is pushed out from the perforated plate through-hole 33 a of the perforated plate 33 in a thread shape by pressurization of the plunger 35.
  • the thread-like phosphor-containing sealing resin 20c reaches a predetermined length
  • the phosphor-containing sealing resin 20c extruded in a thread shape from the perforated plate through-hole 33a is rotated by eccentrically rotating the cut plate 32. Disconnect.
  • each cavity 12 can be simultaneously filled with the phosphor-containing sealing resin 20c that is cut into a predetermined length and has the same phosphor content (filling step).
  • the phosphor-containing sealing resin 20c it becomes easy to fill the cavity 12 with the phosphor-containing sealing resin 20c by making the dimension d of the perforated plate through-hole 33a smaller than the dimension D of the opening of the cavity 12. Further, by adjusting the length of the phosphor-containing sealing resin 20c extruded in a thread shape, it becomes easy to fill the phosphor-containing sealing resin 20c in an appropriate amount according to the volume of the cavity 12.
  • the heater plate 31 is used to heat the secondary crosslinking temperature T 1 (for example, 125 ° C.) (see FIG. 5). referring to the medium P 1 5 of (b)).
  • T 1 for example, 125 ° C.
  • the cured silicone resin to form a secondary crosslinking begins (curing step: see FIG. 5 (c) Medium P 2).
  • the phosphor-containing sealing resin 20 c filled in the cavity 12 starts to be cured from the bottom side of the cavity 12 by the heater plate 31.
  • the multiple cavity circuit board 10 is heated at a secondary cross-linking temperature T 1 or higher (for example, 125 ° C. or higher and 170 ° C. or lower) in an oven or the like, thereby completely curing the silicone resin. Thereafter, a multiple-cavity circuit board 10 is taken out from the oven or the like, lowering the temperature to room temperature T 0. At this time, as shown in FIG. 5D, even when the temperature is lowered to room temperature T 0 , the viscosity of the silicone resin in which the secondary crosslinking is formed is V 2 (in FIG. 5D). see P 3).
  • the multiple-cavity circuit board 10 is divided into each cavity 12. . Thereby, the several light emitting device 1c with uniform fluorescent substance content can be manufactured simultaneously.
  • the chromaticity distribution range between the light emitting devices 1c manufactured in this way can satisfy the McAdam ellipse 2-step chromaticity management standard.
  • the MacAdam ellipse is an xy chromaticity diagram showing the standard deviation of identification variation with respect to a specific central color, and can realize a level at which variations in chromaticity cannot be identified by human eyes.
  • the phosphor content between the light emitting devices 1c can be equalized to reduce chromaticity variation (chromaticity distribution range). it can.
  • the heater block 34 by heating the sealing resin containing fluorescent material 20c, but to lower the viscosity of the silicone resin to a flowable viscosity V 4 while suppressing the sedimentation of the phosphor, extruded by increasing the pressure of, it is possible to push the sealing resin containing fluorescent material 20c at room temperature T 0 without raising the temperature of the heater block 34, the heater block 34 may be left at room temperature T 0.
  • FIGS. 19 (a) to 19 (c) are schematic views showing a method for producing a block-shaped phosphor-containing sealing resin 20c.
  • FIGS. 20 (a) and 20 (b) FIG. 20 is a graph for explaining a change in viscosity of a silicone resin in the steps shown in FIGS. 19 (a) to 19 (c).
  • FIG. 20 is a graph for explaining a change in viscosity of a silicone resin in the steps shown in FIGS. 19 (a) to 19 (c).
  • the powder of the silicone resin 21 on which the primary cross-links are formed and the powder of the phosphor 22 are sufficiently dry-mixed until the mixed state becomes uniform, and the powder mixture 24 is obtained. Get.
  • a plasticizer 23 that lowers the elastic modulus after secondary crosslinking of the silicone resin 21 (secondarily reduces the viscosity) is added to the powder mixture 24. Details of the plasticizer 23 will be described later.
  • the temperature T 5 from room T 0 for example, 40 or more less than 60 ° C.
  • the phosphor 22 is kneaded with the silicone resin 21 by reducing the viscosity to a possible viscosity V 5 (see P 5 in the figure).
  • the heat-melted silicone resins 21 are fused and kneaded while the phosphor 22 is involved.
  • the dispersion state of the phosphor 22 in the silicone resin 21 is changed by kneading the viscosity of the silicone resin 21 to a viscosity V 5 that can be kneaded while suppressing sedimentation of the phosphor 22. Can be maintained.
  • the primary crosslinked silicone resin 21 has a relatively high viscosity at room temperature T 0 , has low meltability by heating, and low tack (adhesion) and wettability. For this reason, the silicone resins 21 are not sufficiently fused together during heating, and there are many gaps. In this state, when secondary crosslinking is formed on the silicone resin 21 and fully cured, cracks and the like are likely to occur in the phosphor-containing sealing resin 20c. In order to suppress the occurrence of cracks, it is preferable to reduce the elastic modulus of the silicone resin 21 after the secondary crosslinking.
  • a small amount of a plasticizer 23 that lowers the elastic modulus after secondary crosslinking of the silicone resin 21 is added to the powder mixture 24 obtained by dry mixing the powder of the silicone resin 21 and the powder of the phosphor 22.
  • the plasticizer 23 may reduce the crosslink density of the silicone resin 21. As a result, the elastic modulus after secondary crosslinking of the silicone resin 21 is suitably reduced, and it is possible to suppress the occurrence of cracks or the like in the phosphor-containing sealing resin 20c that seals the light emitting element 13. .
  • the plasticizer 23 may reduce the viscosity of the silicone resin at the time of primary crosslinking. As a result, the processing of the phosphor-containing sealing resin can be facilitated, and by making the powder mixture 24 compatible, the silicone resins 21 can be easily combined into one without a gap.
  • a plasticizer 23 for example, a silicone resin as a main component, a non-functional silicone oil, a monofunctional silicone oil, or the like can be suitably used, and it reacts with a matrix silicone. It does not matter if it does not react.
  • the plasticizer 23 is appropriately selected according to the characteristics of the light emitting device 1c.
  • FIG. 21 is a table showing changes in the viscosity and elastic modulus of the silicone resin 21 depending on whether or not the plasticizer 23 is added.
  • FIG. 21 shows the viscosity of the silicone resin 21 before secondary crosslinking (primary crosslinked state) and the elastic modulus of the silicone resin 21 after secondary crosslinking.
  • the viscosity of the silicone resin 21 before secondary crosslinking at 25 ° C. is reduced to about 3. Can be reduced. Moreover, the viscosity at 120 ° C. of the silicone resin 21 before secondary crosslinking can be reduced to about 1/100.
  • the viscosity value of the silicone resin 21 varies depending on the amount of the plasticizer 23 added, it is approximately 1 ⁇ 10 4 Pa ⁇ s to 1 ⁇ 10 5 Pa ⁇ s at 25 ° C., and 1 ⁇ 10 2 at 120 ° C. Pa ⁇ s to 1 ⁇ 10 4 Pa ⁇ s.
  • the addition amount of the plasticizer 23 is preferably 5 to 20% by weight, more preferably 8 to 15% by weight, and more preferably about 11% by weight, when expressed as a weight ratio of the plasticizer 23 to the silicone resin 21. It is.
  • the elastic modulus at 125 ° C. of the silicone resin 21 after the formation of the secondary crosslink can be reduced from ⁇ 1 ⁇ 10 7 Pa to ⁇ 2 ⁇ 10 6 Pa.
  • the viscosity of the silicone resin 21 before the secondary cross-linking can be reduced, so that the processing of the phosphor-containing sealing resin 20c formed with the primary cross-linking is easy. It becomes.
  • the crosslinking density of the silicone resin is reduced by adding the plasticizer 23
  • the elastic modulus of the silicone resin 21 after the secondary crosslinking is formed at 25 ° C. and 125 ° C. can be reduced. Thereby, it becomes possible to suppress generation
  • the phosphor 22 contained in the phosphor-containing sealing resin 20c is one type.
  • two or more types of phosphors 22 having different emission colors, particle sizes, specific gravity, and the like may be used.
  • a phosphor-containing sealing resin 20c including a combination of a red light-emitting phosphor and a green light-emitting phosphor may be manufactured and applied to a blue LED chip (light-emitting element 13).
  • a phosphor-containing sealing resin 20c including a combination of a blue light-emitting phosphor and a yellow light-emitting phosphor may be manufactured and applied to a blue-violet LED chip.
  • the powder of the silicone resin 21 on which the primary crosslinking is formed and the powder of the two or more kinds of phosphors 22 are dry-mixed until the mixed state becomes uniform to obtain the powder mixture 24.
  • a plasticizer 23 that lowers the elastic modulus after secondary crosslinking of the silicone resin 21 (secondarily reduces the viscosity) is added to the powder mixture 24.
  • the silicone resin 21 is heated and melted in less than secondary crosslinking temperature T 1, 2 while suppressing the precipitation of more kinds of phosphors 22 is lowered to a kneadable viscosity, two or more kinds of phosphors to the silicone resin 21 22 is kneaded.
  • the heat-melted silicone resins 21 are fused and kneaded while two or more kinds of phosphors 22 are rolled into the fused silicone resin 21. Further, as described above, two or more types of fluorescence in the silicone resin 21 are obtained by kneading in a state where the viscosity of the silicone resin 21 is reduced to a viscosity that allows kneading while suppressing sedimentation of the two or more types of phosphors 22. The dispersed state of the body 22 can be maintained.
  • a block-shaped phosphor-containing sealing resin 20 c in which two or more kinds of phosphors 22 are uniformly dispersed in the silicone resin 21 can be manufactured.
  • the phosphor 22 is used as the wavelength converting substance, but other wavelength converting substances may be used.
  • the wavelength converting substance has a function of converting light emitted from the light emitting element 13 to emit light having different wavelengths.
  • the multiple cavity circuit board 10 in which a large number of cavities 12 are formed is used.
  • a planar circuit board 10 a having a flat surface may be used instead of the multiple cavity circuit board 10. .
  • the method of manufacturing the light emitting device 1c according to the present embodiment corresponds to the cavity 12 above the multiple cavity circuit board 10 in which the light emitting elements 13 are mounted in the plurality of cavities 12 opening upward.
  • the viscosity of the silicone resin 21 is adjusted to such an extent that the dispersed state of the kneaded phosphor 22 can be maintained. Sedimentation of the phosphor 22 can be suppressed. Therefore, the phosphor-containing sealing resin 20c in which the phosphor 22 is uniformly dispersed in the silicone resin 21 can be obtained.
  • each cavity 12 can be filled (potted) simultaneously with the same amount of the phosphor-containing sealing resin 20c.
  • the phosphor-containing sealing resin 20c is heated at a temperature equal to or higher than the secondary crosslinking temperature.
  • each light-emitting element 13 can be sealed with the phosphor-containing sealing resin 20c with the phosphor content equalized.
  • the perforated plate through-hole 33a is formed in the perforated plate 33 according to the number, size, etc. of the cavities 12 formed in the multiple cavity circuit board 10.
  • the plasticizer 23 is added to the powder mixture 24 in order to lower the elastic modulus after secondary crosslinking of the silicone resin. Therefore, since it becomes possible to suppress generation
  • FIG. 22 is a cross-sectional view showing a modification of the filling process. As shown in FIG. 22, by moving the perforated plate 33 away from the multi-cavity circuit board 10 in the direction perpendicular to the multi-cavity circuit board 10, the perforated plate through-holes 33a are threaded. The extruded phosphor-containing sealing resin 20c may be cut.
  • the multiple cavity circuit board 10 it is preferable to heat the multiple cavity circuit board 10 in advance.
  • the lower end portion of the phosphor-containing sealing resin 20c that has reached the multi-cavity circuit board 10 and is extruded in a thread shape can be attached to the bottom portion of the cavity 12 by the heat. Therefore, when the lower end of the thread-like phosphor-containing sealing resin 20c reaches the cavity 12, the thread-like phosphor-containing sealing resin 20c is cut by raising the perforated plate 33, so that each cavity 12 Can be filled. Instead of the perforated plate 33, the phosphor-containing sealing resin 20c may be cut by lowering the multiple cavity circuit board 10.
  • the phosphor-containing sealing resin 20c can be cut without using the cut plate 32 and a drive device that eccentrically rotates the cut plate 32.
  • each cavity 12 can be filled.
  • FIG. 23 is a cross-sectional view showing a step of filling the cavity 12 with the phosphor-containing sealing resin 20 c using the dispenser 36. As shown in FIG. 23, the cavity 12 may be filled with the phosphor-containing sealing resin 20c using a dispenser 36 having a syringe 36a.
  • the dispenser 36 reprocesses the phosphor-containing sealing resin 20c in which the phosphor powder is kneaded into the silicone resin semi-cured by the primary crosslinking into a shape that can be accommodated in the syringe 36a, and contains the phosphor contained in the syringe 36a.
  • the sealing resin 20c is discharged in a thread shape onto the light emitting element 13 mounted on the multiple cavity circuit board 10.
  • the dispenser 36 includes a syringe (accommodating portion) 36a that accommodates the phosphor-containing sealing resin 20c.
  • the dispenser 36 pressurizes the syringe 36a with air or a piston, discharges the accommodated phosphor-containing sealing resin 20c, and fills the cavity 12 with the phosphor-containing sealing resin 20c (discharge process).
  • a syringe accommodates the phosphor-containing sealing resin 20c.
  • the dispenser 36 pressurizes the syringe 36a with air or a piston, discharges the accommodated phosphor-containing sealing resin 20c, and fills the cavity 12 with the phosphor-containing sealing resin 20c (discharge process).
  • a syringe (accommodating portion) 36a that accommodates the phosphor-containing sealing resin 20c.
  • the dispenser 36 pressurizes the syringe 36a with air or a piston, discharges the accommodated phosphor-containing sealing resin 20c, and fills
  • the viscosity of the phosphor-containing sealing resin 20c accommodated in the syringe 36a does not precipitate the phosphor.
  • the heating temperature by the syringe 36a is controlled so as to be approximately. Thereby, it is possible to suppress the precipitation of the phosphor in the syringe 36a due to the difference in specific gravity between the silicone resin and the phosphor as in the prior art, and the substantially uniform dispersion state of the phosphor can be maintained.
  • the phosphor-containing sealing resin 20c can be filled in each cavity 12 with almost no change in the phosphor concentration of the phosphor-containing sealing resin 20c at the beginning and end of the discharge process using the dispenser 36. Further, when discharging at room temperature T 0 , the viscosity of the phosphor-containing sealing resin 20c does not decrease, so that the phosphor is contained at the beginning and end of the discharge process using the dispenser 36 as in the case of heating and melting. The phosphor-containing sealing resin 20c can be filled in each cavity 12 with almost no change in the phosphor concentration of the sealing resin 20c.
  • each light emitting element 13 can be sealed with the phosphor-containing sealing resin 20 c in which the phosphor content is equalized between the cavities 12.
  • each light emitting element 13 is individually or several light emitting elements 13 with respect to the several light emitting element 13 mounted in the circuit board with the flat surface using the dispenser 36 in which the cavity 12 is not formed. You may discharge the fluorescent substance containing sealing resin 20c so that it may seal for every unit.
  • the phosphor-containing encapsulating resin is heated at the secondary cross-linking temperature or higher by the heater plate 31 or an oven or the like in a state where the phosphor-containing encapsulating resin 20c is in close contact with the surface of the light emitting element 13.
  • the silicone resin contained in 20c By completely curing the silicone resin contained in 20c, each light emitting element 13 can be sealed with the phosphor-containing sealing resin 20c in which the phosphor content is equalized.
  • a string-like phosphor-containing sealing resin 20c is manufactured, and the light-emitting element 13 is manufactured using the string-like phosphor-containing sealing resin 20c.
  • the point of sealing is different from the third embodiment.
  • 24 (a) to 24 (d) are schematic views showing a method for producing the string-like phosphor-containing sealing resin 20c.
  • the powder of the silicone resin 21 on which the primary cross-linking is formed and the powder of the phosphor 22 are dry-mixed until the mixed state becomes uniform to obtain a powder mixture 24. (Mixing process).
  • the plasticizer 23 is added to the powder mixture 24 (addition process). Then, the powder mixture 24 to which the plasticizer 23 is added is put into a twin screw extruder (kneading extruder) 37 and kneaded while being heated and melted at a temperature lower than the secondary crosslinking temperature T 1 (kneading step).
  • a twin screw extruder twin screw extruder 37 and kneaded while being heated and melted at a temperature lower than the secondary crosslinking temperature T 1 (kneading step).
  • the twin-screw extruder 37 includes two screws 37a provided in parallel, and the two screws 37a rotate in opposite directions to melt the silicone resin by heating, while the powder mixture 24 is melted. Knead.
  • the powder mixture 24 becomes a kneaded material 25c in which the phosphor is uniformly dispersed in the molten silicone resin.
  • the phosphor was uniformly dispersed in the silicone resin as shown in FIG.
  • the string-like phosphor-containing sealing resin 20c can be manufactured.
  • the string-shaped phosphor-containing sealing resin 20c is cut into the same length.
  • a plurality of phosphor-containing sealing resins 20c having the same phosphor content can be easily obtained. Therefore, by sealing the light emitting element 13 using these phosphor-containing sealing resins 20c, it is possible to equalize the phosphor content among the light emitting devices and reduce the chromaticity variation.
  • the melting efficiency of the silicone resin during heating can be improved as compared with the bulk-like phosphor-containing sealing resin 20c. Therefore, by heating and melting a string-like sealing resin containing fluorescent material 20c is less than the secondary crosslinking temperature T 1 of so as not to settle the phosphor, while maintaining the state of the phosphor is uniformly dispersed in the silicone resin
  • the string-like phosphor-containing sealing resin 20c can be easily processed into a desired shape.
  • the number, size, and shape of the discharge ports 37b of the twin screw extruder 37 are not particularly limited, and can be appropriately changed as necessary.
  • the phosphor 22 contained in the phosphor-containing sealing resin 20c is one type, but two or more types of phosphors 22 having different emission colors, particle sizes, specific gravity, and the like may be used.
  • a phosphor-containing sealing resin 20c including a combination of a red light-emitting phosphor and a green light-emitting phosphor may be manufactured and applied to a blue LED chip (light-emitting element 13).
  • a phosphor-containing sealing resin 20c including a combination of a blue light-emitting phosphor and a yellow light-emitting phosphor may be manufactured and applied to a blue-violet LED chip.
  • the powder of the silicone resin 21 on which the primary crosslinking is formed and the powder of the two or more kinds of phosphors 22 are dry-mixed until the mixed state becomes uniform to obtain the powder mixture 24.
  • a plasticizer 23 that lowers the elastic modulus after secondary crosslinking of the silicone resin 21 (secondarily reduces the viscosity) is added to the powder mixture 24.
  • twin-screw extruder (kneading extruder apparatus) 37, and kneaded while heating melt below the secondary crosslinking temperature T 1.
  • the twin-screw extruder 37 includes two screws 37a provided in parallel, and the two screws 37a rotate in opposite directions, whereby the silicone resin 21 is melted by heating and the powder mixture. 24 is kneaded.
  • the powder mixture 24 becomes a kneaded material 25 c in which two or more kinds of phosphors 22 are uniformly dispersed in the molten silicone resin 21.
  • a string-like phosphor-containing sealing resin 20c in which two or more kinds of phosphors 22 are uniformly dispersed in the silicone resin 21 is obtained. Can be manufactured.
  • the phosphor 22 is used as the wavelength conversion material, but other wavelength conversion materials may be used.
  • the wavelength converting substance has a function of converting light emitted from the light emitting element 13 to emit light having different wavelengths.
  • the twin screw extruder 37 provided with two screws 37a is used.
  • a single screw extruder provided with one screw 37a may be used. good.
  • a multi-screw extruder having three or more screws 37a may be used. Thereby, the kneading
  • a batch-type kneader can be used, but it is particularly preferable to use an internal feedback type high-speed shear stirring apparatus as the extrusion apparatus.
  • the plasticizer 23 and the powder mixture 24 introduced into the cylinder from the rear end side of the screw are placed on the front end side of the screw. Move in the cylinder. Then, a shearing force is applied to the powder mixture 24 between the tip of the screw and the inner wall of the cylinder, and the mixture is stirred. In this case, the powder mixture 24 in the cylinder is heated in less than secondary crosslinking temperature T 1, the rotational speed of the screw is kept below 3000rpm than 2500 rpm. The agitated plasticizer 23 and the powder mixture 24 move to the rear end side of the screw through a return path provided in the screw.
  • the plasticizer 23 and the powder mixture 24 are sufficiently stirred to become a kneaded product 25c. Thereafter, the kneaded material 25c is extruded in a string shape from the discharge port of the cylinder, whereby the string-shaped phosphor-containing sealing resin 20c in which the phosphor is uniformly dispersed in the silicone resin can be obtained.
  • 25 (a) to 25 (d) are schematic views showing a molding method for processing the string-like phosphor-containing sealing resin 20c into a sheet shape.
  • molding method which processes the string-like fluorescent substance containing sealing resin 20c by a heat press into a sheet form is demonstrated.
  • a string-like phosphor-containing sealing resin 20c is arranged on the heater plate 31.
  • the phosphor contained in the phosphor-containing sealing resin 20 is obtained by heating and melting the string-like phosphor-containing sealing resin 20c at a temperature lower than the secondary crosslinking temperature T. The viscosity of the silicone resin is lowered to such an extent that 22 does not settle.
  • 26 (a) and 26 (b) are cross-sectional views showing a method for manufacturing a light emitting device 1d using a sheet-like phosphor-containing sealing resin 20c.
  • the planar circuit board 10a in which the light emitting elements 13 are mounted in a matrix in the vertical direction and the horizontal direction on the flat surface of the planar circuit board 10a is used.
  • this planar circuit board 10a By using this planar circuit board 10a, a large number of light emitting devices 1d can be manufactured simultaneously.
  • a planar circuit board 10a on which a plurality of light emitting elements 13 are mounted and a sheet-like phosphor-containing sealing resin 20c are laminated in this order on a heater plate 31.
  • the silicone By heating the planar circuit board 10a by the heater plate 31, the silicone to the extent that a sheet-shaped phosphor-containing sealing resin 20c, and heated melt below the secondary crosslinking temperature T 1, does not settle the phosphor 22 with lowering the viscosity of the resin is pressurized by a secondary crosslinking temperature T pressure plate 39 which is heated in less than 1 a sheet-like sealing resin containing fluorescent material 20c in the direction of the planar circuit board 10a.
  • the sheet-like phosphor-containing sealing resin 20 c can be brought into close contact with the upper surface and the side surface of the light emitting element 13.
  • the planar circuit board 10a is divided into each light emitting element 13, thereby manufacturing a plurality of light emitting devices 1d with equal phosphor contents. Can do.
  • the method of manufacturing the string-like phosphor-containing sealing resin 20c mixes the powder of the silicone resin 21 semi-cured by the primary crosslinking and the powder of the phosphor 22. And an addition step of adding a plasticizer 23 for reducing the elastic modulus after secondary crosslinking of the silicone resin 21 to the powder mixture 24 mixed in the mixing step, and a powder mixture 24 to which the plasticizer 23 is added to the silicone resin.
  • the viscosity of the silicone resin 21 is adjusted to such an extent that the dispersed state of the kneaded phosphor 22 can be maintained. It becomes possible to suppress sedimentation of the phosphor 22 at 25c. Therefore, a string-like phosphor-containing sealing in which the phosphor 22 is uniformly dispersed in the silicone resin 21 by extruding the kneaded material 25c from the discharge port 37b formed with at least one through hole. Resin 20c can be manufactured.
  • the string-like phosphor-containing sealing resin 20c thus manufactured, for example, a plurality of phosphors having the same phosphor content by cutting the phosphor-containing sealing resin 20c into the same length.
  • the contained sealing resin 20c can be easily obtained. Therefore, the phosphor content among the light emitting devices can be equalized by sealing the light emitting element 13 using these phosphor containing sealing resins 20c.
  • the manufacturing method of the string-like phosphor-containing sealing resin 20c according to the present embodiment, by forming the phosphor-containing sealing resin 20c into a string shape, for example, a bulk phosphor-containing sealing resin Compared to 20c, the melting efficiency of the silicone resin 21 during heating can be improved. Therefore, while adjusting the viscosity of the silicone resin 21 so as not to settle the phosphor efficiently melted by heating the string-like sealing resin containing fluorescent material 20c is less than the secondary crosslinking temperature T 1, application It becomes possible to process into a desired shape according to the above.
  • the phosphor 22 is processed into a sheet-like phosphor-containing sealing resin 20c uniformly dispersed in the silicone resin 21, and the light-emitting element 13 is sealed using the phosphor-containing sealing resin 20c.
  • the phosphor content between the light emitting devices 1d can be equalized.
  • the phosphor content between the light emitting devices 1d can be equalized and the chromaticity variation can be reduced.
  • the contained sealing resin 20c can be manufactured.
  • the plasticizer 23 for reducing the elastic modulus after secondary crosslinking of the silicone resin is added to the powder mixture 24.
  • the elastic modulus after secondary crosslinking of the silicone resin is reduced in the powder mixture 24 mixed in the mixing step.
  • the powder mixture 24 to which the plasticizer 23 is added is kneaded by the twin screw extruder 37 while being heated and melted at a temperature lower than the secondary crosslinking temperature.
  • the method for producing a phosphor-containing encapsulant according to one aspect of the present invention is a mixing step of mixing a powder of a silicone resin semi-cured by primary crosslinking and a phosphor powder, and mixing in the mixing step.
  • the powder mixture is kneaded by a kneading and extruding device (biaxial screw extruding device 37) equipped with one or more screws while being heated and melted at a temperature lower than the secondary crosslinking temperature at which the silicone resin forms a secondary crosslink.
  • the viscosity is reversibly changed in a temperature range up to a temperature lower than the secondary cross-linking temperature, and is fully cured in a temperature range higher than the secondary cross-linking temperature.
  • the viscosity of the silicone resin can be repeatedly adjusted by changing the temperature in the temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin is adjusted to such an extent that the dispersion state of the kneaded phosphor can be maintained. Can be suppressed. Therefore, a string-like phosphor-containing sealing resin in which the phosphor is uniformly dispersed in the silicone resin can be produced by extruding the kneaded material in a string shape from the discharge port.
  • the string-like phosphor-containing sealing resin thus manufactured for example, by cutting the phosphor-containing sealing resin into the same length, a plurality of phosphor-containing seals having the same phosphor content are obtained. A stop resin can be easily obtained. Therefore, the phosphor content between the light emitting devices can be equalized by sealing the light emitting element using these phosphor containing sealing resins.
  • the melting efficiency of the silicone resin at the time of a heating is improved compared with bulk fluorescent substance containing sealing resin, for example. Can do. Therefore, by heating and melting a string-like sealing resin containing fluorescent material 20 is less than the secondary crosslinking temperature T 1 of so as not to settle the phosphor 22, and remain the phosphor is uniformly dispersed in the silicone resin
  • the string-like phosphor-containing sealing resin can be easily processed into a desired shape.
  • the phosphor content between the light emitting devices can be obtained by sealing the light emitting element using the phosphor-containing sealing resin having a desired shape in which the phosphor is uniformly dispersed in the silicone resin. Can be equalized.
  • a plasticizer that lowers the elastic modulus after secondary crosslinking of the silicone resin is further added to the powder mixture mixed in the mixing step.
  • the powder mixture to which the plasticizer has been added is kneaded by a kneading and extruding device equipped with a screw of one or more axes while being melted by heating at a temperature lower than the secondary crosslinking temperature.
  • the plasticizer may reduce the crosslink density of the silicone resin.
  • the plasticizer reduces the secondary crosslink density of the silicone resin
  • the plasticizer containing the phosphor encapsulating the light emitting element by suitably reducing the elastic modulus after the secondary crosslink of the silicone resin 21 is obtained. It is possible to effectively suppress the occurrence of cracks or the like in the sealing resin.
  • the plasticizer may reduce the viscosity of the silicone resin semi-cured by primary crosslinking.
  • the plasticizer reduces the viscosity of the silicone resin semi-cured by primary crosslinking, the phosphor-containing sealing resin can be easily processed, and the powder mixture has compatibility. By doing so, the silicone resins can be easily combined into one without a gap.
  • the plasticizer may be composed mainly of a silicone resin.
  • the plasticizer is mainly composed of a silicone resin, it can act stably on the silicone resin and reduce the elastic modulus and viscosity.
  • the kneaded product extruded in a string shape in the extrusion step is heated and melted at a temperature lower than the secondary crosslinking temperature, and then pressed. It may further include a processing step of processing into a flat plate shape or a sheet shape.
  • the above method further includes a processing step of heating and melting the kneaded product extruded in a string shape in the extrusion step at a temperature lower than the secondary cross-linking temperature, and processing into a flat plate shape or a sheet shape by pressurization.
  • a processing step of heating and melting the kneaded product extruded in a string shape in the extrusion step at a temperature lower than the secondary cross-linking temperature By adjusting the viscosity of the silicone resin so as not to settle, the kneaded product can be processed into a plate shape or a sheet shape while maintaining the state where the phosphor is uniformly dispersed in the silicone resin.
  • the phosphor between the light emitting devices is sealed by sealing the light emitting element with the phosphor-containing sealing resin in the form of a flat plate or sheet in which the phosphor is uniformly dispersed in the silicone resin.
  • the content can be equalized.
  • the kneaded product extruded in a string shape in the extrusion step is heated and melted at a temperature lower than the secondary crosslinking temperature, and then pressed. It may further include a processing step of processing into a flat plate shape or a sheet shape.
  • the above method further includes a processing step of heating and melting the kneaded product extruded in a string shape in the extrusion step at a temperature lower than the secondary cross-linking temperature, and processing into a flat plate shape or a sheet shape by pressurization.
  • a processing step of heating and melting the kneaded product extruded in a string shape in the extrusion step at a temperature lower than the secondary cross-linking temperature By adjusting the viscosity of the silicone resin so as not to settle, the kneaded product can be processed into a plate shape or a sheet shape while maintaining the state where the phosphor is uniformly dispersed in the silicone resin.
  • the phosphor between the light emitting devices is sealed by sealing the light emitting element with the phosphor-containing sealing resin in the form of a flat plate or sheet in which the phosphor is uniformly dispersed in the silicone resin.
  • the content can be equalized.
  • the phosphor-containing encapsulant according to one aspect of the present invention is a phosphor-containing encapsulant in which phosphor powder is dispersed in a silicone resin semi-cured by primary crosslinking, and the silicone resin has a string shape
  • the viscosity is reversibly changed in a temperature range from room temperature to a temperature lower than the secondary cross-linking temperature, which is a temperature for forming a secondary cross-link, and is fully cured in a temperature range higher than the secondary cross-linking temperature. It is characterized by that.
  • the viscosity of the silicone resin can be repeatedly adjusted by changing the temperature in the temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin is adjusted to such an extent that the dispersed state of the kneaded phosphor can be maintained, so that the phosphor kneaded in the silicone resin can be precipitated. It becomes possible to suppress. Therefore, a string-like phosphor-containing sealing resin in which the phosphor is uniformly dispersed in the silicone resin can be obtained.
  • a string-like phosphor-containing sealing resin for example, a plurality of phosphor-containing sealing resins having the same phosphor content can be easily obtained by cutting the phosphor-containing sealing resin into the same length. Can get to. Therefore, the phosphor content between the light emitting devices can be equalized by sealing the light emitting element using these phosphor containing sealing resins.
  • a through hole corresponding to the cavity is provided above a substrate (multiple cavity circuit substrate 10) in which light emitting elements are mounted in a plurality of cavities opening upward.
  • the placing step of placing the phosphor-containing encapsulant and the phosphor-containing encapsulant are heated and melted at room temperature or below a secondary crosslinking temperature at which the silicone resin forms a secondary crosslinking.
  • an extrusion process for extruding into the thread from the through hole toward the substrate a filling process for cutting the phosphor-containing sealing material extruded into a thread into a predetermined length, and filling the cavity
  • the viscosity changes reversibly, and is fully cured in a temperature range higher than the secondary crosslinking temperature.
  • the viscosity of the silicone resin can be repeatedly adjusted by changing the temperature in the temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin is adjusted to such an extent that the dispersed state of the kneaded phosphor can be maintained, so that the phosphor kneaded in the silicone resin can be precipitated. It becomes possible to suppress. Therefore, the phosphor-containing sealing resin in which the phosphor is uniformly dispersed in the silicone resin can be obtained.
  • Each phosphor-containing sealing resin is extruded in a string from the through-hole toward the substrate while being heated and melted at room temperature or below the secondary crosslinking temperature, and is cut into a predetermined length.
  • the same amount of the phosphor-containing sealing resin 20 can be simultaneously filled (potted).
  • the phosphor-containing encapsulating resin is heated at a secondary cross-linking temperature or higher to obtain a silicone resin. Is completely cured, so that each light-emitting element can be sealed with a phosphor-containing sealing resin in which the phosphor content is equalized.
  • the phosphor-containing sealing material placed on the porous plate in the placing step is a silicone resin that is semi-cured by the primary crosslinking.
  • the phosphor powder and a plasticizer that lowers the elastic modulus after secondary crosslinking of the silicone resin may be kneaded.
  • the dimension of the through hole may be smaller than the opening dimension of the cavity.
  • the dimension of a through-hole is smaller than the opening dimension of a cavity, it becomes easy to fill a cavity with phosphor-containing sealing resin, and the phosphor-containing sealing resin extruded into a thread shape By adjusting the length, an appropriate amount of phosphor-containing sealing resin can be filled in accordance with the volume of the cavity.
  • the substrate may be heated from the bottom side in the filling step and the curing step.
  • the substrate in the filling step and the curing step, the substrate is heated from the bottom side, so that the phosphor-containing sealing resin filled in the cavity starts to cure from the bottom of the cavity.
  • stress due to curing shrinkage of the phosphor-containing sealing resin can be distributed on the upper part of the phosphor-containing sealing resin, that is, on the opening side of the cavity.
  • the load can be reduced and the reliability of the light emitting device can be improved.
  • a plurality of blades provided for each of the through holes provided substantially in parallel between the porous plate and the substrate may be cut by moving a cutting plate (cut plate 32) having a blade 32b) in a direction parallel to the substrate.
  • the fluorescent substance containing sealing material can be simultaneously cut
  • the porous plate or the substrate may be cut by moving it so as to be separated in a direction perpendicular to the substrate.
  • the lower end portion of the phosphor-containing sealing resin extruded into a thread shape that reaches the substrate can be attached to the bottom of the cavity by the heat.
  • the thread-like phosphor-containing sealing resin is moved away from the perforated plate or the substrate.
  • Each cavity can be cut and filled.
  • the porous plate and the substrate may be cut by injecting compressed air.
  • the lower end portion of the phosphor-containing sealing resin extruded into a thread shape that reaches the substrate can be attached to the bottom of the cavity by the heat.
  • the thread-shaped phosphor-containing sealing resin after the lower end portion of the thread-shaped phosphor-containing sealing resin reaches the cavity, the thread-shaped phosphor is injected by injecting compressed air between the porous plate and the substrate.
  • the contained sealing resin can be cut and filled in each cavity.
  • the dispenser which concerns on 1 aspect of this invention is a dispenser which discharges the fluorescent substance containing sealing material by which the powder of the fluorescent substance was disperse
  • the secondary cross-linking temperature which is a temperature at which the silicone resin forms secondary cross-linking, and is fully cured in a temperature range higher than the secondary cross-linking temperature.
  • the viscosity of the silicone resin can be repeatedly adjusted by changing the temperature in the temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin is adjusted to such an extent that the dispersed state of the kneaded phosphor can be maintained, so that the phosphor kneaded in the silicone resin can be precipitated. It becomes possible to suppress. Therefore, the phosphor-containing sealing resin in which the phosphor is uniformly dispersed in the silicone resin can be obtained.
  • the dispenser has a heating mechanism that can heat the contained phosphor-containing sealing material, for example, the silicone resin is contained at a temperature lower than the secondary crosslinking temperature, which is a temperature at which secondary crosslinking is formed. It is possible to heat and melt the phosphor-containing sealing material. Therefore, by adjusting the viscosity of the silicone resin to such an extent that the dispersed state of the phosphor dispersed in the silicone resin can be maintained, it is possible to suppress sedimentation of the phosphor dispersed in the silicone resin in the housing portion.
  • the dispenser can be used to fill the cavity with the phosphor-containing sealing resin in which the phosphor is dispersed.
  • the method for manufacturing a light-emitting device includes discharging the phosphor-containing sealing material to the light-emitting element using the dispenser while heating and melting the phosphor-containing sealing material at a temperature lower than the secondary crosslinking temperature. And a curing step of heating and curing the phosphor-containing sealing material adhered to the surface of the light emitting element at a temperature equal to or higher than the secondary crosslinking temperature. It is characterized by that.
  • the phosphor-containing sealing resin in which the phosphor dispersion state is maintained can be discharged to the light-emitting element using a dispenser, so that the phosphor content between the light-emitting devices is equalized.
  • the method for producing a phosphor-containing encapsulant according to one aspect of the present invention is a mixing step of mixing a powder of a silicone resin semi-cured by primary crosslinking and a phosphor powder, and mixing in the mixing step.
  • a kneading step of kneading with a kneading and extruding device (biaxial screw extruding device 37) equipped with a screw of one or more axes while being heated and melted below a certain secondary crosslinking temperature, and a kneaded material kneaded in the kneading step at least
  • the silicone resin is reversibly viscous in a temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin can be repeatedly adjusted by changing the temperature in the temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin is adjusted to such an extent that the dispersion state of the kneaded phosphor can be maintained. Can be suppressed. Therefore, a string-like phosphor-containing sealing resin in which the phosphor is uniformly dispersed in the silicone resin can be produced by extruding the kneaded material in a string shape from the discharge port.
  • the string-like phosphor-containing sealing resin thus manufactured for example, by cutting the phosphor-containing sealing resin into the same length, a plurality of phosphor-containing seals having the same phosphor content are obtained. A stop resin can be easily obtained. Therefore, the phosphor content between the light emitting devices can be equalized by sealing the light emitting element using these phosphor containing sealing resins.
  • the melting efficiency of the silicone resin at the time of a heating is improved compared with bulk fluorescent substance containing sealing resin, for example. Can do. Therefore, by heating and melting a string-like sealing resin containing fluorescent material 20c is less than the secondary crosslinking temperature T 1 of so as not to settle the phosphor 22, and remain the phosphor is uniformly dispersed in the silicone resin
  • the string-like phosphor-containing sealing resin can be easily processed into a desired shape.
  • the phosphor content between the light emitting devices can be obtained by sealing the light emitting element using the phosphor-containing sealing resin having a desired shape in which the phosphor is uniformly dispersed in the silicone resin. Can be equalized.
  • the present invention by adding a plasticizer that lowers the elastic modulus after secondary crosslinking of the silicone resin to the powder mixture, cracks and the like are generated in the phosphor-containing sealing resin that seals the light emitting element. Since this can be suppressed, the reliability of the light emitting device can be improved.
  • the phosphor-containing encapsulant according to one aspect of the present invention is a phosphor-containing encapsulant in which phosphor powder is dispersed in a silicone resin semi-cured by primary crosslinking, and the silicone resin has a string shape
  • the viscosity is reversibly changed in a temperature range from room temperature to a temperature lower than the secondary cross-linking temperature, which is a temperature for forming a secondary cross-link, and is fully cured in a temperature range higher than the secondary cross-linking temperature. It is characterized by that.
  • the viscosity of the silicone resin can be repeatedly adjusted by changing the temperature in the temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin is adjusted to such an extent that the dispersed state of the kneaded phosphor can be maintained, so that the phosphor kneaded in the silicone resin can be precipitated. It becomes possible to suppress. Therefore, a string-like phosphor-containing sealing resin in which the phosphor is uniformly dispersed in the silicone resin can be obtained.
  • a string-like phosphor-containing sealing resin for example, a plurality of phosphor-containing sealing resins having the same phosphor content can be easily obtained by cutting the phosphor-containing sealing resin into the same length. Can get to. Therefore, the phosphor content between the light emitting devices can be equalized by sealing the light emitting element using these phosphor containing sealing resins.
  • a through hole corresponding to the cavity is provided above a substrate (multiple cavity circuit substrate 10) in which light emitting elements are mounted in a plurality of cavities opening upward.
  • the viscosity of the silicone resin can be repeatedly adjusted by changing the temperature in the temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin is adjusted to such an extent that the dispersed state of the kneaded phosphor can be maintained, so that the phosphor kneaded in the silicone resin can be precipitated. It becomes possible to suppress. Therefore, the phosphor-containing sealing resin in which the phosphor is uniformly dispersed in the silicone resin can be obtained.
  • Each phosphor-containing sealing resin is extruded in a string from the through-hole toward the substrate while being heated and melted at room temperature or below the secondary crosslinking temperature, and is cut into a predetermined length.
  • the same amount of the phosphor-containing sealing resin 20c can be filled (potted) simultaneously.
  • the phosphor-containing encapsulating resin is heated at a secondary cross-linking temperature or higher to obtain a silicone resin. Is completely cured, so that each light-emitting element can be sealed with a phosphor-containing sealing resin in which the phosphor content is equalized.
  • the present invention by adding a plasticizer that lowers the elastic modulus after secondary crosslinking of the silicone resin to the powder mixture, cracks and the like are generated in the phosphor-containing sealing resin that seals the light emitting element. Since this can be suppressed, the reliability of the light emitting device can be improved.
  • the dimension of the through hole may be smaller than the opening dimension of the cavity.
  • the dimension of a through-hole is smaller than the opening dimension of a cavity, it becomes easy to fill a cavity with phosphor-containing sealing resin, and the phosphor-containing sealing resin extruded into a thread shape By adjusting the length, an appropriate amount of phosphor-containing sealing resin can be filled in accordance with the volume of the cavity.
  • the substrate may be heated from the bottom side in the filling step and the curing step.
  • the substrate in the filling step and the curing step, the substrate is heated from the bottom side, so that the phosphor-containing sealing resin filled in the cavity starts to cure from the bottom of the cavity.
  • stress due to curing shrinkage of the phosphor-containing sealing resin can be distributed on the upper part of the phosphor-containing sealing resin, that is, on the opening side of the cavity.
  • the load can be reduced and the reliability of the light emitting device can be improved.
  • a plurality of blades provided for each of the through holes provided substantially in parallel between the porous plate and the substrate may be cut by moving a cutting plate (cut plate 32) having a blade 32b) in a direction parallel to the substrate.
  • the fluorescent substance containing sealing material can be simultaneously cut
  • the porous plate or the substrate may be cut by moving it so as to be separated in a direction perpendicular to the substrate.
  • the lower end portion of the phosphor-containing sealing resin extruded into a thread shape that reaches the substrate can be attached to the bottom of the cavity by the heat.
  • the thread-like phosphor-containing sealing resin is moved away from the perforated plate or the substrate.
  • Each cavity can be cut and filled.
  • the porous plate and the substrate may be cut by injecting compressed air.
  • the lower end portion of the phosphor-containing sealing resin extruded into a thread shape that reaches the substrate can be attached to the bottom of the cavity by the heat.
  • the thread-shaped phosphor-containing sealing resin after the lower end portion of the thread-shaped phosphor-containing sealing resin reaches the cavity, the thread-shaped phosphor is injected by injecting compressed air between the porous plate and the substrate.
  • the contained sealing resin can be cut and filled in each cavity.
  • the dispenser which concerns on 1 aspect of this invention is a dispenser which discharges the fluorescent substance containing sealing material by which the powder of the fluorescent substance was disperse
  • the viscosity of the silicone resin can be repeatedly adjusted by changing the temperature in the temperature range from room temperature to less than the secondary crosslinking temperature.
  • the viscosity of the silicone resin is adjusted to such an extent that the dispersed state of the kneaded phosphor can be maintained, so that the phosphor kneaded in the silicone resin can be precipitated. It becomes possible to suppress. Therefore, the phosphor-containing sealing resin in which the phosphor is uniformly dispersed in the silicone resin can be obtained.
  • the dispenser has a heating mechanism that can heat the contained phosphor-containing sealing material, for example, the silicone resin is contained at a temperature lower than the secondary crosslinking temperature, which is a temperature at which secondary crosslinking is formed. It is possible to heat and melt the phosphor-containing sealing material. Therefore, by adjusting the viscosity of the silicone resin to such an extent that the dispersed state of the phosphor dispersed in the silicone resin can be maintained, it is possible to suppress sedimentation of the phosphor dispersed in the silicone resin in the housing portion.
  • the dispenser can be used to fill the cavity with the phosphor-containing sealing resin in which the phosphor is dispersed.
  • the method for manufacturing a light-emitting device includes discharging the phosphor-containing sealing material to the light-emitting element using the dispenser while heating and melting the phosphor-containing sealing material at a temperature lower than the secondary crosslinking temperature. And a curing step of heating and curing the phosphor-containing sealing material adhered to the surface of the light emitting element at a temperature equal to or higher than the secondary crosslinking temperature. It is characterized by that.
  • the phosphor-containing sealing resin in which the phosphor dispersion state is maintained can be discharged to the light-emitting element using a dispenser, so that the phosphor content between the light-emitting devices is equalized.
  • the method for producing the phosphor-containing encapsulant includes the mixing step of mixing the powder of the silicone resin semi-cured by the primary crosslinking and the phosphor powder, and the mixing An addition step of adding a plasticizer for reducing the elastic modulus after secondary crosslinking of the silicone resin to the powder mixture mixed in the step, and the silicone resin is subjected to secondary crosslinking by adding the powder mixture to which the plasticizer is added.
  • the silicone resin has a reversible viscosity change in a temperature range from room temperature to less than the secondary cross-linking temperature. Characterized in that it completely cured in the secondary crosslinking temperature or temperature range.
  • the plasticizer may reduce the crosslinking density of the silicone resin.
  • the plasticizer may reduce the viscosity of the silicone resin semi-cured by primary crosslinking.
  • the plasticizer may contain a silicone resin as a main component.
  • it may further include a processing step in which the kneaded product extruded in a string shape in the extrusion step is heated and melted at a temperature lower than the secondary crosslinking temperature and processed into a flat plate shape or a sheet shape by pressurization.
  • a through-hole corresponding to the cavity is formed above the substrate on which the light-emitting elements are mounted in the plurality of cavities opening upward.
  • the installation step of installing the porous plates substantially in parallel, and the silicone powder semi-cured by primary crosslinking on the porous plate, the phosphor powder and the elastic modulus after secondary crosslinking of the silicone resin are reduced.
  • the dimension of the through hole may be smaller than the opening dimension of the cavity.
  • the substrate may be heated from the bottom side.
  • a cutting plate having a plurality of blades provided for each of the through holes provided substantially in parallel between the perforated plate and the substrate is moved in a direction parallel to the substrate. By doing so, the phosphor-containing sealing material may be cut.
  • the perforated plate or the substrate is separated in a direction perpendicular to the substrate.
  • the phosphor-containing encapsulant may be cut by moving the phosphor.
  • the filling step after the lower end portion of the phosphor-containing sealing material extruded in a thread shape reaches the cavity, by injecting compressed air between the porous plate and the substrate, The phosphor-containing sealing material may be cut.
  • the present invention can be suitably used for manufacturing a light emitting device used for a display device using LED as a light source, a lighting fixture, a backlight such as a display, a traffic light, a large outdoor display, an advertisement signboard, and the like.
  • Light emitting device 1a Light emitting device (light emitting device) 1b Light emitting device (light emitting device) 1c Light-emitting device (light-emitting device) 1d Light emitting device (light emitting device) 10 Multiple cavity circuit board (board) 10a Planar circuit board (substrate) 11 Circuit board (board) 12 Cavity 13 Light emitting element 20 Phosphor-containing sealing resin (phosphor-containing sealing material) 20c Phosphor-containing sealing resin (phosphor-containing sealing material) 21 Silicone resin 22 Phosphor 23 Plasticizer 24 Powder mixture 25 Kneaded material 25c Kneaded material 32 Cut plate (cutting plate) 32a Cut plate through hole (through hole) 32b Blade 33 Perforated plate 33a Perforated plate through hole (through hole) 36 Dispenser 36a Syringe (container) 37 Twin screw extruder (kneading extruder) 37b Discharge port (through hole) T 0 room temperature T 1 secondary crosslinking temperature d dimension D dimension (opening dimension)

Abstract

 本発明に係る蛍光体含有封止樹脂(20)の製造方法は、シリコーン樹脂(21)の粉末と、蛍光体(22)の粉末とを混合した粉末混合物(24)を加熱溶融しつつ混練する混練工程と、混練工程にて混練した混練物(25)をニ軸スクリュー押出装置(37)の排出口(37b)から紐状に押し出す押出工程とを含む。

Description

蛍光体含有封止材の製造方法、蛍光体含有封止材、発光装置の製造方法およびディスペンサー
 本発明は、発光素子を封止する蛍光体含有封止材の製造方法、蛍光体含有封止材、発光装置の製造方法およびディスペンサーに関するものである。
 LEDチップを備えた白色光を出射する現行の発光装置では、青色LEDチップと、該青色LEDチップの発光で励起されて黄色の蛍光を放出するYAG蛍光体(特許文献1を参照)とを用い、青色LEDチップから放出された青色光と、YAG蛍光体から放出された黄色光とを混色して、白色光を出射している。
 このような発光装置では、LEDチップは、たとえばシリコーン樹脂等によって封止されており、このシリコーン樹脂中に蛍光体が分散されている。
日本国公開特許公報「特開平10-242513号公報(1998年09月11日公開)」
 ここで、基板に形成されたキャビティ内に実装されたLEDチップを封止する工程おいて、蛍光体を含む液状のシリコーン樹脂はディスペンサー等を用いて各キャビティ内に充填される。このとき、リコーン樹脂と蛍光体との比重差により、ディスペンサーのシリンジ内において蛍光体が沈降する場合がある。
 そのため、キャビティ内に充填されたシリコーン樹脂の蛍光体含有量に差が生じ、その結果、量産された発光装置間で色度のばらつきが生じるという課題がある。
 本発明は、上記の課題に鑑みてなされたものであって、その目的は、発光装置間の蛍光体含有量を均等化して、色度のばらつきを低減することが可能な蛍光体含有封止材の製造方法、蛍光体含有封止材、発光装置の製造方法およびディスペンサーを提供することにある。
 上記の課題を解決するために、本発明の一態様に係る蛍光体含有封止材の製造方法は、1次架橋により半硬化したシリコーン樹脂の粉末と、蛍光体の粉末とを混合する混合工程と、前記混合工程にて混合した粉末混合物を、前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、1軸以上のスクリューを備えた混練押出装置で混練する混練工程と、前記混練工程にて混練した混練物を、少なくとも1つの貫通孔が形成された前記混練押出装置の排出口から紐状に押し出す押出工程とを含み、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 また、上記の課題を解決するために、本発明の一態様に係る蛍光体含有封止材は、1次架橋により半硬化したシリコーン樹脂に蛍光体含有封止材であって、前記シリコーン樹脂は、紐状に成形されており、且つ、室温から2次架橋を形成する温度である2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 また、上記の課題を解決するために、本発明の一態様に係る発光装置の製造方法は、上方に向かって開口する複数のキャビティに発光素子が実装された基板の上方に、前記キャビティに対応する貫通孔が形成された多孔板を略平行に設置する設置工程と、前記多孔板上に、1次架橋により半硬化したシリコーン樹脂に、蛍光体の粉末を混練した蛍光体含有封止材を載置する載置工程と、前記蛍光体含有封止材を、室温において、または前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、前記貫通孔から前記基板に向けて糸状に押し出す押出工程と、糸状に押し出された前記蛍光体含有封止材を所定の長さに切断して、前記キャビティに充填する充填工程と、前記キャビティに充填された前記蛍光体含有封止材を、前記2次架橋温度以上で加熱して硬化させる硬化工程とを含み、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 また、上記の課題を解決するために、本発明の一態様に係るディスペンサーは、1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が分散された蛍光体含有封止材を、基板に実装された発光素子に糸状に吐出するディスペンサーであって、前記蛍光体含有封止材を収容する収容部を備え、前記収容部は、収容した前記蛍光体含有封止材を加熱可能な加熱機構を有し、前記シリコーン樹脂は、室温から前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 本発明の一態様によれば、発光装置間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な蛍光体含有封止材の製造方法を提供できるという効果を奏する。
 本発明の一態様によれば、発光装置間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な蛍光体含有封止材を提供できるという効果を奏する。
 本発明の一態様によれば、発光装置間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な発光装置の製造方法を提供できるというと効果を奏する。
 本発明の一態様によれば、発光装置間の蛍光体含有量を均等化して、色度のばらつきを低減することが可能なディスペンサーを提供できるという効果を奏する。
図1は、実施形態1に係る発光デバイスの製造方法によって製造された発光デバイスの外観構成を示す斜視図である。 図2の(a)~図2の(d)は、図1に示される発光デバイスの製造工程のうち、キャビティ12内に発光素子を実装する工程を示す概略図である。 図3の(a)~図3の(c)は、キャビティに蛍光体含有封止樹脂を充填する工程を示す概略図である。 図4は、図3の(a)に示される蛍光体含有封止樹脂に含まれるシリコーン樹脂の粘度特性を概念的に示すグラフである。 図5の(a)~図5の(d)は、キャビティへの蛍光体含有封止樹脂の充填から硬化させるまでの一連の工程におけるシリコーン樹脂の粘度変化を概念的に示すグラフである。 図6は、図3の(c)に示される押出工程を示す断面図である。 図7は、図6に示されるカットプレートを示す断面図である。 図8は、多連キャビティ回路基板を分割する工程を示す概略図である。 図9の(a)~図9の(c)は、ブロック状の蛍光体含有封止樹脂の製造方法を示す概略図である。 図10の(a)および図10の(b)は、図9の(a)~図9の(c)に示される工程におけるシリコーン樹脂の粘度変化を説明するためのグラフである。 図11は、充填工程の変形例を示す断面図である。 図12は、ディスペンサーを用いて、蛍光体含有封止樹脂をキャビティに充填する工程を示す断面図である。 図13の(a)~図13の(d)は、実施形態2に係る紐状の蛍光体含有封止樹脂の製造方法を示す概略図である。 図14の(a)~図14の(d)は、紐状の蛍光体含有封止樹脂をシート状に加工する成形方法を示す概略図である。 図15の(a)および図15の(b)は、シート状の蛍光体含有封止樹脂を用いた発光デバイスの製造方法を示す断面図である。 図16は、実施形態3に係る発光デバイスの製造方法によって製造された発光デバイスの外観構成を示す斜視図である。 図17の(a)~図17の(c)は、キャビティに蛍光体含有封止樹脂を充填する工程を示す概略図である。 図18は、図17の(c)に示される押出工程を示す断面図である。 図19の(a)~図19の(c)は、ブロック状の蛍光体含有封止樹脂の製造方法を示す概略図である。 図20の(a)および図20の(b)は、図19の(a)~図19の(c)に示される工程におけるシリコーン樹脂の粘度変化を説明するためのグラフである。 図21は、可塑剤の添加の有無による、シリコーン樹脂の粘度および弾性率の変化を示す表である。 図22は、充填工程の変形例を示す断面図である。 図23は、ディスペンサーを用いて、蛍光体含有封止樹脂をキャビティに充填する工程を示す断面図である。 図24の(a)~図24の(d)は、実施形態4に係る紐状の蛍光体含有封止樹脂の製造方法を示す概略図である。 図25の(a)~図25の(d)は、紐状の蛍光体含有封止樹脂をシート状に加工する成形方法を示す概略図である。 図26の(a)および図26の(b)は、シート状の蛍光体含有封止樹脂を用いた発光デバイスの製造方法を示す断面図である。
 〔実施形態1〕
 本発明に係る発光装置の製造方法に関する実施の一形態について、図1~図12に基づいて説明すれば以下のとおりである。
 <発光デバイス1aの構成>
 まず、本実施形態に係る発光デバイス(発光装置)1aの構成について、図1を参照して説明する。
 図1は、本実施形態に係る発光デバイスの製造方法によって製造された発光デバイス1aの外観構成を示す斜視図である。図1に示すように、発光デバイス1aは、一辺が1mm程度の直方体状のMID(Molded Interconnection Device、射出立体配線成形基板)である回路基板(基板)11に、上方に向かって開口する矩形のキャビティ12が形成されている。換言すると、キャビティ12は回路基板11の上面に形成された凹部である。このキャビティ12内には、LEDチップ等の発光素子13が実装されている。
 発光素子13の下面は、キャビティ12の底部に設けられたマウント用配線パターン14上に、導電性接着剤15によって接続されている(ダイボンディング)。また、発光素子13の上面は、キャビティ12の底部に設けられた接続用配線パターン16と、金線等によって構成された導電線17により接続されている(ワイヤーボンディング)。
 回路基板11のキャビティ12内は、光透過性を有するシリコーン樹脂によって構成された蛍光体含有封止樹脂(蛍光体含有封止材)20によって封止されている。
 なお、回路基板11のキャビティ12の内面は、リフレクター機能を有していても良い。これにより、発光デバイス1aにおける光の利用効率を向上させることができる。
発光素子13を回路基板11に実装する方法は特に限定されず、ワイヤーボンディング法に代えて、たとえば、フリップチップ法等によって発光素子13を回路基板11に実装しても良い。
 また、回路基板11についても、リフレクターとして機能する光反射性樹脂によってリードフレームをインサート成形した構成や、表面が平らな回路基板上にリフレクター部材を貼り付けること等によってキャビティを形成した構成に置き換えても良い。
 <発光デバイス1aの製造方法>
 次に、図1に示される発光デバイス1aの製造方法について、図2~図8を参照して説明する。
 図2の(a)~図2の(d)は、図1に示される発光デバイス1aの製造工程のうち、キャビティ12内に発光素子13を実装する工程を示す概略図である。
 発光デバイス1aの製造には、多数のキャビティ12が縦方向および横方向にマトリクス状に形成された多連キャビティ回路基板(基板)10が使用される。この多連キャビティ回路基板10を使用することで、多数の発光デバイス1aを同時に製造することができる。多連キャビティ回路基板10は、たとえば、厚さが1.0mmであり、各キャビティ12の深さは0.6mmである。
 本実施形態に係る発光デバイス1aの製造方法では、まず、図2の(a)に示すように、各キャビティ12の底部に、マウント用配線パターン14および接続用配線パターン16をそれぞれ並べて設ける。
 次に、図2の(b)に示すように、多連キャビティ回路基板10の各キャビティ12の底部に設けたマウント用配線パターン14上に、導電性接着剤15を塗布する。
 次に、図2の(c)に示すように、マウント用配線パターン14上に塗布された導電性接着剤15上に発光素子13をダイボンディングする。そして、図2の(d)に示すように、発光素子13の上面と、キャビティ12の底部に設けた接続用配線パターン16とを、金線等によって構成された導電線17によってワイヤーボンディングする。
 このようにして、多連キャビティ回路基板10の各キャビティ12内に、発光素子13をダイボンディングおよびワイヤーボンディングにより実装した後、各キャビティ12内を、蛍光体含有封止樹脂20で封止する。
 図3の(a)~図3の(c)は、キャビティ12に蛍光体含有封止樹脂20を充填する工程を示す概略図である。図4は、図3の(a)に示される蛍光体含有封止樹脂20に含まれるシリコーン樹脂の粘度特性を概念的に示すグラフである。図5の(a)~図5の(d)は、キャビティ12への蛍光体含有封止樹脂20の充填から硬化させるまでの一連の工程におけるシリコーン樹脂の粘度変化を概念的に示すグラフである。
 図3の(a)に示すように、ヒータープレート31上に発光素子13が実装された多連キャビティ回路基板10を載置し、この多連キャビティ回路基板10の上方にカットプレート32と、多孔プレート33と、ヒーターブロック34とをこの順で積層する(設置工程)。そして、ブロック状の蛍光体含有封止樹脂20を、多孔プレート33上であり、且つ、ヒーターブロック34の開口部34a内に載置する(載置工程)。
 蛍光体含有封止樹脂20は、蛍光体がシリコーン樹脂に均一に分散されたものである。このシリコーン樹脂は、後述する2次架橋温度未満の所定の温度、時間の付加によって1次架橋し、シリコーン樹脂よりも比重の大きい粒子(たとえば、蛍光体等)を含有させても完全に沈降しきらない程度かつ加工が可能な粘度(100Pa・S以上1E+5Pa・S以下)を有する液状ではない状態を維持する。なお、1次架橋とは架橋点を有し、所定の硬化条件(所定の温度、時間の付加)によりさらに硬化が進行しうる室温において液状でない状態を指す。
 図4に示すように、このシリコーン樹脂は、室温T(約25℃)における粘度が粘度Vである(図中Pを参照)。粘度Vは、室温Tにおいて蛍光体含有封止樹脂20の形状を維持可能な粘度である。
 このシリコーン樹脂を室温Tから、シリコーン樹脂が2次架橋を形成する温度である2次架橋温度T(約125℃)近くまで加熱した場合、シリコーン樹脂の粘度は低下し、2次架橋温度T直前における粘度は粘度Vとなる(図中Pを参照)。粘度Vは、シリコーン樹脂が流動可能に溶融した粘度である。
 室温Tから2次架橋温度T未満の温度領域におけるシリコーン樹脂の粘度変化は、熱可逆的な変化である。そのため、2次架橋温度T近傍から室温Tまで温度を低下させた場合、シリコーン樹脂の粘度は高くなり、室温Tにおいて元の粘度Vに戻る。従って、室温Tから2次架橋温度T未満の温度領域において温度を変化させることで、シリコーン樹脂の粘度を、粘度Vから粘度Vの間で繰り返し調整することができる。
 一方、シリコーン樹脂を2次架橋温度T以上で加熱した場合、シリコーン樹脂に2次架橋が形成され硬化する。なお、硬化後のシリコーン樹脂の粘度は実質的に定義することはできないが、仮に硬化後のシリコーン樹脂の粘度を粘度Vと概念的に定義した場合、シリコーン樹脂の粘度は粘度Vから粘度Vまで上昇する(図中Pを参照)。すなわち、粘度Vは、シリコーン樹脂が2次架橋を形成したときの2次架橋温度Tにおける粘度を概念的に定義したものである。
 2次架橋後におけるシリコーン樹脂に対して、2次架橋温度Tから温度を上昇または下降させた場合、2次架橋温度Tにおける粘度、弾性等の物性に変化が起こるが(高分子特性)、2次架橋前のシリコーン樹脂に比べて、粘度および弾性率は相対的に高くなる(ただし、図中のPでは、便宜上、粘度Vを維持するものとして記載している)。
 なお、2次架橋とはこれに限らないが合成時とは異なる反応触媒による架橋反応等により、さらに硬化が進行することを指し、上述のように温度によって可逆的な粘性変化が生じない状態をいう。
 蛍光体含有封止樹脂20には、必要な光学的特性に応じて、種々の蛍光体が混練されて、蛍光体の濃度(含有率)が調整されるが、このシリコーン樹脂を用いれば、2次架橋前の状態であればその粘度を繰り返し調整することができるので、後述するように、蛍光体の分散状態が均一な蛍光体含有封止樹脂20を形成することができる。
 蛍光体含有封止樹脂20に含まれるシリコーン樹脂には、たとえば、Dow Corning社の商品名「TX-2506シリーズ」を好適に用いることができる。なお、ブロック状の蛍光体含有封止樹脂20の製造方法については後述する。
 ヒーターブロック34は、室温Tから蛍光体含有封止樹脂20を加熱溶融できる2次架橋温度T未満の温度範囲を含む温度調整機能を備えたものである。ヒーターブロック34は、貫通した開口部34aを有する枠状部材であり、この開口部34a内に蛍光体含有封止樹脂20が配置される。
 多孔プレート33は、複数の多孔プレート貫通孔(貫通孔)33aが形成されたものである。多孔プレート貫通孔33aは、キャビティ12に対応する位置に形成されており、後述するように、プランジャー35による加圧により、多孔プレート貫通孔33aから蛍光体含有封止樹脂20が各キャビティ12に向けて押し出される。
 カットプレート32は、多孔プレート貫通孔33aから押し出された蛍光体含有封止樹脂20を所定の長さに切断するものである。カットプレート32には、多孔プレート貫通孔33aに対応するカットプレート貫通孔32aが形成されており、カットプレート32を図中の矢印の方向に偏心運動させることにより、カットプレート貫通孔32aに設けられたブレード(刃)32b(図7を参照)で蛍光体含有封止樹脂20を所定の長さに切断する。
 ヒータープレート31は、載置された多連キャビティ回路基板10を加熱するものである。ヒータープレート31は、たとえば、2次架橋温度T以下の温度領域で多連キャビティ回路基板10を加熱する。
 このような各部材を上述のように設置した後、ヒーターブロック34によって多孔プレート33に載置された蛍光体含有封止樹脂20を加熱溶融して、蛍光体含有封止樹脂20の粘度を低下させる。このとき、図5の(a)に示すように、室温Tから2次架橋温度T近傍の温度T(たとえば、80℃以上120℃未満)まで蛍光体含有封止樹脂20を加熱することで、シリコーン樹脂の粘度を、蛍光体の沈降を抑えつつ流動可能な粘度Vまで低下させる(図中Pを参照)。
 次に、図3の(b)に示すように、プランジャー35を用いて、多孔プレート33に載置された蛍光体含有封止樹脂20を多連キャビティ回路基板10に向けて加圧する。これにより、図3の(c)に示すように、多孔プレート33の多孔プレート貫通孔33aから蛍光体含有封止樹脂20が各キャビティ12に向けて糸状に押し出される(押出工程)。
 図6は、図3の(c)に示される押出工程を示す断面図である。図6に示すように、プランジャー35の加圧により、蛍光体含有封止樹脂20は、多孔プレート33の多孔プレート貫通孔33aから糸状に押し出される。そして、糸状の蛍光体含有封止樹脂20が所定の長さに達したとき、カットプレート32を偏心回転させることにより、多孔プレート貫通孔33aから糸状に押し出された蛍光体含有封止樹脂20に切断する。これにより、各キャビティ12に所定の長さに切断された、蛍光体含有量の等しい蛍光体含有封止樹脂20を同時に充填することができる(充填工程)。
 なお、多孔プレート貫通孔33aの寸法dを、キャビティ12の開口部の寸法Dよりも小さくすることで、キャビティ12に蛍光体含有封止樹脂20が充填し易くなる。また、糸状に押し出された蛍光体含有封止樹脂20の長さを調整することで、キャビティ12の容積に合わせた適量の蛍光体含有封止樹脂20を充填し易くなる。
 図7は、図6に示されるカットプレート32を示す断面図である。図7に示すように、カットプレート32は、カットプレート貫通孔32aの多孔プレート33側の縁部がブレード(刃)32bになっている。そのため、カットプレート32を偏心回転させることにより、ブレード32bによって糸状に押し出された蛍光体含有封止樹脂20を切断することができる。このとき、ヒータープレート31は、キャビティ12内に配置された蛍光体含有封止樹脂20がキャビティ12の内面に密接するように、多連キャビティ回路基板10を加熱して蛍光体含有封止樹脂20を軟化させる。この充填工程における多連キャビティ回路基板10の温度は、2次架橋温度Tに達している必要はなく、蛍光体含有封止樹脂20がキャビティ12の内部に密接し易くなる程度に、蛍光体含有封止樹脂20を軟化させる温度であれば良い。
 各キャビティ12に蛍光体含有封止樹脂20が充填された後、図5の(b)に示すように、ヒータープレート31によって2次架橋温度T(たとえば、125℃)で加熱する(図中Pを参照)。これにより、図5の(c)に示すように、シリコーン樹脂が2次架橋を形成して硬化が始まる(硬化工程:図中Pを参照)。このとき、キャビティ12に充填された蛍光体含有封止樹脂20は、ヒータープレート31によりキャビティ12の底部側から硬化し始める。そのため、蛍光体含有封止樹脂20の硬化収縮による応力を蛍光体含有封止樹脂20の上部、すなわち、キャビティ12の開口部側に分布させることができるため、クラック等の発生を抑制して、発光デバイス1aの信頼性を向上させることができる。
 そして、多連キャビティ回路基板10をオーブン等で2次架橋温度T以上(たとえば、125℃以上170℃以下)に加熱することにより、シリコーン樹脂を完全に硬化させる。その後、多連キャビティ回路基板10をオーブン等から取り出して、室温Tまで温度を低下させる。このとき、図5の(d)に示すように、温度が室温Tまで低下した場合でも、2次架橋が形成されたシリコーン樹脂の粘度はVとなる(図中Pを参照)。
 図8は、多連キャビティ回路基板10を分割する工程を示す概略図である。図8に示すように、各キャビティ12に実装された発光素子13が2次架橋を形成した蛍光体含有封止樹脂20によって封止されると、多連キャビティ回路基板10を、1つのキャビティ12毎にそれぞれ分割する。これにより、蛍光体含有量が均一な複数の発光デバイス1aを同時に製造することができる。
 このようにして製造された発光デバイス1a間の色度分布範囲は、マクアダム楕円2-ステップの色度管理基準を満たすことができる。マクアダム楕円とは、特定の中心色に対する識別変動の標準偏差をxy色度図に表したものであり、人の目では色度のばらつきが識別できないレベルを実現することができる。
 このように、本実施形態に係る発光デバイスの製造方法によれば、発光デバイス1a間の蛍光体含有量を均等化して、色度のばらつき(色度分布の範囲)を比べて低減することができる。
 なお、上記押出工程において、ヒーターブロック34によって蛍光体含有封止樹脂20を加熱することで、シリコーン樹脂の粘度を蛍光体の沈降を押さえつつ流動可能な粘度Vまで低下させている。しかし、押し出しの圧力を高めることにより、ヒーターブロック34の温度を上げずに室温Tで蛍光体含有封止樹脂20を押し出すことは可能であり、ヒーターブロック34を室温Tのままとしても良い。
 <ブロック状の蛍光体含有封止樹脂20の製造方法>
 次に、本実施形態に係る発光デバイスの製造方法に用いられるブロック状の蛍光体含有封止樹脂20の製造方法について、図9および図10を参照して説明する。
 図9の(a)~図9の(c)は、ブロック状の蛍光体含有封止樹脂20の製造方法を示す概略図であり、図10の(a)および図10の(b)は、図9の(a)~図9の(c)に示される工程におけるシリコーン樹脂の粘度変化を説明するためのグラフである。
 まず、図9の(a)に示すように、1次架橋が形成されたシリコーン樹脂21の粉末と蛍光体22の粉末とを、混合状態が均一になるまで十分にドライミキシングして粉末混合物24を得る。
 次に、図9の(b)に示すように、粉末混合物24を容器に収容して、図10の(a)に示すように、室温Tから温度T(たとえば、40以上60℃未満)まで加熱することでシリコーン樹脂21を溶融し、蛍光体22の沈降を抑えつつ混練可能な粘度Vまで低下させて(図10の(a)中Pを参照)、シリコーン樹脂21に蛍光体22を混練する。
 このとき、加熱溶融したシリコーン樹脂21同士が融合し、蛍光体22を巻き込みながら混練される。また、上述のとおり、シリコーン樹脂21の粘度を、蛍光体22の沈降を抑えつつ混練可能な粘度Vまで低下させた状態で混練することにより、シリコーン樹脂21中の蛍光体22の分散状態を維持することができる。
 そして、図10の(b)に示すように、温度Tから室温Tまで温度を低下させることで、シリコーン樹脂21に蛍光体22を均一に分散させたブロック状の蛍光体含有封止樹脂20を製造することができる。
 なお、本実施形態では、蛍光体含有封止樹脂20に含まれる蛍光体22を1種類としたが、発光色、粒径または比重等が異なる2種類以上の蛍光体22を用いても良い。例えば、赤色発光蛍光体および緑色発光蛍光体の組み合わせを含む蛍光体含有封止樹脂20を製造し、青色のLEDチップ(発光素子13)に適用しても良い。また、青色発光蛍光体および黄色発光蛍光体の組み合わせを含む蛍光体含有封止樹脂20を製造し、青紫色のLEDチップに適用しても良い。
 この場合であっても、1次架橋が形成されたシリコーン樹脂21の粉末と2種類以上の蛍光体22の粉末とを、混合状態が均一になるまでドライミキシングして粉末混合物24を得る。
 その後、シリコーン樹脂21を2次架橋温度T未満で加熱溶融し、2種類以上の蛍光体22の沈降を抑えつつ混練可能な粘度まで低下させて、シリコーン樹脂21に2種類以上の蛍光体22を混練する。
 このとき、加熱溶融したシリコーン樹脂21同士が融合し、融合したシリコーン樹脂21中に2種類以上の蛍光体22を巻き込みながら混練する。また、上述のとおり、シリコーン樹脂21の粘度を、2種類以上の蛍光体22の沈降を抑えつつ混練可能な粘度まで低下させた状態で混練することにより、シリコーン樹脂21中の2種類以上の蛍光体22の分散状態を維持することができる。
 そして、温度を室温Tまで低下させることで、シリコーン樹脂21に2種類以上の蛍光体22を均一に分散させたブロック状の蛍光体含有封止樹脂20を製造することができる。
 また、本実施形態では、波長変換物質として蛍光体22を用いたが、他の波長変換物質を用いても良い。波長変換物質とは、発光素子13から出射された光を波長変換して異なる波長の光を放出する機能を有するものである。
 さらに、本実施形態では、多数のキャビティ12が形成された多連キャビティ回路基板10を使用したが、多連キャビティ回路基板10に代えて平坦な表面を有する平面回路基板を使用しても良い。
 <実施形態1の総括>
 以上のように、本実施形態に係る発光デバイス1aの製造方法は、上方に向かって開口する複数のキャビティ12に発光素子13が実装された多連キャビティ回路基板10の上方に、キャビティ12に対応する多孔プレート貫通孔33aが形成された多孔プレート33を略平行に設置する設置工程と、多孔プレート33上に、1次架橋により半硬化したシリコーン樹脂に、蛍光体の粉末を混練した蛍光体含有封止樹脂20を載置する載置工程と、蛍光体含有封止材を、シリコーン樹脂が2次架橋を形成する温度である2次架橋温度T未満で加熱溶融しつつ、多孔プレート貫通孔33aから多連キャビティ回路基板10に向けて糸状に押し出す押出工程と、糸状に押し出された蛍光体含有封止樹脂20を所定の長さに切断して、キャビティ12に充填する充填工程と、キャビティ12に充填された蛍光体含有封止樹脂20を、2次架橋温度以上で加熱して硬化させる硬化工程とを含み、シリコーン樹脂は、室温Tから2次架橋温度T未満までの温度領域で可逆的に粘度が変化し、2次架橋温度T以上の温度領域で全硬化するものである。
 本実施形態に係る発光デバイス1aの製造方法では、上記の特性を有するシリコーン樹脂を使用しているため、室温Tから2次架橋温度T未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、溶融したシリコーン樹脂21に蛍光体22の粉末を混練する際、混練された蛍光体22の分散状態が維持できる程度にシリコーン樹脂21の粘度を調整することにより、シリコーン樹脂21に混練された蛍光体22の沈降を抑制することが可能となる。したがって、蛍光体22をシリコーン樹脂21に均一に分散させた蛍光体含有封止樹脂20を得ることができる。
 そして、この蛍光体含有封止樹脂20を、2次架橋温度T未満で加熱溶融しつつ、多孔プレート貫通孔33aから多連キャビティ回路基板10に向けて糸状に押し出して、所定の長さに切断することにより、各キャビティ12に同量の蛍光体含有封止樹脂20を同時に充填(ポッティング)することができる。ここで、各キャビティ12に充填された所定の長さの蛍光体含有封止樹脂20における蛍光体含有量は均等であるため、この蛍光体含有封止樹脂20を2次架橋温度以上で加熱してシリコーン樹脂を全硬化させることにより、各発光素子13を蛍光体含有量が均等化された蛍光体含有封止樹脂20によって封止することができる。
 それゆえ、本実施形態によれば、発光デバイス1a間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な発光デバイスの製造方法を実現することができる。
 また、本実施形態に係る発光デバイス1aの製造方法によれば、多連キャビティ回路基板10に形成されたキャビティ12の数や寸法等に応じて、多孔プレート33に多孔プレート貫通孔33aを形成することにより、各種の発光デバイス1aの製造に容易に対応することが可能となるため、発光デバイス1aの製造コストを低減することができる。
 <変形例>
 (変形例1)
 図11は、充填工程の変形例を示す断面図である。図11に示すように、多孔プレート33を、多連キャビティ回路基板10に対して垂直な方向に、多連キャビティ回路基板10から離間するように移動させることにより、多孔プレート貫通孔33aから糸状に押し出された蛍光体含有封止樹脂20を切断しても良い。
 この場合、多連キャビティ回路基板10を加熱しておくことが好ましい。これにより、多連キャビティ回路基板10に到達した、糸状に押し出された蛍光体含有封止樹脂20の下端部を該熱によってキャビティ12の底部に付着させることができる。そのため、糸状の蛍光体含有封止樹脂20の下端部がキャビティ12に到達したタイミングで、多孔プレート33を上昇させることにより、糸状の蛍光体含有封止樹脂20を切断して、各キャビティ12に充填することができる。なお、多孔プレート33に代えて、多連キャビティ回路基板10を下降させることにより蛍光体含有封止樹脂20を切断しても良い。
 この切断方法によれば、カットプレート32およびカットプレート32を偏心回転させる駆動装置等を用いることなく、蛍光体含有封止樹脂20を切断することができる。
 また、多孔プレート33と多連キャビティ回路基板10との間に圧縮した空気を噴射することにより、蛍光体含有封止樹脂20を切断することも可能である。
 この場合であっても、多連キャビティ回路基板10を加熱しておき、糸状に押し出された蛍光体含有封止樹脂20の下端部がキャビティ12に到達したタイミングで、多孔プレート33と多連キャビティ回路基板10との間に圧縮した空気を噴射することにより、糸状に押し出された蛍光体含有封止樹脂20を切断して、各キャビティ12に充填することができる。
 (変形例2)
 図12は、ディスペンサー36を用いて、蛍光体含有封止樹脂20をキャビティ12に充填する工程を示す断面図である。図12に示すように、シリンジ36aを有するディスペンサー36を用いて、蛍光体含有封止樹脂20をキャビティ12に充填しても良い。
 ディスペンサー36は、1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が混練された蛍光体含有封止樹脂20をシリンジ36aに収容可能な形状に再加工し、シリンジ36aに収容した蛍光体含有封止樹脂20を、多連キャビティ回路基板10に実装された発光素子13に糸状に吐出するものである。
 ディスペンサー36は、蛍光体含有封止樹脂20を収容するシリンジ(収容部)36aを備える。このディスペンサー36は、シリンジ36aにエアもしくはピストンで加圧して、収容した蛍光体含有封止樹脂20を吐出し、キャビティ12に蛍光体含有封止樹脂20を充填するものである(吐出工程)。なお、エアもしくはピストンで加圧する際には、シリコーン樹脂の2次架橋温度未満で蛍光体含有封止樹脂20を加熱溶融しつつ吐出しても良く、室温Tのまま吐出しても良い。
 ただし、シリコーン樹脂の2次架橋温度未満で蛍光体含有封止樹脂20を加熱溶融しつつ吐出する場合には、シリンジ36aに収容された蛍光体含有封止樹脂20の粘度が蛍光体を沈降させない程度となるように、シリンジ36aによる加熱温度を制御する。これにより、従来のように、シリコーン樹脂と蛍光体との比重差により、シリンジ36a内において蛍光体が沈降することを抑制することができ、蛍光体のほぼ均一な分散状態が維持できる。
 そのため、ディスペンサー36を用いた吐出工程の初めと終わりで蛍光体含有封止樹脂20の蛍光体濃度がほとんど変動することなく、蛍光体含有封止樹脂20を各キャビティ12に充填できる。また、室温Tのまま吐出する場合には、蛍光体含有封止樹脂20の粘度低下は生じないので、加熱溶融する場合と同様にディスペンサー36を用いた吐出工程の初めと終わりで蛍光体含有封止樹脂20の蛍光体濃度がほとんど変動することなく、蛍光体含有封止樹脂20を各キャビティ12に充填できる。
 そして、キャビティ12に充填した蛍光体含有封止樹脂20を、ヒータープレート31およびオーブン等によって2次架橋温度以上で加熱して、蛍光体含有封止樹脂20に含まれるシリコーン樹脂を全硬化させることにより、各キャビティ12間で蛍光体含有量が均等化された蛍光体含有封止樹脂20によって、各発光素子13を封止することができる。
 このように、ディスペンサー36を用いた場合であっても、発光デバイス1a間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な発光デバイスの製造方法を実現することができる。
 なお、ディスペンサー36を用いて、キャビティ12が形成されていない、表面が平坦な回路基板に実装された複数の発光素子13に対して各発光素子13を個別に、もしく数個の発光素子13単位ごとに封止するように蛍光体含有封止樹脂20を吐出しても良い。
 この場合であっても、発光素子13の表面に蛍光体含有封止樹脂20を密着させた状態で、ヒータープレート31およびオーブン等によって2次架橋温度以上で加熱して、蛍光体含有封止樹脂20に含まれるシリコーン樹脂を全硬化させることにより、各発光素子13を蛍光体含有量が均等化された蛍光体含有封止樹脂20によって封止することができる。
 〔実施形態2〕
 本発明に係る発光装置の製造方法に関する第2の実施の一形態について、図13~図15に基づいて説明すれば以下のとおりである。なお、説明の便宜上、上述した実施形態にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態に係る発光デバイスの製造方法は、まず、紐状の蛍光体含有封止樹脂20を製造し、この紐状の蛍光体含有封止樹脂20を加工したものを用いて発光素子13を封止する点において、実施形態1と異なっている。
 <紐状の蛍光体含有封止樹脂20の製造方法>
 まず、紐状の蛍光体含有封止樹脂20の製造方法について、図13を参照して説明する。
 図13の(a)~図13の(d)は、紐状の蛍光体含有封止樹脂20の製造方法を示す概略図である。
 図13の(a)に示すように、まず、1次架橋が形成されたシリコーン樹脂21の粉末と蛍光体22の粉末とを、混合状態が均一になるまでドライミキシングして粉末混合物24を得る(混合工程)。
 次に、図13の(b)に示すように、粉末混合物24を二軸スクリュー押出装置(混練押出装置)37に投入して、2次架橋温度T未満で加熱溶融しつつ混練する(混練工程)。
 二軸スクリュー押出装置37は、平行に設けられた2つのスクリュー37aを備えており、この2つのスクリュー37aがそれぞれ逆方向に回転することにより、加熱によりシリコーン樹脂を溶融しつつ、粉末混合物24を混練する。
 この加熱と混練により、図13の(c)に示すように、粉末混合物24は、溶融したシリコーン樹脂に蛍光体が均一に分散された混練物25となる。この混練物25を、二軸スクリュー押出装置37の排出口(貫通孔)37bから紐状に押し出すことにより、図13の(d)に示すように、蛍光体がシリコーン樹脂に均一に分散された紐状の蛍光体含有封止樹脂20を製造することができる。
 このように、蛍光体がシリコーン樹脂に均一に分散された蛍光体含有封止樹脂20を紐状に成形(成型)することにより、たとえば、紐状の蛍光体含有封止樹脂20を同じ長さに切断することで、蛍光体含有量の等しい複数の蛍光体含有封止樹脂20を容易に得ることができる。そのため、これらの蛍光体含有封止樹脂20を用いて発光素子13を封止することにより、発光デバイス間の蛍光体含有量を均等化し、色度のばらつきを低減することができる。
 また、蛍光体含有封止樹脂20を紐状とすることにより、たとえば、バルク状の蛍光体含有封止樹脂20に比べて、加熱時のシリコーン樹脂の溶融効率を向上させることができる。そのため、蛍光体を沈降させないように2次架橋温度T未満で紐状の蛍光体含有封止樹脂20を加熱溶融することで、蛍光体をシリコーン樹脂に均一に分散させた状態を維持したまま、紐状の蛍光体含有封止樹脂20を所望の形状に容易に加工することができる。
 なお、本実施形態では、2つのスクリュー37aを備えた二軸スクリュー押出装置37を用いたが、二軸スクリュー押出装置37に代えて、1つのスクリュー37aを備えた一軸スクリュー押出装置を用いても良い。また、二軸スクリュー押出装置37に代えて、3つ以上のスクリュー37aを備えた多軸スクリュー押出装置を用いても良い。これにより、粉末混合物24の混練効率、および混練物25の押し出し効率を向上させることができる。
 なお、二軸スクリュー押出装置37の排出口37bの数、寸法および形状は特に限定されず、必要に応じて適宜変更可能である。
 また、本実施形態では、蛍光体含有封止樹脂20に含まれる蛍光体22を1種類としたが、発光色、粒径または比重等が異なる2種類以上の蛍光体22を用いても良い。例えば、赤色発光蛍光体および緑色発光蛍光体の組み合わせを含む蛍光体含有封止樹脂20を製造し、青色のLEDチップ(発光素子13)に適用しても良い。また、青色発光蛍光体および黄色発光蛍光体の組み合わせを含む蛍光体含有封止樹脂20を製造し、青紫色のLEDチップに適用しても良い。
 この場合であっても、1次架橋が形成されたシリコーン樹脂21の粉末と2種類以上の蛍光体22の粉末とを、混合状態が均一になるまでドライミキシングして粉末混合物24を得る。
 その後、粉末混合物24を二軸スクリュー押出装置(混練押出装置)37に投入して、2次架橋温度T未満で加熱溶融しつつ混練する。二軸スクリュー押出装置37は、平行に設けられた2つにスクリュー37aを備えており、この2つのスクリュー37aがそれぞれ逆方向に回転することにより、加熱によってシリコーン樹脂21を溶融しつつ、粉末混合物24を混練する。
 この加熱と混練とにより、粉末混合物24は、溶融したシリコーン樹脂21に2種類以上の蛍光体22が均一に分散された混練物25となる。この混練物25を二軸スクリュー押出装置37の排出口37bから紐状に押し出すことにより、2種類以上の蛍光体22がシリコーン樹脂21に均一に分散された紐状の蛍光体含有封止樹脂20を製造することができる。
 さらに、本実施形態では、波長変換物質として蛍光体22を用いたが、他の波長変換物質を用いても良い。波長変換物質とは、発光素子13から出射された光を波長変換して異なる波長の光を放出する機能を有するものである。
 <シート状の蛍光体含有封止樹脂20の成形方法>
 次に、紐状の蛍光体含有封止樹脂20を、シート状に加工する成形方法(加工工程)について、図14を参照して説明する。
 図14の(a)~図14の(d)は、紐状の蛍光体含有封止樹脂20をシート状に加工する成形方法を示す概略図である。以下では、ヒートプレスにより、紐状の蛍光体含有封止樹脂20をシート状に加工する成形方法について説明する。
 まず、図14の(a)に示すように、紐状の蛍光体含有封止樹脂20をヒータープレート31に配置する。そして、図14の(b)に示すように、紐状の蛍光体含有封止樹脂20を2次架橋温度T未満で加熱溶融して、蛍光体22を沈降させない程度にシリコーン樹脂の粘度を低下させる。
 次に、図14の(c)に示すように、2次架橋温度T未満で加熱された加圧プレート39によって蛍光体含有封止樹脂20を加圧する。このとき、ヒータープレート31と加圧プレート39との間に配置されたスペーサ38によって、蛍光体含有封止樹脂20の厚みが調整される。そして、蛍光体含有封止樹脂20の温度を室温Tまで低下させることにより、図14の(d)に示すように、蛍光体が均一に分散されたシート状の蛍光体含有封止樹脂20を得ることができる。
 <発光デバイス1bの製造方法>
 次に、シート状の蛍光体含有封止樹脂20を用いた発光デバイス(発光装置)1bの製造方法について、図15を参照して説明する。
 図15の(a)および図15の(b)は、シート状の蛍光体含有封止樹脂20を用いた発光デバイス1bの製造方法を示す断面図である。発光デバイス1bの製造には、平面回路基板10aの平坦な表面に発光素子13が縦方向および横方向にマトリクス状に実装された平面回路基板10aが使用される。この平面回路基板10aを使用することで、多数の発光デバイス1bを同時に製造することができる。
 図15の(a)に示すように、ヒータープレート31上に、複数の発光素子13が実装された平面回路基板10aと、シート状の蛍光体含有封止樹脂20とをこの順で積層する。そして、ヒータープレート31によって平面回路基板10aを加熱することにより、シート状の蛍光体含有封止樹脂20を、2次架橋温度T未満で加熱溶融して、蛍光体含有封止樹脂20に含有されている蛍光体22を沈降させない程度にシリコーン樹脂の粘度を低下させるとともに、2次架橋温度T未満で加熱された加圧プレート39によってシート状の蛍光体含有封止樹脂20を平面回路基板10aの方向に加圧する。これにより、シート状の蛍光体含有封止樹脂20を、発光素子13の上面および側面に密着させることができる。
 次に、この状態で、ヒータープレート31によってシート状の蛍光体含有封止樹脂20を2次架橋温度Tで加熱することにより、シリコーン樹脂に2次架橋が形成させて全硬化させる。さらに、平面回路基板10aをオーブン等で2次架橋温度T以上の温度で加熱することで、シリコーン樹脂を完全に硬化させた後、平面回路基板10aを取り出して、室温Tまで温度を低下させる。
 そして、図15の(b)に示すように、平面回路基板10aを、1つの発光素子13毎にそれぞれ分割することにより、蛍光体含有量が均等化された複数の発光デバイス1bを製造することができる。
 なお、シート状の蛍光体含有封止樹脂20を使用する本実施形態の方法(シート法)は、複数の発光デバイスが連なった分割前の発光デバイスにおける各発光素子13の封止に適用される。一方、プランジャー35を用いて蛍光体含有封止樹脂20を糸状に押し出す実施形態1の方法(プランジャー法)は、分割前の発光デバイスにおける各発光素子13の封止のみならず、個々に分割された発光デバイスにおける各発光素子13の封止にも適用可能である。
 <実施形態2の総括>
 以上のように、本実施形態に係る紐状の蛍光体含有封止樹脂20の製造方法は、1次架橋により半硬化したシリコーン樹脂21の粉末と、蛍光体22の粉末とを混合する混合工程と、混合工程にて混合した粉末混合物24を、二軸スクリュー押出装置37の排出口37bから紐状に押し出す押出工程とを含み、シリコーン樹脂21は、室温Tから2次架橋温度T未満までの温度領域で可逆的に粘度が変化し、2次架橋温度T以上の温度領域で全硬化するものである。
 本実施形態に係る紐状の蛍光体含有封止樹脂20の製造方法では、上記の特性を有するシリコーン樹脂21を使用しているため、室温Tから2次架橋温度T未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、粉末混合物24を二軸スクリュー押出装置37を用いて加熱溶融しつつ混練する際、混練された蛍光体22の分散状態が維持できる程度にシリコーン樹脂21の粘度を調整することにより、混練物25における蛍光体22の沈降を抑制することが可能となる。したがって、混練物25を、少なくとも1つ以上の貫通孔か形成された排出口37bから紐状に押し出すことにより、蛍光体22をシリコーン樹脂21に均一に分散させた紐状の蛍光体含有封止樹脂20を製造することができる。
 このようにして製造された紐状の蛍光体含有封止樹脂20によれば、たとえば、蛍光体含有封止樹脂20を同じ長さに切断することで、蛍光体含有量の等しい複数の蛍光体含有封止樹脂20を容易に得ることができる。そのため、これらの蛍光体含有封止樹脂20を用いて発光素子13を封止することにより、発光デバイス間の蛍光体含有量を均等化することができる。
 また、本実施形態に係る紐状の蛍光体含有封止樹脂20の製造方法によれば、蛍光体含有封止樹脂20を紐状とすることにより、たとえば、バルク状の蛍光体含有封止樹脂20に比べて、加熱時のシリコーン樹脂21の溶融効率を向上させることができる。そのため、蛍光体を沈降させないようにシリコーン樹脂21の粘度を調整しつつ、2次架橋温度T未満で紐状の蛍光体含有封止樹脂20を加熱することにより効率的に溶融させて、用途に応じた所望の形状に加工することが可能となる。たとえば、蛍光体22をシリコーン樹脂21に均一に分散させたシート状の蛍光体含有封止樹脂20に加工して、この蛍光体含有封止樹脂20を用いて発光素子13を封止することにより、発光デバイス1b間の蛍光体含有量を均等化することができる。
 それゆえ、本実施形態に係る紐状の蛍光体含有封止樹脂20の製造方法によれば、発光デバイス1b間の蛍光体含有量を均等化し、色度のばらつきを低減することができる蛍光体含有封止樹脂20を製造することができる。
 〔実施形態3〕
 本発明に係る発光装置の製造方法に関する第3の実施の一形態について、図16~図23に基づいて説明すれば以下のとおりである。なお、説明の便宜上、上述した実施形態1、2にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態に係る発光デバイスの製造方法は、蛍光体含有封止樹脂20の製造方法が異なる点で実施形態1及び2と異なっている。
 <発光デバイス1cの構成>
 図16は、本実施形態に係る発光デバイスの製造方法によって製造された発光デバイス1cの外観構成を示す斜視図である。
 図16に示すように発光デバイス1cは、図1に示した発光デバイス1aから、蛍光体含有封止樹脂20に替えて、蛍光体含有封止樹脂(蛍光体含有封止材)20cを備えた構成である。蛍光体含有封止樹脂20cは、後述するように、シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤が添加されている点で蛍光体含有封止樹脂20と相違する。
 発光デバイス1cのうち、蛍光体含有封止樹脂20c以外の他の構成は、発光デバイス1aと同様である。
 回路基板11のキャビティ12内は、光透過性を有するシリコーン樹脂によって構成された蛍光体含有封止樹脂20cによって封止されている。
 <発光デバイス1cの製造方法>
 次に、図16に示される発光デバイス1cの製造方法について、主に図17、図18を参照して説明する。
 図16に示す発光デバイス1cの製造工程では、まず、キャビティ12内に発光素子13を実装する。この、発光デバイス1cの製造工程のうち、キャビティ12内に発光素子13を実装する工程については、図2の(a)~図2の(d)を用いて説明したものと同様なので説明を省略する。
 図2の(a)~(d)を用いて説明した方法で、多連キャビティ回路基板10の各キャビティ12内に、発光素子13をダイボンディングおよびワイヤーボンディングにより実装した後、各キャビティ12内を、蛍光体含有封止樹脂20cで封止する。
 図17の(a)~図17の(c)は、キャビティ12に蛍光体含有封止樹脂20cを充填する工程を示す概略図である。
 蛍光体含有封止樹脂20cに含まれるシリコーン樹脂及び蛍光体は、蛍光体含有封止樹脂20に含まれるシリコーン樹脂及び蛍光体と同様である。
 すなわち、蛍光体含有封止樹脂20cにおいても、蛍光体含有封止樹脂20と同様に、蛍光体含有封止樹脂20cに含まれるシリコーン樹脂の粘度特性は図4に示したグラフで表される。
 また、同様に、キャビティ12への蛍光体含有封止樹脂20cの充填から硬化させるまでの一連の工程における蛍光体含有封止樹脂20cのシリコーン樹脂の粘度変化は、図5の(a)~図5の(d)で示したグラフで表される。
 図17の(a)に示すように、ヒータープレート31上に発光素子13が実装された多連キャビティ回路基板10を載置し、この多連キャビティ回路基板10の上方にカットプレート32と、多孔プレート33と、ヒーターブロック34とをこの順で積層する(設置工程)。そして、ブロック状の蛍光体含有封止樹脂20cを、多孔プレート33上であり、且つ、ヒーターブロック34の開口部34a内に載置する(載置工程)。
 蛍光体含有封止樹脂20cは、シリコーン樹脂に蛍光体が均一に分散されたものである。このシリコーン樹脂は、後述する2次架橋温度未満の所定の温度、時間の付加によって1次架橋し、シリコーン樹脂よりも比重の大きい粒子(たとえば、蛍光体等)を含有させても完全に沈降しきらない程度かつ加工が可能な粘度(100Pa・S以上1E+5Pa・S以下)を有する液状ではない状態を維持する。
 蛍光体含有封止樹脂20cには、必要な光学的特性に応じて、種々の蛍光体が混練されて、蛍光体の濃度(含有率)が調整されるが、このシリコーン樹脂を用いれば、2次架橋前の状態であればその粘度を繰り返し調整することができるので、後述するように、蛍光体の分散状態が均一な蛍光体含有封止樹脂20cを形成することができる。
 蛍光体含有封止樹脂20cに含まれるシリコーン樹脂には、たとえば、Dow Corning社の商品名「TX-2506シリーズ」を好適に用いることができる。なお、ブロック状の蛍光体含有封止樹脂20cの製造方法については後述する。
 ヒーターブロック34は、室温Tから蛍光体含有封止樹脂20cを加熱溶融できる2次架橋温度T未満の温度範囲を含む温度調整機能を備えたものである。ヒーターブロック34は、貫通した開口部34aを有する枠状部材であり、この開口部34a内に蛍光体含有封止樹脂20cが配置される。
 多孔プレート33は、複数の多孔プレート貫通孔(貫通孔)33aが形成されたものである。多孔プレート貫通孔33aは、キャビティ12に対応する位置に形成されており、後述するように、プランジャー35による加圧により、多孔プレート貫通孔33aから蛍光体含有封止樹脂20cが各キャビティ12に向けて押し出される。
 カットプレート32は、多孔プレート貫通孔33aから押し出された蛍光体含有封止樹脂20cを所定の長さに切断するものである。カットプレート32には、多孔プレート貫通孔33aに対応するカットプレート貫通孔32aが形成されており、カットプレート32を図中の矢印の方向に偏心運動させることにより、カットプレート貫通孔32aに設けられたブレード(刃)32b(図7を参照)で蛍光体含有封止樹脂20cを所定の長さに切断する。
 ヒータープレート31は、載置された多連キャビティ回路基板10を加熱するものである。ヒータープレート31は、2次架橋温度Tで多連キャビティ回路基板10を加熱する。
 このような各部材を上述のように設置した後、ヒーターブロック34によって多孔プレート33に載置された蛍光体含有封止樹脂20cを加熱溶融して、蛍光体含有封止樹脂20cの粘度を低下させる。
 このとき、図5の(a)で示したように、室温Tから2次架橋温度T近傍の温度T(たとえば、80℃以上120℃未満)まで蛍光体含有封止樹脂20cを加熱することで、シリコーン樹脂の粘度を、蛍光体の沈降を抑えつつ流動可能な粘度Vまで低下させる(図5の(a)中Pを参照)。
 次に、図17の(b)に示すように、プランジャー35を用いて、多孔プレート33に載置された蛍光体含有封止樹脂20cを多連キャビティ回路基板10に向けて加圧する。これにより、図17の(c)に示すように、多孔プレート33の多孔プレート貫通孔33aから蛍光体含有封止樹脂20cが各キャビティ12に向けて糸状に押し出される(押出工程)。
 図18は、図17の(c)に示される押出工程を示す断面図である。図18に示すように、プランジャー35の加圧により、蛍光体含有封止樹脂20cは、多孔プレート33の多孔プレート貫通孔33aから糸状に押し出される。そして、糸状の蛍光体含有封止樹脂20cが所定の長さに達したとき、カットプレート32を偏心回転させることにより、多孔プレート貫通孔33aから糸状に押し出された蛍光体含有封止樹脂20cに切断する。これにより、各キャビティ12に所定の長さに切断された、蛍光体含有量の等しい蛍光体含有封止樹脂20cを同時に充填することができる(充填工程)。
 なお、多孔プレート貫通孔33aの寸法dを、キャビティ12の開口部の寸法Dよりも小さくすることで、キャビティ12に蛍光体含有封止樹脂20cが充填し易くなる。また、糸状に押し出された蛍光体含有封止樹脂20cの長さを調整することで、キャビティ12の容積に合わせた適量の蛍光体含有封止樹脂20cを充填し易くなる。
 各キャビティ12に蛍光体含有封止樹脂20cが充填された後、図5の(b)に示したように、ヒータープレート31によって2次架橋温度T(たとえば、125℃)で加熱する(図5の(b)中Pを参照)。これにより、図5の(c)に示すように、シリコーン樹脂が2次架橋を形成して硬化が始まる(硬化工程:図5の(c)中Pを参照)。このとき、キャビティ12に充填された蛍光体含有封止樹脂20cは、ヒータープレート31によりキャビティ12の底部側から硬化し始める。そのため、蛍光体含有封止樹脂20cの硬化収縮による応力を蛍光体含有封止樹脂20cの上部、すなわち、キャビティ12の開口部側に分布させることができるため、クラック等の発生を抑制して、発光デバイス1cの信頼性を向上させることができる。
 そして、多連キャビティ回路基板10をオーブン等で2次架橋温度T以上(たとえば、125℃以上170℃以下)で加熱することにより、シリコーン樹脂を完全に硬化させる。その後、多連キャビティ回路基板10をオーブン等から取り出して、室温Tまで温度を低下させる。このとき、図5の(d)に示したように、温度が室温Tまで低下した場合でも、2次架橋が形成されたシリコーン樹脂の粘度はVとなる(図5の(d)中Pを参照)。
 この後、図8を用いて説明したように、多連キャビティ回路基板10を分割する工程を行う。
 すなわち、各キャビティ12に実装された発光素子13が2次架橋を形成した蛍光体含有封止樹脂20cによって封止されると、多連キャビティ回路基板10を、1つのキャビティ12毎にそれぞれ分割する。これにより、蛍光体含有量が均一な複数の発光デバイス1cを同時に製造することができる。
 このようにして製造された発光デバイス1c間の色度分布範囲は、マクアダム楕円2-ステップの色度管理基準を満たすことができる。マクアダム楕円とは、特定の中心色に対する識別変動の標準偏差をxy色度図に表したものであり、人の目では色度のばらつきが識別できないレベルを実現することができる。
 このように、本実施形態に係る発光デバイスの製造方法によれば、発光デバイス1c間の蛍光体含有量を均等化して、色度のばらつき(色度分布の範囲)を比べて低減することができる。
 なお、上記押出工程において、ヒーターブロック34を蛍光体含有封止樹脂20cを加熱することで、シリコーン樹脂の粘度を蛍光体の沈降を押さえつつ流動可能な粘度Vまで低下させているが、押し出しの圧力を高めることにより、ヒーターブロック34の温度を上げずに室温Tで蛍光体含有封止樹脂20cを押し出すことは可能であり、ヒーターブロック34を室温Tのままとしても良い。
 <ブロック状の蛍光体含有封止樹脂20cの製造方法>
 次に、本実施形態に係る発光デバイスの製造方法に用いられるブロック状の蛍光体含有封止樹脂20cの製造方法について、図19~図21を参照して説明する。
 図19の(a)~図19の(c)は、ブロック状の蛍光体含有封止樹脂20cの製造方法を示す概略図であり、図20の(a)および図20の(b)は、図19の(a)~図19の(c)に示される工程におけるシリコーン樹脂の粘度変化を説明するためのグラフである。
 まず、図19の(a)に示すように、1次架橋が形成されたシリコーン樹脂21の粉末と蛍光体22の粉末とを、混合状態が均一になるまで十分にドライミキシングして粉末混合物24を得る。
 次に、図19の(b)に示すように、粉末混合物24に、シリコーン樹脂21の2次架橋後の弾性率を低下させる(副次的に粘度を低下させる)可塑剤23を添加する。なお、可塑剤23の詳細については後述する。そして、図20の(a)に示すように、室温Tから温度T(たとえば、40以上60℃未満)まで加熱することでシリコーン樹脂21を溶融し、蛍光体22の沈降を抑えつつ混練可能な粘度Vまで低下させて(図中Pを参照)、シリコーン樹脂21に蛍光体22を混練する。
 このとき、加熱溶融したシリコーン樹脂21同士が融合し、蛍光体22を巻き込みながら混練される。また、上述のとおり、シリコーン樹脂21の粘度を、蛍光体22の沈降を抑えつつ混練可能な粘度Vまで低下させた状態で混練することにより、シリコーン樹脂21中の蛍光体22の分散状態を維持することができる。
 そして、図20の(b)に示すように、温度Tから室温Tまで温度を低下させることで、シリコーン樹脂21に蛍光体22を均一に分散させたブロック状の蛍光体含有封止樹脂20cを製造することができる。
 ここで、1次架橋されたシリコーン樹脂21は、室温Tにおいて比較的高い粘度を有しており、加熱による溶融性が低く、また、タック(付着)性および濡れ性も低い。そのため、加熱時にシリコーン樹脂21同士が十分に融合せず、隙間が多い状態になる。このような状態でシリコーン樹脂21に2次架橋を形成して全硬化させた場合、蛍光体含有封止樹脂20cにクラック等が発生し易くなる。クラックの発生を抑制するためには、2次架橋後のシリコーン樹脂21の弾性率を低下させることが好ましい。
 そこで、シリコーン樹脂21の粉末と蛍光体22の粉末とをドライミキシングして得た粉末混合物24に、シリコーン樹脂21の2次架橋後の弾性率を低下させる可塑剤23を少量添加している。
 この可塑剤23は、シリコーン樹脂21の架橋密度を低下させるものであっても良い。これにより、シリコーン樹脂21の2次架橋後の弾性率を好適に低下させて、発光素子13を封止した蛍光体含有封止樹脂20cにクラック等が発生することを抑制することが可能となる。
 また、可塑剤23は、1次架橋時のシリコーン樹脂の粘度を低下させるものであっても良い。これにより、蛍光体含有封止樹脂の加工等が容易となり、また、粉末混合物24に相溶性をもたすことにより、シリコーン樹脂21を隙間なく1つに纏まり易くすることができる。
 このような可塑剤23として、たとえば、シリコーン樹脂を主成分とするもので、無官能基性シリコーンオイルまたは単官能基性シリコーンオイル等を好適に用いることができ、マトリクスシリコーンと反応するものであっても良く、反応しないものであっても良い。可塑剤23は、発光デバイス1cの特性に合わせて適宜選択される。
 図21は、可塑剤23の添加の有無による、シリコーン樹脂21の粘度および弾性率の変化を示す表である。図21では、2次架橋前(1次架橋状態)のシリコーン樹脂21の粘度、および2次架橋後のシリコーン樹脂21の弾性率を示している。
 図21に示すように、シリコーン樹脂21に対して可塑剤23を添加(11重量%の例)することにより、2次架橋前のシリコーン樹脂21の25℃における粘度を、1/3程度にまで低下させることができる。また、2次架橋前のシリコーン樹脂21の120℃における粘度を、1/100程度にまで低下させることができる。
 可塑剤23の添加量によってシリコーン樹脂21の粘性の値は変わるが、おおよそ、25℃で、1×104Pa・s~1×105Pa・sであり、120℃で、1×102Pa・s~1×104Pa・sである。なお、可塑剤23の添加量は、シリコーン樹脂21に対する可塑剤23の重量比で示すと5~20重量%が好ましく、より好ましくは、8~15重量%であり、さらに好ましくは11重量%程度である。
 さらに、シリコーン樹脂21に対して可塑剤23を添加することにより、2次架橋形成後のシリコーン樹脂21の25℃における弾性率を、~5×10Paから~1×10Paまで低下させることができる。また、2次架橋形成後のシリコーン樹脂21の125℃における弾性率を、~1×10Paから~2×10Paまで低下させることができる。
 このように、可塑剤23を添加することにより、2次架橋前のシリコーン樹脂21の粘度を低下させることができるため、1次架橋が形成された蛍光体含有封止樹脂20cの加工等が容易となる。
 また、可塑剤23を添加することにより、シリコーン樹脂の架橋密度が低下するため、25℃および125℃における2次架橋形成後のシリコーン樹脂21の弾性率を低下させることができる。これにより、蛍光体含有封止樹脂20cにクラック等が発生することを抑制することが可能となる。
 なお、本実施形態では、蛍光体含有封止樹脂20cに含まれる蛍光体22を1種類としたが、発光色、粒径または比重等が異なる2種類以上の蛍光体22を用いても良い。例えば、赤色発光蛍光体および緑色発光蛍光体の組み合わせを含む蛍光体含有封止樹脂20cを製造し、青色のLEDチップ(発光素子13)に適用しても良い。また、青色発光蛍光体および黄色発光蛍光体の組み合わせを含む蛍光体含有封止樹脂20cを製造し、青紫色のLEDチップに適用しても良い。
 この場合であっても、1次架橋が形成されたシリコーン樹脂21の粉末と2種類以上の蛍光体22の粉末とを、混合状態が均一になるまでドライミキシングして粉末混合物24を得る。
 その後、粉末混合物24に、シリコーン樹脂21の2次架橋後の弾性率を低下させる(副次的に粘度を低下させる)可塑剤23を添加する。
 次に、シリコーン樹脂21を2次架橋温度T未満で加熱溶融し、2種類以上の蛍光体22の沈降を抑えつつ混練可能な粘度まで低下させて、シリコーン樹脂21に2種類以上の蛍光体22を混練する。
 このとき、加熱溶融したシリコーン樹脂21同士が融合し、融合したシリコーン樹脂21中に2種類以上の蛍光体22を巻き込みながら混練する。また、上述のとおり、シリコーン樹脂21の粘度を、2種類以上の蛍光体22の沈降を抑えつつ混練可能な粘度まで低下させた状態で混練することにより、シリコーン樹脂21中の2種類以上の蛍光体22の分散状態を維持することができる。
 そして、温度を室温Tまで低下させることで、シリコーン樹脂21に2種類以上の蛍光体22を均一に分散させたブロック状の蛍光体含有封止樹脂20cを製造することができる。
 また、本実施形態では、波長変換物質として蛍光体22を用いたが、他の波長変換物質を用いても良い。波長変換物質とは、発光素子13から出射された光を波長変換して異なる波長の光を放出する機能を有するものである。
 さらに、本実施形態では、多数のキャビティ12が形成された多連キャビティ回路基板10を使用したが、多連キャビティ回路基板10に代えて平坦な表面を有する平面回路基板10aを使用しても良い。
 <実施形態3の総括>
 以上のように、本実施形態に係る発光デバイス1cの製造方法は、上方に向かって開口する複数のキャビティ12に発光素子13が実装された多連キャビティ回路基板10の上方に、キャビティ12に対応する多孔プレート貫通孔33aが形成された多孔プレート33を略平行に設置する設置工程と、多孔プレート33上に、1次架橋により半硬化したシリコーン樹脂の粉末と、蛍光体の粉末とを混合した粉末混合物24に、前記シリコーン樹脂21の2次架橋後の弾性率を低下させる可塑剤を混練し、成形(成型)して得られた蛍光体含有封止樹脂20cを載置する載置工程と、蛍光体含有封止材を、室温Tにおいて、またはシリコーン樹脂が2次架橋を形成する温度である2次架橋温度T未満で加熱溶融しつつ、多孔プレート貫通孔33aから多連キャビティ回路基板10に向けて糸状に押し出す押出工程と、糸状に押し出された蛍光体含有封止樹脂20cを所定の長さに切断して、キャビティ12に充填する充填工程と、キャビティ12に充填された蛍光体含有封止樹脂20cを、2次架橋温度以上で加熱して硬化させる硬化工程とを含み、シリコーン樹脂は、室温Tから2次架橋温度T未満までの温度領域で可逆的に粘度が変化し、2次架橋温度T以上の温度領域で全硬化するものである。
 本実施形態に係る発光デバイス1cの製造方法では、上記の特性を有するシリコーン樹脂を使用しているため、室温Tから2次架橋温度T未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、溶融したシリコーン樹脂21に蛍光体22の粉末を混練する際、混練された蛍光体22の分散状態が維持できる程度にシリコーン樹脂21の粘度を調整することにより、シリコーン樹脂21に混練された蛍光体22の沈降を抑制することが可能となる。したがって、蛍光体22をシリコーン樹脂21に均一に分散させた蛍光体含有封止樹脂20cを得ることができる。
 そして、この蛍光体含有封止樹脂20cを、2次架橋温度T未満で加熱溶融しつつ、多孔プレート貫通孔33aから多連キャビティ回路基板10に向けて糸状に押し出して、所定の長さに切断することにより、各キャビティ12に同量の蛍光体含有封止樹脂20cを同時に充填(ポッティング)することができる。ここで、各キャビティ12に充填された所定の長さの蛍光体含有封止樹脂20cにおける蛍光体含有量は均等であるため、この蛍光体含有封止樹脂20cを2次架橋温度以上で加熱してシリコーン樹脂を全硬化させることにより、各発光素子13を蛍光体含有量が均等化された蛍光体含有封止樹脂20cによって封止することができる。
 それゆえ、本実施形態によれば、発光デバイス1c間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な発光デバイスの製造方法を実現することができる。
 また、本実施形態に係る発光デバイス1cの製造方法によれば、多連キャビティ回路基板10に形成されたキャビティ12の数や寸法等に応じて、多孔プレート33に多孔プレート貫通孔33aを形成することにより、各種の発光デバイス1cの製造に容易に対応することが可能となるため、発光デバイス1cの製造コストを低減することができる。
 さらに、本実施形態に係る発光デバイス1cの製造方法によれば、粉末混合物24にシリコーン樹脂の2次架橋後の弾性率を下げるために可塑剤23を添加している。そのため、発光素子13を封止した蛍光体含有封止樹脂20cにクラック等が発生することを抑制することが可能となるので、発光デバイス1cの信頼性を向上させることができる。
 <変形例>
 (変形例1)
 図22は、充填工程の変形例を示す断面図である。図22に示すように、多孔プレート33を、多連キャビティ回路基板10に対して垂直な方向に、多連キャビティ回路基板10から離間するように移動させることにより、多孔プレート貫通孔33aから糸状に押し出された蛍光体含有封止樹脂20cを切断しても良い。
 この場合、多連キャビティ回路基板10を加熱しておくことが好ましい。これにより、多連キャビティ回路基板10に到達した、糸状に押し出された蛍光体含有封止樹脂20cの下端部を該熱によってキャビティ12の底部に付着させることができる。そのため、糸状の蛍光体含有封止樹脂20cの下端部がキャビティ12に到達したタイミングで、多孔プレート33を上昇させることにより、糸状の蛍光体含有封止樹脂20cを切断して、各キャビティ12に充填することができる。なお、多孔プレート33に代えて、多連キャビティ回路基板10を下降させることにより蛍光体含有封止樹脂20cを切断しても良い。
 この切断方法によれば、カットプレート32およびカットプレート32を偏心回転させる駆動装置等を用いることなく、蛍光体含有封止樹脂20cを切断することができる。
 また、多孔プレート33と多連キャビティ回路基板10との間に圧縮した空気を噴射することにより、蛍光体含有封止樹脂20cを切断することも可能である。
この場合であっても、多連キャビティ回路基板10を加熱しておき、糸状に押し出された蛍光体含有封止樹脂20cの下端部がキャビティ12に到達したタイミングで、多孔プレート33と多連キャビティ回路基板10との間に圧縮した空気を噴射することにより、糸状に押し出された蛍光体含有封止樹脂20cを切断して、各キャビティ12に充填することができる。
 (変形例2)
 図23は、ディスペンサー36を用いて、蛍光体含有封止樹脂20cをキャビティ12に充填する工程を示す断面図である。図23に示すように、シリンジ36aを有するディスペンサー36を用いて、蛍光体含有封止樹脂20cをキャビティ12に充填しても良い。
 ディスペンサー36は、1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が混練された蛍光体含有封止樹脂20cをシリンジ36aに収容可能な形状に再加工し、シリンジ36aに収容した蛍光体含有封止樹脂20cを、多連キャビティ回路基板10に実装された発光素子13に糸状に吐出するものである。
 ディスペンサー36は、蛍光体含有封止樹脂20cを収容するシリンジ(収容部)36aを備える。このディスペンサー36は、シリンジ36aにエアもしくはピストンで加圧して、収容した蛍光体含有封止樹脂20cを吐出し、キャビティ12に蛍光体含有封止樹脂20cを充填するものである(吐出工程)。なお、エアもしくはピストンで加圧する際には、シリコーン樹脂の2次架橋温度未満で蛍光体含有封止樹脂20cを加熱溶融しつつ吐出しても良く、室温Tのまま吐出しても良い。
 ただし、シリコーン樹脂の2次架橋温度未満で蛍光体含有封止樹脂20cを加熱溶融しつつ吐出する場合には、シリンジ36aに収容された蛍光体含有封止樹脂20cの粘度が蛍光体を沈降させない程度となるように、シリンジ36aによる加熱温度を制御する。これにより、従来のように、シリコーン樹脂と蛍光体との比重差により、シリンジ36a内において蛍光体が沈降することを抑制することができ、蛍光体のほぼ均一な分散状態が維持できる。
 そのため、ディスペンサー36を用いた吐出工程の初めと終わりで蛍光体含有封止樹脂20cの蛍光体濃度がほとんど変動することなく、蛍光体含有封止樹脂20cを各キャビティ12に充填できる。また、室温Tのまま吐出する場合には、蛍光体含有封止樹脂20cの粘度低下は生じないので、加熱溶融する場合と同様にディスペンサー36を用いた吐出工程の初めと終わりで蛍光体含有封止樹脂20cの蛍光体濃度がほとんど変動することなく、蛍光体含有封止樹脂20cを各キャビティ12に充填できる。
 そして、キャビティ12に充填した蛍光体含有封止樹脂20cを、ヒータープレート31およびオーブン等によって2次架橋温度以上で加熱して、蛍光体含有封止樹脂20cに含まれるシリコーン樹脂を全硬化させることにより、各キャビティ12間で蛍光体含有量が均等化された蛍光体含有封止樹脂20cによって、各発光素子13を封止することができる。
 このように、ディスペンサー36を用いた場合であっても、発光デバイス1c間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な発光デバイスの製造方法を実現することができる。
 なお、ディスペンサー36を用いて、キャビティ12が形成されていない、表面が平坦な回路基板に実装された複数の発光素子13に対して各発光素子13を個別に、もしく数個の発光素子13単位ごとに封止するように蛍光体含有封止樹脂20cを吐出しても良い。
 この場合であっても、発光素子13の表面に蛍光体含有封止樹脂20cを密着させた状態で、ヒータープレート31およびオーブン等によって2次架橋温度以上で加熱して、蛍光体含有封止樹脂20cに含まれるシリコーン樹脂を全硬化させることにより、各発光素子13を蛍光体含有量が均等化された蛍光体含有封止樹脂20cによって封止することができる。
 〔実施形態4〕
 本発明に係る発光装置の製造方法に関する他の実施の一形態について、図24~図26に基づいて説明すれば以下のとおりである。なお、説明の便宜上、上述した実施形態にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態に係る発光デバイスの製造方法は、まず、紐状の蛍光体含有封止樹脂20cを製造し、この紐状の蛍光体含有封止樹脂20cを加工したものを用いて発光素子13を封止する点において、実施形態3と異なっている。
 <紐状の蛍光体含有封止樹脂20cの製造方法>
 まず、紐状の蛍光体含有封止樹脂20cの製造方法について、図24を参照して説明する。
 図24の(a)~図24の(d)は、紐状の蛍光体含有封止樹脂20cの製造方法を示す概略図である。
 図24の(a)に示すように、まず、1次架橋が形成されたシリコーン樹脂21の粉末と蛍光体22の粉末とを、混合状態が均一になるまでドライミキシングして粉末混合物24を得る(混合工程)。
 次に、図24の(b)に示すように、粉末混合物24に可塑剤23を添加する(添加工程)。そして、可塑剤23を添加した粉末混合物24を二軸スクリュー押出装置(混練押出装置)37に投入して、2次架橋温度T未満で加熱溶融しつつ混練する(混練工程)。
 二軸スクリュー押出装置37は、平行に設けられた2つのスクリュー37aを備えており、この2つのスクリュー37aがそれぞれ逆方向に回転することにより、加熱によりシリコーン樹脂を溶融しつつ、粉末混合物24を混練する。
 この加熱と混練により、図24の(c)に示すように、粉末混合物24は、溶融したシリコーン樹脂に蛍光体が均一に分散された混練物25cとなる。この混練物25cを、二軸スクリュー押出装置37の排出口(貫通孔)37bから紐状に押し出すことにより、図24の(d)に示すように、蛍光体がシリコーン樹脂に均一に分散された紐状の蛍光体含有封止樹脂20cを製造することができる。
 このように、蛍光体がシリコーン樹脂に均一に分散された蛍光体含有封止樹脂20cを紐状に成形することにより、たとえば、紐状の蛍光体含有封止樹脂20cを同じ長さに切断することで、蛍光体含有量の等しい複数の蛍光体含有封止樹脂20cを容易に得ることができる。そのため、これらの蛍光体含有封止樹脂20cを用いて発光素子13を封止することにより、発光デバイス間の蛍光体含有量を均等化し、色度のばらつきを低減することができる。
 また、蛍光体含有封止樹脂20cを紐状とすることにより、たとえば、バルク状の蛍光体含有封止樹脂20cに比べて、加熱時のシリコーン樹脂の溶融効率を向上させることができる。そのため、蛍光体を沈降させないように2次架橋温度T未満で紐状の蛍光体含有封止樹脂20cを加熱溶融することで、蛍光体をシリコーン樹脂に均一に分散させた状態を維持したまま、紐状の蛍光体含有封止樹脂20cを所望の形状に容易に加工することができる。
 なお、二軸スクリュー押出装置37の排出口37bの数、寸法および形状は特に限定されず、必要に応じて適宜変更可能である。
 また、本実施形態では、蛍光体含有封止樹脂20cに含まれる蛍光体22を1種類としたが、発光色、粒径または比重等が異なる2種類以上の蛍光体22を用いても良い。例えば、赤色発光蛍光体および緑色発光蛍光体の組み合わせを含む蛍光体含有封止樹脂20cを製造し、青色のLEDチップ(発光素子13)に適用しても良い。また、青色発光蛍光体および黄色発光蛍光体の組み合わせを含む蛍光体含有封止樹脂20cを製造し、青紫色のLEDチップに適用しても良い。
 この場合であっても、1次架橋が形成されたシリコーン樹脂21の粉末と2種類以上の蛍光体22の粉末とを、混合状態が均一になるまでドライミキシングして粉末混合物24を得る。
 その後、粉末混合物24に、シリコーン樹脂21の2次架橋後の弾性率を低下させる(副次的に粘度を低下させる)可塑剤23を添加する。
 次に、粉末混合物24を二軸スクリュー押出装置(混練押出装置)37に投入して、2次架橋温度T未満で加熱溶融しつつ混練する。二軸スクリュー押出装置37は、平行に設けられた2つにスクリュー37aを備えており、この2つのスクリュー37aがそれぞれ逆方向に回転することにより、加熱によってシリコーン樹脂21を溶融しつつ、粉末混合物24を混練する。
 この加熱と混練とにより、粉末混合物24は、溶融したシリコーン樹脂21に2種類以上の蛍光体22が均一に分散された混練物25cとなる。この混練物25cを二軸スクリュー押出装置37の排出口37bから紐状に押し出すことにより、2種類以上の蛍光体22がシリコーン樹脂21に均一に分散された紐状の蛍光体含有封止樹脂20cを製造することができる。
 さらに、本実施形態では、波長変換物質として蛍光体22を用いたが、他の波長変換物質を用いても良い。波長変換物質とは、発光素子13から出射された光を波長変換して異なる波長の光を放出する機能を有するものである。
 また、本実施形態では、2つのスクリュー37aを備えた二軸スクリュー押出装置37を用いたが、二軸スクリュー押出装置37に代えて、1つのスクリュー37aを備えた一軸スクリュー押出装置を用いても良い。或いは、二軸スクリュー押出装置37に代えて、3つ以上のスクリュー37aを備えた多軸スクリュー押出装置を用いても良い。これにより、粉末混合物24の混練効率、および混練物25の押し出し効率を向上させることができる。
 ここで、液状の可塑剤23を粉末混合物24に定量かつ均一に混練するためには、バッチ方式を採用することが好ましい。たとえば、バッチ方式のニーダーを用いることができるが、特に、内部帰還式の高速剪断攪拌装置を押出装置として用いることが好ましい。
 具体的には、1つのスクリューを備えた内部帰還式の高速剪断攪拌装置を用いた場合、スクリューの後端側からシリンダー内に投入された可塑剤23および粉末混合物24は、スクリューの先端側にシリンダー内を移動する。そして、スクリューの先端とシリンダーの内壁との間で粉末混合物24に剪断力が付加され、攪拌される。このとき、シリンダー内の粉末混合物24は2次架橋温度T未満で加熱されており、スクリューの回転数は2500rpm以上3000rpm以下に保たれる。攪拌された可塑剤23および粉末混合物24は、スクリュー内に設けられた帰還部経路を通って、スクリューの後端側に移動する。
 この循環を一定期間繰り返すことにより、可塑剤23と粉末混合物24とは十分に攪拌され混練物25cとなる。その後、シリンダーの排出口から混練物25cを紐状に押し出すことにより、蛍光体がシリコーン樹脂に均一に分散された紐状の蛍光体含有封止樹脂20cを得ることができる。
 <シート状の蛍光体含有封止樹脂20cの成形方法>
 次に、紐状の蛍光体含有封止樹脂20cを、シート状に加工する成形方法(加工工程)について、図25を参照して説明する。
 図25の(a)~図25の(d)は、紐状の蛍光体含有封止樹脂20cをシート状に加工する成形方法を示す概略図である。以下では、ヒートプレスにより、紐状の蛍光体含有封止樹脂20cをシート状に加工する成形方法について説明する。
 まず、図25の(a)に示すように、紐状の蛍光体含有封止樹脂20cをヒータープレート31に配置する。そして、図25の(b)に示すように、紐状の蛍光体含有封止樹脂20cを2次架橋温度T未満で加熱溶融して、蛍光体含有封止樹脂20に含有されている蛍光体22を沈降させない程度にシリコーン樹脂の粘度を低下させる。
 次に、図25の(c)に示すように、2次架橋温度T未満で加熱された加圧プレート39によって蛍光体含有封止樹脂20cを加圧する。このとき、ヒータープレート31と加圧プレート39との間に配置されたスペーサ38によって、蛍光体含有封止樹脂20cの厚みが調整される。そして、蛍光体含有封止樹脂20cの温度を室温Tまで低下させることにより、図25の(d)に示すように、蛍光体が均一に分散されたシート状の蛍光体含有封止樹脂20cを得ることができる。
 <発光デバイス1dの製造方法>
 次に、シート状の蛍光体含有封止樹脂20cを用いた発光デバイス(発光装置)1dの製造方法について、図26を参照して説明する。
 図26の(a)および図26の(b)は、シート状の蛍光体含有封止樹脂20cを用いた発光デバイス1dの製造方法を示す断面図である。発光デバイス1dの製造には、平面回路基板10aの平坦な表面に発光素子13が縦方向および横方向にマトリクス状に実装された平面回路基板10aが使用される。この平面回路基板10aを使用することで、多数の発光デバイス1dを同時に製造することができる。
 図26の(a)に示すように、ヒータープレート31上に、複数の発光素子13が実装された平面回路基板10aと、シート状の蛍光体含有封止樹脂20cとをこの順で積層する。そして、ヒータープレート31によって平面回路基板10aを加熱することにより、シート状の蛍光体含有封止樹脂20cを、2次架橋温度T未満で加熱溶融して、蛍光体22を沈降させない程度にシリコーン樹脂の粘度を低下させるとともに、2次架橋温度T未満で加熱された加圧プレート39によってシート状の蛍光体含有封止樹脂20cを平面回路基板10aの方向に加圧する。これにより、シート状の蛍光体含有封止樹脂20cを、発光素子13の上面および側面に密着させることができる。
 次に、この状態で、ヒータープレート31によってシート状の蛍光体含有封止樹脂20cを2次架橋温度Tで加熱することにより、シリコーン樹脂に2次架橋が形成させて全硬化させる。さらに、平面回路基板10aをオーブン等で2次架橋温度T以上の温度で加熱することで、シリコーン樹脂を完全に硬化させた後、平面回路基板10aを取り出して、室温Tまで温度を低下させる。
 そして、図26の(b)に示すように、平面回路基板10aを、1つの発光素子13毎にそれぞれ分割することにより、蛍光体含有量が均等化された複数の発光デバイス1dを製造することができる。
 <実施形態4の総括>
 以上のように、本実施形態に係る紐状の蛍光体含有封止樹脂20cの製造方法は、1次架橋により半硬化したシリコーン樹脂21の粉末と、蛍光体22の粉末とを混合する混合工程と、混合工程にて混合した粉末混合物24に、シリコーン樹脂21の2次架橋後の弾性率を低下させる可塑剤23を添加する添加工程と、可塑剤23を添加した粉末混合物24を、シリコーン樹脂21が2次架橋を形成する温度である2次架橋温度T未満で加熱溶融しつつ、二軸スクリュー押出装置37で混練する混練工程と、混練工程にて混練した混練物25cを、二軸スクリュー押出装置37の排出口37bから紐状に押し出す押出工程とを含み、シリコーン樹脂21は、室温Tから2次架橋温度T未満までの温度領域で可逆的に粘度が変化し、2次架橋温度T以上の温度領域で全硬化するものである。
 本実施形態に係る紐状の蛍光体含有封止樹脂20cの製造方法では、上記の特性を有するシリコーン樹脂21を使用しているため、室温Tから2次架橋温度T未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、粉末混合物24を二軸スクリュー押出装置37を用いて加熱溶融しつつ混練する際、混練された蛍光体22の分散状態が維持できる程度にシリコーン樹脂21の粘度を調整することにより、混練物25cにおける蛍光体22の沈降を抑制することが可能となる。したがって、混練物25cを、少なくとも1つ以上の貫通孔か形成された排出口37bから紐状に押し出すことにより、蛍光体22をシリコーン樹脂21に均一に分散させた紐状の蛍光体含有封止樹脂20cを製造することができる。
 このようにして製造された紐状の蛍光体含有封止樹脂20cによれば、たとえば、蛍光体含有封止樹脂20cを同じ長さに切断することで、蛍光体含有量の等しい複数の蛍光体含有封止樹脂20cを容易に得ることができる。そのため、これらの蛍光体含有封止樹脂20cを用いて発光素子13を封止することにより、発光デバイス間の蛍光体含有量を均等化することができる。
 また、本実施形態に係る紐状の蛍光体含有封止樹脂20cの製造方法によれば、蛍光体含有封止樹脂20cを紐状とすることにより、たとえば、バルク状の蛍光体含有封止樹脂20cに比べて、加熱時のシリコーン樹脂21の溶融効率を向上させることができる。そのため、蛍光体を沈降させないようにシリコーン樹脂21の粘度を調整しつつ、2次架橋温度T未満で紐状の蛍光体含有封止樹脂20cを加熱することにより効率的に溶融させて、用途に応じた所望の形状に加工することが可能となる。たとえば、蛍光体22をシリコーン樹脂21に均一に分散させたシート状の蛍光体含有封止樹脂20cに加工して、この蛍光体含有封止樹脂20cを用いて発光素子13を封止することにより、発光デバイス1d間の蛍光体含有量を均等化することができる。
 それゆえ、本実施形態に係る紐状の蛍光体含有封止樹脂20cの製造方法によれば、発光デバイス1d間の蛍光体含有量を均等化し、色度のばらつきを低減することができる蛍光体含有封止樹脂20cを製造することができる。
 さらに、本実施形態に係る紐状の蛍光体含有封止樹脂20cの製造方法によれば、粉末混合物24にシリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤23を添加している。
 すなわち、本実施形態に係る紐状の蛍光体含有封止樹脂20cの製造方法によれば、前記混合工程にて混合した粉末混合物24に、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤23を添加する添加工程を含み、前記混練工程では、可塑剤23を添加した粉末混合物24を、前記2次架橋温度未満で加熱溶融しつつ、二軸スクリュー押出装置37で混練する。
 このため、発光素子13を封止した蛍光体含有封止樹脂20cにクラック等が発生することを抑制することが可能となるので、発光デバイス1dの信頼性を向上させることができる。
 〔まとめ〕
 本発明の一態様に係る蛍光体含有封止材の製造方法は、1次架橋により半硬化したシリコーン樹脂の粉末と、蛍光体の粉末とを混合する混合工程と、前記混合工程にて混合した粉末混合物を、前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、1軸以上のスクリューを備えた混練押出装置(二軸スクリュー押出装置37)で混練する混練工程と、前記混練工程にて混練した混練物を、少なくとも1つの貫通孔が形成された前記混練押出装置の排出口から紐状に押し出す押出工程とを含み、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 上記の方法では、上記の特性を有するシリコーン樹脂を使用しているため、室温から2次架橋温度未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、粉末混合物を、混練押出装置を用いて加熱溶融しつつ混練する際、混練された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、混練物における蛍光体の沈降を抑制することが可能となる。したがって、この混練物を、排出口から紐状に押し出すことにより、シリコーン樹脂に蛍光体を均一に分散させた紐状の蛍光体含有封止樹脂を製造することができる。
 このようにして製造された紐状の蛍光体含有封止樹脂によれば、たとえば、蛍光体含有封止樹脂を同じ長さに切断することで、蛍光体含有量の等しい複数の蛍光体含有封止樹脂を容易に得ることができる。そのため、これらの蛍光体含有封止樹脂を用いて発光素子を封止することにより、発光装置間の蛍光体含有量を均等化することができる。
 また、上記の方法によれば、蛍光体含有封止樹脂を紐状とすることにより、たとえば、バルク状の蛍光体含有封止樹脂に比べて、加熱時のシリコーン樹脂の溶融効率を向上させることができる。そのため、蛍光体22を沈降させないように2次架橋温度T未満で紐状の蛍光体含有封止樹脂20を加熱溶融することで、蛍光体をシリコーン樹脂に均一に分散させた状態を維持したまま、紐状の蛍光体含有封止樹脂を所望の形状に容易に加工することができる。
 したがって、上記の方法によれば、蛍光体をシリコーン樹脂に均一に分散させた所望の形状の蛍光体含有封止樹脂を用いて発光素子を封止することにより、発光装置間の蛍光体含有量を均等化することが可能となる。
 それゆえ、上記の方法によれば、発光装置間の蛍光体含有量を均等化し、色度のばらつきを低減することができる蛍光体含有封止樹脂の製造方法を実現することができる。
 さらに、本発明の一態様に係る蛍光体含有封止材の製造方法では、さらに、前記混合工程にて混合した粉末混合物に、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤を添加する添加工程を含み、前記混練工程では、前記可塑剤を添加した前記粉末混合物を、前記2次架橋温度未満で加熱溶融しつつ、1軸以上のスクリューを備えた混練押出装置で混練する。
 上記の方法のように、粉末混合物にシリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤を添加することにより、発光素子を封止した蛍光体含有封止樹脂にクラック等が発生することを抑制することが可能となるので、発光装置の信頼性を向上させることができる。
 さらに、本発明の一態様に係る蛍光体含有封止材の製造方法では、前記可塑剤は、前記シリコーン樹脂の架橋密度を低下させるものであっても良い。
 上記の方法によれば、可塑剤は、シリコーン樹脂の2次架橋密度を低下させるため、シリコーン樹脂21の2次架橋後の弾性率を好適に低下させて、発光素子を封止した蛍光体含有封止樹脂にクラック等が発生することを効果的に抑制することが可能となる。
 さらに、本発明の一態様に係る蛍光体含有封止材の製造方法では、前記可塑剤は、一次架橋により半硬化した前記シリコーン樹脂の粘度を低下させるものであっても良い。
 上記の方法によれば、可塑剤は、一次架橋により半硬化した前記シリコーン樹脂の粘度を低下させるため、蛍光体含有封止樹脂の加工等が容易となり、また、粉末混合物に相溶性をもたすことにより、シリコーン樹脂を隙間なく1つに纏まり易くすることができる。
 さらに、本発明の一態様に係る蛍光体含有封止材の製造方法では、前記可塑剤は、シリコーン樹脂を主成分とするものであっても良い。
 上記の方法によれば、可塑剤は、シリコーン樹脂を主成分とするため、シリコーン樹脂に対して安定的に作用して、弾性率や粘度を低下させることができる。
 さらに、本発明の一態様に係る蛍光体含有封止材の製造方法では、前記押出工程にて紐状に押し出された前記混練物を、前記2次架橋温度未満で加熱溶融し、加圧により平板状もしくはシート状に加工する加工工程をさらに含むものであっても良い。
 上記の方法では、押出工程にて紐状に押し出された混練物を、2次架橋温度未満で加熱溶融し、加圧により平板状もしくはシート状に加工する加工工程をさらに含むものであるため、蛍光体を沈降させないようにシリコーン樹脂の粘度を調整することで、蛍光体をシリコーン樹脂に均一に分散させた状態を維持したまま、混練物を板状またはシート状に加工することができる。
 したがって、上記の方法によれば、蛍光体をシリコーン樹脂に均一に分散させた平板状またはシート状の蛍光体含有封止樹脂を用いて発光素子を封止することにより、発光装置間の蛍光体含有量を均等化することができる。
 さらに、本発明の一態様に係る蛍光体含有封止材の製造方法では、前記押出工程にて紐状に押し出された前記混練物を、前記2次架橋温度未満で加熱溶融し、加圧により平板状もしくはシート状に加工する加工工程をさらに含むものであっても良い。
 上記の方法では、押出工程にて紐状に押し出された混練物を、2次架橋温度未満で加熱溶融し、加圧により平板状もしくはシート状に加工する加工工程をさらに含むものであるため、蛍光体を沈降させないようにシリコーン樹脂の粘度を調整することで、蛍光体をシリコーン樹脂に均一に分散させた状態を維持したまま、混練物を板状またはシート状に加工することができる。
 したがって、上記の方法によれば、蛍光体をシリコーン樹脂に均一に分散させた平板状またはシート状の蛍光体含有封止樹脂を用いて発光素子を封止することにより、発光装置間の蛍光体含有量を均等化することができる。
 本発明の一態様に係る蛍光体含有封止材は、1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が分散された蛍光体含有封止材であって、前記シリコーン樹脂は、紐状に成形されており、且つ、室温から2次架橋を形成する温度である2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 上記の構成では、上記特性を有するシリコーン樹脂を使用しているため、室温から2次架橋温度未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、溶融したシリコーン樹脂に蛍光体の粉末を混練する際、混練された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、シリコーン樹脂に混練された蛍光体の沈降を抑制することが可能となる。したがって、蛍光体をシリコーン樹脂に均一に分散させた紐状の蛍光体含有封止樹脂を得ることができる。
 このような紐状の蛍光体含有封止樹脂によれば、たとえば、蛍光体含有封止樹脂を同じ長さに切断することで、蛍光体含有量の等しい複数の蛍光体含有封止樹脂を容易に得ることができる。そのため、これらの蛍光体含有封止樹脂を用いて発光素子を封止することにより、発光装置間の蛍光体含有量を均等化することができる。
 それゆえ、上記の構成によれば、発光装置間の蛍光体含有量を均等化し、色度のばらつきを低減することができる蛍光体含有封止樹脂を実現することができる。
 本発明の一態様に係る発光装置の製造方法は、上方に向かって開口する複数のキャビティに発光素子が実装された基板(多連キャビティ回路基板10)の上方に、前記キャビティに対応する貫通孔(多孔プレート貫通孔33a)が形成された多孔板(多孔プレート33)を略平行に設置する設置工程と、前記多孔板上に、1次架橋により半硬化したシリコーン樹脂に、蛍光体を混練した蛍光体含有封止材を載置する載置工程と、前記蛍光体含有封止材を、室温において、または前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、前記貫通孔から前記基板に向けて糸状に押し出す押出工程と、糸状に押し出された前記蛍光体含有封止材を所定の長さに切断して、前記キャビティに充填する充填工程と、前記キャビティに充填された前記蛍光体含有封止材を、前記2次架橋温度以上で加熱して硬化させる硬化工程とを含み、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 上記の方法では、上記の特性を有するシリコーン樹脂を使用しているため、室温から2次架橋温度未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、溶融したシリコーン樹脂に蛍光体の粉末を混練する際、混練された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、シリコーン樹脂に混練された蛍光体の沈降を抑制することが可能となる。したがって、蛍光体をシリコーン樹脂に均一に分散させた蛍光体含有封止樹脂を得ることができる。
 そして、この蛍光体含有封止樹脂を、室温において、または2次架橋温度未満で加熱溶融しつつ、貫通孔から基板に向けて糸状に押し出して、所定の長さに切断することにより、各キャビティに同量の蛍光体含有封止樹脂20を同時に充填(ポッティング)することができる。ここで、各キャビティに充填された所定の長さの蛍光体含有封止樹脂の蛍光体含有量は均等であるため、この蛍光体含有封止樹脂を2次架橋温度以上で加熱してシリコーン樹脂を全硬化させることにより、各発光素子を蛍光体含有量が均等化された蛍光体含有封止樹脂によって封止することができる。
 それゆえ、上記の方法によれば、発光装置間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な発光装置の製造方法を実現することができる。
 また、上記の方法によれば、基板に形成されたキャビティの数や寸法等に応じて、多孔板に貫通孔を形成することにより、各種の発光装置の製造に容易に対応することが可能となるため、発光装置の製造コストを低減することができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記載置工程にて前記多孔板上に載置される前記蛍光体含有封止材は、前記1次架橋により半硬化したシリコーン樹脂に、前記蛍光体の粉末と、さらに、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤とを混練したものであっても良い。
 上記の方法のように、粉末混合物にシリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤を添加することにより、発光素子を封止した蛍光体含有封止樹脂にクラック等が発生することを抑制することが可能となるので、発光装置の信頼性を向上させることができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記貫通孔の寸法は、前記キャビティの開口寸法よりも小さくても良い。
 上記の構成によれば、貫通孔の寸法は、キャビティの開口寸法よりも小さいため、キャビティに蛍光体含有封止樹脂が充填し易くなり、また、糸状に押し出された蛍光体含有封止樹脂の長さを調整することで、キャビティの容積に合わせた適量の蛍光体含有封止樹脂を充填することができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記充填工程および前記硬化工程において、前記基板を、底面側から加熱しても良い。
 上記の方法では、充填工程および硬化工程において、基板を底面側から加熱するため、キャビティに充填された蛍光体含有封止樹脂は、キャビティの底部から硬化し始める。
 したがって、上記の方法によれば、蛍光体含有封止樹脂の硬化収縮による応力を蛍光体含有封止樹脂の上部、すなわち、キャビティの開口部側に分布させることができるので、発光素子への応力負荷を軽減して発光装置の信頼性を向上させることができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記充填工程において、前記多孔板と前記基板との間に略平行に設けられた、前記貫通孔ごとに設けられた複数の刃(ブレード32b)を有する切断板(カットプレート32)を前記基板に対して平行な方向に移動させることにより、前記蛍光体含有封止材を切断しても良い。
 上記の方法によれば、貫通孔ごとに設けられた複数の刃を有する切断板を基板に対して平行な方向に移動させることにより、刃によって蛍光体含有封止材を同時に切断することができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記充填工程において、糸状に押し出された前記蛍光体含有封止材の下端部が前記キャビティに到達した後、前記多孔板または前記基板を、該基板に対して垂直な方向に離間するように移動させることにより、前記蛍光体含有封止材を切断しても良い。
 上記の方法では、基板が加熱されているため、基板に到達した、糸状に押し出された蛍光体含有封止樹脂の下端部を該熱によってキャビティの底部に付着させることができる。
 したがって、上記の方法によれば、糸状の蛍光体含有封止樹脂の下端部がキャビティに到達した後、多孔板または基板を離間するように移動させることにより、糸状の蛍光体含有封止樹脂を切断して、各キャビティに充填することができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記充填工程において、糸状に押し出された前記蛍光体含有封止材の下端部が前記キャビティに到達した後、前記多孔板と前記基板との間に、圧縮した空気を噴射することにより、前記蛍光体含有封止材を切断しても良い。
 上記の方法では、基板が加熱されているため、基板に到達した、糸状に押し出された蛍光体含有封止樹脂の下端部を該熱によってキャビティの底部に付着させることができる。
 したがって、上記の方法によれば、糸状の蛍光体含有封止樹脂の下端部がキャビティに到達した後、前記多孔板と前記基板との間に圧縮した空気を噴射することにより、糸状の蛍光体含有封止樹脂を切断して、各キャビティに充填することができる。
 本発明の一態様に係るディスペンサーは、1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が分散された蛍光体含有封止材を、基板に実装された発光素子に糸状に吐出するディスペンサーであって、前記蛍光体含有封止材を収容する収容部(シリンジ36a)を備え、前記収容部は、収容した前記蛍光体含有封止材を加熱可能な加熱機構を有し、前記シリコーン樹脂は、室温から前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 上記の構成では、上記の特性を有するシリコーン樹脂を使用しているため、室温から2次架橋温度未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、溶融したシリコーン樹脂に蛍光体の粉末を混練する際、混練された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、シリコーン樹脂に混練された蛍光体の沈降を抑制することが可能となる。したがって、蛍光体をシリコーン樹脂に均一に分散させた蛍光体含有封止樹脂を得ることができる。
 そして、ディスペンサーは、収容した蛍光体含有封止材を加熱可能な加熱機構を有しているため、たとえば、シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で、収容した前記蛍光体含有封止材を加熱溶融することが可能である。そのため、シリコーン樹脂に分散された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、収容部においてシリコーン樹脂に分散された蛍光体の沈降を抑制することが可能となるので、このディスペンサーを用いて、蛍光体の分散状態が維持された蛍光体含有封止樹脂をキャビティに充填することができる。
 したがって、上記の構成によれば、発光装置間の蛍光体含有量を均等化して、色度のばらつきを低減することが可能なディスペンサーを実現することができる。
 本発明の一態様に係る発光装置の製造方法は、前記ディスペンサーを用いて、前記蛍光体含有封止材を、室温において、または前記2次架橋温度未満で加熱溶融しつつ、前記発光素子に吐出して、前記発光素子の表面に密着させる吐出工程と、前記発光素子の表面に密着させた前記蛍光体含有封止材を、前記2次架橋温度以上で加熱して硬化させる硬化工程とを含むことを特徴とする。
 上記の方法によれば、ディスペンサーを用いて、蛍光体の分散状態が維持された蛍光体含有封止樹脂を発光素子に吐出することができるので、発光装置間の蛍光体含有量を均等化して、色度のばらつきを低減することが可能な発光装置の製造方法を実現することができる。
 〔まとめ2〕
 本発明の一態様に係る蛍光体含有封止材の製造方法は、1次架橋により半硬化したシリコーン樹脂の粉末と、蛍光体の粉末とを混合する混合工程と、前記混合工程にて混合した粉末混合物に、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤を添加する添加工程と、前記可塑剤を添加した前記粉末混合物を、前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、1軸以上のスクリューを備えた混練押出装置(二軸スクリュー押出装置37)で混練する混練工程と、前記混練工程にて混練した混練物を、少なくとも1つの貫通孔が形成された前記混練押出装置の排出口から紐状に押し出す押出工程とを含み、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 上記の方法では、上記の特性を有するシリコーン樹脂を使用しているため、室温から2次架橋温度未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、粉末混合物を、混練押出装置を用いて加熱溶融しつつ混練する際、混練された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、混練物における蛍光体の沈降を抑制することが可能となる。したがって、この混練物を、排出口から紐状に押し出すことにより、シリコーン樹脂に蛍光体を均一に分散させた紐状の蛍光体含有封止樹脂を製造することができる。
 このようにして製造された紐状の蛍光体含有封止樹脂によれば、たとえば、蛍光体含有封止樹脂を同じ長さに切断することで、蛍光体含有量の等しい複数の蛍光体含有封止樹脂を容易に得ることができる。そのため、これらの蛍光体含有封止樹脂を用いて発光素子を封止することにより、発光装置間の蛍光体含有量を均等化することができる。
 また、上記の方法によれば、蛍光体含有封止樹脂を紐状とすることにより、たとえば、バルク状の蛍光体含有封止樹脂に比べて、加熱時のシリコーン樹脂の溶融効率を向上させることができる。そのため、蛍光体22を沈降させないように2次架橋温度T未満で紐状の蛍光体含有封止樹脂20cを加熱溶融することで、蛍光体をシリコーン樹脂に均一に分散させた状態を維持したまま、紐状の蛍光体含有封止樹脂を所望の形状に容易に加工することができる。
 したがって、上記の方法によれば、蛍光体をシリコーン樹脂に均一に分散させた所望の形状の蛍光体含有封止樹脂を用いて発光素子を封止することにより、発光装置間の蛍光体含有量を均等化することが可能となる。
 それゆえ、上記の方法によれば、発光装置間の蛍光体含有量を均等化し、色度のばらつきを低減することができる蛍光体含有封止樹脂の製造方法を実現することができる。
 さらに、本発明によれば、粉末混合物にシリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤を添加することにより、発光素子を封止した蛍光体含有封止樹脂にクラック等が発生することを抑制することが可能となるので、発光装置の信頼性を向上させることができる。
 本発明の一態様に係る蛍光体含有封止材は、1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が分散された蛍光体含有封止材であって、前記シリコーン樹脂は、紐状に成形されており、且つ、室温から2次架橋を形成する温度である2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 上記の構成では、上記特性を有するシリコーン樹脂を使用しているため、室温から2次架橋温度未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、溶融したシリコーン樹脂に蛍光体の粉末を混練する際、混練された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、シリコーン樹脂に混練された蛍光体の沈降を抑制することが可能となる。したがって、蛍光体をシリコーン樹脂に均一に分散させた紐状の蛍光体含有封止樹脂を得ることができる。
 このような紐状の蛍光体含有封止樹脂によれば、たとえば、蛍光体含有封止樹脂を同じ長さに切断することで、蛍光体含有量の等しい複数の蛍光体含有封止樹脂を容易に得ることができる。そのため、これらの蛍光体含有封止樹脂を用いて発光素子を封止することにより、発光装置間の蛍光体含有量を均等化することができる。
 それゆえ、上記の構成によれば、発光装置間の蛍光体含有量を均等化し、色度のばらつきを低減することができる蛍光体含有封止樹脂を実現することができる。
 本発明の一態様に係る発光装置の製造方法は、上方に向かって開口する複数のキャビティに発光素子が実装された基板(多連キャビティ回路基板10)の上方に、前記キャビティに対応する貫通孔(多孔プレート貫通孔33a)が形成された多孔板(多孔プレート33)を略平行に設置する設置工程と、前記多孔板上に、1次架橋により半硬化したシリコーン樹脂に、蛍光体と、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤とを混練した蛍光体含有封止材を載置する載置工程と、前記蛍光体含有封止材を、室温において、または前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、前記貫通孔から前記基板に向けて糸状に押し出す押出工程と、糸状に押し出された前記蛍光体含有封止材を所定の長さに切断して、前記キャビティに充填する充填工程と、前記キャビティに充填された前記蛍光体含有封止材を、前記2次架橋温度以上で加熱して硬化させる硬化工程とを含み、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 上記の方法では、上記の特性を有するシリコーン樹脂を使用しているため、室温から2次架橋温度未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、溶融したシリコーン樹脂に蛍光体の粉末を混練する際、混練された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、シリコーン樹脂に混練された蛍光体の沈降を抑制することが可能となる。したがって、蛍光体をシリコーン樹脂に均一に分散させた蛍光体含有封止樹脂を得ることができる。
 そして、この蛍光体含有封止樹脂を、室温において、または2次架橋温度未満で加熱溶融しつつ、貫通孔から基板に向けて糸状に押し出して、所定の長さに切断することにより、各キャビティに同量の蛍光体含有封止樹脂20cを同時に充填(ポッティング)することができる。ここで、各キャビティに充填された所定の長さの蛍光体含有封止樹脂の蛍光体含有量は均等であるため、この蛍光体含有封止樹脂を2次架橋温度以上で加熱してシリコーン樹脂を全硬化させることにより、各発光素子を蛍光体含有量が均等化された蛍光体含有封止樹脂によって封止することができる。
 それゆえ、上記の方法によれば、発光素子間の蛍光体含有量を均等化し、色度のばらつきを低減することが可能な発光装置の製造方法を実現することができる。
 また、上記の方法によれば、基板に形成されたキャビティの数や寸法等に応じて、多孔板に貫通孔を形成することにより、各種の発光装置の製造に容易に対応することが可能となるため、発光装置の製造コストを低減することができる。
 さらに、本発明によれば、粉末混合物にシリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤を添加することにより、発光素子を封止した蛍光体含有封止樹脂にクラック等が発生することを抑制することが可能となるので、発光装置の信頼性を向上させることができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記貫通孔の寸法は、前記キャビティの開口寸法よりも小さくても良い。
 上記の構成によれば、貫通孔の寸法は、キャビティの開口寸法よりも小さいため、キャビティに蛍光体含有封止樹脂が充填し易くなり、また、糸状に押し出された蛍光体含有封止樹脂の長さを調整することで、キャビティの容積に合わせた適量の蛍光体含有封止樹脂を充填することができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記充填工程および前記硬化工程において、前記基板を、底面側から加熱しても良い。
 上記の方法では、充填工程および硬化工程において、基板を底面側から加熱するため、キャビティに充填された蛍光体含有封止樹脂は、キャビティの底部から硬化し始める。
 したがって、上記の方法によれば、蛍光体含有封止樹脂の硬化収縮による応力を蛍光体含有封止樹脂の上部、すなわち、キャビティの開口部側に分布させることができるので、発光素子への応力負荷を軽減して発光装置の信頼性を向上させることができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記充填工程において、前記多孔板と前記基板との間に略平行に設けられた、前記貫通孔ごとに設けられた複数の刃(ブレード32b)を有する切断板(カットプレート32)を前記基板に対して平行な方向に移動させることにより、前記蛍光体含有封止材を切断しても良い。
 上記の方法によれば、貫通孔ごとに設けられた複数の刃を有する切断板を基板に対して平行な方向に移動させることにより、刃によって蛍光体含有封止材を同時に切断することができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記充填工程において、糸状に押し出された前記蛍光体含有封止材の下端部が前記キャビティに到達した後、前記多孔板または前記基板を、該基板に対して垂直な方向に離間するように移動させることにより、前記蛍光体含有封止材を切断しても良い。
 上記の方法では、基板が加熱されているため、基板に到達した、糸状に押し出された蛍光体含有封止樹脂の下端部を該熱によってキャビティの底部に付着させることができる。
 したがって、上記の方法によれば、糸状の蛍光体含有封止樹脂の下端部がキャビティに到達した後、多孔板または基板を離間するように移動させることにより、糸状の蛍光体含有封止樹脂を切断して、各キャビティに充填することができる。
 さらに、本発明の一態様に係る発光装置の製造方法では、前記充填工程において、糸状に押し出された前記蛍光体含有封止材の下端部が前記キャビティに到達した後、前記多孔板と前記基板との間に、圧縮した空気を噴射することにより、前記蛍光体含有封止材を切断しても良い。
 上記の方法では、基板が加熱されているため、基板に到達した、糸状に押し出された蛍光体含有封止樹脂の下端部を該熱によってキャビティの底部に付着させることができる。
 したがって、上記の方法によれば、糸状の蛍光体含有封止樹脂の下端部がキャビティに到達した後、前記多孔板と前記基板との間に圧縮した空気を噴射することにより、糸状の蛍光体含有封止樹脂を切断して、各キャビティに充填することができる。
 本発明の一態様に係るディスペンサーは、1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が分散された蛍光体含有封止材を、基板に実装された発光素子に糸状に吐出するディスペンサーであって、前記蛍光体含有封止材を収容する収容部(シリンジ36a)を備え、前記収容部は、収容した前記蛍光体含有封止材を加熱可能な加熱機構を有し、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 上記の構成では、上記の特性を有するシリコーン樹脂を使用しているため、室温から2次架橋温度未満までの温度領域において温度を変化させることにより、シリコーン樹脂の粘度を繰り返し調整することができる。
 そのため、溶融したシリコーン樹脂に蛍光体の粉末を混練する際、混練された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、シリコーン樹脂に混練された蛍光体の沈降を抑制することが可能となる。したがって、蛍光体をシリコーン樹脂に均一に分散させた蛍光体含有封止樹脂を得ることができる。
 そして、ディスペンサーは、収容した蛍光体含有封止材を加熱可能な加熱機構を有しているため、たとえば、シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で、収容した前記蛍光体含有封止材を加熱溶融することが可能である。そのため、シリコーン樹脂に分散された蛍光体の分散状態が維持できる程度にシリコーン樹脂の粘度を調整することにより、収容部においてシリコーン樹脂に分散された蛍光体の沈降を抑制することが可能となるので、このディスペンサーを用いて、蛍光体の分散状態が維持された蛍光体含有封止樹脂をキャビティに充填することができる。
 したがって、上記の構成によれば、発光装置間の蛍光体含有量を均等化して、色度のばらつきを低減することが可能なディスペンサーを実現することができる。
 本発明の一態様に係る発光装置の製造方法は、前記ディスペンサーを用いて、前記蛍光体含有封止材を、室温において、または前記2次架橋温度未満で加熱溶融しつつ、前記発光素子に吐出して、前記発光素子の表面に密着させる吐出工程と、前記発光素子の表面に密着させた前記蛍光体含有封止材を、前記2次架橋温度以上で加熱して硬化させる硬化工程とを含むことを特徴とする。
 上記の方法によれば、ディスペンサーを用いて、蛍光体の分散状態が維持された蛍光体含有封止樹脂を発光素子に吐出することができるので、発光装置間の蛍光体含有量を均等化して、色度のばらつきを低減することが可能な発光装置の製造方法を実現することができる。
 以上のように、本発明の一態様に係る蛍光体含有封止材の製造方法は、1次架橋により半硬化したシリコーン樹脂の粉末と、蛍光体の粉末とを混合する混合工程と、前記混合工程にて混合した粉末混合物に、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤を添加する添加工程と、前記可塑剤を添加した前記粉末混合物を、前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、1軸以上のスクリューを備えた混練押出装置で混練する混練工程と、前記混練工程にて混練した混練物を、少なくとも1つの貫通孔が形成された前記混練押出装置の排出口から紐状に押し出す押出工程とを含み、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする。
 また、前記可塑剤は、前記シリコーン樹脂の架橋密度を低下させても良い。
 また、前記可塑剤は、一次架橋により半硬化した前記シリコーン樹脂の粘度を低下させても良い。
 また、前記可塑剤は、シリコーン樹脂を主成分としても良い。
 また、前記押出工程にて紐状に押し出された前記混練物を、前記2次架橋温度未満で加熱溶融し、加圧により平板状またはシート状に加工する加工工程をさらに含んでも良い。
 以上のように、本発明の一態様に係る発光装置の製造方法は、上方に向かって開口する複数のキャビティに発光素子が実装された基板の上方に、前記キャビティに対応する貫通孔が形成された多孔板を略平行に設置する設置工程と、前記多孔板上に、1次架橋により半硬化したシリコーン樹脂に、蛍光体の粉末と、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤とを混練した蛍光体含有封止材を載置する載置工程と、前記蛍光体含有封止材を、室温において、または前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、前記貫通孔から前記基板に向けて糸状に押し出す押出工程と、糸状に押し出された前記蛍光体含有封止材を所定の長さに切断して、前記キャビティに充填する充填工程と、前記キャビティに充填された前記蛍光体含有封止材を、前記2次架橋温度以上で加熱して硬化させる硬化工程とを含み、前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴としている。
 また、前記貫通孔の寸法は、前記キャビティの開口寸法よりも小さくても良い。
 また、前記充填工程および前記硬化工程において、前記基板を、底面側から加熱しても良い。
 また、前記充填工程において、前記多孔板と前記基板との間に略平行に設けられた、前記貫通孔ごとに設けられた複数の刃を有する切断板を前記基板に対して平行な方向に移動させることにより、前記蛍光体含有封止材を切断しても良い。
 また、前記充填工程において、糸状に押し出された前記蛍光体含有封止材の下端部が前記キャビティに到達した後、前記多孔板または前記基板を、該基板に対して垂直な方向に離間するように移動させることにより、前記蛍光体含有封止材を切断しても良い。
 また、前記充填工程において、糸状に押し出された前記蛍光体含有封止材の下端部が前記キャビティに到達した後、前記多孔板と前記基板との間に、圧縮した空気を噴射することにより、前記蛍光体含有封止材を切断しても良い。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、LEDを光源とする表示用装置や照明器具、ディスプレイ等のバックライト、信号機、屋外の大型ディスプレイや広告看板等に用いられる発光デバイスの製造に好適に利用することができる。
 1a  発光デバイス(発光装置)
 1b  発光デバイス(発光装置)
 1c 発光デバイス(発光装置)
 1d 発光デバイス(発光装置)
10  多連キャビティ回路基板(基板)
10a 平面回路基板(基板)
11  回路基板(基板)
12  キャビティ
13  発光素子
20  蛍光体含有封止樹脂(蛍光体含有封止材)
20c 蛍光体含有封止樹脂(蛍光体含有封止材)
21  シリコーン樹脂
22  蛍光体
23  可塑剤
24  粉末混合物
25  混練物
25c 混練物
32  カットプレート(切断板)
32a カットプレート貫通孔(貫通孔)
32b ブレード(刃)
33  多孔プレート(多孔板)
33a 多孔プレート貫通孔(貫通孔)
36  ディスペンサー
36a シリンジ(収容部)
37  二軸スクリュー押出装置(混練押出装置)
37b 排出口(貫通孔)
  室温
  2次架橋温度
d   寸法
D   寸法(開口寸法)

Claims (16)

  1.  1次架橋により半硬化したシリコーン樹脂の粉末と、蛍光体の粉末とを混合する混合工程と、
     前記混合工程にて混合した粉末混合物を、前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、1軸以上のスクリューを備えた混練押出装置で混練する混練工程と、
     前記混練工程にて混練した混練物を、少なくとも1つの貫通孔が形成された前記混練押出装置の排出口から紐状に押し出す押出工程とを含み、
     前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする蛍光体含有封止材の製造方法。
  2.  さらに、前記混合工程にて混合した粉末混合物に、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤を添加する添加工程を含み、
     前記混練工程では、前記可塑剤を添加した前記粉末混合物を、前記2次架橋温度未満で加熱溶融しつつ、1軸以上のスクリューを備えた混練押出装置で混練することを特徴とする請求項1に記載の蛍光体含有封止材の製造方法。
  3.  前記可塑剤は、前記シリコーン樹脂の架橋密度を低下させることを特徴とする請求項2に記載の蛍光体含有封止材の製造方法。
  4.  前記可塑剤は、一次架橋により半硬化した前記シリコーン樹脂の粘度を低下させることを特徴とする請求項2または3に記載の蛍光体含有封止材の製造方法。
  5.  前記可塑剤は、シリコーン樹脂を主成分とすることを特徴とする請求項2から4のいずれか1項に記載の蛍光体含有封止材の製造方法。
  6.  前記押出工程にて紐状に押し出された前記混練物を、前記2次架橋温度未満で加熱溶融し、加圧により平板状またはシート状に加工する加工工程をさらに含むことを特徴とする請求項1から5のいずれか1項に記載の蛍光体含有封止材の製造方法。
  7.  1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が分散された蛍光体含有封止材であって、
     前記シリコーン樹脂は、紐状に成形されており、且つ、室温から2次架橋を形成する温度である2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする蛍光体含有封止材。
  8.  上方に向かって開口する複数のキャビティに発光素子が実装された基板の上方に、前記キャビティに対応する貫通孔が形成された多孔板を略平行に設置する設置工程と、
     前記多孔板上に、1次架橋により半硬化したシリコーン樹脂に、蛍光体の粉末を混練した蛍光体含有封止材を載置する載置工程と、
     前記蛍光体含有封止材を、室温において、または前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満で加熱溶融しつつ、前記貫通孔から前記基板に向けて糸状に押し出す押出工程と、
     糸状に押し出された前記蛍光体含有封止材を所定の長さに切断して、前記キャビティに充填する充填工程と、
     前記キャビティに充填された前記蛍光体含有封止材を、前記2次架橋温度以上で加熱して硬化させる硬化工程とを含み、
     前記シリコーン樹脂は、室温から前記2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とする発光装置の製造方法。
  9.  前記載置工程にて前記多孔板上に載置される前記蛍光体含有封止材は、前記1次架橋により半硬化したシリコーン樹脂に、前記蛍光体の粉末と、さらに、前記シリコーン樹脂の2次架橋後の弾性率を低下させる可塑剤とを混練したものであることを特徴とする請求項8に記載の発光装置の製造方法。
  10.  前記貫通孔の寸法は、前記キャビティの開口寸法よりも小さいことを特徴とする請求項8に記載の発光装置の製造方法。
  11.  前記充填工程および前記硬化工程において、前記基板を、底面側から加熱することを特徴とする請求項8から10のいずれか1項に記載の発光装置の製造方法。
  12.  前記充填工程において、前記多孔板と前記基板との間に略平行に設けられた、前記貫通孔ごとに設けられた複数の刃を有する切断板を前記基板に対して平行な方向に移動させることにより、前記蛍光体含有封止材を切断することを特徴とする請求項8から11のいずれか1項に記載の発光装置の製造方法。
  13.  前記充填工程において、糸状に押し出された前記蛍光体含有封止材の下端部が前記キャビティに到達した後、前記多孔板または前記基板を、該基板に対して垂直な方向に離間するように移動させることにより、前記蛍光体含有封止材を切断することを特徴とする請求項11に記載の発光装置の製造方法。
  14.  前記充填工程において、糸状に押し出された前記蛍光体含有封止材の下端部が前記キャビティに到達した後、前記多孔板と前記基板との間に、圧縮した空気を噴射することにより、前記蛍光体含有封止材を切断することを特徴とする請求項11に記載の発光装置の製造方法。
  15.  1次架橋により半硬化したシリコーン樹脂に蛍光体の粉末が分散された蛍光体含有封止材を、基板に実装された発光素子に糸状に吐出するディスペンサーであって、
     前記蛍光体含有封止材を収容する収容部を備え、
     前記収容部は、収容した前記蛍光体含有封止材を加熱可能な加熱機構を有し、
     前記シリコーン樹脂は、室温から前記シリコーン樹脂が2次架橋を形成する温度である2次架橋温度未満までの温度領域で可逆的に粘度が変化し、前記2次架橋温度以上の温度領域で全硬化することを特徴とするディスペンサー。
  16.  請求項15に記載のディスペンサーを用いて、前記蛍光体含有封止材を、室温において、または前記2次架橋温度未満で加熱溶融しつつ、前記発光素子に吐出して、前記発光素子の表面に密着させる吐出工程と、
     前記発光素子の表面に密着させた前記蛍光体含有封止材を、前記2次架橋温度以上で加熱して全硬化させる硬化工程とを含むことを特徴とする発光装置の製造方法。
PCT/JP2013/061025 2012-09-28 2013-04-12 蛍光体含有封止材の製造方法、蛍光体含有封止材、発光装置の製造方法およびディスペンサー WO2014050183A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014538215A JP5744338B2 (ja) 2012-09-28 2013-04-12 蛍光体含有封止材の製造方法、発光装置の製造方法およびディスペンサー
US14/431,036 US9404035B2 (en) 2012-09-28 2013-04-12 Method of producing a fluorescent material containing sealant
EP13841712.6A EP2902432B1 (en) 2012-09-28 2013-04-12 Production method for sealing material containing fluorescent body, sealing material containing fluorescent body, and for light-emitting device
CN201380047641.6A CN104662069B (zh) 2012-09-28 2013-04-12 含荧光体密封材料的制造方法、含荧光体密封材料、发光装置的制造方法以及分配器
KR1020157009174A KR101629622B1 (ko) 2012-09-28 2013-04-12 형광체 함유 봉지재의 제조 방법, 발광 장치의 제조 방법 및 디스펜서
US15/180,172 US9577159B2 (en) 2012-09-28 2016-06-13 Production method for light-emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-218578 2012-09-28
JP2012218579 2012-09-28
JP2012218578 2012-09-28
JP2012-218579 2012-09-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/431,036 A-371-Of-International US9404035B2 (en) 2012-09-28 2013-04-12 Method of producing a fluorescent material containing sealant
US15/180,172 Division US9577159B2 (en) 2012-09-28 2016-06-13 Production method for light-emitting device

Publications (1)

Publication Number Publication Date
WO2014050183A1 true WO2014050183A1 (ja) 2014-04-03

Family

ID=50387604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061025 WO2014050183A1 (ja) 2012-09-28 2013-04-12 蛍光体含有封止材の製造方法、蛍光体含有封止材、発光装置の製造方法およびディスペンサー

Country Status (7)

Country Link
US (2) US9404035B2 (ja)
EP (1) EP2902432B1 (ja)
JP (1) JP5744338B2 (ja)
KR (1) KR101629622B1 (ja)
CN (1) CN104662069B (ja)
TW (1) TWI519571B (ja)
WO (1) WO2014050183A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190091777A (ko) * 2018-01-29 2019-08-07 주식회사 셀코스 진공유리 실링장치 및 진공유리 제조방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054526B2 (ja) 2013-05-28 2016-12-27 シャープ株式会社 発光装置の製造方法
EP3306683A4 (en) * 2015-06-01 2018-12-19 Mitsubishi Electric Corporation Light emitting device, display unit, and image display device
JP2017050313A (ja) * 2015-08-31 2017-03-09 イビデン株式会社 プリント配線板及びプリント配線板の製造方法
JP2017050315A (ja) * 2015-08-31 2017-03-09 イビデン株式会社 プリント配線板及びプリント配線板の製造方法
KR102634692B1 (ko) 2016-02-12 2024-02-08 삼성전자주식회사 반도체 발광 소자 패키지
CN107403791B (zh) * 2016-05-18 2020-04-10 光宝光电(常州)有限公司 发光显示器以及形成发光显示器的方法
JP6394649B2 (ja) * 2016-06-30 2018-09-26 日亜化学工業株式会社 発光装置の製造方法
DE102019120717A1 (de) * 2019-07-31 2021-02-04 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung eines elektronischen bauelements und elektronisches bauelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242513A (ja) 1996-07-29 1998-09-11 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いた表示装置
JP2006229054A (ja) * 2005-02-18 2006-08-31 Nichia Chem Ind Ltd 発光装置
JP2007301843A (ja) * 2006-05-11 2007-11-22 Nichia Chem Ind Ltd 樹脂成型品とその成型方法、および、発光装置とその製造方法
JP2010265437A (ja) * 2009-04-14 2010-11-25 Nitto Denko Corp 熱硬化性シリコーン樹脂用組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600124A (en) 1985-05-08 1986-07-15 Nordson Corporation Controlled temperature hot melt adhesive dispensing system
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JPH10233533A (ja) * 1997-02-21 1998-09-02 Nichia Chem Ind Ltd 発光装置の形成方法及び形成装置
US6664313B2 (en) * 2000-12-21 2003-12-16 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and its molded articles
JP4115403B2 (ja) * 2004-02-18 2008-07-09 キヤノン株式会社 発光体基板及び画像表示装置
KR101204115B1 (ko) 2005-02-18 2012-11-22 니치아 카가쿠 고교 가부시키가이샤 배광 특성을 제어하기 위한 렌즈를 구비한 발광 장치
JP2007234968A (ja) * 2006-03-02 2007-09-13 Nichia Chem Ind Ltd 発光装置の製造方法および発光装置
US8212271B2 (en) * 2007-10-11 2012-07-03 Hitachi Chemical Co., Ltd. Substrate for mounting an optical semiconductor element, manufacturing method thereof, an optical semiconductor device, and manufacturing method thereof
JP4744573B2 (ja) * 2008-01-23 2011-08-10 サンユレック株式会社 電子装置の製造方法
EP2196503B1 (en) 2008-12-12 2015-02-18 Nitto Denko Corporation Thermosetting silicone resin composition, silicone resin, silicone resin sheet and use thereof
JP2010159411A (ja) * 2008-12-12 2010-07-22 Nitto Denko Corp 半硬化状シリコーン樹脂シート
JP5775375B2 (ja) * 2010-07-27 2015-09-09 日東電工株式会社 発光ダイオード装置の製造方法
JP5767062B2 (ja) * 2010-09-30 2015-08-19 日東電工株式会社 発光ダイオード封止材、および、発光ダイオード装置の製造方法
KR101529997B1 (ko) * 2011-01-28 2015-06-18 쇼와 덴코 가부시키가이샤 양자 도트 형광체를 포함하는 조성물, 양자 도트 형광체 분산 수지 성형체, 양자 도트 형광체를 포함하는 구조물, 발광 장치, 전자기기, 기계 장치, 및 양자 도트 형광체 분산 수지 성형체의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242513A (ja) 1996-07-29 1998-09-11 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いた表示装置
JP2006229054A (ja) * 2005-02-18 2006-08-31 Nichia Chem Ind Ltd 発光装置
JP2007301843A (ja) * 2006-05-11 2007-11-22 Nichia Chem Ind Ltd 樹脂成型品とその成型方法、および、発光装置とその製造方法
JP2010265437A (ja) * 2009-04-14 2010-11-25 Nitto Denko Corp 熱硬化性シリコーン樹脂用組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902432A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190091777A (ko) * 2018-01-29 2019-08-07 주식회사 셀코스 진공유리 실링장치 및 진공유리 제조방법
KR102030828B1 (ko) 2018-01-29 2019-11-08 주식회사 셀코스 진공유리 실링장치 및 진공유리 제조방법

Also Published As

Publication number Publication date
KR20150050589A (ko) 2015-05-08
JPWO2014050183A1 (ja) 2016-08-22
EP2902432A1 (en) 2015-08-05
CN104662069A (zh) 2015-05-27
CN104662069B (zh) 2016-01-27
US9577159B2 (en) 2017-02-21
US9404035B2 (en) 2016-08-02
EP2902432A4 (en) 2016-05-25
TW201412497A (zh) 2014-04-01
TWI519571B (zh) 2016-02-01
JP5744338B2 (ja) 2015-07-08
EP2902432B1 (en) 2017-05-31
US20160293807A1 (en) 2016-10-06
US20150252258A1 (en) 2015-09-10
KR101629622B1 (ko) 2016-06-21

Similar Documents

Publication Publication Date Title
JP5744338B2 (ja) 蛍光体含有封止材の製造方法、発光装置の製造方法およびディスペンサー
JP5917739B2 (ja) 蛍光体含有封止材の製造方法
US9704834B2 (en) Method for manufacturing light-emitting device
JP6092372B2 (ja) オープンリール
CN108775541B (zh) 一种新型量子点体导光板背光模组结构及其制备方法
JPWO2010023992A1 (ja) 発光装置及びその製造方法
CN110246951B (zh) 荧光体片的制造方法
JP2009200172A (ja) 光半導体装置の製造方法、および光半導体装置の製造装置
CN114989458A (zh) 量子点颗粒集合体及其制备方法、光转换器件制备方法、量子点颗粒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538215

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013841712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013841712

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157009174

Country of ref document: KR

Kind code of ref document: A