WO2014050031A1 - 通信装置および通信方法 - Google Patents

通信装置および通信方法 Download PDF

Info

Publication number
WO2014050031A1
WO2014050031A1 PCT/JP2013/005519 JP2013005519W WO2014050031A1 WO 2014050031 A1 WO2014050031 A1 WO 2014050031A1 JP 2013005519 W JP2013005519 W JP 2013005519W WO 2014050031 A1 WO2014050031 A1 WO 2014050031A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
antenna
antennas
unit
level
Prior art date
Application number
PCT/JP2013/005519
Other languages
English (en)
French (fr)
Inventor
尚武 山本
陽介 浮田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380007126.5A priority Critical patent/CN104081687B/zh
Priority to US14/375,303 priority patent/US9154207B2/en
Priority to JP2014514969A priority patent/JP5653567B2/ja
Publication of WO2014050031A1 publication Critical patent/WO2014050031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present invention relates to an antenna selection method at the time of data transmission in a transmission diversity method in wireless communication.
  • wireless communication for the purpose of expanding the communication area or suppressing the influence of interference waves, there is a technology in which a plurality of antennas are mounted and communication is performed using the plurality of mounted antennas (diversity technology).
  • the master station In a network composed of a master station having a plurality of antennas and a plurality of slave stations, when the master station broadcasts data to a plurality of slave stations, the master station transmits data from the plurality of antennas. It is necessary to select an antenna for broadcast transmission to a station.
  • a conventional method of selecting an antenna in the case of broadcast transmission for each of a plurality of antennas of a master station, the number of errors in data (signal) received by the master station by the antenna is detected, Some select an antenna with a small number of errors (see Patent Document 1).
  • the present invention solves the above-described conventional problems, and an object of the present invention is to perform more stable and reliable communication between a master station and a slave station when the master station performs broadcast transmission to the slave station.
  • a communication device of the present invention is a communication device that performs data communication with a plurality of other communication devices by wireless communication, and a plurality of antennas that transmit and receive radio waves related to the wireless communication; A communication level of a plurality of pairs that is a combination of each of the plurality of antennas and each of the plurality of other communication devices when the communication device performs the wireless communication with the plurality of other communication devices.
  • a counting unit that counts the number of communication establishments that is the number of the other communication devices that have established the wireless communication, and the counting unit counts A determination unit that determines whether there are a plurality of antennas having the largest number of established communications, and a plurality of antennas having the largest number of established communications
  • the other communication device corresponding to the lowest communication level among the communication levels in the plurality of pairs acquired by the communication level acquisition unit is specified, and the specified other
  • An antenna selection unit that selects an antenna corresponding to a communication level higher than the lowest communication level among the communication levels for each of the plurality of antennas of the communication device as an antenna to be used for broadcast transmission, and the antenna selection unit selects A transmission unit that broadcasts predetermined data to the plurality of other communication devices using the antenna that is provided.
  • the other corresponding to the lowest communication level among the communication levels in all of the plurality of pairs acquired by the communication level acquisition unit is specified, and the antenna corresponding to the larger RSSI among the communication levels in the plurality of pairs corresponding to the specified other communication devices is selected. That is, at least the antenna corresponding to the lowest communication level among the communication levels in the plurality of pairs acquired by the communication level acquisition unit is not selected.
  • an antenna having a high possibility that the other communication device can communicate with the communication device based on the other communication device having the worst communication condition is selected. become.
  • the number of established communications for one of the plurality of antennas and the other of the plurality of antennas is the same, it is possible to reliably select the antenna with the better communication conditions.
  • the optimum antenna is selected for the slave station having a poor radio wave condition, so that the slave stations that cannot communicate can be reduced, and stable communication is realized. be able to.
  • the number of other communication apparatuses that can perform wireless communication with the communication apparatus can be increased.
  • a recording medium such as a method, an integrated circuit, a computer program, or a computer-readable CD-ROM, and the method, the integrated circuit, the computer program, and the recording medium. You may implement
  • the communication device of the present invention can increase the number of other communication devices that can perform wireless communication with the communication device.
  • FIG. 1 is a diagram showing an example of a system configuration according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a specific application example of the system configuration according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an example of a functional block configuration of the communication apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing a flow of broadcast transmission processing in Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing a flow of antenna table creation processing according to Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart showing a flow of antenna selection processing for unicast transmission according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart showing a flow of antenna selection processing for broadcast transmission according to the first embodiment.
  • FIG. 8 is a diagram showing an example of an antenna table.
  • FIG. 8A shows a case where the number of established communications is different between the first antenna 2 and the second antenna 3, and FIG. The case where the first antenna 2 and the second antenna 3 have the same number of established communications is shown.
  • FIG. 9A is a diagram illustrating an example of an antenna table
  • FIG. 9B is a diagram illustrating communication determination when the first antenna 2 is selected and -5 dBm fading occurs.
  • FIG. 9C is a diagram showing communication determination when the second antenna 3 is selected and -5 dBm fading occurs.
  • FIG. 10 is a diagram illustrating an example of RSSI fading fluctuation.
  • FIG. 11 is a sequence diagram between the master station and the slave stations A and B in the broadcast transmission process.
  • FIG. 12 is a flowchart showing a flow of antenna selection processing for broadcast transmission in the second embodiment.
  • the communication device described in Patent Document 1 describes a method for selecting an antenna in the case of broadcast transmission.
  • the error of data received by the master station is detected for each antenna, and there are few data errors.
  • the antenna is judged and selected.
  • Patent Document 1 does not specify the antenna selection method when the number of errors is the same in a plurality of antennas. For this reason, an optimal antenna may not be selected for the slave station with the lowest communication level, and in such a case, such a slave station may be unable to communicate.
  • a communication apparatus is a communication apparatus that performs data communication with a plurality of other communication apparatuses by wireless communication, and transmits and receives radio waves related to the wireless communication.
  • a plurality of pairs that are combinations of a plurality of antennas, each of the plurality of antennas when the communication device performs the wireless communication with the plurality of other communication devices, and each of the plurality of other communication devices.
  • a communication level acquisition unit that acquires a communication level in each of the plurality of antennas, a count unit that counts the number of communication establishments, which is the number of the other communication devices with which the antenna has established the wireless communication,
  • a determination unit for determining whether or not there are a plurality of antennas with the largest number of established communications counted by the counting unit; and an antenna with the largest number of established communications.
  • An antenna selection unit that selects an antenna corresponding to a communication level higher than the lowest communication level among the communication levels for each of the plurality of antennas of the other communication device as an antenna to be used for broadcast transmission; and A transmission unit that broadcasts predetermined data to the plurality of other communication devices using the antenna selected by the selection unit.
  • the other corresponding to the lowest communication level among the communication levels in all of the plurality of pairs acquired by the communication level acquisition unit is specified, and the antenna corresponding to the larger RSSI among the communication levels in the plurality of pairs corresponding to the specified other communication devices is selected. That is, at least the antenna corresponding to the lowest communication level among the communication levels in the plurality of pairs acquired by the communication level acquisition unit is not selected.
  • an antenna having a high possibility that the other communication device can communicate with the communication device based on the other communication device having the worst communication condition is selected. become.
  • the number of established communications for one of the plurality of antennas and the other of the plurality of antennas is the same, it is possible to reliably select the antenna with the better communication conditions.
  • the optimum antenna is selected for the slave station having a poor radio wave condition, so that the slave stations that cannot communicate can be reduced, and stable communication is realized. be able to.
  • the number of other communication apparatuses that can perform wireless communication with the communication apparatus can be increased.
  • the antenna selection unit may select the antenna having the largest number of established communications when the judging unit determines that there are not a plurality of antennas having the largest number of established communications.
  • the antenna selection unit may determine the communication level of the plurality of pairs acquired by the communication level acquisition unit when the determination unit determines that there are a plurality of antennas with the largest number of established communications.
  • the other communication device corresponding to the lowest communication level may be specified, and the antenna having the highest communication level may be selected from among the communication levels for each of the plurality of antennas of the specified other communication device. .
  • the antenna with the highest communication level is selected, at least the communication condition of the other communication apparatus having the worst communication condition with respect to the communication apparatus can be communicated with the antenna having the best communication condition as much as possible.
  • a reception unit that receives data from the other communication device using any one of the plurality of antennas is provided, and the transmission unit includes the plurality of antennas in each of the other communication devices.
  • Data is unicast transmitted using any one of the antennas, and the receiving unit transmits data transmitted from the other communication device when the other communication device receives data unicast transmitted by the transmitting unit.
  • Response information is received using any one of the plurality of antennas, and the communication level acquisition unit acquires the reception level when the response information is received by the reception unit as the communication level. May be.
  • the antenna selection unit performs switching of an antenna used for the reception while the reception unit receives the response information from the other communication device
  • the communication level acquisition unit includes: The reception level for each antenna used for the reception may be acquired as the communication level.
  • the antenna selection unit may receive the response information from the other communication device while the reception unit performs reception of the plurality of other communication devices and the plurality of antennas. Until the measurement of the reception level with one of the plurality of antennas is completed, the antenna used for the reception is fixed to any one of the plurality of antennas. When the measurement of the reception level at is completed, switching to the antenna that has not yet completed the measurement of the reception level with the other communication devices among the plurality of antennas, the communication level acquisition unit is The reception level for each antenna used for the reception may be acquired as the communication level.
  • the communication level acquisition unit further includes a storage unit, and the communication level acquisition unit stores the acquired communication level as an antenna table associated with each of the plurality of antennas and the plurality of other communication devices.
  • the counting unit may count the number of other communication devices for each of the plurality of antennas whose communication levels are recorded in the antenna table as the number of established communications.
  • the communication level acquisition unit further updates the antenna table stored in the storage unit every time the reception unit receives the response information, and the antenna selection unit updates the update.
  • An antenna to be used for the broadcast transmission may be selected from the plurality of antennas using a later antenna table.
  • the counting unit further counts, for each of the plurality of antennas, a maximum level terminal number that is the number of the plurality of other communication devices having a maximum communication level with the antenna, and performs the determination.
  • the unit further determines whether or not there are a plurality of antennas having the largest number of maximum level terminals as a result of counting by the counting unit, and the antenna selecting unit has a plurality of antennas having the largest number of communication establishments. If the determination unit determines that there are a plurality of antennas having the largest number of maximum level terminals, the plurality of the plurality of communication levels acquired by the communication level acquisition unit.
  • the other communication device corresponding to the lowest communication level among the communication levels in the pair is specified, and the plurality of unspecified communication devices are identified. May be selected antenna corresponding to a higher communication level than the lowest communication level among the communication levels for each burner as an antenna to be used for broadcast transmission.
  • the antenna selection unit may select the antenna having the maximum number of maximum level terminals when the determination unit determines that there are not a plurality of antennas having the maximum number of maximum level terminals. .
  • a recording medium such as a method, an integrated circuit, a computer program, or a computer-readable CD-ROM, and the method, the integrated circuit, the computer program, and the recording medium. You may implement
  • Embodiment 1 a communication apparatus that includes two communication antennas and that selects an appropriate antenna for broadcast transmission at the time of broadcast transmission by wireless communication to a plurality of slave stations that are a plurality of other communication apparatuses will be described.
  • An example of a wireless communication standard is IEEE 802.15.4.
  • the present invention can be applied to other wireless communication standards.
  • FIG. 1 is a diagram illustrating an example of a system configuration according to the first embodiment.
  • the system shown in FIG. 1 includes a master station 101, a slave station A111, a slave station B112, a slave station C113, and a slave station D114.
  • the master station 101 performs data communication by radio communication with the slave station A111, the slave station B112, the slave station C113, and the slave station D114.
  • the slave stations A111 to D114 may have a configuration having only one antenna or a configuration having a plurality of antennas.
  • the master station 101 is an example of a communication device according to an aspect of the present invention.
  • the slave stations A111 to D114 are examples of a plurality of other communication devices.
  • FIG. 2 is a diagram illustrating a specific application example of the system configuration according to the first embodiment.
  • a system 200 shown in FIG. 2 is an in-home network 210 constructed in a general home, and includes a master station 220, a solar power generator 230, a storage battery 240, a fuel cell 250, an air conditioner 260, and a television 270.
  • a master station 220 a solar power generator 230
  • a storage battery 240 a fuel cell 250
  • an air conditioner 260 a television 270.
  • Each home appliance of the solar power generator 230, the storage battery 240, the fuel cell 250, the air conditioner 260, and the television 270 is an example of a slave station (another communication device) having a wireless communication function.
  • FIG. 3 is a diagram illustrating an example of a functional block configuration of the communication apparatus according to the first embodiment.
  • the communication device 1 includes a plurality of antennas 2 and 3, a switching unit 4, a transmission unit 5, a reception unit 6, a storage unit 7, and a communication level.
  • the acquisition unit 8, the count unit 9, the determination unit 10, and the antenna control unit 11 are provided.
  • the plurality of antennas 2 and 3 are the first antenna 2 and the second antenna 3, and each transmit and receive radio waves related to wireless communication.
  • the switching unit 4 selects either the first antenna 2 or the second antenna 3 and selects either the transmission unit 5 or the reception unit 6 according to a control signal from the antenna control unit 11 described later. To do. That is, the switching unit 4 switches either the first antenna 2 or the second antenna 3 according to the control signal from the antenna control unit 11 in either case of transmission by the transmission unit 5 and reception by the reception unit 6. This is a changeover switch.
  • the switching unit 4 is configured such that transmission by the transmission unit 5 and reception by the reception unit 6 cannot be performed at the same time, but one of the first antenna 2 and the second antenna 3 is used for transmission. It is good also as a structure which can perform transmission by the transmission part 5 and reception by the receiving part 6 simultaneously by switching so that it may become an antenna and switching the other so that it may become an antenna for reception.
  • the transmission unit 5 uses one of the first antenna 2 and the second antenna 3 selected by the switching unit 4 according to a control signal from the antenna control unit 11, and is a solar generator 230 that is a slave station. Then, predetermined data is broadcasted to all of the storage battery 240, the fuel cell 250, the air conditioner 260, and the television 270.
  • the predetermined data broadcasted by the transmission unit 5 is, for example, data used when changing the frequency channel related to wireless communication, and is data for instructing the change of the frequency channel.
  • the transmission unit 5 changes the frequency channel as predetermined data when it is determined that the communication state of the used frequency channel is poor or when an instruction to change the frequency channel is received from the user. Is broadcast to all the slave stations 230 to 270. That is, the transmission unit 5 broadcasts predetermined data to a plurality of other communication devices using the antenna selected by the antenna selection unit 12 (see later).
  • the transmission unit 5 uses the antenna selected by the switching unit 4 according to the control signal from the antenna control unit 11, the solar generator 230 as a slave station, the storage battery 240, the fuel cell 250, the air conditioner Predetermined data is unicasted to both 260 and the television 270.
  • the data that the transmission unit 5 transmits unicast includes, for example, data for controlling ON / OFF of the power of each slave station of the solar power generator 230, the storage battery 240, the fuel cell 250, the air conditioner 260, and the television 270. This is data for requesting transmission of data indicating the power consumption used in the slave station.
  • These data are unicast transmitted to each slave station when an instruction from the user is accepted according to the type of data, when data transmission becomes necessary, or when a predetermined timing is reached. . That is, the transmission unit 5 unicasts data to each of the other communication devices using one of the first antenna 2 and the second antenna 3.
  • the receiving unit 6 uses one of the first antenna 2 and the second antenna 3 selected by the switching unit 4 according to the control signal from the antenna control unit 11 to receive data from each of the slave stations 230 to 270. Receive. Specifically, the receiving unit 6 receives, for example, an ACK (Acknowledgement) that is response information transmitted from the slave station when the slave station receives data unicast transmitted by the transmitting unit 5. And it receives using any one antenna of the 2nd antenna 3. FIG. Of course, if the data transmitted by the transmission unit 5 is data requesting, for example, power consumption in addition to ACK, the reception unit 6 transmits data indicating the power consumption transmitted from the slave station as a response to the request. Receive. That is, the receiving unit 6 receives data from another communication device using any one of the plurality of antennas 2 and 3.
  • ACK Acknowledgement
  • the storage unit 7 stores the reception level acquired by the communication level acquisition unit 8 as an antenna table associated with each of the plurality of antennas 2 and 3 and each of the plurality of slave stations 230 to 270.
  • the communication level acquisition unit 8 acquires RSSI (Received Signal Strength Indication) indicating the reception level when the ACK transmitted from each of the slave stations 230 to 270 is received by the reception unit 6 for each of the plurality of antennas 2 and 3. To do. That is, the communication level acquisition unit 8 performs communication in each of a plurality of pairs that are combinations of each of the first antenna 2 and the second antenna 3 and each of the plurality of slave stations 230 to 270 as shown in FIG. Acquire the acquired RSSI. Then, the communication level acquisition unit 8 stores the RSSI in communication in each of the acquired plurality of pairs as an antenna table in which each of the plurality of antennas 2 and 3 and each of the plurality of slave stations 230 to 270 are associated with each other. 7 is stored. Further, the communication level acquisition unit 8 updates the antenna table stored in the storage unit 7 every time the reception unit 6 receives ACK.
  • RSSI Receiveived Signal Strength Indication
  • the counting unit 9 counts the number of established communications for each of the first antenna 2 and the second antenna 3.
  • the number of established communications is the number of slave stations with which one antenna can establish radio communications.
  • the slave station in which the communication apparatus 1 can establish wireless communication using the first antenna 2 is three slave stations of the solar power generator 230, the fuel cell 250, and the television 270.
  • the number of established communications of the first antenna 2 is 3.
  • the counting unit 9 counts the number of slave stations whose RSSI values are recorded in the antenna table stored in the storage unit 7 as the number of established communications for each of the first antenna 2 and the second antenna 3. That is, if the RSSI numerical value is recorded in the antenna table, the count unit 9 considers that communication related to RSSI acquisition has been established.
  • the count unit 9 is not limited to counting the number of established communications as the RSSI is recorded in the antenna table as described above, and the communication between the antennas 2 and 3 and the slave stations 230 to 240 is performed. The establishment may be counted and stored in the storage unit 7 separately from the antenna table.
  • the determination unit 10 determines whether there are a plurality of antennas with the largest number of established communications counted by the counting unit 9. That is, the determination unit 10 determines whether or not the antenna having the largest number of established communications cannot be narrowed down to one antenna.
  • the antenna control unit 11 determines the lowest RSSI among the RSSIs stored in the antenna table stored in the storage unit 7 when the determination unit 10 determines that there are a plurality of antennas with the largest number of established communications.
  • the slave station corresponding to is identified.
  • the antenna selection information which shows having selected the antenna from which RSSI with high RSSI was acquired among RSSI with respect to each of the several antennas 2 and 3 of the specified slave station was selected is hold
  • the antenna control unit 11 receives a control signal for selecting an antenna for broadcast transmission from the transmission unit 5 when the transmission unit 5 performs broadcast transmission, and selects the antenna indicated by the held antenna selection information.
  • the control signal is transmitted to the switching unit 4.
  • the communication apparatus 1 determines in advance whether to use the first antenna 2 or the second antenna 3 as the antenna to be used for broadcast transmission based on the antenna table before performing broadcast transmission.
  • the combined function of the switching unit 4 and the antenna control unit 11 is a function as the antenna selection unit 12. That is, the antenna control unit 11 transmits the control signal to the switching unit 4, and the switching unit 4 receives the control signal and performs antenna switching, so that the antenna selection function as the antenna selection unit 12 is selected. It is carried out. Since the antenna table is updated by the communication level acquisition unit 8 as described above, the antenna selection unit 12 selects an antenna using the updated antenna table after the update. Further, when the determination unit 10 determines that there are not a plurality of antennas having the largest number of established communications, the antenna control unit 11 selects the antenna having the largest number of established communications.
  • FIG. 4 is a flowchart showing a flow of broadcast transmission processing in Embodiment 1 of the present invention.
  • the communication device 1 creates an antenna table for selecting an antenna to be used for broadcast transmission when performing broadcast transmission (S100). Details of the antenna table creation processing will be described later with reference to FIG.
  • either one of the first antenna 2 and the second antenna 3 is selected as an antenna to be used for broadcast transmission based on the created antenna table (S200). Details of the antenna selection process for broadcast transmission will be described later with reference to FIG.
  • predetermined data is broadcasted to the plurality of slave stations 230 to 270 using the selected antenna (S300), and the process ends.
  • FIG. 5 is a flowchart showing a flow of antenna table creation processing according to Embodiment 1 of the present invention.
  • the transmission unit 5 determines whether or not the information indicating the RSSI when the ACK is received from the slave station to be subjected to unicast transmission is in the antenna table stored in the storage unit 7 (S101). ).
  • the optimal antenna for the child station among the first antenna 2 and the second antenna 3 based on the antenna table Is selected by the antenna selector 12 (S102). That is, the antenna control unit 11 selects one of the first antenna 2 and the second antenna 3 and transmits a control signal for connecting the transmission unit 5 and the selected antenna to the switching unit 4. Then, the transmission unit 5 and the selected antenna are connected to the switching unit 4. Details of the process for selecting the optimum antenna based on the antenna table at this time will be described with reference to FIG.
  • FIG. 6 is a flowchart showing a flow of antenna selection processing for unicast transmission according to Embodiment 1 of the present invention. That is, FIG. 6 is a diagram for explaining in detail the antenna selection processing when performing unicast transmission in step S102.
  • the antenna table stored in the storage unit 7 is referred to (S121).
  • RSSI1 when ACK is received by the first antenna 2 (indicated as “ANT1” in FIG. 6) for a slave station (that is, a transmission destination terminal) that is a target of unicast transmission.
  • RSSI2 when ACK is received by the second antenna 3 (indicated as “ANT2” in FIG. 6) (S122).
  • RSSI1 is RSSI2 or more (S123).
  • RSSI1 is equal to or greater than RSSI2 (S123: Yes)
  • the first antenna 2 is selected (S124). If it is determined that RSSI1 is less than RSSI2 (S123: No), the second antenna 3 is selected (S125).
  • step S124 or step S125 the antenna selection process for unicast transmission is terminated.
  • the transmission unit 5 determines whether there is no information indicating RSSI in the antenna table (S101: No). If it is determined by the transmission unit 5 that there is no information indicating RSSI in the antenna table (S101: No), the first antenna 2 (in FIG. 5) in which the antenna selection unit 12 is preset as a default value. , “ANT1”) (S103).
  • the transmission unit 5 performs unicast transmission to the target slave station (S104).
  • the data transmitted from the communication device 1 serving as the master station to each of the slave stations 230 to 270 during unicast transmission is as described above.
  • the communication level acquisition unit 8 determines whether or not the reception unit 6 has received an ACK from the slave station that is the target of the unicast transmission performed in step S104 (S105).
  • the communication level acquiring unit 8 acquires the RSSI when the ACK is received, and corresponds to the slave station that transmitted the ACK and the antenna that has received the ACK.
  • the antenna table is created or updated by storing it in the corresponding location (cell) of the antenna table (S106).
  • step S104 If it is determined that the receiving unit 6 has not received the ACK (S105: No), it is determined whether there is a retransmission setting for the unicast transmission performed in step S104 (S107).
  • the antenna selection unit 12 selects an antenna (the other antenna) that is not the antenna selected in the previous unicast transmission (S109).
  • step S109 Using the antenna selected in step S109, retransmission of unicast transmission is performed by the transmission unit 5 (S110).
  • the count of the number of retransmissions indicating the number of retransmissions is incremented by one (S111).
  • the communication level acquisition unit 8 determines whether or not the reception unit 6 has received an ACK from the slave station that is the target of the unicast transmission performed in step S110 (S112).
  • the communication level acquiring unit 8 acquires the RSSI when the ACK is received and the slave station that transmitted the ACK and the ACK, as in step S106. Is stored in the corresponding part (cell) of the antenna table corresponding to the antenna that received the antenna table, thereby creating or updating the antenna table (S113).
  • step S108 If it is determined that the number of retransmissions is greater than or equal to the predetermined N (S114: Yes), an error notification in step S108 is performed. If it is determined that the number of retransmissions is less than the predetermined N (S114: No), the process returns to step S109.
  • step S106 and step S113 or the error notification in step S108 are performed, the antenna table creation processing for one slave station is terminated.
  • the antenna table creation process is performed every time unicast transmission to each of the slave stations 230 to 270 is performed, and the antenna table is always updated to the latest RSSI.
  • FIG. 7 is a flowchart showing a process flow of antenna selection for broadcast transmission in the first embodiment. That is, FIG. 7 is a diagram for explaining in detail the process of antenna selection for broadcast transmission in step S200.
  • the antenna table stored in the storage unit 7 is referred to (S201).
  • the determination unit 10 determines whether there is a communication NG antenna among the first antenna 2 and the second antenna 3 (S202).
  • the counting unit 9 counts the number of slave stations that are in communication OK with each of the first antenna 2 (indicated as “ANT1” in FIG. 7) and the second antenna 3 (indicated as “ANT2” in FIG. 7). (S203). That is, the count unit 9 counts the number of established radios for each of the plurality of antennas 2 and 3.
  • the determination unit 10 compares the number of established communications for the first antenna 2 with the number of established communications for the second antenna 3 (S204). That is, it is determined whether the number of established communications for the first antenna 2 and the number of established communications for the second antenna are greater or the same.
  • the antenna selection unit 12 selects the first antenna 2 ( S205).
  • the antenna selection unit 12 selects the second antenna 3 ( S206).
  • step S202 If “No” is determined in step S202, the number of established communications with respect to the first antenna 2 is the number of slave stations (that is, the largest number), and the number of established communications with respect to the second antenna 3 is the number of slave stations ( In other words, the number of established communications is the same. That is, in step S204, the conditions are the same as those in the case where the determination unit 10 determines that the number of established communications for the first antenna 2 is the same as the number of established communications for the second antenna 3. For this reason, step S202 may be omitted from the flowchart shown in FIG.
  • FIG. 8 is a diagram showing an example of an antenna table.
  • FIG. 8A shows a case where the number of established communications is different between the first antenna 2 and the second antenna 3, and FIG. The case where the first antenna 2 and the second antenna 3 have the same number of established communications is shown.
  • the RSSI that is the reception level when the communication device 1 (master station) receives the ACK transmitted from the slave station A111 by the first antenna 2 is ⁇ 93 dBm. This indicates that the second antenna 3 could not receive the signal.
  • the RSSI when received by the first antenna 2 is ⁇ 80 dBm, and the RSSI when received by the second antenna 3 is ⁇ 70 dBm.
  • the RSSI when received by the first antenna 2 is ⁇ 85 dBm
  • the RSSI when received by the second antenna 3 is ⁇ 80 dBm.
  • the RSSI when received by the first antenna 2 is ⁇ 75 dBm, and the RSSI when received by the second antenna 3 is ⁇ 60 dBm.
  • ACK from the slave station A111 cannot be received by the second antenna 3
  • ACKs from the other slave stations B112 to D114 can be received by the first antenna 2 and the second antenna 3.
  • step S203 in the flowchart of FIG. 7 the number of communication establishments for the first antenna 2 is “4”, and the number of communication establishments for the second antenna 3 is “3”. Therefore, in step S204, the determination unit 10 determines that the number of established communications with respect to the first antenna 2 is greater than the number of established communications with respect to the second antenna 3, and the process proceeds to step S205, where the first antenna 2 performs broadcast transmission. Will be selected as the antenna.
  • an antenna is selected as follows. That is, consider a case where the RSSI when the communication apparatus 1 receives the ACK transmitted from the slave station A111 with the second antenna 3 is detected as ⁇ 80 dBm. In such a case, in step S202 of the flowchart of FIG. 7, the determination unit 10 determines that there is no communication NG antenna among the first antenna 2 and the second antenna 3, and the process proceeds to step S207. In the case of the flow in which step S202 is omitted, the determination unit 10 determines that the number of established communications for the first antenna 2 and the number of established communications for the second antenna 3 are the same in step S204, and the process proceeds to step S207.
  • step S207 the second antenna 3 corresponding to the higher RSSI of ⁇ 80 dBm is selected from the slave station A111 corresponding to the minimum RSSI of ⁇ 93 dBm among the eight numerical values in the antenna table. It will be.
  • FIG. 9 is a diagram showing an example of the antenna table, which is the same antenna table as in (b) in FIG.
  • FIG. 9B is a diagram showing communication determination when the first antenna 2 is selected and -5 dBm fading occurs
  • FIG. 9C shows the second antenna 3 selected.
  • FIG. 5 is a diagram illustrating communication determination when -5 dBm fading occurs.
  • the communication device 1 cannot receive when the RSSI is less than ⁇ 94 dBm, but can receive at ⁇ 94 dBm or more.
  • FIG. 9B when the first antenna 2 is selected and when -5 dBm fading occurs, the RSSI is less than -94 dBm in all the slave stations A111 to D114. Communication with the slave stations A111 to D114 becomes impossible.
  • FIG. 9 (c) when the second antenna 3 is selected, similarly, even when -5 dBm fading occurs, the RSSIs in all the slave stations A111 to D114 are the same. Therefore, communication with all the slave stations A111 to D114 remains possible.
  • FIG. 9A is the same antenna table as FIG. 8B, and therefore the second antenna 3 is selected according to the present embodiment. That is, according to the present embodiment, the antenna that is less affected by fading is selected.
  • FIG. 10 is a diagram showing an example of RSSI fading fluctuation.
  • the RSSI is not always constant, and if the surrounding environment changes such as interference of surrounding radio waves, the RSSI also fluctuates at least about 10 dBm in time.
  • the slave station corresponding to the lowest RSSI among the RSSIs in the antenna table is specified and specified.
  • the antenna corresponding to the higher communication level is selected. In other words, at least the antenna corresponding to the lowest RSSI among the RSSIs in the antenna table is not selected.
  • an antenna having a high possibility that the slave station can communicate with the communication apparatus 1 is selected based on the slave station having the worst communication condition.
  • the number of established communications for the first antenna 2 and the number of established communications for the second antenna 3 are the same. Even if it is determined that the second antenna 3 which is the antenna with the better communication conditions can be selected with certainty. In other words, even if the RSSI fluctuates over time due to the influence of fading, an optimal antenna is selected for the slave station having a poor radio wave condition, so that it is possible to reduce the slave stations that cannot communicate and realize stable communication. .
  • FIG. 11 is a sequence diagram between the master station and the slave stations A and B in the broadcast transmission process.
  • a plurality of slave stations will be described only for the slave station A and the slave station B, and the same processing is performed for the slave station C and the slave station D, and the description thereof will be omitted.
  • the unicast transmission in step S104 or step S110 described in FIG. 5 from the master station is performed in slave station A, which is one of the plurality of slave stations.
  • the master station receives the ACK from the slave station A.
  • the RSSI when the communication level acquisition unit 8 receives the ACK is acquired, and the antenna table for the slave station A is created or updated as described in step S106 or step S113 of FIG.
  • unicast transmission to the slave station B is performed by the master station, so that the master station receives ACK from the slave station B.
  • the RSSI when the communication level acquisition unit 8 receives the ACK is acquired, and the antenna table for the slave station B is created or updated.
  • the slave station C and the slave station D are similarly subjected to unicast transmission, and by acquiring the RSSI when the ACK is received from each slave station, Antenna tables for station C and slave station D are created or updated.
  • step S300 is performed for all the slave stations.
  • the number of established communications for the first antenna 2 and the communication for the second antenna 3 in step S202 or step S204 in the antenna selection process used for broadcast transmission described in FIG. When it is determined that the number of establishments is the same, a slave station corresponding to the smallest RSSI among all RSSIs stored in the antenna table is specified, and the higher RSSI with respect to the slave station is specified.
  • the corresponding antenna is selected, the present invention is not limited to this. For example, you may make it select the antenna used for broadcast transmission using the flowchart as shown in FIG.
  • FIG. 12 is a flowchart showing a process flow of antenna selection for broadcast transmission in the second embodiment.
  • counting unit 9 further has a maximum level that is the number of a plurality of slave stations with the maximum RSSI with respect to each of first antenna 2 and second antenna 3. Count the number of terminals.
  • the determination unit 10 further determines whether or not the number of maximum level terminals is the same for the first antenna 2 and the second antenna 3 as a result of the counting by the counting unit 9 (S307).
  • the antenna selection unit 12 selects the first antenna 2. (S308).
  • the antenna selection unit 12 selects the second antenna 3. (S309).
  • the antenna selection unit 12 further determines the communication level acquisition unit 8 when the determination unit 10 determines that the maximum number of terminals for the first antenna 2 and the maximum number of terminals for the second antenna 3 are the same.
  • the slave station corresponding to the lowest RSSI among the RSSIs stored in the antenna table acquired by the above is specified, and the RSSI for each of the first antenna 2 and the second antenna 3 of the specified slave station is the highest.
  • An antenna corresponding to a communication level higher than the low communication level is selected as an antenna to be used for broadcast transmission (S310).
  • step S307 is the same as the number of established communications for the first antenna 2 and the number of established communications for the second antenna 3 in step S202 or step S204 in the flowchart of FIG. Is determined instead of performing the process of step S207.
  • the communication device 1 includes two antennas, the first antenna 2 and the second antenna 3, but the present invention can be applied even if there are three or more antennas.
  • FIG. 7 of the first embodiment is as follows.
  • description of the step which performs the same process is abbreviate
  • the count unit 9 counts the number of established communications for each of the plurality of antennas.
  • the determination unit 10 determines whether there are a plurality of antennas with the largest number of established communications counted by the counting unit 9. Then, when the determination unit 10 determines that there are a plurality of antennas with the largest number of established communications, the antenna selection unit 12 replaces the RSSI in the plurality of pairs acquired by the communication level acquisition unit 8 instead of step S207. The slave station corresponding to the lowest RSSI is identified, and the antenna corresponding to the highest RSSI among the RSSIs for each of the plurality of antennas of the identified slave station is selected as an antenna to be used for broadcast transmission.
  • the antenna selecting unit 12 selects the antenna having the largest number of established communications instead of step S205 or step S206.
  • the present invention can also be applied to the case where communication device 1 according to Embodiment 1 includes three or more antennas.
  • the communication device 1 according to the second embodiment may have three or more antennas. In this case, for example, the following is performed. Note that here, only the different parts due to the number of antennas being three or more will be described, and the description of the steps for performing the same processing is omitted.
  • the counting unit 9 further determines that each of the plurality of antennas is connected to the antenna.
  • the number of maximum level terminals which is the number of a plurality of slave stations having the maximum RSSI, is counted.
  • the determination unit 10 further determines whether or not there are a plurality of antennas having the largest number of maximum level terminals as a result of the counting by the counting unit 9.
  • the corresponding slave station is specified at the lowest communication level among the communication levels in the plurality of pairs acquired by the communication level acquisition unit 8, and the specified child
  • the antenna corresponding to the highest communication level in the RSSI for each of the plurality of antennas of the station is selected as the antenna to be used for broadcast transmission.
  • the present invention can also be applied to the case where the communication device 1 according to Embodiment 2 includes three or more antennas.
  • the determination unit 10 determines that there are a plurality of antennas having the largest number of established communications, the slave station corresponding to the lowest RSSI is specified, and the plurality of antennas of the specified slave stations are respectively determined.
  • the antenna corresponding to the highest RSSI among the RSSIs is selected as the antenna to be used for broadcast transmission, not only the antenna corresponding to the highest RSSI is selected but also the RSSI higher than the lowest RSSI is supported. Even if an antenna to be selected is selected, an antenna with good communication conditions can be selected, which is effective in reducing the influence of fading.
  • antenna selection unit 12 receives reception of ACK from each of slave stations A111 to D114 in step S105 or step S112. During this time, the receiving antenna is switched from the first antenna 2 to the second antenna 3. That is, the receiving unit 6 switches the antennas received from the first antenna 2 to the second antenna 3 while receiving one ACK from the slave station. 3 will be used to receive the ACK. For this reason, the communication level acquisition unit 8 can acquire both RSSI from the slave station for the first antenna 2 and RSSI from the slave station for the second antenna 3 while receiving one ACK. it can. Therefore, RSSI for the two antennas 2 and 3 can be acquired without acquiring multiple ACKs from one slave station. For this reason, compared with the case where the antenna is fixed for each ACK and received, the time for acquiring RSSI from each slave station for each of the two antennas 2 and 3 can be shortened.
  • this form is applicable not only when there are two antennas of the communication apparatus 1 but also when there are three or more antennas. That is, the antenna selection unit 12 switches the antenna used for the reception while the reception unit 6 is receiving the ACK from the slave station. And the communication level acquisition part 8 acquires RSSI for every antenna used for the said reception, and stores the acquired RSSI in an antenna table.
  • the communication device 1 may be configured to receive an ACK by fixing each antenna without switching the two antennas 2 and 3. That is, the antenna selection unit 12 receives all of the slave stations A111 to D114 and the two antennas while the reception unit 6 receives ACKs from the slave stations A111 to D114 in step S105 or step S112.
  • the antenna used for the reception is fixed to the first antenna 2 before the measurement of RSSI with one of the two (2) and 3 (here, the first antenna 2) is completed.
  • the RSSI of the slave station A111 to the slave station D114 is still out of the first antenna 2 and the second antenna 3. Is switched to the second antenna 3 that has not been measured.
  • this embodiment can be applied not only when there are two antennas of the communication apparatus 1 but also when there are three or more antennas.
  • the antenna selection unit 12 is receiving the ACK from the slave station while the reception unit 6 is performing reception, and the RSSI between all the slave stations A111 to A270 and one of the plurality of antennas. Until the measurement is completed, the antenna used for the reception is fixed to any one of the plurality of antennas. Thereafter, when the measurement of the reception level at all of the slave stations A111 to D114 is completed for all of the slave stations A111 to D114, the antenna selection unit 12 still has the reception levels of a plurality of other communication devices among the plurality of antennas.
  • the communication level acquisition part 8 acquires RSSI for every antenna used for the said reception, and stores the acquired RSSI in an antenna table.
  • the RSSI measurement related to storing the RSSI in the antenna table includes a trial of measurement because communication is not always guaranteed. That is, even if communication is not established, it is considered that measurement of communication between the slave station and the antenna has been performed.
  • the communication level acquisition unit 8 acquires the RSSI when the reception unit 6 receives the ACK transmitted from each slave station as the communication level, and stores it in the antenna table.
  • it is not limited to acquiring RSSI when ACK transmitted from each slave station is received.
  • the RSSI is measured, and the measured RSSI data is transmitted to the communication device 1 so that the communication device 1 as the master station can receive the RSSI. You may make it acquire. In this case, it is necessary for the master station or the slave station to store the antenna used by the master station for unicast transmission.
  • the RSSI when the communication apparatus 1 receives the ACK transmitted from the slave station as a result of the unicast transmission to acquire the RSSI for creating the antenna table.
  • the RSSI when an ACK transmitted from each slave station during broadcast transmission is received.
  • the ACK is not transmitted from each slave station at the time of broadcast transmission. In the case of a configuration that can process an ACK from the ACK, even a configuration in which an ACK is received at the time of broadcast transmission is established.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the software that realizes the image decoding apparatus of each of the above embodiments is the following program.
  • this program is a communication method of a communication device that performs data communication with a plurality of other communication devices by wireless communication with a computer, and the communication device includes a plurality of antennas that transmit and receive radio waves related to the wireless communication.
  • the communication method is a combination of each of the plurality of antennas and each of the plurality of other communication apparatuses when the communication apparatus performs the wireless communication with the plurality of other communication apparatuses.
  • the other communication device corresponding to the level is specified, and the antenna corresponding to the communication level higher than the lowest communication level among the communication levels for the plurality of antennas of the specified other communication device is broadcast.
  • An antenna selection step for selecting as an antenna to be used for the transmission, and a transmission step for broadcasting predetermined data to the plurality of other communication devices using the antenna selected in the antenna selection step is executed. .
  • each of the above devices can be realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
  • a part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration).
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, ROM, RAM, and the like. .
  • a computer program is stored in the ROM.
  • the system LSI achieves its functions by the microprocessor loading a computer program from the ROM to the RAM and performing operations such as operations in accordance with the loaded computer program.
  • Part or all of the constituent elements constituting each of the above devices may be configured from an IC card or a single module that can be attached to and detached from each device.
  • the IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be realized by the method described above. Further, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
  • the present invention also relates to a computer readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray (registered trademark)). ) Disc), or recorded in a semiconductor memory or the like. Moreover, you may implement
  • a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention is also a computer system including a microprocessor and a memory.
  • the memory stores a computer program, and the microprocessor may operate according to the computer program.
  • program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
  • the present invention is useful as a communication device having a plurality of antennas in a wireless communication network that can increase the number of other communication devices that can perform wireless communication with a communication device.

Abstract

親局が子局にブロードキャスト送信する場合において、親局と子局との間でより安定確実の通信することを目的とする。複数の子局と無線通信によりデータ通信を行う通信装置(1)であって、複数のアンテナ(2、3)と、通信装置が複数の子局A~Dと無線通信を行ったときのアンテナとの複数の対における通信レベルを取得する通信レベル取得部(8)と、複数のアンテナのそれぞれについて、当該アンテナが無線通信を確立できた子局の数である通信確立数をカウントするカウント部(9)と、通信確立数が最多のアンテナが複数ある場合に、最も低い通信レベルに対応する子局のアンテナのそれぞれに対する通信レベルの中で最も高い通信レベルに対応するアンテナを選択するアンテナ選択部(12)と、選択されたアンテナを用いて複数の子局に所定のデータをブロードキャスト送信する送信部(5)と、を備える。

Description

通信装置および通信方法
 本発明は、無線通信における送信ダイバーシチ方法における、データの送信時のアンテナの選択方法に関する。
 近年、従来の有線通信に加えて、より利便性の高い無線通信が注目されている。無線通信において、通信エリアの拡大または干渉波の影響の抑制などを目的として、アンテナを複数搭載し、搭載した複数のアンテナを使用して通信する技術がある(ダイバーシチ技術)。
 このような複数のアンテナを持つ親局と複数台の子局とで構成されたネットワークにおいて、親局は、複数台の子局にデータをブロードキャスト送信する時に、複数あるアンテナの中からデータを子局へブロードキャスト送信するためのアンテナを選択する必要がある。ブロードキャスト送信の場合におけるアンテナ選択する従来の方法としては、親局の複数のアンテナのそれぞれについて、当該アンテナで親局に受信されるデータ(信号)の誤りの数を検出し、複数のアンテナのうち誤りの数が少ないアンテナを選択するものがある(特許文献1参照)。
特許第3019147号公報
 しかしながら、特許文献1の方法では、通信レベルの低い子局に対して最適なアンテナが選択されず、通信不能になる子局が発生する可能性がある。
 本発明は、前記従来の課題を解決するもので、親局が子局にブロードキャスト送信する場合において、親局と子局との間でより安定確実に通信することを目的とする。
 前記従来の課題を解決するために、本発明の通信装置は、複数の他の通信装置と無線通信によりデータ通信を行う通信装置であって、前記無線通信に係る電波を送受信する複数のアンテナと、前記通信装置が前記複数の他の通信装置と前記無線通信を行ったときの前記複数のアンテナのそれぞれと、前記複数の他の通信装置のそれぞれとの組み合わせである複数の対における通信レベルを取得する通信レベル取得部と、前記複数のアンテナのそれぞれについて、当該アンテナが前記無線通信を確立できた前記他の通信装置の数である通信確立数をカウントするカウント部と、前記カウント部によりカウントされた前記通信確立数が最多であるアンテナが複数あるか否かを判定する判定部と、前記通信確立数が最多であるアンテナが複数あると前記判定部により判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で前記最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択するアンテナ選択部と、前記アンテナ選択部で選択されたアンテナを用いて前記複数の他の通信装置に所定のデータをブロードキャスト送信する送信部と、を備える。
 これによれば、複数のアンテナのうちで通信確立数が互いに同数である場合に、通信レベル取得部により取得された複数の対の全てにおける通信レベルのうちで最低の通信レベルに対応する他の通信装置を特定し、特定した他の通信装置に対応する複数の対における通信レベルのうちの大きい方のRSSIに対応する方のアンテナを選択する。つまり、通信レベル取得部により取得された複数の対における通信レベルのうちで最低の通信レベルに対応するアンテナを少なくとも選択しない。また、最低の通信レベルに対応する子局に注目するため、通信装置に対して最も通信条件の悪い他の通信装置を基準に当該他の通信装置が通信できる可能性の高いアンテナを選択することになる。このように、最も通信条件の悪い子局に対して、通信条件のよい方のアンテナを選ぶため、例えば、複数のアンテナのうちの一つに対する通信確立数と複数のアンテナのうちの他の一つのアンテナに対する通信確立数とが同数であると判定された場合であっても、より通信条件のよい方のアンテナを確実に選択することができる。つまり、フェージングの影響により、RSSIが時間的に変動しても、電波状態が悪い子局にとって最適なアンテナが選択されるため、通信不能の子局を減らすことができ、安定した通信を実現することができる。これにより、通信装置と無線通信を行うことが可能な他の通信装置の数を多くすることができる。
 なお、これらの全般的または具体的な態様は、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本発明の通信装置は、通信装置と無線通信を行うことが可能な他の通信装置の数を多くすることができる。
図1は、本発明の実施の形態1に係るシステム構成の一例を示す図である。 図2は、本発明の実施の形態1に係るシステム構成の具体的な適用例を示す図である。 図3は、本発明の実施の形態1における通信装置の機能ブロック構成の一例を示す図である。 図4は、本発明の実施の形態1におけるブロードキャスト送信の処理の流れを示すフローチャートである。 図5は、本発明の実施の形態1におけるアンテナテーブルの作成処理の流れを示すフローチャートである。 図6は、本発明の実施の形態1におけるユニキャスト送信のアンテナ選択の処理の流れを示すフローチャートである。 図7は、本実施の形態1におけるブロードキャスト送信のアンテナ選択の処理の流れを示すフローチャートである。 図8は、アンテナテーブルの一例を示す図であり、図8の(a)は、第一アンテナ2と第二アンテナ3とで、通信確立数が異なる場合を示し、図8の(b)は、第一アンテナ2と第二アンテナ3とで通信確立数が同じである場合を示す。 図9の(a)は、アンテナテーブルの一例を示す図であり、図9の(b)は、第一アンテナ2を選択し、かつ、-5dBmのフェージングが発生した場合の通信判定を示す図であり、図9の(c)は、第二アンテナ3を選択し、かつ、-5dBmのフェージングが発生した場合の通信判定を示す図である。 図10は、RSSIのフェージング変動の一例を示す図である。 図11は、ブロードキャスト送信の処理における親局と子局Aおよび子局Bとの間のシーケンス図である。 図12は、実施の形態2におけるブロードキャスト送信のアンテナ選択の処理の流れを示すフローチャートである。
 (本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した、通信装置に関し、以下の問題が生じることを見出した。
 特許文献1に記載の通信装置は、上述したようにブロードキャスト送信の場合のアンテナの選択方法について記載されており、親局が受信したデータの誤りをアンテナごとに検出し、データの誤りが少なかったアンテナを判定して選択している。
 しかしながら、特許文献1の方法では、複数のアンテナにおいて誤りの数が同数の場合のアンテナ選択方法については明記されていない。このため、最も通信レベルが低い子局に対して最適なアンテナが選択されない場合があり、その場合にそのような子局は通信不能になる可能性がある。
 このような問題を解決するために、本発明の一態様に係る通信装置は、複数の他の通信装置と無線通信によりデータ通信を行う通信装置であって、前記無線通信に係る電波を送受信する複数のアンテナと、前記通信装置が前記複数の他の通信装置と前記無線通信を行ったときの前記複数のアンテナのそれぞれと、前記複数の他の通信装置のそれぞれとの組み合わせである複数の対における通信レベルを取得する通信レベル取得部と、前記複数のアンテナのそれぞれについて、当該アンテナが前記無線通信を確立できた前記他の通信装置の数である通信確立数をカウントするカウント部と、前記カウント部によりカウントされた前記通信確立数が最多であるアンテナが複数あるか否かを判定する判定部と、前記通信確立数が最多であるアンテナが複数あると前記判定部により判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で前記最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択するアンテナ選択部と、前記アンテナ選択部で選択されたアンテナを用いて前記複数の他の通信装置に所定のデータをブロードキャスト送信する送信部と、を備える。
 これによれば、複数のアンテナのうちで通信確立数が互いに同数である場合に、通信レベル取得部により取得された複数の対の全てにおける通信レベルのうちで最低の通信レベルに対応する他の通信装置を特定し、特定した他の通信装置に対応する複数の対における通信レベルのうちの大きい方のRSSIに対応する方のアンテナを選択する。つまり、通信レベル取得部により取得された複数の対における通信レベルのうちで最低の通信レベルに対応するアンテナを少なくとも選択しない。また、最低の通信レベルに対応する子局に注目するため、通信装置に対して最も通信条件の悪い他の通信装置を基準に当該他の通信装置が通信できる可能性の高いアンテナを選択することになる。このように、最も通信条件の悪い子局に対して、通信条件のよい方のアンテナを選ぶため、例えば、複数のアンテナのうちの一つに対する通信確立数と複数のアンテナのうちの他の一つのアンテナに対する通信確立数とが同数であると判定された場合であっても、より通信条件のよい方のアンテナを確実に選択することができる。つまり、フェージングの影響により、RSSIが時間的に変動しても、電波状態が悪い子局にとって最適なアンテナが選択されるため、通信不能の子局を減らすことができ、安定した通信を実現することができる。これにより、通信装置と無線通信を行うことが可能な他の通信装置の数を多くすることができる。
 また、例えば、前記アンテナ選択部は、前記通信確立数が最多であるアンテナが複数ないと前記判定部により判定された場合に、前記通信確立数が最多であるアンテナを選択してもよい。
 また、例えば、前記アンテナ選択部は、前記通信確立数が最多であるアンテナが複数あると前記判定部により判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で最も高い通信レベルのアンテナを選択してもよい。
 これによれば、最も高い通信レベルのアンテナを選択するため、少なくとも通信装置に対して最も通信条件の悪い他の通信装置の通信条件を、できる限り通信条件のよいアンテナと通信させることができる。
 また、例えば、さらに、前記複数のアンテナのうちのいずれかを用いて前記他の通信装置からデータを受信する受信部を備え、前記送信部は、前記他の通信装置のそれぞれに前記複数のアンテナのうちのいずれかのアンテナを用いてデータをユニキャスト送信し、前記受信部は、前記送信部によりユニキャスト送信されたデータを前記他の通信装置が受信した場合に当該他の通信装置から送信される応答情報を前記複数のアンテナのうちのいずれかのアンテナを用いて受信し、前記通信レベル取得部は、前記応答情報が前記受信部により受信されたときの受信レベルを前記通信レベルとして取得してもよい。
 また、例えば、前記アンテナ選択部は、前記他の通信装置から前記応答情報の受信を前記受信部が行っている間に、当該受信に使用するアンテナの切替えを行い、前記通信レベル取得部は、当該受信に使用した前記アンテナごとの前記受信レベルを前記通信レベルとして取得してもよい。
 また、例えば、前記アンテナ選択部は、前記他の通信装置から前記応答情報の受信を前記受信部が行っている間であって、前記複数の他の通信装置のすべてと前記複数のアンテナのうちの一つとの間の受信レベルの測定が完了するまで、当該受信に使用するアンテナを前記複数のアンテナのうちのいずれか一つに固定し、前記複数の他の通信装置のすべてについて、当該アンテナでの受信レベルの測定が完了した場合、前記複数のアンテナのうち、まだ前記複数の他の通信装置との受信レベルの測定が完了していないアンテナへの切替えを行い、前記通信レベル取得部は、当該受信に使用した前記アンテナごとの前記受信レベルを前記通信レベルとして取得してもよい。
 また、例えば、さらに、記憶部を備え、前記通信レベル取得部は、取得した前記通信レベルを、前記複数のアンテナごと、および、前記複数の他の通信装置ごとに対応付けたアンテナテーブルとして前記記憶部に記憶させ、前記カウント部は、前記アンテナテーブルに前記通信レベルが記録されている前記複数のアンテナごとの前記他の通信装置の数を前記通信確立数としてカウントしてもよい。
 また、例えば、前記通信レベル取得部は、さらに、前記受信部が前記応答情報を受信する度に、前記記憶部に記憶されている前記アンテナテーブルを更新し、前記アンテナ選択部は、前記更新された後のアンテナテーブルを用いて前記複数のアンテナの中から前記ブロードキャスト送信に使用するアンテナを選択してもよい。
 また、例えば、前記カウント部は、さらに、前記複数のアンテナのそれぞれについて、当該アンテナとの通信レベルが最大である前記複数の他の通信装置の数である最大レベル端末数をカウントし、前記判定部は、さらに、前記カウント部によるカウントの結果、前記最大レベル端末数が最多であるアンテナが複数あるか否かを判定し、前記アンテナ選択部は、前記通信確立数が最多であるアンテナが複数あると前記判定部により判定された場合であって、前記最大レベル端末数が最多であるアンテナが複数あると前記判定部により判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で前記最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択してもよい。
 また、例えば、前記アンテナ選択部は、前記最大レベル端末数が最多であるアンテナが複数ないと前記判定部により判定された場合に、前記最大レベル端末数が最多であるアンテナを選択してもよい。
 なお、これらの全般的または具体的な態様は、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 以下本発明の実施の形態について、図面を参照しながら説明する。
 なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 実施の形態1において、2本の通信アンテナを備え、複数の他の通信装置である複数の子局への無線通信によるブロードキャスト送信時に、ブロードキャスト送信に係る適切なアンテナを選択する通信装置について説明する。無線通信規格の一例は、IEEE802.15.4である。また、本発明は他の無線通信規格に適用することが可能である。
 図1は、本実施の形態1に係るシステム構成の一例を示す図である。
 図1に示されるシステムは、親局101と、子局A111と、子局B112と、子局C113と、子局D114とを備える。親局101は、子局A111、子局B112、子局C113および子局D114と無線通信によりデータ通信を行う。子局A111~子局D114はアンテナを1つだけ有する構成であってもよいし、アンテナを複数有する構成であってもよい。親局101は、本発明の一態様に係る通信装置の一例である。また、子局A111~子局D114は、複数の他の通信装置の一例である。
 図2は、実施の形態1に係るシステム構成の具体的な適用例を示す図である。
 図2に示されるシステム200は、一般家庭に構築される家庭内ネットワーク210であって、親局220と、太陽光発電機230と、蓄電池240と、燃料電池250と、エアコン260と、テレビ270とを備える。太陽光発電機230、蓄電池240、燃料電池250、エアコン260およびテレビ270のそれぞれの家電は、無線通信機能を有する子局(他の通信装置)の一例である。
 図3は、本実施の形態1に係る通信装置の機能ブロック構成の一例を示す図である。
 図3に示されるように、本実施の形態1に係る通信装置1は、複数のアンテナ2、3と、切替部4と、送信部5と、受信部6と、記憶部7と、通信レベル取得部8と、カウント部9と、判定部10と、アンテナ制御部11とを備える。
 複数のアンテナ2、3は、第一アンテナ2および第二アンテナ3であり、それぞれが無線通信に係る電波を送受信する。
 切替部4は、後述するアンテナ制御部11による制御信号に応じて、第一アンテナ2および第二アンテナ3のいずれか一方を選択し、かつ、送信部5および受信部6のいずれか一方を選択する。つまり、切替部4は、送信部5による送信および受信部6による受信のいずれかの場合において、第一アンテナ2および第二アンテナ3のいずれか一方を、アンテナ制御部11による制御信号に応じて切り換える切替スイッチである。なお、切替部4は、本実施の形態1では、送信部5による送信と、受信部6による受信とが同時にできない構成であるが、第一アンテナ2および第二アンテナ3の一方を送信用のアンテナとなるように切り換え、他方を受信用のアンテナとなるように切り換えることで、送信部5による送信と、受信部6による受信とが同時にできるような構成としてもよい。
 送信部5は、アンテナ制御部11による制御信号に応じて切替部4により選択された第一アンテナ2および第二アンテナ3のうちのいずれか一方を用いて、子局である太陽光発電機230と、蓄電池240と、燃料電池250と、エアコン260と、テレビ270との全てに所定のデータをブロードキャスト送信する。ここで、送信部5がブロードキャスト送信する所定のデータとは、例えば、無線通信に係る周波数チャネルを変更するときに使用されるデータであり、周波数チャネルの変更を指示するためのデータである。この場合、送信部5は、例えば、使用していた周波数チャネルの通信状態が悪いと判定されたとき、または、ユーザによる周波数チャネルの変更の指示を受け付けたときに所定のデータとして周波数チャネルの変更を指示するためのデータを全子局230~270にブロードキャスト送信する。つまり、送信部5は、アンテナ選択部12(後述参照)で選択されたアンテナを用いて複数の他の通信装置に所定のデータをブロードキャスト送信する。
 また、送信部5は、アンテナ制御部11による制御信号に応じて切替部4により選択されたアンテナを用いて、子局である太陽光発電機230と、蓄電池240と、燃料電池250と、エアコン260と、テレビ270とのそれぞれに所定のデータをユニキャスト送信する。送信部5がユニキャスト送信するデータは、例えば、太陽光発電機230、蓄電池240、燃料電池250、エアコン260、およびテレビ270の各子局の電源のON/OFFを制御するためのデータ、各子局において使用された電力消費量を示すデータの送信を要求するためのデータなどである。これらのデータは、データの種類に応じて、ユーザからの指示を受け付けた場合、データ送信の必要が生じた場合、予め定められたタイミングに到達した場合などに、各子局にユニキャスト送信する。つまり、送信部5は、他の通信装置のそれぞれに第一アンテナ2および第二アンテナ3のうちのいずれかのアンテナを用いてデータをユニキャスト送信する。
 受信部6は、アンテナ制御部11による制御信号に応じて切替部4により選択された第一アンテナ2および第二アンテナ3のうちのいずれか一方を用いて、各子局230~270からデータを受信する。具体的には、受信部6は、例えば、送信部5によりユニキャスト送信されたデータを子局が受信した場合に当該子局から送信される応答情報であるACK(Acknowledgement)を第一アンテナ2および第二アンテナ3のうちのいずれか一方のアンテナを用いて受信する。もちろん、受信部6は、ACKの他にも送信部5が送信したデータが例えば電力消費量を要求するデータであれば、当該要求に対する応答として子局から送信される電力消費量を示すデータを受信する。つまり、受信部6は、複数のアンテナ2、3のうちのいずれかを用いて他の通信装置からデータを受信する。
 記憶部7は、通信レベル取得部8により取得された受信レベルを、複数のアンテナ2、3ごと、および、複数の子局230~270ごとに対応付けたアンテナテーブルとして記憶する。
 通信レベル取得部8は、子局230~270のそれぞれから送信されたACKが受信部6により受信されたときの受信レベルを示すRSSI(Received Signal Strength Indication)を複数のアンテナ2、3ごとに取得する。つまり、通信レベル取得部8は、図4に示すような第一アンテナ2および第二アンテナ3のそれぞれと、複数の子局230~270のそれぞれとの組み合わせである複数の対のそれぞれにおける通信により取得されたRSSIを取得する。そして、通信レベル取得部8は、取得した複数の対のそれぞれにおける通信でのRSSIを、複数のアンテナ2、3ごと、および、複数の子局230~270ごとに対応付けたアンテナテーブルとして記憶部7に記憶させる。また、通信レベル取得部8は、さらに、受信部6がACKを受信する度に、記憶部7に記憶されているアンテナテーブルを更新する。
 カウント部9は、第一アンテナ2および第二アンテナ3のそれぞれについて、通信確立数をカウントする。ここで、通信確立数とは、一つのアンテナが無線通信を確立できた子局の数である。つまり、例えば、通信装置1が第一アンテナ2を使用して無線通信を確立できた子局が太陽光発電機230と、燃料電池250と、テレビ270との3つの子局である場合には、第一アンテナ2の通信確立数は3となる。カウント部9は、記憶部7に記憶されているアンテナテーブルにRSSIの数値が記録されている子局の数を、第一アンテナ2および第二アンテナ3ごとに通信確立数としてカウントする。つまり、カウント部9は、アンテナテーブルにRSSIの数値が記録されていれば、RSSIの取得に係る通信が確立されたとみなす。なお、カウント部9は、上記のようにアンテナテーブルにRSSIが記録されていることを通信確立数としてカウントすることに限らずに、各アンテナ2、3と各子局230~240との通信が確立したことをカウントしてアンテナテーブルとは別に記憶部7に記憶させるようにしてもよい。
 判定部10は、カウント部9によりカウントされた通信確立数が最多であるアンテナが複数あるか否かを判定する。つまり、判定部10は、通信確立数が最多であるアンテナが一つのアンテナに絞り込めない場合があるか否かを判定している。
 アンテナ制御部11は、通信確立数が最多であるアンテナが複数あると判定部10により判定された場合に、記憶部7に記憶されているアンテナテーブルに格納されているRSSIのうちで最も低いRSSIに対応する子局を特定する。そして、特定した子局の複数のアンテナ2、3のそれぞれに対するRSSIのうちで高いRSSIが取得されたアンテナを選択して当該アンテナを選択したことを示すアンテナ選択情報を保持する。アンテナ制御部11は、送信部5がブロードキャスト送信を行うときに、ブロードキャスト送信のためのアンテナの選択を行う制御信号を送信部5から受け、保持していたアンテナ選択情報が示すアンテナを選択するための制御信号を切替部4に送信する。つまり、通信装置1では、ブロードキャスト送信に使用するためのアンテナを第一アンテナ2および第二アンテナ3のいずれにするかを、アンテナテーブルに基づいてブロードキャスト送信を行う前に予め決定している。なお、切替部4とアンテナ制御部11とを合わせた機能は、アンテナ選択部12としての機能である。つまり、アンテナ制御部11は、上記の制御信号を切替部4に送信し、切替部4は当該制御信号を受けてアンテナの切り替えを行うことにより、アンテナ選択部12としての機能であるアンテナの選択を行っている。なお、アンテナテーブルは上述したように通信レベル取得部8により更新されるため、アンテナ選択部12は、更新された後の最新のアンテナテーブルを用いてアンテナの選択を行う。また、アンテナ制御部11は、通信確立数が最多であるアンテナが複数ないと判定部10により判定された場合に、通信確立数が最多であるアンテナを選択する。
 図4は、本発明の実施の形態1におけるブロードキャスト送信の処理の流れを示すフローチャートである。
 まず、通信装置1は、ブロードキャスト送信を行うときに、ブロードキャスト送信に使用するアンテナを選択するためのアンテナテーブルを作成する(S100)。アンテナテーブルの作成処理の詳細は、図5を用いて後述する。
 次に、作成されたアンテナテーブルに基づいて、ブロードキャスト送信に使用するアンテナとして第一アンテナ2および第二アンテナ3のいずれか一方を選択する(S200)。ブロードキャスト送信のアンテナ選択の処理の詳細は、図7を用いて後述する。
 最後に、選択されたアンテナを用いて複数の子局230~270に所定のデータをブロードキャストで送信し(S300)、当該処理を終了する。
 図5は、本発明の実施の形態1におけるアンテナテーブルの作成処理の流れを示すフローチャートである。
 アンテナテーブルの作成処理は、上述したように、各子局230~270へのユニキャスト送信を行ったときに、当該ユニキャスト送信によるデータが無事に各子局230~270により受信されたことを示すACKを各子局230~270から受信したときのRSSIを通信レベル取得部8が取得することにより行われる処理である。
 まず、ユニキャスト送信を行う対象となる子局からのACKを受信したときのRSSIを示す情報が、記憶部7に記憶されているアンテナテーブルにあるか否かを送信部5が判定する(S101)。
 アンテナテーブルにRSSIを示す情報があると送信部5により判定されれば(S101:Yes)、アンテナテーブルに基づいて、第一アンテナ2および第二アンテナ3のうちで当該子局についての最適なアンテナをアンテナ選択部12が選択する(S102)。つまり、アンテナ制御部11が第一アンテナ2および第二アンテナ3のうちの一方の最適なアンテナを選択し、送信部5と選択されたアンテナとを接続するための制御信号を切替部4に送信し、切替部4に送信部5と選択されたアンテナとを接続させる。なお、このときのアンテナテーブルに基づく最適なアンテナを選択するための処理の詳細は、図6を用いて説明する。
 図6は、本発明の実施の形態1におけるユニキャスト送信のアンテナ選択の処理の流れを示すフローチャートである。つまり、図6は、ステップS102のユニキャスト送信を行うときのアンテナ選択の処理について詳細に説明するための図である。
 まず、記憶部7に記憶されているアンテナテーブルを参照する(S121)。
 次に、ユニキャスト送信の対象となる子局(つまり、送信宛先の端末)に対する第一アンテナ2(図6では、「ANT1」と表記)でACKを受信したときのRSSI(以下、「RSSI1」と表記)、および、第二アンテナ3(図6では、「ANT2」と表記)でACKを受信したときのRSSI(以下、「RSSI2」と表記)を参照する(S122)。
 そして、RSSI1がRSSI2以上であるか否かを判定する(S123)。
 RSSI1がRSSI2以上であると判定されれば(S123:Yes)、第一アンテナ2を選択する(S124)。RSSI1がRSSI2未満であると判定されれば(S123:No)、第二アンテナ3を選択する(S125)。
 ステップS124またはステップS125が行われれば、ユニキャスト送信のアンテナ選択の処理を終了する。
 図5に戻り、アンテナテーブルにRSSIを示す情報が無いと送信部5により判定されれば(S101:No)、アンテナ選択部12がデフォルト値として予め設定されている第一アンテナ2(図5では、「ANT1」と表記する)を選択する(S103)。
 そして、ステップS102またはステップS103において選択されたアンテナを用いて、送信部5が、対象となる子局へユニキャスト送信を行う(S104)。ユニキャスト送信のときに親局である通信装置1から各子局230~270へ送信されるデータは、既に上述したとおりである。
 次に、ステップS104において行ったユニキャスト送信の対象となった子局からのACKを受信部6が受信したか否かを、通信レベル取得部8が判定する(S105)。
 ACKを受信部6が受信したと判定されれば(S105:Yes)、ACKを受信したときのRSSIを通信レベル取得部8が取得し、ACKを送信した子局およびACKを受信したアンテナに対応するアンテナテーブルの該当箇所(セル)に格納することにより、アンテナテーブルを作成または更新する(S106)。
 ACKを受信部6が受信していないと判定されれば(S105:No)、ステップS104において行ったユニキャスト送信の再送設定があるか否かが判定される(S107)。
 再送設定がないと判定されれば(S107:No)、ACKが取得できなかったことを示すエラー通知を行う(S108)。
 再送設定があると判定されれば(S107:Yes)、前回のユニキャスト送信のときに選択したアンテナではないアンテナ(他方のアンテナ)をアンテナ選択部12が選択する(S109)。
 ステップS109において選択されたアンテナを使用して、ユニキャスト送信の再送信が送信部5により行われる(S110)。
 再送信が行われた後で、再送信を行った回数を示す再送回数のカウントを一つ増やす(S111)。
 そして、ステップS110において行ったユニキャスト送信の対象となった子局からのACKを受信部6が受信したか否かを、通信レベル取得部8が判定する(S112)。
 ACKを受信部6が受信したと判定されれば(S112:Yes)、ステップS106と同様に、ACKを受信したときのRSSIを通信レベル取得部8が取得し、ACKを送信した子局およびACKを受信したアンテナに対応するアンテナテーブルの該当箇所(セル)に格納することにより、アンテナテーブルを作成または更新する(S113)。
 ACKを受信部6が受信していないと判定されれば(S112:No)、再送回数が予め定められたN回(例えば、2回)以上であるか否かを判定する(S114)。
 再送回数が予め定められたN回以上であると判定されれば(S114:Yes)、ステップS108のエラー通知を行う。再送回数が予め定められたN回未満であると判定されれば(S114:No)、ステップS109に戻る。
 ステップS106およびステップS113におけるアンテナテーブルの作成または更新か、ステップS108におけるエラー通知かのいずれかが行われれば、一つの子局に対するアンテナテーブル作成処理を終了する。
 なお、アンテナテーブル作成処理は、各子局230~270へのユニキャスト送信が行われる度におこなわれ、アンテナテーブルは常に最新のRSSIに更新される。
 図7は、本実施の形態1におけるブロードキャスト送信のアンテナ選択の処理の流れを示すフローチャートである。つまり、図7は、ステップS200のブロードキャスト送信のアンテナ選択の処理について詳細に説明するための図である。
 まず、記憶部7に記憶されているアンテナテーブルを参照する(S201)。
 次に、第一アンテナ2および第二アンテナ3のうちで通信NGのアンテナがあるか否かを判定部10が判定する(S202)。
 カウント部9は、第一アンテナ2(図7では「ANT1」と表記)と第二アンテナ3(図7では「ANT2」と表記)とのそれぞれに対して通信OKである子局の数をカウントする(S203)。つまり、カウント部9は、複数のアンテナ2、3のそれぞれについて、無線確立数をカウントする。
 判定部10は、第一アンテナ2に対する通信確立数と、第二アンテナ3に対する通信確立数との比較を行う(S204)。つまり、第一アンテナ2に対する通信確立数と、第二アンテナに対する通信確立数とのいずれが多いか否か、または同数であるかを判定する。
 第一アンテナ2に対する通信確立数が第二アンテナ3に対する通信確立数よりも多いと判定部10により判定された場合(S204:ANT1>ANT2)、アンテナ選択部12は第一アンテナ2を選択する(S205)。
 第一アンテナ2に対する通信確立数が第二アンテナ3に対する通信確立数よりも少ないと判定部10により判定された場合(S204:ANT1<ANT2)、アンテナ選択部12は第二アンテナ3を選択する(S206)。
 第一アンテナ2に対する通信確立数が第二アンテナ3に対する通信確立数と同数であると判定部10により判定された場合(S204:ANT1=ANT2)、または、第一アンテナ2および第二アンテナ3のうちで通信NGのアンテナがないと判定部10により判定された場合(S202:No)、アンテナテーブル内のRSSIの中で最小値に対応する子局を探索し、当該子局に対応するRSSIの中で高い方のRSSIに対応するアンテナを選択する(S207)。なお、ステップS202で「No」と判定される場合は、第一アンテナ2に対する通信確立数が子局の数(つまり最多数)であり、第二アンテナ3に対する通信確立数が子局の数(つまり最多数)となるため、ともに通信確立数が同数となる。つまり、ステップS204において、第一アンテナ2に対する通信確立数が第二アンテナ3に対する通信確立数と同数であると判定部10により判定される場合と条件は同じである。このため、図7に示すフローチャートは、ステップS202を省略してもよい。
 図8は、アンテナテーブルの一例を示す図であり、図8の(a)は、第一アンテナ2と第二アンテナ3とで、通信確立数が異なる場合を示し、図8の(b)は、第一アンテナ2と第二アンテナ3とで通信確立数が同じである場合を示す。
 図8の(a)に示すように、例えば、通信装置1(親局)が子局A111から送信されたACKを第一アンテナ2で受信したときの受信レベルであるRSSIが-93dBmであることを示しており、第二アンテナ3では受信できなかったことを示している。同様に、子局B112に対して、第一アンテナ2により受信されたときのRSSIは-80dBmであり、第二アンテナ3により受信されたときのRSSIは-70dBmであることを示している。子局C113に対して、第一アンテナ2により受信されたときのRSSIは-85dBmであり、第二アンテナ3により受信されたときのRSSIは-80dBmであることを示している。子局D114に対して、第一アンテナ2により受信されたときのRSSIは-75dBmであり、第二アンテナ3により受信されたときのRSSIは-60dBmであることを示している。このように、子局A111からのACKが第二アンテナ3で受信することができず、他の子局B112~子局D114からのACKは、第一アンテナ2および第二アンテナ3で受信できていることになる。
 このような場合には、図7のフローチャートのステップS203において、第一アンテナ2に対する通信確立数が「4」、第二アンテナ3に対する通信確立数が「3」とカウント部9によりカウントされる。このため、ステップS204において、第一アンテナ2に対する通信確立数の方が、第二アンテナ3に対する通信確立数よりも多いと判定部10により判定され、ステップS205に進み、第一アンテナ2がブロードキャスト送信のアンテナとして選択されることになる。
 一方で、図8の(b)に示すように、例えば、図8の(a)で検出されなかったRSSIが検出された場合には、次のようにアンテナが選択される。つまり、通信装置1が子局A111から送信されたACKを第二アンテナ3で受信したときのRSSIが-80dBmと検出された場合を考える。このような場合には、図7のフローチャートのステップS202において、第一アンテナ2および第二アンテナ3のうちで通信NGのアンテナがないと判定部10により判定され、ステップS207に進む。ステップS202が省略されるフローの場合には、ステップS204において第一アンテナ2に対する通信確立数と第二アンテナ3に対する通信確立数とが同数であると判定部10により判定され、ステップS207に進む。
 そして、ステップS207において、アンテナテーブルの8つの数値のうちで最小のRSSIである-93dBmに対応する子局A111に対して高い方のRSSIである-80dBmに対応する第二アンテナ3が選択されることになる。
 図9の(a)はアンテナテーブルの一例を示す図であり図8の(b)と同じアンテナテーブルである。図9の(b)は第一アンテナ2を選択し、かつ、-5dBmのフェージングが発生した場合の通信判定を示す図であり、図9の(c)は第二アンテナ3を選択し、かつ、-5dBmのフェージングが発生した場合の通信判定を示す図である。
 通信装置1は、RSSIが-94dBm未満では受信することができずに、-94dBm以上で受信できるとする。図9の(b)に示すように、第一アンテナ2を選択した場合で、-5dBmのフェージングが発生したとき、すべての子局A111~子局D114においてRSSIが-94dBm未満となるため、すべての子局A111~子局D114との通信が不可となる。しかし、図9の(c)に示すように、第二アンテナ3を選択した場合で、同様に、-5dBmのフェージングが発生したときであっても、すべての子局A111~子局D114においてRSSIが-94dBm以上となるため、すべての子局A111~子局D114との通信が可能なままとなる。図9の(a)は、図8の(b)と同じアンテナテーブルであるため、本実施の形態によれば、第二アンテナ3が選択されることになる。つまり、本実施の形態によれば、よりフェージングの影響を受けない方のアンテナが選択されることになる。
 図10は、RSSIのフェージング変動の一例を示す図である。
 同図に示すように、RSSIは、常に一定ではなく、周辺の電波の干渉など周辺環境が変化すればRSSIも時間的に少なくともおよそ10dBm単位で変動する。
 本実施の形態に係る通信装置1によれば、2つのアンテナのうちで通信確立数が互いに同数である場合に、アンテナテーブルのRSSIのうちで最低のRSSIに対応する子局を特定し、特定した子局に対応する複数の対のRSSIのうち大きい通信レベルに対応する方のアンテナを選択する。つまり、アンテナテーブルのRSSIのうちで最低のRSSIに対応するアンテナを少なくとも選択しない。また、最低のRSSIに対応する子局に注目するため、通信装置1に対して最も通信条件の悪い子局を基準に当該子局が通信できる可能性の高いアンテナを選択することになる。このように、最も通信条件の悪い子局に対して、通信条件のよい方のアンテナを選ぶため、例えば、第一アンテナ2に対する通信確立数と第二アンテナ3に対する通信確立数とが同数であると判定された場合であっても、より通信条件のよい方のアンテナである第二アンテナ3を確実に選択することができる。つまり、フェージングの影響により、RSSIが時間的に変動しても、電波状態が悪い子局にとって最適なアンテナが選択されるため、通信不能の子局を減らし、安定した通信を実現することができる。
 図11は、ブロードキャスト送信の処理における親局と子局Aおよび子局Bとの間のシーケンス図である。ここでは、複数の子局を子局Aおよび子局Bについてのみ説明し、子局Cおよび子局Dについては同様の処理が行われるため省略する。
 図11に示すように、親局から図5で説明したステップS104またはステップS110のユニキャスト送信が複数の子局の1つである子局A行われる。子局Aへのユニキャスト送信が行われることにより子局AからのACKを親局は受信する。このときに親局では、通信レベル取得部8によりACKを受信したときのRSSIが取得され、図5のステップS106またはステップS113で説明したように子局Aに対するアンテナテーブルが作成または更新される。次に、子局Bへのユニキャスト送信が親局により行われることにより、子局BからのACKを親局は受信する。このときも親局では、通信レベル取得部8によりACKを受信したときのRSSIが取得され、子局Bに対するアンテナテーブルが作成または更新される。なお、ここでは説明を省略するが、子局Cおよび子局Dに対しても同様にユニキャスト送信が行われて、それぞれの子局からACKを受信したときのRSSIを取得することにより、子局Cおよび子局Dに対するアンテナテーブルが作成または更新される。
 そして、図7の処理フローにおいて選択されたブロードキャスト送信に使用するアンテナを選択した上で、ステップS300のブロードキャスト送信が全ての子局に対して行われる。
 (実施の形態2)
 上記実施の形態1に係る通信装置1では、図7で説明したブロードキャスト送信に使用するアンテナ選択の処理のうちのステップS202またはステップS204において第一アンテナ2に対する通信確立数と第二アンテナ3に対する通信確立数とが同じであると判定された場合に、アンテナテーブルに格納されている全てのRSSIのうちで最小のRSSIに対応する子局を特定し、当該子局に対して高い方のRSSIに対応するアンテナを選択しているが、これに限らない。例えば、図12に示すようなフローチャートを用いてブロードキャスト送信に使用するアンテナを選択するようにしてもよい。
 図12は、実施の形態2におけるブロードキャスト送信のアンテナ選択の処理の流れを示すフローチャートである。
 ここでは、実施の形態1とは異なる構成および処理のみの説明をし、共通する構成および処理については説明を省略する。
 実施の形態2に係る通信装置1では、カウント部9は、さらに、第一アンテナ2および第二アンテナ3のそれぞれについて、当該アンテナとのRSSIが最大である複数の子局の数である最大レベル端末数をカウントする。
 また、判定部10は、さらに、カウント部9によるカウントの結果、最大レベル端末数が第一アンテナ2および第二アンテナ3とで同数であるか否かを判定する(S307)。
 第一アンテナ2に対する最大レベル端末数が第二アンテナ3に対する最大レベル端末数よりも多いと判定部10により判定された場合(S307:ANT1>ANT2)、アンテナ選択部12は第一アンテナ2を選択する(S308)。
 第一アンテナ2に対する最大レベル端末数が第二アンテナ3に対する最大レベル端末数よりも少ないと判定部10により判定された場合(S307:ANT1<ANT2)、アンテナ選択部12は第二アンテナ3を選択する(S309)。
 そして、アンテナ選択部12は、さらに、第一アンテナ2に対する最大レベル端末数と第二アンテナ3に対する最大レベル端末数とが同数であると判定部10により判定された場合に、通信レベル取得部8により取得されたアンテナテーブルに格納されているRSSIのうちで最も低いRSSIに対応する子局を特定し、特定した当該子局の第一アンテナ2および第二アンテナ3のそれぞれに対するRSSIの中で最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択する(S310)。
 なお、実施の形態2に係る通信装置1では、ステップS307の判定は、図7のフローチャートのステップS202またはステップS204において第一アンテナ2に対する通信確立数と第二アンテナ3に対する通信確立数とが同じであると判定された場合に、ステップS207の処理が行われる代わりに行われることになる。
 このように、最大レベル端末数が多いアンテナを選択することにより、第一アンテナ2および第二アンテナ3のうちでより確実に通信できるアンテナを選択することができる。
 (他の実施の形態)
 なお、上記実施の形態に係る通信装置1では、通信装置1が備える複数のアンテナは第一アンテナ2および第二アンテナ3の2本であるが、3本以上であっても適用できる。
 この場合に、実施の形態1の図7のフローチャートは、例えば、次のようになる。なお、ここでは、アンテナが3本以上になることで異なる部分のみを説明し、同じ処理を行うステップの説明は省略する。
 ステップS203の代わりに、カウント部9は、複数のアンテナのそれぞれについて、通信確立数をカウントする。次に、ステップS204の代わりに、判定部10は、カウント部9によりカウントされた通信確立数が最多であるアンテナが複数あるか否かを判定する。そして、アンテナ選択部12は、通信確立数が最多であるアンテナが複数あると判定部10により判定された場合に、ステップS207の代わりに、通信レベル取得部8により取得された複数の対におけるRSSIのうちで最も低いRSSIに対応する子局を特定し、特定した子局の複数のアンテナのそれぞれに対するRSSIの中で最も高いRSSIに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択する。また、アンテナ選択部12は、通信確立数が最多であるアンテナが複数ないと判定部10により判定された場合に、ステップS205またはステップS206の代わりに、通信確立数が最多であるアンテナを選択する。このようにして実施の形態1に係る通信装置1がアンテナを3本以上備える場合についても、本発明を適用できる。
 また、実施の形態2に係る通信装置1についても、3本以上のアンテナとしてもよく、この場合には例えば次のようになる。なお、ここでもアンテナが3本以上になることで異なる部分のみを説明し、同じ処理を行うステップの説明は省略する。
 実施の形態2の場合には、上記で説明した実施の形態1の通信装置1のアンテナが3本以上である場合に、さらに、カウント部9は、複数のアンテナのそれぞれについて、当該アンテナとのRSSIが最大である複数の子局の数である最大レベル端末数をカウントする。そして、ステップS307の代わりに、判定部10は、さらに、カウント部9によるカウントの結果、最大レベル端末数が最多であるアンテナが複数あるか否かを判定する。アンテナ選択部12は、通信確立数が最多であるアンテナが複数あると判定部10により判定された場合(S202:NoまたはS204:ANT1=ANT2)であって、かつ、最大レベル端末数が最多であるアンテナが複数あると判定部10により判定された場合に、通信レベル取得部8により取得された複数の対における通信レベルのうちで最も低い通信レベルに対応子局を特定し、特定した当該子局の複数のアンテナのそれぞれに対するRSSIの中で最も高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択する。このようにして実施の形態2に係る通信装置1がアンテナを3本以上備える場合についても、本発明を適用できる。
 なお、この場合、通信確立数が最多であるアンテナが複数あると判定部10により判定された場合に、最も低いRSSIに対応する子局を特定し、特定した子局の複数のアンテナのそれぞれに対するRSSIの中で最も高いRSSIに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択しているが、最高のRSSIに対応するアンテナを選択することに限らずに、最も低いRSSIよりも高いRSSIに対応するアンテナを選んでも通信条件のよいアンテナを選ぶことができるため、フェージングの影響を低減する効果はある。
 なお、上記実施の形態に係る通信装置1では、特に言及していないが、アンテナ選択部12は、ステップS105またはステップS112において各子局A111~子局D114からACKの受信を受信部6が行っている間に、受信するアンテナを第一アンテナ2から第二アンテナ3への切替えを行う。つまり、受信部6は、子局から一つのACKを受信している間に、第一アンテナ2から第二アンテナ3へと受信しているアンテナの切替えを行っているため、2つのアンテナ2、3を使用して当該ACKを受信することになる。このため、通信レベル取得部8は、一つのACKを受信している間に、第一アンテナ2に対する子局からのRSSIと第二アンテナ3に対する子局からのRSSIとの両方を取得することができる。よって、一つの子局から複数回のACKを取得しなくても、2つのアンテナ2、3に対するRSSIを取得することができる。このため、一つのACKごとにアンテナを固定して受信する場合と比較して、2つのアンテナ2、3ごとにおける各子局からのRSSIの取得に係る時間を短縮することができる。
 なお、この形態は通信装置1のアンテナが2本の場合だけでなく3本以上の複数本の場合であっても適用できる。つまり、アンテナ選択部12は、子局からACKの受信を受信部6が行っている間に、当該受信に使用するアンテナの切替えを行う。そして、通信レベル取得部8は、当該受信に使用したアンテナごとのRSSIを取得し、取得したRSSIをアンテナテーブルに格納する。
 また、一方で、通信装置1は、2つのアンテナ2、3の切替えを行わずに一つずつのアンテナを固定してACKを受信するような形態としてもよい。つまり、アンテナ選択部12は、ステップS105またはステップS112において各子局A111~子局D114からACKの受信を受信部6が行っている間に、子局A111~子局D114の全てと2つのアンテナ2、3のうちの一つ(ここでは第一アンテナ2)との間のRSSIの測定が完了するまでに、当該受信に使用するアンテナを第一アンテナ2に固定しておく。そして、子局A111~子局D114の全てについて、第一アンテナ2でのRSSIの測定が完了した場合、第一アンテナ2および第二アンテナ3のうち、まだ子局A111~子局D114とのRSSIの測定が完了していない第二アンテナ3に切り替える。
 なお、この形態についても通信装置1のアンテナが2本の場合だけでなく3本以上の複数本の場合であっても適用できる。つまり、アンテナ選択部12は、子局からACKの受信を受信部6が行っている間であって、子局A111~子局A270の全てと複数のアンテナのうちの一つとの間のRSSIの測定が完了するまで、当該受信に使用するアンテナを複数のアンテナのうちのいずれか1つに固定する。その後、アンテナ選択部12は、子局A111~子局D114のすべてについて、当該アンテナでの受信レベルの測定が完了した場合、複数のアンテナのうち、まだ複数の他の通信装置との受信レベルの測定が完了していないアンテナに切り替えて、子局A111~子局A270のすべてと切り替えた後のアンテナとの間のRSSIの測定が完了するまで、当該受信に使用するアンテナを固定する。そして、アンテナテーブルの全てにおいてRSSIの測定が完了するまで、アンテナの切り替えを繰り返す。そして、通信レベル取得部8は、当該受信に使用したアンテナごとのRSSIを取得し、取得したRSSIをアンテナテーブルに格納する。
 なお、アンテナテーブルのRSSIの格納に係るRSSIの測定は、通信が必ず保証されているわけではないため、測定を試みることを含む。つまり、通信が確立されなくても、子局とアンテナとの間の通信の測定が行われたとみなす。
 上記実施の形態1に係る通信装置1では、通信レベルとして受信部6が各子局から送信されてきたACKを受信したときのRSSIを通信レベル取得部8が取得してアンテナテーブルに格納しているが、各子局から送信されてきたACKを受信したときのRSSIを取得することに限らない。例えば、各子局が親局からのユニキャスト送信時のデータを受信したときにRSSIを測定し、測定したRSSIデータを通信装置1に送信することにより、親局である通信装置1がRSSIを取得するようにしてもよい。なお、この場合には、親局がユニキャスト送信に使用したアンテナを、親局または子局が記憶しておく必要がある。
 上記実施の形態に係る通信装置1では、アンテナテーブルを作成するためのRSSIを取得するのに、通信装置1がユニキャスト送信を行った結果として子局から送信されるACKを受信したときのRSSIを取得しているが、ユニキャスト送信の際に各子局から送信されるACKに限らずに、ブロードキャスト送信の際に各子局から送信されるACKを受信したときのRSSIであってもよい。一般的には、各子局からACKが一度に大量に送信されてくるため、ブロードキャスト送信の際には各子局からACKは送信される構成ではないが、通信装置1が一度に各子局からのACKを処理できるような構成の場合にはブロードキャスト送信の際にACKを受信するような形態であっても成立する。
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の画像復号化装置などを実現するソフトウェアは、次のようなプログラムである。
 すなわち、このプログラムは、コンピュータに、複数の他の通信装置と無線通信によりデータ通信を行う通信装置の通信方法であって、前記通信装置は、前記無線通信に係る電波を送受信する複数のアンテナを備え、前記通信方法は、前記通信装置が前記複数の他の通信装置と前記無線通信を行ったときの前記複数のアンテナのそれぞれと、前記複数の他の通信装置のそれぞれとの組み合わせである複数の対における通信レベルを取得する通信レベル取得ステップと、前記複数のアンテナのそれぞれについて、当該アンテナが前記無線通信を確立できた前記他の通信装置の数である通信確立数をカウントするカウントステップと、前記カウントステップにおいてカウントされた前記通信確立数が最多であるアンテナが複数あるか否かを判定する判定ステップと、前記通信確立数が最多であるアンテナが複数あると前記判定ステップにおいて判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で前記最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択するアンテナ選択ステップと、前記アンテナ選択ステップにおいて選択されたアンテナを用いて前記複数の他の通信装置に所定のデータをブロードキャスト送信する送信ステップと、を含む通信方法を実行させる。
 なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。
 (1)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムで実現され得る。RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
 (2)上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、ROMからRAMにコンピュータプログラムをロードし、ロードしたコンピュータプログラムにしたがって演算等の動作することにより、システムLSIは、その機能を達成する。
 (3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されてもよい。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールには、上記の超多機能LSIが含まれてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有してもよい。
 (4)本発明は、上記に示す方法で実現されてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムで実現してもよいし、コンピュータプログラムからなるデジタル信号で実現してもよい。
 また、本発明は、コンピュータプログラムまたはデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標) Disc)、半導体メモリなどに記録したもので実現してもよい。また、これらの記録媒体に記録されているデジタル信号で実現してもよい。
 また、本発明は、コンピュータプログラムまたはデジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送してもよい。
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムにしたがって動作してもよい。
 また、プログラムまたはデジタル信号を記録媒体に記録して移送することにより、またはプログラムまたはデジタル信号をネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。
 (5)上記実施の形態及び上記変形例をそれぞれ組み合わせるとしてもよい。
 以上、本発明の一つまたは複数の態様に係る通信装置などについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つまたは複数の態様の範囲内に含まれてもよい。
 本発明は、通信装置と無線通信を行うことが可能な他の通信装置の数を多くすることができる無線通信ネットワークで複数のアンテナをもつ通信装置等として有用である。
  1 通信装置
  2 第一アンテナ
  3 第二アンテナ
  4 切替部
  5 送信部
  6 受信部
  7 記憶部
  8 通信レベル取得部
  9 カウント部
 10 判定部
 11 アンテナ制御部
 12 アンテナ選択部
101 親局
111 子局A
112 子局B
113 子局C
114 子局D
210 家庭内ネットワーク
220 親局
230 太陽光発電機
240 蓄電池
250 燃料電池
260 エアコン
270 テレビ

Claims (13)

  1.  複数の他の通信装置と無線通信によりデータ通信を行う通信装置であって、
     前記無線通信に係る電波を送受信する複数のアンテナと、
     前記通信装置が前記複数の他の通信装置と前記無線通信を行ったときの前記複数のアンテナのそれぞれと、前記複数の他の通信装置のそれぞれとの組み合わせである複数の対における通信レベルを取得する通信レベル取得部と、
     前記複数のアンテナのそれぞれについて、当該アンテナが前記無線通信を確立できた前記他の通信装置の数である通信確立数をカウントするカウント部と、
     前記カウント部によりカウントされた前記通信確立数が最多であるアンテナが複数あるか否かを判定する判定部と、
     前記通信確立数が最多であるアンテナが複数あると前記判定部により判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で前記最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択するアンテナ選択部と、
     前記アンテナ選択部で選択されたアンテナを用いて前記複数の他の通信装置に所定のデータをブロードキャスト送信する送信部と、を備える
     通信装置。
  2.  前記アンテナ選択部は、前記通信確立数が最多であるアンテナが複数ないと前記判定部により判定された場合に、前記通信確立数が最多であるアンテナを選択する
     請求項1に記載の通信装置。
  3.  前記アンテナ選択部は、前記通信確立数が最多であるアンテナが複数あると前記判定部により判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で最も高い通信レベルのアンテナを選択する
     請求項1または2に記載の通信装置。
  4.  さらに、
     前記複数のアンテナのうちのいずれかを用いて前記他の通信装置からデータを受信する受信部を備え、
     前記送信部は、前記他の通信装置のそれぞれに前記複数のアンテナのうちのいずれかのアンテナを用いてデータをユニキャスト送信し、
     前記受信部は、前記送信部によりユニキャスト送信されたデータを前記他の通信装置が受信した場合に当該他の通信装置から送信される応答情報を前記複数のアンテナのうちのいずれかのアンテナを用いて受信し、
     前記通信レベル取得部は、前記応答情報が前記受信部により受信されたときの受信レベルを前記通信レベルとして取得する
     請求項1または請求項2に記載の通信装置。
  5.  前記アンテナ選択部は、前記他の通信装置から前記応答情報の受信を前記受信部が行っている間に、当該受信に使用するアンテナの切替えを行い、
     前記通信レベル取得部は、当該受信に使用した前記アンテナごとの前記受信レベルを前記通信レベルとして取得する
     請求項4に記載の通信装置。
  6.  前記アンテナ選択部は、
     前記他の通信装置から前記応答情報の受信を前記受信部が行っている間であって、前記複数の他の通信装置のすべてと前記複数のアンテナのうちの一つとの間の受信レベルの測定が完了するまで、当該受信に使用するアンテナを前記複数のアンテナのうちのいずれか一つに固定し、
     前記複数の他の通信装置のすべてについて、当該アンテナでの受信レベルの測定が完了した場合、前記複数のアンテナのうち、まだ前記複数の他の通信装置との受信レベルの測定が完了していないアンテナへの切替えを行い、
     前記通信レベル取得部は、当該受信に使用した前記アンテナごとの前記受信レベルを前記通信レベルとして取得する
     請求項4に記載の通信装置。
  7.  さらに、
     記憶部を備え、
     前記通信レベル取得部は、取得した前記通信レベルを、前記複数のアンテナごと、および、前記複数の他の通信装置ごとに対応付けたアンテナテーブルとして前記記憶部に記憶させ、
     前記カウント部は、前記アンテナテーブルに前記通信レベルが記録されている前記複数のアンテナごとの前記他の通信装置の数を前記通信確立数としてカウントする
     請求項1から6のいずれか1項に記載の通信装置。
  8.  前記通信レベル取得部は、さらに、前記受信部が前記応答情報を受信する度に、前記記憶部に記憶されている前記アンテナテーブルを更新し、
     前記アンテナ選択部は、前記更新された後のアンテナテーブルを用いて前記複数のアンテナの中から前記ブロードキャスト送信に使用するアンテナを選択する
     請求項7に記載の通信装置。
  9.  前記カウント部は、さらに、前記複数のアンテナのそれぞれについて、当該アンテナとの通信レベルが最大である前記複数の他の通信装置の数である最大レベル端末数をカウントし、
     前記判定部は、さらに、前記カウント部によるカウントの結果、前記最大レベル端末数が最多であるアンテナが複数あるか否かを判定し、
     前記アンテナ選択部は、前記通信確立数が最多であるアンテナが複数あると前記判定部により判定された場合であって、前記最大レベル端末数が最多であるアンテナが複数あると前記判定部により判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で前記最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択する
     請求項1から8のいずれか1項に記載の通信装置。
  10.  前記アンテナ選択部は、前記最大レベル端末数が最多であるアンテナが複数ないと前記判定部により判定された場合に、前記最大レベル端末数が最多であるアンテナを選択する
     請求項9に記載の通信装置。
  11.  複数の他の通信装置と無線通信によりデータ通信を行う通信装置の通信方法であって、
     前記通信装置は、前記無線通信に係る電波を送受信する複数のアンテナを備え、
     前記通信方法は、
     前記通信装置が前記複数の他の通信装置と前記無線通信を行ったときの前記複数のアンテナのそれぞれと、前記複数の他の通信装置のそれぞれとの組み合わせである複数の対における通信レベルを取得する通信レベル取得ステップと、
     前記複数のアンテナのそれぞれについて、当該アンテナが前記無線通信を確立できた前記他の通信装置の数である通信確立数をカウントするカウントステップと、
     前記カウントステップにおいてカウントされた前記通信確立数が最多であるアンテナが複数あるか否かを判定する判定ステップと、
     前記通信確立数が最多であるアンテナが複数あると前記判定ステップにおいて判定された場合に、前記通信レベル取得ステップにおいて取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で前記最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択するアンテナ選択ステップと、
     前記アンテナ選択ステップにおいて選択されたアンテナを用いて前記複数の他の通信装置に所定のデータをブロードキャスト送信する送信ステップと、を含む
     通信方法。
  12.  請求項11に記載の各ステップをコンピュータに実行させるためのプログラム。
  13.  複数の他の通信装置のデータ通信を、無線通信に係る電波を複数のアンテナにおいて送受信することにより行う通信装置の集積回路であって、
     前記通信装置が前記複数の他の通信装置と前記無線通信を行ったときの前記複数のアンテナのそれぞれと、前記複数の他の通信装置のそれぞれとの組み合わせである複数の対における通信レベルを取得する通信レベル取得部と、
     前記複数のアンテナのそれぞれについて、当該アンテナが前記無線通信を確立できた前記他の通信装置の数である通信確立数をカウントするカウント部と、
     前記カウント部によりカウントされた前記通信確立数が最多であるアンテナが複数あるか否かを判定する判定部と、
     前記通信確立数が最多であるアンテナが複数あると前記判定部により判定された場合に、前記通信レベル取得部により取得された前記複数の対における通信レベルのうちで最も低い通信レベルに対応する前記他の通信装置を特定し、特定した当該他の通信装置の前記複数のアンテナのそれぞれに対する通信レベルの中で前記最も低い通信レベルよりも高い通信レベルに対応するアンテナをブロードキャスト送信に使用するアンテナとして選択するアンテナ選択部と、
     前記アンテナ選択部で選択されたアンテナを用いて前記複数の他の通信装置に所定のデータをブロードキャスト送信する送信部と、を備える
     集積回路。
PCT/JP2013/005519 2012-09-28 2013-09-18 通信装置および通信方法 WO2014050031A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380007126.5A CN104081687B (zh) 2012-09-28 2013-09-18 通信装置以及通信方法
US14/375,303 US9154207B2 (en) 2012-09-28 2013-09-18 Communication apparatus and communication method
JP2014514969A JP5653567B2 (ja) 2012-09-28 2013-09-18 通信装置および通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-218176 2012-09-28
JP2012218176 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050031A1 true WO2014050031A1 (ja) 2014-04-03

Family

ID=50387473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005519 WO2014050031A1 (ja) 2012-09-28 2013-09-18 通信装置および通信方法

Country Status (4)

Country Link
US (1) US9154207B2 (ja)
JP (1) JP5653567B2 (ja)
CN (1) CN104081687B (ja)
WO (1) WO2014050031A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157559A (ja) * 2017-02-28 2018-10-04 アップル インコーポレイテッドApple Inc. アンテナダイバーシティ機能を有する電子デバイス
JP2018157495A (ja) * 2017-03-21 2018-10-04 株式会社東芝 無線通信装置及びグループ送信方法
JP2019514242A (ja) * 2016-03-07 2019-05-30 ヴァレオ、コンフォート、アンド、ドライビング、アシスタンスValeo Comfort And Driving Assistance 動力車両のための電子駐車支援装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9769594B2 (en) * 2015-01-30 2017-09-19 Cassia Networks Inc. Methods, devices and systems for increasing wireless communication range
US11800390B2 (en) * 2018-05-18 2023-10-24 Nokia Technologies Oy Cross-link interference measurements for NR
CN110190877B (zh) * 2019-05-21 2020-10-23 瑞斯康达科技发展股份有限公司 一种切换接入天线的方法和装置、计算机可读存储介质
CN112188320B (zh) * 2020-09-30 2022-09-23 联想(北京)有限公司 一种信息处理方法、装置和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135886A (ja) * 1996-10-28 1998-05-22 Nec Corp 送信ダイバーシチ装置
JP2000209145A (ja) * 1999-01-20 2000-07-28 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア信号送受信装置
JP2009253703A (ja) * 2008-04-07 2009-10-29 Canon Inc 無線通信システム、端末局、無線通信方法ならびにプログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319147A (ja) 1989-06-16 1991-01-28 Ricoh Co Ltd 光記録媒体および光記録方法
DE69932859T2 (de) * 1999-05-01 2007-02-15 Nokia Corp. Verfahren zur gerichteten funkkommunikation
US20030161410A1 (en) * 2002-02-26 2003-08-28 Martin Smith Radio communications device with adaptive combination
US7698550B2 (en) * 2002-11-27 2010-04-13 Microsoft Corporation Native wi-fi architecture for 802.11 networks
CN1868147B (zh) * 2003-11-12 2011-02-02 美国博通公司 信道自适应天线选择的方法及系统
CN1805323A (zh) * 2005-01-13 2006-07-19 松下电器产业株式会社 多天线通信系统中采用天线选择执行重传的方法和设备
DE602005027822D1 (de) * 2005-05-25 2011-06-16 Mitsubishi Electric Corp Kodierungsmatrix in einem MIMO System
JP2007306087A (ja) 2006-05-09 2007-11-22 Yokogawa Electric Corp 無線通信システム
CN101682918B (zh) * 2007-02-02 2012-12-26 Lg电子株式会社 天线切换方法及其发射和接收信号的方法
US8477830B2 (en) * 2008-03-18 2013-07-02 On-Ramp Wireless, Inc. Light monitoring system using a random phase multiple access system
FI20085375A0 (fi) * 2008-04-25 2008-04-25 Nokia Siemens Networks Oy Hajautettu antennijärjestelmä tietoliikenneverkossa
JP5562281B2 (ja) * 2011-03-24 2014-07-30 株式会社日立製作所 無線通信システム、基地局装置及び無線通信方法
US9031048B2 (en) * 2011-03-30 2015-05-12 Broadcom Corporation Dual band wireless local area network (WLAN) transceiver
WO2013087532A1 (en) * 2011-12-13 2013-06-20 St-Ericsson Sa Antenna activity detection in multi-antenna communication
US8515496B2 (en) * 2011-12-15 2013-08-20 Amazon Technologies, Inc. Antenna deployment switching for data communication of a user device
KR101319795B1 (ko) * 2011-12-23 2013-10-17 삼성전기주식회사 액세스포인트 운용방법 및 액세스포인트를 이용한 무선통신 시스템
US9125124B2 (en) * 2012-07-23 2015-09-01 Qualcomm Incorporated Apparatus and method of handoff selection
US9306721B2 (en) * 2013-03-15 2016-04-05 Google Technology Holdings LLC Method and apparatus for device-to-device communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135886A (ja) * 1996-10-28 1998-05-22 Nec Corp 送信ダイバーシチ装置
JP2000209145A (ja) * 1999-01-20 2000-07-28 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア信号送受信装置
JP2009253703A (ja) * 2008-04-07 2009-10-29 Canon Inc 無線通信システム、端末局、無線通信方法ならびにプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019514242A (ja) * 2016-03-07 2019-05-30 ヴァレオ、コンフォート、アンド、ドライビング、アシスタンスValeo Comfort And Driving Assistance 動力車両のための電子駐車支援装置
JP2018157559A (ja) * 2017-02-28 2018-10-04 アップル インコーポレイテッドApple Inc. アンテナダイバーシティ機能を有する電子デバイス
JP2018157495A (ja) * 2017-03-21 2018-10-04 株式会社東芝 無線通信装置及びグループ送信方法

Also Published As

Publication number Publication date
CN104081687B (zh) 2017-11-03
CN104081687A (zh) 2014-10-01
JP5653567B2 (ja) 2015-01-14
JPWO2014050031A1 (ja) 2016-08-22
US20150016564A1 (en) 2015-01-15
US9154207B2 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
JP5653567B2 (ja) 通信装置および通信方法
EP3080926B1 (en) Wireless electronic device with switchable antenna system cross-reference to related application (s) and claim of priority
US8942772B2 (en) Systems, apparatus, and methods for arbitration of antenna switch configuration among different clients
CN103582047B (zh) 无线电通信设备和用于控制无线电通信设备的方法
KR101511649B1 (ko) 빔포밍 안테나를 구비한 rf 송수신기 및 그 사용 방법들
US9401756B2 (en) Method for configuring multiple antennas and related wireless communication device
US20110151931A1 (en) System and method for transmission parameter control for an antenna apparatus with selectable elements
US9642100B2 (en) Wireless communication device and transmission-power control device
JP2008538886A (ja) 無線装置
JP2008530851A (ja) 転送速度基準
US20190305875A1 (en) Rate search based on received signal strength measurement from beamforming
EP2613404A1 (en) Antenna array control method and access point using the same
WO2013008291A1 (ja) 無線通信装置、無線通信システム及びチャネル選択方法
JP2008136089A (ja) 基地局装置およびそのアンテナ切替方法
US20160380664A1 (en) Methods and apparatus for controlling multiple-input and multiple-output operation in a communication device based on a position sensor input
EP3804030A1 (en) Agc controlled tapering for an aas radio
JP2005094714A (ja) デュアルバンド送受信装置
US8068877B1 (en) Systems and methods of antenna selection
JP2010263547A (ja) 無線通信端末
KR20220024063A (ko) 공기 콘텐츠를 통해 배포하기 위한 활성 안테나 시스템
JP2007096433A (ja) 受信復号方法、再送方法、受信装置、協力通信装置および通信装置
JP4786524B2 (ja) 基地局アンテナのキャリブレーション方法、及び通信基地局
JP6559320B2 (ja) 基地局および送信アンテナ決定方法
JP2006246172A (ja) 無線通信装置、および、無線通信装置における送受信制御方法
US11824611B2 (en) Wireless communication device including antenna modules and operating method of wireless communication device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014514969

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841849

Country of ref document: EP

Kind code of ref document: A1