WO2014049911A1 - 移動通信システム、移動予測装置及びページングエリアの決定方法 - Google Patents

移動通信システム、移動予測装置及びページングエリアの決定方法 Download PDF

Info

Publication number
WO2014049911A1
WO2014049911A1 PCT/JP2013/003465 JP2013003465W WO2014049911A1 WO 2014049911 A1 WO2014049911 A1 WO 2014049911A1 JP 2013003465 W JP2013003465 W JP 2013003465W WO 2014049911 A1 WO2014049911 A1 WO 2014049911A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
mobile station
base station
area
mobile
Prior art date
Application number
PCT/JP2013/003465
Other languages
English (en)
French (fr)
Inventor
池田 聡
伸治 加美
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/429,831 priority Critical patent/US20150215742A1/en
Priority to JP2014538092A priority patent/JPWO2014049911A1/ja
Publication of WO2014049911A1 publication Critical patent/WO2014049911A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/04User notification, e.g. alerting and paging, for incoming communication, change of service or the like multi-step notification using statistical or historical mobility data

Definitions

  • the present invention relates to location registration processing and paging processing of a mobile station in a mobile communication system, and more particularly to determination of a location registration area and a paging area.
  • the mobile communication system needs to grasp the area where the mobile station is located in the core network in order to realize paging for the mobile station in the standby state. In order to realize this, the mobile station performs location registration and notifies the core network of the area (location registration area) in which the mobile station is located.
  • 3GPP LTE Long Term Evolution
  • TA tracking area
  • the tracking area is identified by a tracking area identifier (TAI).
  • TAI tracking area identifier
  • the mobile station can grasp the tracking area in which the base station is present by reporting the tracking area identifier of the tracking area to which the base station belongs.
  • the tracking area where the mobile station is located is registered on the core network side when the mobile station performs location registration (TAU; Tracking Area Update).
  • the core network can grasp the area where the mobile station is located based on the registered information.
  • the tracking area is regarded as a paging area, and all base stations included therein transmit paging signals.
  • the mobile station When receiving the paging signal addressed to the mobile station, the mobile station performs signaling for establishing a communication path. As a result, data can be transmitted and received, and the mobile station can be called.
  • the location registration area the area where the mobile station is known by the core network by location registration
  • the area where the paging signal is transmitted during paging is called the paging area.
  • paging processing for a mobile station it is necessary for all base stations belonging to the location registration area to transmit a paging signal.
  • paging processing outside the cell where the mobile station is located is a waste of radio resources. Therefore, in order to suppress this waste, a method for narrowing down the paging area where paging is actually performed from the position registration area has been proposed.
  • Patent Documents 1 and 2 disclose techniques for narrowing down the paging area by determining the paging area based on the location registration history of the mobile station.
  • Patent Document 1 selects a paging area according to a moving speed (or acceleration) from a location registration history of a mobile station obtained by GPS (Global Positioning System). Further, Patent Document 2 obtains a density distribution of a moving distance at a registration interval from a position registration history of a mobile station obtained by periodic position registration, and makes a circle whose radius is a distance at which the accumulated density is equal to or less than a threshold value. A technique for determining a set of included cells as a paging area is disclosed. Further, Patent Document 2 prevents paging failure by expanding the paging area in stages when paging fails.
  • Patent Documents 1 and 2 reduce the signaling cost required for paging by reducing the paging area according to the moving speed of the mobile station from the location registration history.
  • these methods simply determine the paging area based on the movement distance calculated from the position registration history and the previous position registration position, the movement characteristics of the mobile station cannot be fully utilized. For example, when the mobile station continues to move in a certain direction, it is highly likely that the mobile station will continue to move in the same direction thereafter.
  • the related method uses the area centered on the position registration position immediately before the mobile station as the paging area, it is unlikely that the mobile station is located in the area opposite to the moving direction, which is almost the same as the moving direction. There is room for improvement because paging is performed on the cells.
  • Patent Document 1 uses the periodic location registration history to determine the radius of the paging area, but not the position of the mobile station at the time of the paging request but the next periodic location registration time. Therefore, when there is a paging request immediately after location registration, the paging area becomes larger than necessary.
  • there are several ways to move people such as stop, walk, car, and train, which change over time.
  • the related technique does not sufficiently consider this point, and the movement characteristics averaged within the acquisition period of the location registration history to be used are used, and the movement method cannot be dealt with.
  • the location registration frequency can be reduced by increasing the location registration area.
  • RAI route selection area identification information
  • LAI position (registration) area identification information
  • tracking area identifier list are used for identifying a location registration area.
  • the signaling in mobility management provided in the present invention includes signaling required for paging of the mobile station and signaling required for location registration processing required when the mobile station moves out of the location registration area.
  • An object of the present invention is to provide a mobile communication system, a mobile prediction apparatus, and a paging area determination method capable of reducing the cost required for signaling in mobile management of a mobile station.
  • the movement prediction apparatus predicts the movement state of a mobile station, and creates a base station list that is likely to be located in the mobile station based on the prediction result in order to determine a paging area. Further, the estimated position at the predetermined time and the predicted position after the movement at the time after the predetermined time are calculated, and the estimated position and the predicted position are used to determine the vicinity of the route from the estimated position to the predicted position.
  • the base station list is created so that the mobile station is more likely to be in the area than the area.
  • a mobile communication system predicts a movement state of a mobile station and creates a base station list that is highly likely to be located in the mobile station based on the prediction result, and the movement prediction device Is provided with a mobility management device that determines a paging area based on the base station list created. Then, the movement prediction device calculates an estimated position at a predetermined time and a predicted position after movement at a time after the predetermined time, and uses the estimated position and the predicted position, from the previous estimated position to the predicted position.
  • the base station list is created so that the mobile station is more likely to be in the vicinity of the route than the other areas.
  • a method for determining a paging area includes: calculating an estimated position at a predetermined time and a predicted position after movement at a time after the predetermined time; and using the estimated position and the predicted position, Creating the base station list where the mobile station is more likely to be located, assuming that the vicinity of the route to the predicted position is more likely to be located in the mobile station than in other areas, the base station list Determining a paging area based on.
  • a paging area is appropriately selected to prevent an unnecessarily large size.
  • FIG. 3 is a block diagram illustrating an example of a configuration in Embodiment 1.
  • FIG. It is a block diagram which shows an example of a structure of the movement estimation apparatus in Embodiment 1.
  • FIG. 6 is a sequence diagram illustrating an example of an operation of a location registration process in the first embodiment.
  • FIG. 6 is a sequence diagram illustrating an example of an operation of a paging process in the first embodiment.
  • 3 is an example of a base station list creation in the first embodiment.
  • 10 is a sequence diagram illustrating an example of an operation of a position notification process in Embodiment 2.
  • FIG. It is a block diagram which shows an example of a structure of the movement estimation apparatus in Embodiment 3.
  • FIG. 1 is a block diagram showing an example of the configuration of a mobile communication system according to the present invention.
  • the mobile communication system according to this embodiment includes a plurality of mobile stations 10, a plurality of base stations 20, a mobility management device 30, a mobility prediction device 40, and a gateway 50.
  • the mobile station 10 performs location registration with the mobility management device 30 via the base station 20 in the area.
  • the mobile station 10 holds the location registration area information notified from the mobility management device 30 by location registration.
  • the location registration is performed when the mobile station 10 moves to the cell of the base station 10 that does not belong to the location registration area information held by itself.
  • the base station 20 is connected to the mobile station 10 located in a radio reachable range (cell) by radio access technology.
  • the mobility management device 30 manages the location of the mobile station 10.
  • location management includes management of the location registration area of the mobile station 10 and paging processing for the mobile station 10.
  • the mobility management device 30 is connected to the base station 20, processes location registration from the mobile station 10, and manages the location registration area of the mobile station 10.
  • the mobility management device 30 performs a paging process for the mobile station 10 in a standby state in response to a request from the gateway 50.
  • the mobility management apparatus 30 is connected to the movement prediction apparatus 40 and notifies the movement prediction apparatus 40 of base station information or position information in which the mobile station 10 is located.
  • the mobility management device 30 requests the motion prediction device 40 to estimate an area where the mobile station 10 is likely to be located after a certain period of time, or based on the result. And a function for determining a location registration area and a paging area.
  • the mobility management device 30 creates a base station list so that more base stations are included in the direction of movement prediction of the mobile station than in the direction opposite to the direction of movement prediction.
  • the movement prediction device 40 predicts the movement of the mobile station 10 based on the position information of the mobile station 10 obtained by the position information notification from the movement management device 30.
  • FIG. 2 is a block diagram showing an example of the configuration.
  • the movement prediction apparatus 40 includes a position information conversion unit 41, a base station information storage unit 42, a movement state estimation unit 43, and a base station list generation unit 44.
  • the base station information storage unit 42 holds a correspondence relationship between a base station identifier, the installation position of the base station (or the center position of the cell), and the cell radius.
  • the location information conversion means 41 refers to the base station information storage unit 42 to obtain the base station location and cell radius from the observation location z, The error radius r is converted and output to the movement state estimation means 43.
  • the position information conversion means 41 When the position information notification is the observation position z and the error radius r obtained by GPS or the like, the position information conversion means 41 outputs the information to the movement state estimation means 43 as it is.
  • the movement state estimation means 43 has a function of estimating the movement state x ⁇ of the mobile station 10 and its error covariance matrix P ⁇ at time t0 when the input time of z and r is t0, and movement at time t0 + ⁇ t.
  • a function for predicting the state x ⁇ and its error covariance matrix P ⁇ is provided.
  • the base station list generation unit generates a base station list including a plurality of base station identifiers used to generate a location registration area and a paging area from x ⁇ , P ⁇ , x ⁇ , and P ⁇ .
  • a Kalman filter can be used as the movement state estimation means 43.
  • the gateway 50 relays data communication between the mobile station 10 and the external network. When there is an incoming data from an external network to the mobile station 10 in the standby state, the gateway 50 requests the mobile management device 30 to page the corresponding mobile station 10.
  • FIG. 3 is a sequence diagram illustrating an example of the operation of the location registration process in the present embodiment.
  • the mobile station 10 detects that its own station is located in a cell outside the location registration area, the mobile station 10 transmits a location registration request to the mobility management device 30.
  • the location registration request reaches the mobility management device 30 via the base station 20 in which the mobile station 10 is located (S11).
  • the location registration request may include coordinate information including the latitude and longitude of the mobile station 10 obtained by means such as GPS (Global Positioning System) and measurement accuracy.
  • the mobility management device 30 When the location management request is received, the mobility management device 30 notifies the location information of the mobile station to the mobility prediction device 40 (S12).
  • the location information is an identifier of the base station 20 that relayed the location registration request, and may be coordinate information included in the location registration request and its measurement error radius.
  • the movement prediction device 40 that has received the position information notification updates the movement state of the mobile station 10 based on the position information included therein (S13). At this time, when position information is given as coordinate information and a measurement error radius, updating is performed using the values. When given as an identifier of the base station 20, the center position of the cell of the base station 20 (or the installation position of the base station) and its radius (multiplied by a certain coefficient) are used for updating.
  • the mobility management device 30 that has transmitted the location information notification subsequently requests the motion prediction device 40 for the motion prediction of the mobile station 10 (S14).
  • the movement prediction device 40 creates an identifier list of base stations that are likely to be located between the current time of the mobile station 10 and the time difference s (S15). Transmit (S16).
  • the mobility management device 30 registers the received base station list as the location registration area of the mobile station 10, and registers the location registration area with respect to the mobile station 10 via the base station 20. Transmit (S17).
  • the mobile station 10 holds the received location registration area as its location registration area.
  • FIG. 4 is a sequence diagram illustrating an example of an operation in the paging process according to the present embodiment.
  • the location management device 30 that has received the data incoming notification requests the movement prediction device 40 to estimate the current location area of the mobile station 10 (S22).
  • the movement prediction device 40 receives the estimation request, creates a base station list with a high possibility that the mobile station 10 is currently located from the movement state of the mobile station 10 (S23), and transmits it to the movement management device 30 ( S24).
  • the mobility management device 30 determines a base station list obtained as a common part of the base station list obtained as a result of the location estimation and the location registration area of the mobile station 10 as a paging area (S25), and sends a paging signal to the target base. Request to the station (S26, S27).
  • a Kalman filter can be used for movement prediction and position estimation in the movement state estimation means 43 in the movement prediction apparatus 40.
  • the Kalman filter is a method for estimating the current state from discrete observations including errors in a system that changes over time.
  • the Kalman filter can estimate the most probable value of the variable by taking a weighted average of the value of the variable predicted by the model and the actually observed numerical value.
  • feedback control can be performed on the system from observation data.
  • movement prediction / position estimation operations when the Kalman filter is used will be described.
  • the movement of the mobile station 10 is assumed to be modeled in the following line format.
  • the upper equation is a state equation representing the state of the system.
  • the lower equation is a measurement equation representing the relationship between system variables and observed variables.
  • w and v are terms representing disturbances and measurement errors.
  • F and H are matrices for associating variables on the right and left sides.
  • X (t) and y (t) are vectors representing the moving state and observed values of the mobile station at time t, respectively.
  • F ( ⁇ t) and Q ( ⁇ t) are a matrix representing a time transition determined by the time difference ⁇ t and a variance covariance matrix of noise (process noise) of the time transition, respectively.
  • the observation state y (t) is a vector representing the position of the mobile station consisting of latitude and longitude.
  • F ( ⁇ t) can be used for modeling the constant velocity linear movement of the mobile station and Q ( ⁇ t) for modeling the random acceleration and movement of the mobile station.
  • H is a matrix for observing the position information (latitude, longitude) of the mobile station from x (t)
  • R (r) is a variance-covariance matrix of observation errors determined by the distance r.
  • R (r) for example, a value obtained by multiplying a constant in a 2 ⁇ 2 matrix having the square of r as a diagonal component can be used.
  • the Kalman filter calculates the moving state x ⁇ and its error covariance matrix P ⁇ at time t0 as Predict using formulas (prediction procedure). Furthermore, when the position information z and its error radius information r at time t0 are obtained, the moving state and its error covariance matrix at time t0 can be estimated by the following equation (update procedure). When the position of the mobile station 10 is notified from the movement management device 30 to the movement prediction device 40, the Kalman filter is updated as follows for the movement state update.
  • the time difference ⁇ t from the previous position notification is calculated.
  • a procedure for predicting the movement state after ⁇ t from the time of the previous position notification (that is, the current time) is performed.
  • a moving state update procedure is performed using the current observation position z and the observation error radius r included in the position notification.
  • the update procedure is performed with the position of the base station 20 (or the center position of the cell) identified by the base station identifier as the observation position and the radius of the cover area as r.
  • the position notification includes coordinate information and a measurement error radius
  • the coordinate information may be updated with the observation position z and the measurement error radius r.
  • the movement prediction device 40 receives the position notification related to the mobile station 10 at time t0 and updates the latest movement state. That is, the movement prediction apparatus 40 holds the state update time t0, the movement state x ⁇ , and the error covariance matrix P ⁇ for each mobile station 10.
  • the movement prediction device 40 that has received the movement request predicts the variance-covariance matrix P ⁇ of the estimation state after the preset time difference s and its error x ⁇ using the Kalman filter prediction procedure.
  • the base station list creation means creates a base station list from x ⁇ , P ⁇ , x ⁇ , P ⁇ .
  • the estimated position y ⁇ at time t0 and its error covariance matrix S ⁇ and the estimated position y ⁇ at time t0 + s and its error covariance matrix S ⁇ are calculated by the following equations.
  • the set of (y ⁇ , S ⁇ ) is the estimated position of the mobile station 10 and its estimation error at time t0
  • the set of (y ⁇ , S ⁇ ) is the predicted position of the mobile station 10 and its prediction error at time t0 + s.
  • the p_curr1% confidence interval of the estimated position and the p_pred% confidence interval of the predicted position are ellipses O_curr and O_pred on the latitude and longitude coordinates, respectively.
  • a base station that is likely to be located is determined using the ellipse O_curr and the ellipse O_pred.
  • a base station that is included in an area composed of ellipses O_curr and O_pred and a common outer tangent of two ellipses or that is installed in a crossing cell can be located.
  • a highly reliable base station when there is no common outer tangent, a base station corresponding to a cell included in or intersecting with O_pred is used.
  • the movement prediction device 40 transmits to the movement management device 30 an identifier list of base stations that are likely to be in the area.
  • the target base station number B is determined, and the time difference s and the reliability interval parameters p_curr1 and p_pred are dynamically selected so that the number of base stations does not exceed B (or close to B). You may create it. Further, instead of the common outer tangent of the ellipse, the envelope of the ellipse O_pred when the time difference is moved in the range of 0 to s may be used. As shown in FIG. 5, as a result, the base station list is created so that more base stations are included in the mobile station's movement prediction direction than in the direction opposite to the movement prediction direction. .
  • the same procedure as the movement prediction is performed. That is, as shown in FIG. 5, the ellipse O_curr obtained as the p_curr2% confidence interval of the two-dimensional normal distribution represented by (y ⁇ , S ⁇ ) and the p_est% of the two-dimensional normal distribution represented by (y ⁇ , S ⁇ )
  • a base station list made up of base stations installed in a cell having an ellipse O_est obtained as a confidence interval and a common outer tangent line or having a common area is created and transmitted to the mobility management device 30 To do.
  • p_curr2 and p_est may be larger than p_curr1 and p_pred.
  • a base station list composed of base stations included in a cell included in an ellipse O_est or having a common area may be simply used.
  • the configuration using the Kalman filter for the movement prediction / position estimation has been described.
  • the movement prediction means is not limited to this, and the predicted value of the position of the mobile station at a certain time and its error based on the past position information.
  • the moving state estimation means can calculate the covariance matrix, not only the Kalman filter but also other methods may be used.
  • other prediction means such as a Kalman filter derivative filter or a particle filter may be used.
  • the position registration area and the paging area are determined by performing the movement prediction / position estimation of the mobile station according to the moving state including the moving speed and moving direction of the mobile station.
  • the base station list is created so that more base stations are included in the mobile station movement prediction direction than in the direction opposite to the movement prediction direction. That is, it is possible to determine the position registration area and the paging area in consideration of the moving direction of the mobile station. For this reason, even when the number of cells included in the location registration area is set to the same level as the related method, the location registration interval becomes longer, and the number of location registration signals can be reduced. Furthermore, it is possible to reduce paging processing for a base station in the opposite direction to movement.
  • the purpose of this embodiment is to improve the accuracy of movement prediction in the mobile communication system in the first embodiment.
  • the operations of the base station and the mobility management device are different from the operations in the first embodiment.
  • the reference numbers different from those in the first embodiment, the base station 20A, and the mobility management device 30A are used for distinction.
  • the base station 20A in the present embodiment is different from the operation of the base station 20 in the first embodiment in that a location notification trigger is transmitted to the mobility management device 30A.
  • the location notification trigger is transmitted from the base station 20A to the mobility management device 30A when it is determined that the mobile station 10 is in the base station 20A.
  • the position notification trigger may be used by explicitly defining a new message, or may use an existing message transmitted and received in the mobile communication system.
  • the existing message includes, for example, a signaling sequence performed for the mobile station 10 to establish / disconnect a communication path to / from the core network, and signaling performed at the time of handover when the mobile station 10 moves between base stations.
  • a message transmitted from the base station 20A included in the sequence to the mobility management device 30A can be used.
  • S1-AP in Service Request Procedure Initial Context Setup Complete (control protocol name for communication between core network and base station in LTE system), S1-AP in S1 Release Procedure: S1 UE Status Release Complete, Path Switch Request in X2 based handover may be used. It is important that the position notification trigger can be determined by the base station corresponding to the cell in which the mobile station is located, and the application of the present invention is not limited to these messages.
  • the mobility management device 30A in the present embodiment receives a location notification trigger from the base station 20A and notifies the mobility prediction device 40A of location information.
  • the update of the movement state in the movement prediction apparatus is triggered by a mobile station location registration request.
  • processing other than location registration also triggers movement state update.
  • FIG. 6 is a sequence diagram showing an example of the movement state update operation in the present embodiment.
  • the base station 20A transmits a location notification trigger to the mobility management device 30A (S31).
  • the mobility management device 40A that has received the location notification trigger performs location information notification including the identifiers of the target mobile station 10 and the base station 20A (S32). This is a process equivalent to S12 in the first embodiment.
  • the movement prediction apparatus 40A that has received the position information notification updates the movement state in the same manner as S13 in the first embodiment (S33).
  • the present embodiment can update the movement state by using the in-zone cell information of the mobile station obtained at timing such as establishment of a communication path or handover. That is, the movement status can be updated more frequently than in the first embodiment using only the location registration process, and the movement prediction of the mobile station with higher accuracy is possible. Thereby, it is possible to determine the location registration area and the paging area with high accuracy, and as a result, it is possible to reduce the signaling cost.
  • the present embodiment aims to improve the movement prediction accuracy.
  • the present embodiment is different from the first embodiment in that movement prediction is performed using a plurality of movement models, and the configuration and operation of the movement prediction apparatus are different from the first embodiment. In this embodiment, it distinguishes using the code
  • FIG. 7 is a block diagram showing an example of the configuration of the movement prediction apparatus 40B in the present embodiment.
  • KFi is a Kalman filter that performs movement prediction / estimation of the movement model Mi defined by Fi ( ⁇ t), Qi ( ⁇ t), Hi, and Ri (r).
  • the movement model Mi represents a plurality of different movement models. For example, a stop model, a random walk model, a constant velocity linear movement model, or the like is used. Also, by preparing a plurality of models in which the component of Qi ( ⁇ t) is changed even with the same movement model, it is possible to define movement models having different magnitudes of speed changes.
  • the mobile station 10 is regarded as operating according to one of a plurality of mobile models at a certain time, and the mobile station 10 according to the mobile model Mi has a transition probability ⁇ ( ⁇ t) after the time difference ⁇ t. ij is considered to transition to the movement model Mj.
  • the movement state estimation means KFi43B corresponding to the movement model Mi is updated by the position information notification at time t0, the movement state xi ⁇ , the error covariance matrix Pi ⁇ and the state at time t0- ⁇ t are estimated, and the weight is It is calculated as ⁇ i ⁇ .
  • the prediction / update procedure for each Kalman filter KFi at time t0 is performed according to the following procedure.
  • the input determination unit 45B determines the weight ⁇ i ⁇ , the movement state xi ⁇ , and the error covariance matrix Pi ⁇ of the movement state corresponding to a plurality of movement models using the following equations.
  • Fi ( ⁇ t), Qi ( ⁇ t), and H in Equations 5 and 6 are parameters of the movement model corresponding to F ( ⁇ t) and Q ( ⁇ t) in Equation 1, and are used to distinguish a plurality of models. With a subscript i.
  • mnvpdf (z, S) represents a probability density function of a multivariate normal distribution with mean z and variance S.
  • the estimated state determination unit 46B integrates the movement state xi ⁇ estimated by KFi and the error covariance matrix Pi ⁇ , and uses either Equation 8 or Equation 9 to determine the final movement state x ⁇ and the error covariance.
  • the variance matrix P ⁇ is determined.
  • the prediction state determination unit 47B integrates the movement state xi ⁇ estimated by KFi and the error covariance matrix Pi ⁇ , and uses either Equation 10 or Equation 11 to obtain the final movement state x ⁇ . Then, an error covariance matrix P ⁇ is determined.
  • the base station list generation means 44 in the present embodiment generates a base station list by the same processing as in the first embodiment using x ⁇ , P ⁇ , x ⁇ , P ⁇ .
  • This embodiment prepares a plurality of movement models, considers transitions between them, and weights the movement model suitable for the movement of the mobile station 10 to perform movement prediction / position estimation. Therefore, it is possible to perform movement prediction / position estimation according to changes in movement modes among various movement modes such as stop, walking, and car.
  • the location registration area and the paging area can be determined with high accuracy, and as a result, the signaling cost can be reduced.
  • the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
  • the LTE system is shown as a specific example in the above embodiment.
  • the present invention may also be applied to other wireless communication systems, for example, communication systems related to fourth generation or higher communication standards (eg LTE-Advanced, IMT-Advanced, WiMAX2).
  • the processing in the movement prediction device 40 and the movement management device 30 can be realized by causing a computer to execute a program.
  • the present invention has been described as a hardware configuration, but the present invention is not limited to this.
  • the present invention can also realize arbitrary processing by causing a CPU (Central Processing Unit) to execute a computer program.
  • the above-described program can be stored using various types of non-transitory computer readable media and supplied to a computer.
  • Non-transitory computer readable media include various types of tangible storage media.
  • non-transitory computer-readable media examples include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may be supplied to the computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • a mobile prediction device that predicts the movement state of a mobile station and creates a base station list that is likely to be located in the mobile station based on the prediction result in order to determine a paging area, Calculate an estimated position at a predetermined time and a predicted position after movement at a time after the predetermined time, and use the estimated position and the predicted position to determine the vicinity of the route from the estimated position to the predicted position in another region.
  • the mobile prediction apparatus that creates the base station list as a mobile station having a higher possibility of being in the service area.
  • (Appendix 2) The mobile prediction device according to supplementary note 1, wherein the base station list is created so that the base station list includes more base stations than the mobile prediction direction with respect to the mobile prediction direction of the mobile station.
  • (Appendix 3) The estimated position of the mobile station and the predicted position are elliptical areas, and are included in an area included in an envelope obtained by elapse of time from the elliptical area represented by the estimated position to the elliptical area represented by the predicted position, The movement prediction apparatus according to appendix 1 or 2, wherein the base station list in the paging area is generated from a base station that covers the intersecting cells.
  • (Appendix 4) Provided with a plurality of movement state estimation means corresponding to a plurality of movement models, The plurality of movement state estimation means estimates the likelihood of movement prediction of the mobile station based on the position information of the mobile station, and uses one of the estimated position and the predicted position of the plurality of movement models. Or the movement prediction apparatus as described in 2.
  • (Appendix 5) Provided with a plurality of movement state estimation means corresponding to a plurality of movement models, The plurality of movement state estimation means are calculated based on the weighted average of the estimated positions calculated based on the plurality of movement models and the plurality of movement state estimation means, with the likelihood of movement prediction as a weight.
  • the movement prediction apparatus Generating the base station list using a weighted average of the predicted positions as an estimated position and a predicted position, respectively.
  • the movement prediction apparatus according to addition 1 or 2. (Appendix 6) A mobile prediction device that predicts the mobile state of a mobile station and creates a base station list that is likely to be in the area of the mobile station based on the prediction result; A mobility management device that determines a paging area based on a base station list created by the mobility prediction device, The movement prediction device calculates an estimated position at a predetermined time and a predicted position after movement at a time after the predetermined time, and uses the estimated position and the predicted position to route from the estimated position in the previous period to the predicted position.
  • a mobile communication system that creates the base station list on the assumption that the mobile station is more likely to be in the vicinity than other areas.
  • Appendix 7 The movement according to appendix 6, wherein the movement prediction device creates the base station list so that more base stations are included in the movement prediction direction of the mobile station than in a direction opposite to the movement prediction direction. Communications system.
  • the estimated position of the mobile station and the predicted position estimated by the movement prediction device are elliptical areas, and the envelope obtained by the passage of time from the elliptical area represented by the estimated position to the elliptical area represented by the predicted position
  • the mobile communication system according to appendix 6 or 7, wherein the base station list of the paging area is generated from base stations that are included in the included area and cover cells that intersect.
  • the movement prediction device includes a plurality of movement state estimation means corresponding to a plurality of movement models, The plurality of movement state estimation means estimates the likelihood of movement prediction of the mobile station based on the position information of the mobile station, and uses one of the estimated position and the predicted position of the plurality of movement models.
  • the movement prediction device includes a plurality of movement state estimation means corresponding to a plurality of movement models, The plurality of movement state estimation means are calculated based on the weighted average of the estimated positions calculated based on the plurality of movement models and the plurality of movement state estimation means, with the likelihood of movement prediction as a weight. Generating the base station list using a weighted average of the predicted positions as an estimated position and a predicted position, respectively.
  • (Appendix 11) A method for determining a paging area, Calculating an estimated position at a predetermined time and a predicted position after movement at a time after the predetermined time; Using the estimated position and the predicted position, the vicinity of the route from the previous estimated position to the predicted position is likely to be located in the mobile station, assuming that the mobile station is likely to be located in other areas. Creating the base station list having a high probability; A method for determining a paging area, comprising: determining a paging area based on the base station list. (Appendix 12) In the step of creating the base station list, the base station list is created such that the base station list includes more base stations than the direction opposite to the movement prediction direction with respect to the movement prediction direction of the mobile station.
  • the paging area determination method according to attachment 11. (Appendix 13)
  • the estimated position and the predicted position of the mobile station are elliptical areas, and are obtained by elapse of time from the elliptical area represented by the estimated position to the elliptical area represented by the predicted position.
  • the paging area determination method according to attachment 11 or 12 wherein the base station list of the paging area is generated from a base station included in an area included in an envelope and covering cells that intersect each other.
  • the likelihood of movement prediction of the mobile station is estimated based on the position information of the mobile station for each of the plurality of movement models, The method for determining a paging area according to appendix 11 or 12, wherein the one estimated position and the predicted position are used.
  • the weighted average of the estimated positions calculated based on the plurality of movement models, using the likelihood of movement prediction as a weight, and the plurality of movement state estimation means A weighted average of the predicted positions calculated based on the estimated position and the predicted position, respectively.
  • a method for determining a paging area according to appendix 11 or 12.
  • Appendix 16 A non-transitory computer readable medium for creating a base station list for determining a paging area, Calculating an estimated position at a predetermined time and a predicted position after movement at a time after the predetermined time; Using the estimated position and the predicted position, the vicinity of the route from the previous estimated position to the predicted position is likely to be located in the mobile station, assuming that the mobile station is likely to be located in other areas.
  • a non-transitory computer-readable medium for determining a paging area which causes a computer to execute the step of creating the base station list having high characteristics.
  • the base station list is created such that the base station list includes more base stations than the direction opposite to the movement prediction direction with respect to the movement prediction direction of the mobile station.
  • the non-transitory computer-readable medium for determining a paging area according to appendix 16.

Abstract

関連技術は、位置登録直後にページング要求があった場合にページングエリアが必要以上に大きくなる。また、移動局の移動特性の変化に十分対応して適切な位置登録エリアおよびページングエリアを決定していない、という課題がある。 本発明にかかる移動通信システム(100)は、移動局の移動状態を予測して、その予測結果に基づいて移動局の在圏する可能性が高い基地局リストを作成する移動予測装置(40)と、移動予測装置が作成した基地局リストに基づいてページングエリアを決定する移動管理装置(30)を備えている。そして、移動予測装置は、所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算し、推定位置と、予測位置を用いて、推定位置から予測位置までの経路近傍を、他の領域よりも移動局の在圏する可能性が高いものとして、基地局リストを作成するよう構成されている。

Description

移動通信システム、移動予測装置及びページングエリアの決定方法
 本発明は、移動通信システムにおける移動局の位置登録処理およびページング処理に関し、特に位置登録エリアおよびページングエリアの決定に関する。
 移動通信システムは、待ち受け状態の移動局に対する呼び出し(ページング)を実現するために、コアネットワークにおいて移動局のいるエリアを把握する必要がある。これを実現するために、移動局は位置登録を行い自局の在圏するエリア(位置登録エリア)をコアネットワークに通知を行う。例えば、3GPPのLTE (Long Term Evolution)は、トラッキングエリア(TA; Tracking Area)と呼ばれる隣接するセルの集合を単位として移動局の位置を管理している。
 トラッキングエリアはトラッキングエリア識別子(TAI;Tracking Area Identifier)によって識別される。移動局は、基地局が自局の属するトラッキングエリアのトラッキングエリア識別子を報知することで、在圏するトラッキングエリアを把握することができる。移動局の在圏するトラッキングエリアは、移動局が位置登録(TAU;Tracking Area Update)を行うことでコアネットワーク側に登録される。
 コアネットワークは、登録された情報をもとに移動局の在圏するエリアを把握することができる。待ち受け状態の移動局に対して下りデータが到着した場合、トラッキングエリアをページングエリアとみなし、そこに含まれる全ての基地局がページング信号を送信する。移動局は、自局宛のページング信号を受信すると、通信路を確立するためのシグナリングを行う。これによりデータの送受信が可能となり、移動局の呼び出しが実現する。
 以下、位置登録によってコアネットワークが把握している移動局の在圏エリアを位置登録エリア、ページングの際にページング信号が送信されるエリアをページングエリアと呼ぶ。一般に、移動局に対するページング処理は、位置登録エリアに属する全ての基地局がページング信号を送出する必要がある。しかし、移動局の在圏するセル(1つの基地局がカバーする区域)以外でのページング処理は無線リソースの無駄となる。そのため、この無駄を抑えるために、位置登録エリアから実際にページングを行うページングエリアを絞り込む手法が提案されている。例えば、特許文献1および2は、移動局の位置登録履歴に基づきページングエリアを決定することで、ページングエリアを絞り込む技術を開示している。
 特許文献1は、GPS(Global Positioning System)によって得られる移動局の位置登録履歴から移動速度(または加速度)に応じてページングエリアを選択する。また、特許文献2は、周期的な位置登録により得られる移動局の位置登録履歴から、登録間隔での移動距離の密度分布を求め、累積密度がある閾値以下となる距離を半径とする円に含まれるセルの集合をページングエリアとして決定する技術を開示している。さらに、特許文献2は、ページングに失敗した場合にページングエリアを段階的に拡大することで、ページングの失敗を防いでいる。
 ページングでのシグナリングに関して、特許文献1および2は、位置登録履歴から移動局の移動速度に応じてページングエリアを小さくすることで、ページングに要するシグナリングコストを削減している。しかし、これらの手法は単純に位置登録履歴から計算される移動距離と直前の位置登録位置を元にページングエリアを決定しているため、移動局の移動特性を十分に活用できていない。例えば、移動局が一定の方向に継続して移動している場合、その後も同じ方向に移動し続ける可能性が高いと考えられる。しかしながら、関連する手法は移動局の直前の位置登録位置を中心とした領域をページングエリアとするため、在圏している可能性の低い、移動方向とは逆の領域にも移動方向と同程度のセルに対してページングを行うことになり、改良の余地がある。
 また、特許文献1は、周期的な位置登録の履歴を利用して、ページングエリアの半径を決定しているが、ページング要求時点での移動局の位置ではなく、次の周期的位置登録時点までに移動する可能性の高い範囲を基準としているため、位置登録直後にページング要求があった場合にページングエリアが必要以上に大きくなる。加えて、人の移動には停止・徒歩・車・電車など複数の移動手段があり、時間経過とともに変化していく。しかし、関連する手法はこの点を十分考慮しておらず、利用する位置登録履歴の取得期間内で平均化された移動特性を用いることになり、移動手段の変化に対応できていない。
 位置登録処理でのシグナリングに関して、位置登録エリアを大きくすると、位置登録の頻度を下げることができる。しかし、上記のページングエリアの最適化を行ったとしても、ページング失敗時には、位置登録エリアをページングエリアとしてページングを行わなければならず、単純に位置登録エリアを大きくすることは望ましくない。そのため、位置登録エリアのサイズを抑えつつ、位置登録頻度が少なくなるように位置登録エリアを設計することが望ましい。特許文献1および2は、それぞれRAI(経路選択エリア識別情報)/LAI(位置(登録)エリア識別情報)とトラッキングエリア識別子リストが位置登録エリアの識別に用いられるが、位置登録エリアの決定については言及されていない。
特許4532298号公報 特開2011-49616号公報
 上述のように、関連技術は、位置登録直後にページング要求があった場合にページングエリアが必要以上に大きくなる。また、移動局の移動特性の変化に十分対応して適切な位置登録エリアおよびページングエリアを決定していない、という課題がある。本発明で提供する、移動管理におけるシグナリングとは、移動局のページングに要するシグナリングと、移動局が位置登録エリア外に移動する際に必要な位置登録処理に必要なシグナリングを含んでいる。
 本発明は、移動局の移動管理におけるシグナリングに要するコストを削減することが可能な移動通信システム、移動予測装置及びページングエリアの決定方法を提供することを目的としている。
 一態様にかかる移動予測装置は、移動局の移動状態を予測して、その予測結果に基づいて移動局の在圏する可能性が高い基地局リストを、ページングエリアを決定するために作成する。また、所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算し、前記推定位置と、前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、前記基地局リストを作成するよう構成されている。
 一態様にかかる移動通信システムは、移動局の移動状態を予測して、その予測結果に基づいて移動局の在圏する可能性が高い基地局リストを作成する移動予測装置と、前記移動予測装置が作成した基地局リストに基づいてページングエリアを決定する移動管理装置を備えている。そして、前記移動予測装置は、所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算し、前記推定位置と、前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、前記基地局リストを作成するよう構成されている。
 一態様にかかるページングエリアの決定方法は、所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算すること、前記推定位置と前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、移動局の在圏する可能性が高い前記基地局リストを作成すること、前記基地局リストに基づいてページングエリアを決定すること、を含む。
 本発明により、ページングエリアを適切に選択し、必要以上に大きくなることを抑制する。また、移動局の移動特性の変化に十分対応して適切な位置登録エリアおよびページングエリアを決定するシステムを提供することができる。
実施形態1における構成の一例を示すブロック図である。 実施形態1における移動予測装置の構成の一例を示すブロック図である。 実施形態1における位置登録処理の動作の一例を示すシーケンス図である。 実施形態1におけるページング処理の動作の一例を示すシーケンス図である。 実施形態1における基地局リスト作成の一例である。 実施形態2における位置通知処理の動作の一例を示すシーケンス図である。 実施形態3における移動予測装置の構成の一例を示すブロック図である。
 次に、本発明の実施の形態について図面を参照して詳細に説明する。
<実施の形態1>
[構成の説明]
 図1は、本発明における移動通信システムの構成の一例を示すブロック図である。図1の様に、本実施形態における移動通信システムは、複数の移動局10と、複数の基地局20と、移動管理装置30と、移動予測装置40と、ゲートウェイ50とを備える。
 移動局10は、移動管理装置30に対し、在圏する基地局20を介して位置登録を行う。移動局10は、位置登録により、移動管理装置30から通知された位置登録エリア情報を保持する。位置登録は、移動局10が自局の保持する位置登録エリア情報に属さない基地局10のセルに移動した場合に行われる。基地局20は、無線の到達する範囲(セル)に在圏する移動局10と無線アクセス技術によって接続される。
 移動管理装置30は、移動局10の位置管理を行う。ここで、位置管理とは移動局10の位置登録エリアの管理及び移動局10に対するページング処理を含む。移動管理装置30は、基地局20と接続されており、移動局10からの位置登録を処理し、移動局10の位置登録エリアを管理する。また、外部ネットワークから移動局10に接続要求があった時、移動管理装置30は、ゲートウェイ50からの要求に応じ、待ち受け状態にある移動局10のページング処理を行う。そして、移動管理装置30は、移動予測装置40と接続されており、移動局10の在圏する基地局情報または位置情報を移動予測装置40に通知する。
 加えて、移動管理装置30は、移動予測装置40に対して、移動局10の一定時間後、または現在の位置の在圏する可能性の高いエリアの推定を依頼し、その結果をもとに、位置登録エリアおよびページングエリアを決定する機能を持つ。移動管理装置30は、移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、基地局リストを作成する。移動予測装置40は、移動管理装置30からの位置情報通知により得られる移動局10のいる位置情報に基づいて移動局10の移動を予測する。
 図2はその構成の一例を示すブロック図である。移動予測装置40は、位置情報変換手段41、基地局情報記憶部42、移動状態推定手段43、基地局リスト生成手段44を備える。基地局情報記憶部42は、表1に示すように、基地局識別子と、その基地局の設置位置(または、セルの中心位置)、セル半径の対応関係を保持している。
Figure JPOXMLDOC01-appb-T000001
 位置情報変換手段41は、移動管理装置30からの位置情報通知が、基地局識別子として与えられた場合に、基地局情報記憶部42を参照して、基地局位置およびセル半径を観測位置z、誤差半径rに変換して、移動状態推定手段43に出力する。
 位置情報変換手段41は、位置情報通知が、GPSなどによって得られる観測位置zと誤差半径rである場合は、そのままその情報を移動状態推定手段43に出力する。移動状態推定手段43は、zとrの入力時刻をt0としたときに、時刻t0での移動局10の移動状態x^とその誤差共分散行列P^を推定する機能と、時刻t0+Δtにおける移動状態x ̄とその誤差共分散行列P ̄を予測する機能を備える。
 基地局リスト生成部は、x^、P^、x ̄、P ̄から位置登録エリアおよびページングエリアを生成するために用いられる複数の基地局識別子からなる基地局リストを生成する。移動状態推定手段43としては、例えば、カルマンフィルタを用いることができる。ゲートウェイ50は、移動局10と外部ネットワークのデータ通信を中継する。ゲートウェイ50は、待ち受け状態の移動局10宛に外部ネットワークからのデータの着信があると、移動管理装置30に対して該当する移動局10のページングを要求する。
 [動作の説明]
 次に、本発明の実施形態において実行される処理動作について詳細に説明する。
(位置登録)
 図3は、本実施形態における位置登録処理の動作の一例を示すシーケンス図である。移動局10は、自局が位置登録エリア外のセルに在圏することを検出すると、位置登録要求を移動管理装置30に送信する。位置登録要求は移動局10が在圏する基地局20を経由して移動管理装置30に到達する(S11)。位置登録要求には、移動局及び基地局を識別する情報の他、GPS(Global Positioning System)などの手段で得られる移動局10の緯度経度からなる座標情報と測定精度を含んでもよい。
 移動管理装置30は位置登録要求を受信すると、移動予測装置40に対して移動局の位置情報を通知する(S12)。ここで、位置情報は、位置登録要求を中継した基地局20の識別子であり、位置登録要求に含まれる座標情報とその測定誤差半径であってもよい。
 位置情報通知を受けた移動予測装置40は、それに含まれる位置情報をもとに移動局10の移動状態を更新する(S13)。このとき、位置情報が座標情報と測定誤差半径として与えられる場合は、その値を用いて更新を行う。基地局20の識別子として与えられる場合は、基地局20のセルの中心位置(または基地局の設置位置)とその半径(にある係数を乗じたもの)を更新に用いる。
 なお、具体的な移動状態の更新手順については後述する。位置情報通知を送信した移動管理装置30は、続いて移動予測装置40に対して、移動局10の移動予測を要求する(S14)。移動予測装置40は移動予測要求を受信すると、移動局10の現在から時刻差s後までの間に在圏する可能性が高い基地局の識別子リストを作成し(S15)、移動管理装置30に送信する(S16)。移動管理装置30は、移動予測結果として基地局識別リストを受信すると、受信した基地局リストを移動局10の位置登録エリアとして登録し、位置登録エリアを基地局20経由で移動局10に対して送信する(S17)。移動局10は、受信した位置登録エリアを自局の位置登録エリアとして保持する。
 (ページング)
 図4は、本実施形態におけるページング処理における動作の一例を示すシーケンス図である。外部ネットワークから待ち受け状態の移動局10に対する着信データがゲートウェイ50に到着した場合、ゲートウェイ50と移動局10間の通信路が確立されていない。そのため、ゲートウェイ50は、ページングをトリガするため位置管理装置30に対して移動局10宛のデータが着信したことを通知する(S21)。
 データ着信通知を受けた位置管理装置30は、移動予測装置40に対して、移動局10の現在の在圏エリアの推定を要求する(S22)。推定要求を受けた移動予測装置40は、移動局10の移動状態から、移動局10が現在在圏する可能性がある高い基地局リストを作成し(S23)、移動管理装置30に送信する(S24)。移動管理装置30は、位置推定結果として得られた基地局リストと移動局10の位置登録エリアの共通部分として得られる基地局リストをページングエリアとして決定し(S25)、ページングシグナルの送出を対象基地局に依頼する(S26、S27)。
 (移動予測・位置推定)
 移動予測装置40における移動状態推定手段43での移動予測および位置推定には、カルマンフィルタを利用することができる。カルマンフィルタは、時間変化するシステムの、誤差を含む離散的な観測から現在の状態を推定する手法である。また、カルマンフィルタは、モデルによって予測された変数の値と、実際に観測された数値の加重平均をとることによって、変数の最も確からしい値を推定することができる。そして、カルマンフィルタを用いると、観測データからシステムに対してフィードバック制御が可能となる。以下、カルマンフィルタを利用した場合の移動予測・位置推定の動作について説明する。なお、カルマンフィルタの適用において、移動局10の移動は次の線形式でモデル化されるものとする。
Figure JPOXMLDOC01-appb-M000001
 上段の式はシステムの状態を表す状態方程式である。下段の式はシステムの変数と観測変数の関係を表す計測方程式である。wやvは外乱や測定誤差を表す項である。F、H、は、右辺と左辺の変数を関係付けるための行列である。
 x(t)およびy(t)はそれぞれ時刻tにおける移動局の移動状態および観測値を表すベクトルである。また、F(Δt)およびQ(Δt)はそれぞれ時刻差Δtによって決まる時間遷移を表わす行列、および時間遷移の雑音(プロセスノイズ)の分散共分散行列である。移動状態x(t)として、緯度、経度、緯度方向速度、経度方向速度の4つの値からなるベクトルを利用してもよい。
 移動状態x(t)には、移動局の位置、速度、移動方向に関する情報を保持することが望ましい。観測状態y(t)は、緯度、経度からなる移動局の位置を表わすベクトルとする。また、F(Δt)は移動局の等速直線的な移動、Q(Δt)は移動局のランダムな加速や移動をモデル化するために用いることができる。Hは、x(t)から移動局の位置情報(緯度、経度)を観測するための行列であり、R(r)は距離rによって決まる観測誤差の分散共分散行列である。R(r)には、例えばrの二乗を対角成分として持つ2x2行列にある定数を乗じたものを用いることができる。
 カルマンフィルタは、時刻t0-Δtにおける移動状態の推定値x^とその誤差共分散行列P^が得られているとすると、時刻t0における移動状態x ̄とその誤差共分散行列P ̄を、次の式を用いて予測できる(予測手続き)。
Figure JPOXMLDOC01-appb-M000002

 さらに、時刻t0における位置情報zとその誤差半径情報rを得られた場合、次式によって、時刻t0の移動状態とその誤差共分散行列を推定できる(更新手続き)。
Figure JPOXMLDOC01-appb-M000003

 移動予測装置40に、移動管理装置30から移動局10の位置通知が行われると、移動状態更新として次のようにカルマンフィルタの更新を行う。
 まず、前回の位置通知との時間差Δtを計算する。次に、前回の位置通知の時刻からΔt後(つまり現在の時刻)における移動状態の予測手続きを行う。そして、位置通知に含まれる現在の観測位置zと観測誤差半径rを利用して移動状態の更新手続きを行う。具体的には、基地局識別子で識別される基地局20の位置(またはセルの中心位置)を観測位置、そのカバー領域の半径をrとして更新手続きを行う。位置通知に座標情報と測定誤差半径を含む場合は、座標情報は、観測位置をz、測定誤差半径をrとして更新手続きを行ってもよい。更新手続きにより、移動状態x^とその誤差の共分散行列P^と更新時刻t0が、移動状態として移動予測装置40に保持される。
 図3の様に、移動予測装置40の、移動管理装置30から移動局10の移動予測要求を受けたときの移動予測の動作を説明する。ここで、移動予測装置40は、時刻t0において移動局10に関する位置通知を受けて直近の移動状態更新を行っているものとする。つまり、移動予測装置40は、移動局10ごとに状態更新時刻t0、移動状態x^、誤差共分散行列P^を保持している。移動要求を受けた移動予測装置40は、カルマンフィルタの予測手続きを用いて、予め設定された時刻差s後の推定状態とその誤差x ̄の分散共分散行列P ̄を予測する。
 基地局リスト作成手段は、x^、P^、x ̄、P ̄から基地局リストを作成する。時刻t0における推定位置y^とその誤差の共分散行列S^、および時刻t0+sにおける推定位置y ̄と、その誤差の共分散行列S ̄を次式で計算する。
Figure JPOXMLDOC01-appb-M000004
 このとき、(y^、S^)の組は時刻t0における移動局10の推定位置とその推定誤差、(y ̄、S ̄)の組は時刻t0+sにおける移動局10の予測位置とその予測誤差を表わしている。つまり、それぞれ推定位置および予測位置の従う二次元正規分布である。このとき、推定位置のp_curr1%信頼区間、および予測位置のp_pred%信頼区間は、緯度・経度座標上は、それぞれ楕円O_curr、O_predとなる。本実施形態は、これらの楕円O_currおよび楕円O_predを用いて、在圏する可能性の高い基地局を決定する。
 具体的には、図5に示すように楕円O_currおよびO_predと2つの楕円の共通外接線から構成される領域に包含される、または交差するセルに設置されている基地局を、在圏する可能性の高い基地局とみなす。ただし、共通外接線を持たない場合は、O_predに包含される、または交差するセルに対応する基地局を用いる。移動予測装置40は、これらの在圏する可能性高い基地局の識別子リストを移動管理装置30に送信する。
 このとき、目標基地局数Bを定め、基地局数がBを超えない(あるいはBに近くなる)ように、時刻差sおよび信頼度区間パラメータp_curr1およびp_predを動的に選択し基地局リストを作成してもよい。また、楕円の共通外接線の代わりに時刻差を0~sの範囲で動かしたときの楕円O_predの包絡線を用いてもよい。図5に示されるように、結果として、移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、基地局リストが作成されている。
 図4の様に、移動予測装置40が、移動管理装置30から移動局10の位置推定要求を受けたときにも、移動予測と同様にカルマンフィルタの予測手続きを用いる。移動予測と同様に、時刻t0において直近の移動状態更新を行っているものとし、位置推定要求を時刻t1に受信したとする。このとき、まず移動予測と同様に、時刻t0における推定位置y^と誤差共分散行列S^を求める。さらに、時刻差Δt=t1-t0としてカルマンフィルタの予測手続きにより、現時刻t1における移動状態x ̄とその誤差共分散行列P ̄を求める。そして、数2により、現在の推定位置y ̄とその誤差共分散行列S ̄を計算する。
 以上で得られたy^、S^、y ̄、S ̄から基地局リストを作成するには、移動予測と同様の手順を取る。つまり、図5に示すように、(y^、S^)の表わす二次元正規分布のp_curr2%信頼区間として得られる楕円O_currと、(y ̄、S ̄)の表わす二次元正規分布のp_est%信頼区間として得られる楕円O_estと、それらの共通外接線からなる領域に包含される、または共通領域を持つセルに設置されている基地局からなる基地局リストを作成し、移動管理装置30に送信する。このとき、ページングの失敗を抑制するために、p_curr2およびp_estは、p_curr1およびp_predより大きい値を用いるとよい。
 また、単純に、楕円O_estに包含される、または共通領域を持つセルに設置される基地局からなる基地局リストを利用してもよい。本実施形態は、移動予測・位置推定にカルマンフィルタを用いる構成について説明したが、移動予測の手段はこれに限らず、過去の位置情報に基づいてある時刻における移動局の位置の予測値とその誤差共分散行列を計算できる移動状態推定手段であれば、カルマンフィルタに限らずその他の手法を用いてもよい。例えば、カルマンフィルタの派生フィルタや粒子フィルタなど他の予測手段を利用してもよい。
 本実施形態は、移動局の移動速度と移動方向を含んだ移動状態に応じて移動局の移動予測・位置推定を行い位置登録エリアおよびページングエリアを決定する。特に、移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、基地局リストを作成している。つまり、移動局の移動方向を加味した位置登録エリアおよびページングエリアの決定が可能である。そのため、位置登録エリアに含まれるセル数を関連する手法と同程度とした場合でも、位置登録間隔が長くなり、位置登録のシグナル数を削減することができる。さらに、移動とは逆方向にある基地局に対するページング処理を削減することができる。
 <実施の形態2>
 本実施の形態は、実施形態1における移動通信システムでの移動予測精度を向上することを目的としている。本実施形態における移動通信システムは、基地局および移動管理装置の動作が実施形態1の動作と異なる。本実施形態においては、実施形態1とは異なる符号、基地局20Aおよび移動管理装置30Aを用いて区別する。本実施形態における基地局20Aは、実施形態1における基地局20の動作に加え、移動管理装置30Aに対して、位置通知トリガを送信する点が異なる。
 位置通知トリガは、移動局10が基地局20Aに在圏することが判明した場合に基地局20Aから移動管理装置30Aに送信される。位置通知トリガは、明示的な新たにメッセージを定義して利用してもよいし、移動通信システムにおいて送受信される既存のメッセージを利用してもよい。ここでの、既存のメッセージには例えば、移動局10がコアネットワークに対して通信路を確立・切断するために行われるシグナリングシーケンスや移動局10が基地局間で移動した場合のハンドオーバ時に行うシグナリングシーケンスに含まれる基地局20Aにから移動管理装置30Aに対して送信されるメッセージを用いることができる。
 LTEにおいては、Service Request procedureにおけるS1-AP:Initial Context Setup Complete(LTEシステムにおけるコアネットワークと基地局との間で通信を行うための制御プロトコル名称)、S1 Release procedureにおけるS1-AP: S1 UE Context Release Complete、X2 based handoverにおけるPath Switch Request、を用いてもよい。位置通知トリガは、移動局の在圏セルに対応する基地局が判断できる点が重要であり、本発明の適用をこれらのメッセージに制限するものではない。
 本実施形態における移動管理装置30Aは、実施形態1における移動管理装置30の動作に加え、基地局20Aからの位置通知トリガを受けて、移動予測装置40Aに位置情報通知を行う。実施形態1において、移動予測装置における移動状態の更新は移動局の位置登録要求をトリガとしていた。それに対して、本実施形態は上述の通り位置登録以外の処理も移動状態更新のトリガとなる。
 図6は、本実施形態における移動状態更新の動作の一例を示すシーケンス図である。まず、基地局20Aが移動管理装置30Aに位置通知トリガを送信する(S31)。位置通知トリガを受信した移動管理装置40Aは、対象となる移動局10と基地局20Aの識別子を含む位置情報通知を行う(S32)。これは、実施形態1におけるS12と同等の処理である。位置情報通知を受けた移動予測装置40Aは、実施形態1のS13と同様に、移動状態の更新を行う(S33)。
 本実施形態は、実施形態1と比較して、通信路の確立やハンドオーバなどのタイミングで得られる移動局の在圏セル情報を利用して、移動状態を更新することができる。つまり、位置登録処理のみを利用する実施形態1よりも高い頻度で移動状況を更新でき、より精度の高い移動局の移動予測が可能となる。これにより、精度の高い位置登録エリアおよびページングエリアの決定ができ、結果として、シグナリングコストを削減できる。
 <実施の形態3>
 本実施形態は、実施形態2と同様、移動予測精度の向上を目的としている。本実施形態は、複数の移動モデルを用いて移動予測を行う点が実施形態1と異なり、移動予測装置の構成・動作が実施形態1と異なる。本実施形態においては、実施形態1とは異なる符号、移動予測装置40Bを用いて区別する。
 図7は、本実施形態における移動予測装置40Bの構成の一例を示すブロック図である。本実施形態における移動予測装置40Bは、実施形態1における移動予測装置40と比べて、複数の移動状態推定手段KFi43B(i=1、…、N)、入力決定手段45B、推定状態決定手段46B、予測状態決定手段47Bを備える点が異なる。
 本実施形態は、実施形態1と同様に、移動状態推定手段KFi43Bにカルマンフィルタを用いた動作の一例を説明する。ただし、移動状態推定手段KFi43Bは移動局の移動状態とその誤差情報を推定・予測でき、移動モデルの尤もらしさを定量的に計算できればよく、カルマンフィルタに限定されない。KFiは、Fi(Δt)、Qi(Δt)、Hi、Ri(r)で定義される移動モデルMiの移動予測・推定を行うカルマンフィルタである。移動モデルMiは、複数の異なる移動モデルを表わすもので、例えば、停止モデル、ランダムウォークモデル、等速直線移動モデルなどを用いる。また、同じ移動モデルでもQi(Δt)の成分を変化させた複数のモデルを用意することで、速度変化の大きさの異なる移動モデルを定義できる。
 本実施形態は、移動局10は、ある時刻において複数の移動モデルのうちの1つのモデルに従って動作しているものとみなし、移動モデルMiに従う移動局10は時刻差Δt後に遷移確率π(Δt)ijで移動モデルMjに遷移するものと考える。
 今、時刻t0における位置情報通知により、移動モデルMiに対応する移動状態推定手段KFi43Bが更新され、移動状態xi^、誤差共分散行列Pi^と時刻t0-Δtにおける状態を推定し、その重みがμi^と計算される。このとき、時刻t0における各カルマンフィルタKFiに対する予測・更新手続きは以下の手順で行われる。まず、入力決定手段45Bは、次式を利用して、複数の移動モデルに対応する重みμi ̄、移動状態xi~、移動状態の誤差共分散行列Pi~を決定する。
Figure JPOXMLDOC01-appb-M000005
 次に、xi~およびPi~を入力として、次式によりKFiの予測手続きを行い時刻t0における移動状態の予測値xi ̄とその誤差共分散行列Pi ̄を求める。以下、数5及び数6におけるFi(Δt)、Qi(Δt)、Hは、数1におけるF(Δt)、Q(Δt)に対応する移動モデルのパラメータであり、複数のモデルを区別するために、添え字iを付したものである。
Figure JPOXMLDOC01-appb-M000006
 最後に、xi ̄、Pi ̄および時刻t0における観測値z(と誤差半径r)を入力として、カルマンフィルタKFiの更新手続きを行い、時刻t0における移動状態xi^とその共分散行列Pi^を求める。
Figure JPOXMLDOC01-appb-M000007
 ここで、mnvpdf(z、S)は、平均z、分散Sの多変量正規分布の確率密度関数を表わす。
 推定状態決定手段46Bは、KFiによって推定された移動状態xi^と誤差共分散行列Pi^を統合して、数8または数9のいずれかを利用して最終的な移動状態x^、誤差共分散行列P^を決定する。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで、argmax はargument of the maximumを意味する。これは、関数値が最大となるような値である。同様に、予測状態決定手段47Bは、KFiによって推定された移動状態xi ̄と誤差共分散行列Pi ̄を統合して、数10または数11のいずれかを利用して最終的な移動状態x ̄、誤差共分散行列P ̄を決定する。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 本実施形態における基地局リスト生成手段44は、x^、P^、x ̄、P ̄を利用して、実施形態1と同様の処理により基地局リストを生成する。
 本実施形態は、複数の移動モデルを用意し、その間の遷移を考慮し、移動局10の移動に適合した移動モデルに対して重みをつけて移動予測・位置推定を行う。そのため、停止、徒歩、車など様々な移動モード間での移動モードの変化に応じた移動予測・位置推定が可能となる。精度の高い位置登録エリアおよびページングエリアの決定ができ、結果として、シグナリングコストを削減できる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記実施例で具体例としてLTEシステムを示した。しかしながら、その他の無線通信システム、例えば、第4世代以上の通信規格(e.g. LTE-Advanced、IMT-Advanced、WiMAX2)に関する通信システムにも適用してもよい。
 前記移動予測装置40や移動管理装置30における処理は、コンピュータに対してプログラムを実行させることにより実現することが可能である。
 上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。 また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 上記の実施の形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 移動局の移動状態を予測して、その予測結果に基づいて移動局の在圏する可能性が高い基地局リストを、ページングエリアを決定するために作成する移動予測装置であって、
 所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算し、前記推定位置と、前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、前記基地局リストを作成する移動予測装置。
(付記2)
 前記移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、前記基地局リストを作成する付記1記載の移動予測装置。
(付記3)
 前記移動局の前記推定位置、および前記予測位置は楕円領域であり、前記推定位置が表わす楕円領域から前記予測位置が表わす楕円領域への時間経過により得られる包絡線に含まれる領域に含まれ、及び交差するセルをカバーする基地局からページングエリアの前記基地局リストを生成する付記1又は2に記載の移動予測装置。
(付記4)
 複数の移動モデルに対応した複数の移動状態推定手段を備え、
 前記複数の移動状態推定手段は、移動局の移動予測の尤もらしさを移動局の位置情報に基づいて推定し、前記複数の移動モデルのうち1つの前記推定位置および前記予測位置を利用する付記1又は2に記載に移動予測装置。
(付記5)
 複数の移動モデルに対応した複数の移動状態推定手段を備え、
 前記複数の移動状態推定手段は、移動予測の尤もらしさを重みとして、前記複数の移動モデルに基づいて計算される前記推定位置の加重平均と、前記複数の移動状態推定手段に基づいて計算される前記予測位置の加重平均をそれぞれ推定位置と予測位置として前記基地局リストを生成する、
 付記1又は2に記載に移動予測装置。
(付記6)
 移動局の移動状態を予測して、その予測結果に基づいて移動局の在圏する可能性が高い基地局リストを作成する移動予測装置と、
 前記移動予測装置が作成した基地局リストに基づいてページングエリアを決定する移動管理装置を備え、
 前記移動予測装置は、所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算し、前記推定位置と、前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、前記基地局リストを作成する移動通信システム。
(付記7)
 前記移動予測装置は、前記移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、前記基地局リストを作成する付記6記載の移動通信システム。
(付記8)
 前記移動予測装置が推定する、移動局の前記推定位置、および前記予測位置は楕円領域であり、前記推定位置が表わす楕円領域から前記予測位置が表わす楕円領域への時間経過により得られる包絡線に含まれる領域に含まれ、及び交差するセルをカバーする基地局からページングエリアの前記基地局リストを生成する付記6又は7に記載の移動通信システム。
(付記9)
 前記移動予測装置は、複数の移動モデルに対応した複数の移動状態推定手段を備え、
 前記複数の移動状態推定手段は、移動局の移動予測の尤もらしさを移動局の位置情報に基づいて推定し、前記複数の移動モデルのうち1つの前記推定位置および前記予測位置を利用する付記6又は7に記載に移動通信システム。
(付記10)
 前記移動予測装置は、複数の移動モデルに対応した複数の移動状態推定手段を備え、
 前記複数の移動状態推定手段は、移動予測の尤もらしさを重みとして、前記複数の移動モデルに基づいて計算される前記推定位置の加重平均と、前記複数の移動状態推定手段に基づいて計算される前記予測位置の加重平均をそれぞれ推定位置と予測位置として前記基地局リストを生成する、
 付記6又は7に記載に移動通信システム。
(付記11)
 ページングエリアの決定方法であって、
 所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算するステップと、
 前記推定位置と前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、移動局の在圏する可能性が高い前記基地局リストを作成するステップと、
 前記基地局リストに基づいてページングエリアを決定するステップを備えた、ページングエリアの決定方法。
(付記12)
 前記基地局リストの作成するステップでは、前記移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、前記基地局リストを作成する、付記11記載のページングエリアの決定方法。
(付記13)
 前記基地局リストの作成するステップでは、前記移動局の前記推定位置、および前記予測位置は楕円領域であり、前記推定位置が表わす楕円領域から前記予測位置が表わす楕円領域への時間経過により得られる包絡線に含まれる領域に含まれ、及び交差するセルをカバーする基地局からページングエリアの前記基地局リストを生成する付記11又は12に記載のページングエリアの決定方法。
(付記14)
 前記移動局の推定位置と予測位置を計算するステップでは、複数の移動モデルのそれぞれについて、移動局の移動予測の尤もらしさを移動局の位置情報に基づいて推定し、前記複数の移動モデルのうち1つの前記推定位置および前記予測位置を利用する付記11又は12に記載にページングエリアの決定方法。
(付記15)
 前記移動局の推定位置と予測位置を計算するステップでは、移動予測の尤もらしさを重みとして、前記複数の移動モデルに基づいて計算される前記推定位置の加重平均と、前記複数の移動状態推定手段に基づいて計算される前記予測位置の加重平均をそれぞれ推定位置と予測位置とする、
 付記11又は12に記載にページングエリアの決定方法。
(付記16)
 ページングエリアを決定するための基地局リスト作成非一時的なコンピュータ可読媒体であって、
 所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算するステップと、
 前記推定位置と前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、移動局の在圏する可能性が高い前記基地局リストを作成するステップとをコンピュータに実行させる、ページングエリアの決定処理非一時的なコンピュータ可読媒体。
(付記17)
 前記基地局リストの作成するステップでは、前記移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、前記基地局リストを作成する、付記16記載のページングエリアの決定処理非一時的なコンピュータ可読媒体。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2012年9月28日に出願された日本出願特願2012-215822を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 移動局
20 基地局
20A 基地局
30 移動管理装置
30A 移動管理装置
40 移動予測装置
40A 移動予測装置
40B 移動予測装置
41 位置情報変換手段
41B 位置情報変換手段
42 基地局情報記憶部
42B 基地局情報記憶部
43 移動状態推定手段
43B 移動状態推定手段
44 基地局リスト生成手段
44B 基地局リスト生成手段
45B 入力決定手段
46B 推定状態決定手段
47B 予測状態決定手段
50 ゲートウェイ
100 移動通信システム

Claims (10)

  1.  移動局の所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算し、前記推定位置と、前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、基地局リストを作成する移動予測装置。
  2.  前記移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、前記基地局リストを作成する請求項1記載の移動予測装置。
  3.  前記移動局の前記推定位置、および前記予測位置は楕円領域であり、前記推定位置が表わす楕円領域から前記予測位置が表わす楕円領域への時間経過により得られる包絡線に含まれる領域に含まれ、及び交差するセルをカバーする基地局からページングエリアの前記基地局リストを生成する請求項1又は2に記載の移動予測装置。
  4.  複数の移動モデルに対応した複数の移動状態推定手段を備え、
     前記複数の移動状態推定手段は、移動局の移動予測の尤もらしさを移動局の位置情報に基づいて推定し、前記複数の移動モデルのうち1つの前記推定位置および前記予測位置を利用する請求項1又は2に記載に移動予測装置。
  5.  複数の移動モデルに対応した複数の移動状態推定手段を備え、
     前記複数の移動状態推定手段は、移動予測の尤もらしさを重みとして、前記複数の移動モデルに基づいて計算される前記推定位置の加重平均と、前記複数の移動状態推定手段に基づいて計算される前記予測位置の加重平均をそれぞれ推定位置と予測位置として前記基地局リストを生成する、
     請求項1又は2に記載に移動予測装置。
  6.  移動局の移動状態を予測して、その予測結果に基づいて移動局の在圏する可能性が高い基地局リストを作成する移動予測装置と、
     前記移動予測装置が作成した基地局リストに基づいてページングエリアを決定する移動管理装置を備え、
     前記移動予測装置は、所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算し、前記推定位置と、前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、前記基地局リストを作成する移動通信システム。
  7.  前記移動予測装置は、前記移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、前記基地局リストを作成する請求項6記載の移動通信システム。
  8.  前記移動予測装置が推定する、移動局の前記推定位置、および前記予測位置は楕円領域であり、前記推定位置が表わす楕円領域から前記予測位置が表わす楕円領域への時間経過により得られる包絡線に含まれる領域に含まれ、及び交差するセルをカバーする基地局からページングエリアの前記基地局リストを生成する請求項6又は7に記載の移動通信システム。
  9.  移動局の所定時刻における推定位置と、所定時刻以降の時刻における移動後の予測位置を計算するステップと、
     前記推定位置と前記予測位置を用いて、前期推定位置から前記予測位置までの経路近傍を、他の領域よりも前記移動局の在圏する可能性が高いものとして、移動局の在圏する可能性が高い基地局リストを作成するステップと、
     前記基地局リストに基づいてページングエリアを決定するステップを備えた、ページングエリアの決定方法。
  10.  前記基地局リストの作成するステップでは、前記移動局の移動予測方向に対して、当該移動予測方向とは反対の方向よりも多くの基地局が含まれるように、前記基地局リストを作成する、請求項9記載のページングエリアの決定方法。
PCT/JP2013/003465 2012-09-28 2013-05-31 移動通信システム、移動予測装置及びページングエリアの決定方法 WO2014049911A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/429,831 US20150215742A1 (en) 2012-09-28 2013-05-31 Mobile communication system, movement prediction device and paging area determination method
JP2014538092A JPWO2014049911A1 (ja) 2012-09-28 2013-05-31 移動通信システム、移動予測装置及びページングエリアの決定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012215822 2012-09-28
JP2012-215822 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014049911A1 true WO2014049911A1 (ja) 2014-04-03

Family

ID=50387367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003465 WO2014049911A1 (ja) 2012-09-28 2013-05-31 移動通信システム、移動予測装置及びページングエリアの決定方法

Country Status (3)

Country Link
US (1) US20150215742A1 (ja)
JP (1) JPWO2014049911A1 (ja)
WO (1) WO2014049911A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506924A (ja) * 2015-03-06 2018-03-08 エルジー エレクトロニクス インコーポレイティド ページングシグナリングを減少させるための方法及び装置
JP2020022029A (ja) * 2018-07-31 2020-02-06 株式会社日立国際電気 無線通信システムおよび無線通信方法
JP2020053943A (ja) * 2018-09-28 2020-04-02 Kddi株式会社 情報処理装置、情報処理方法、プログラムおよび無線システム
US11304050B2 (en) 2017-09-29 2022-04-12 Kddi Corporation Node apparatus in a network, control method thereof, and storage medium for control of paging policy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3120594B1 (en) * 2014-03-19 2019-03-13 Nokia Solutions and Networks Oy Method and system for path predictive congestion avoidance
US9591613B2 (en) * 2014-11-28 2017-03-07 Alcatel-Lucent Usa Inc. Adaptive paging using user equipment localization method in a network
JP6525052B2 (ja) * 2015-04-03 2019-06-05 日本電気株式会社 コアネットワークノード、基地局、移動局、サーバ、通信システム、ページング方法及びプログラム
EP3297346B1 (en) * 2015-06-18 2023-02-15 Huawei Technologies Co., Ltd. Paging devices
JP6940744B2 (ja) * 2017-01-19 2021-09-29 富士通株式会社 エッジサーバ及びデータ管理方法
EP3857998A1 (en) * 2018-09-27 2021-08-04 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Location management with dynamic tal for high mobility
EP3959901A1 (en) * 2019-04-26 2022-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Sharing of user equipment states
TWI739479B (zh) * 2020-06-17 2021-09-11 廣達電腦股份有限公司 用於提升定位的平滑度與精準度的電子裝置及定位方法
US11310687B2 (en) 2020-07-23 2022-04-19 Qualcomm Incorporated Techniques for UE mobility prediction based radio resource management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294966A (ja) * 1998-02-20 1998-11-04 Nec Corp 移動体通信の呼出し制御方式
JP2009218670A (ja) * 2008-03-07 2009-09-24 Fujitsu Ltd ページング制御システム
JP2011049616A (ja) * 2009-08-25 2011-03-10 Hitachi Ltd 移動体通信システムおよび移動体通信システムにおけるページングエリア決定方法ならびに呼処理制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010307A1 (en) * 1996-09-09 1998-03-12 Dennis Jay Dupray Location of a mobile station
US6697103B1 (en) * 1998-03-19 2004-02-24 Dennis Sunga Fernandez Integrated network for monitoring remote objects
US6385454B1 (en) * 1998-10-09 2002-05-07 Microsoft Corporation Apparatus and method for management of resources in cellular networks
SE524509C2 (sv) * 2002-04-23 2004-08-17 Axis Ab Metod och anordning för bestämning av positionen för en bärbar anordning
JP2006221329A (ja) * 2005-02-09 2006-08-24 Toshiba Corp 行動予測装置、行動予測方法および行動予測プログラム
US20070132639A1 (en) * 2005-12-09 2007-06-14 Korneluk Jose E Method and apparatus for determining an approximate position of a satellite positioning receiver
KR100944993B1 (ko) * 2007-07-06 2010-03-05 삼성전자주식회사 무선통신 시스템에서 단말의 지리적 위치를 추정하기 방법및 장치
US8682332B2 (en) * 2008-02-26 2014-03-25 Qualcomm Incorporated Efficient frequency assignment for mobile devices in coexisting wireless communication systems
KR20100042204A (ko) * 2008-10-15 2010-04-23 엘지전자 주식회사 위치갱신 수행방법
EP2759177B1 (en) * 2011-09-23 2018-04-25 Qualcomm Incorporated Position estimation via proximate fingerprints
GB2503942A (en) * 2012-07-13 2014-01-15 Nec Corp Mobile relay node handover in a wireless communication system
US9769107B2 (en) * 2013-11-01 2017-09-19 Apple Inc. Lifestyle-based social groups

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294966A (ja) * 1998-02-20 1998-11-04 Nec Corp 移動体通信の呼出し制御方式
JP2009218670A (ja) * 2008-03-07 2009-09-24 Fujitsu Ltd ページング制御システム
JP2011049616A (ja) * 2009-08-25 2011-03-10 Hitachi Ltd 移動体通信システムおよび移動体通信システムにおけるページングエリア決定方法ならびに呼処理制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506924A (ja) * 2015-03-06 2018-03-08 エルジー エレクトロニクス インコーポレイティド ページングシグナリングを減少させるための方法及び装置
US11304050B2 (en) 2017-09-29 2022-04-12 Kddi Corporation Node apparatus in a network, control method thereof, and storage medium for control of paging policy
JP2020022029A (ja) * 2018-07-31 2020-02-06 株式会社日立国際電気 無線通信システムおよび無線通信方法
JP7237485B2 (ja) 2018-07-31 2023-03-13 株式会社日立国際電気 無線通信システムおよび無線通信方法
JP2020053943A (ja) * 2018-09-28 2020-04-02 Kddi株式会社 情報処理装置、情報処理方法、プログラムおよび無線システム

Also Published As

Publication number Publication date
US20150215742A1 (en) 2015-07-30
JPWO2014049911A1 (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
WO2014049911A1 (ja) 移動通信システム、移動予測装置及びページングエリアの決定方法
US9084174B2 (en) Radio communication system, radio base station, and handover control method
CN104081831A (zh) 用于基于移动的方向来选择接入点的方法和装置
CN104053195A (zh) 一种确定黑名单列表成员的方法及装置
JP2019179993A (ja) ノード装置及びその制御方法、並びにプログラム
US9801014B2 (en) Predictive analytics for location estimation of idle UEs in a cellular network
US10045171B2 (en) Positional information managing device, mobile terminal, and mobile device
EP3358884B1 (en) Communication system and control method
JP2017163439A (ja) ネットワーク管理装置、無線基地局、省電力制御方法及びプログラム
WO2013190773A1 (en) Mobile communications system, gateway, method of controlling gateway, and computer readable medium therefor
JP6859960B2 (ja) 無線品質予測装置、無線基地局、無線端末、無線品質予測方法および無線品質予測プログラム
KR101376918B1 (ko) 이동 통신 시스템, 및 그 제어 방법, 및 무선 기지국 장치
EP2874448A1 (en) Method for operating a cellular radio network
JP2010081456A (ja) 無線通信システム、呼処理制御装置及び呼処理制御方法
WO2016029948A1 (en) Quality of service control
JP6130249B2 (ja) 滞在推定装置、及び滞在推定方法
US9094815B2 (en) Base station in mobile communication system and wave stopping method
JP2015220715A (ja) 移動通信システム、基地局制御装置、基地局制御方法およびプログラム
JP2013038583A (ja) 無線ネットワークシステム、ネットワーク管理装置及び劣化検出方法
US10999177B2 (en) Method and a first node for managing modes of operation of a service
JP6476864B2 (ja) 通信制御システム、サービスサーバ、通信制御方法及びプログラム
Mihovska et al. Policy-based mobility management for heterogeneous networks
JP5871390B2 (ja) 無線通信端末の位置に応じてサービス提供の可否を制御するシステム及び方法
Maheswari et al. Markov based VHO to improve the Handover performance among heterogeneous wireless networks in PMIPv6 domain
US20230388813A1 (en) Method, apparatus for enhancing coverage of network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538092

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14429831

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840651

Country of ref document: EP

Kind code of ref document: A1