WO2014048260A1 - 触控装置结构及其制造方法 - Google Patents

触控装置结构及其制造方法 Download PDF

Info

Publication number
WO2014048260A1
WO2014048260A1 PCT/CN2013/083543 CN2013083543W WO2014048260A1 WO 2014048260 A1 WO2014048260 A1 WO 2014048260A1 CN 2013083543 W CN2013083543 W CN 2013083543W WO 2014048260 A1 WO2014048260 A1 WO 2014048260A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing electrodes
substrate
touch device
base film
device structure
Prior art date
Application number
PCT/CN2013/083543
Other languages
English (en)
French (fr)
Inventor
张恒耀
张振炘
吴孟学
伍哲毅
陈丽娴
Original Assignee
宝宸(厦门)光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝宸(厦门)光学科技有限公司 filed Critical 宝宸(厦门)光学科技有限公司
Publication of WO2014048260A1 publication Critical patent/WO2014048260A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/169Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making

Definitions

  • the present invention relates to the field of touch technologies, and more particularly to a touch device structure and a method of fabricating the same.
  • the touch device is generally formed by staggering a plurality of X-direction electrodes and a plurality of Y-direction electrodes.
  • the X-direction electrodes and the Y-direction electrodes are formed in different layer positions, and the X-direction electrodes and the Y-direction electrodes are insulated from each other by an insulating layer.
  • Such a touch device having a plurality of electrodes is generally formed by sequentially performing an X-direction electrode, an X-direction insulating layer, and a Y-direction electrode on a substrate by a sputtering and photolithography process.
  • the formation of the next layer structure affects the layer structure that has been formed in the previous step. For example, after a plurality of vacuum sputtering, exposure, development, and etching processes in the above manufacturing method, the electrode may be cracked or detached from the substrate.
  • the invention provides a touch device structure and a manufacturing method thereof, and the sensing electrode is formed by a transfer process to reduce or eliminate the adverse effect on the layer structure formed in the previous step when forming the next layer structure, thereby improving Yield.
  • the present invention provides a method for fabricating a touch device structure, comprising: providing a substrate, the substrate is divided into a visible region; forming a plurality of first sensing electrodes on the substrate of the visible region, and the first sensing electrodes are spaced apart from each other; Forming an insulating layer on the first sensing electrode; and transferring the plurality of second sensing electrodes on the insulating layer, wherein the second sensing electrodes are spaced apart from each other, and wherein the first sensing electrode is interlaced with the second sensing electrode Arranged and insulated from each other by an insulating layer.
  • the present invention provides a method for fabricating a touch device structure, comprising: providing a substrate, the substrate is divided into a visible region; forming a plurality of first sensing electrodes on the substrate of the visible region, and the first sensing electrodes are spaced apart from each other And transferring an insulating layer and the plurality of second sensing electrodes on the first sensing electrodes, wherein the second sensing electrodes are spaced apart from each other, and wherein the first sensing electrodes and the second sensing electrodes are staggered and passed
  • the insulating layers are insulated from each other.
  • the present invention provides another method of fabricating a touch device structure, including providing a substrate The substrate is divided into a visible region and has a first surface and a second surface opposite to the first surface; forming a plurality of first sensing electrodes on the first surface, and the first sensing electrodes are spaced apart from each other; and transferring The plurality of second sensing electrodes are on the second surface, wherein the second sensing electrodes are spaced apart from each other, and wherein the first sensing electrodes and the second sensing electrodes are staggered and insulated from each other by the substrate.
  • the invention provides a touch device structure, comprising a substrate, the substrate is divided into a visible area; a plurality of first sensing electrodes are disposed on the substrate of the visible area at intervals; an insulating layer is disposed on the first sensing On the electrode; a transfer base film; and a plurality of second sensing electrodes disposed on the transfer base film at intervals, wherein the second sensing electrode is formed on the insulating layer by a transfer process, and wherein the first sense The measuring electrode and the second sensing electrode are staggered and insulated from each other by an insulating layer.
  • the present invention provides another touch device structure, comprising a substrate, the substrate is divided into a visible area; a plurality of first sensing electrodes are disposed on the substrate of the visible area at intervals; a transfer base film; a plurality of second The sensing electrodes are disposed on the transfer base film at intervals; and an insulating layer is disposed on the second sensing electrode, wherein the second sensing electrode and the insulating layer are formed on the first sensing electrode by a transfer process And wherein the first sensing electrode and the second sensing electrode are staggered and insulated from each other by the insulating layer.
  • the present invention provides another touch device structure, including a substrate having a visible region and having a first surface and a second surface opposite to the first surface; the plurality of first sensing electrodes are disposed at intervals from each other a second transfer base film; and a plurality of second sensing electrodes disposed on the second transfer base film at intervals from each other, wherein the second sensing electrode is disposed on the substrate by a transfer process On the second surface, and wherein the first sensing electrode and the second sensing electrode are staggered and insulated from each other by the substrate.
  • the multilayer structure can be formed into two parts, and thus compared with the conventional manufacturing method by sputtering and photolithography.
  • the adverse effect on the layer structure formed in the previous step when forming the next layer structure can be reduced, thereby improving the yield.
  • the process can be simplified and the production efficiency can be improved.
  • there is no need for expensive processes (such as sputtering and lithography) equipment it can increase the price competitive advantage and reduce the pollution of chemical agents.
  • FIGS. 1A to 1E are schematic cross-sectional views showing a method of fabricating a touch device according to an embodiment of the present invention
  • FIGS. 2A to 2E are schematic cross-sectional views showing a method of fabricating a touch device according to another embodiment of the present invention.
  • 3A to 3C are schematic cross-sectional views showing a method of fabricating a structure of a touch device according to another embodiment of the present invention.
  • FIG. 4 is an exploded view showing the structure of a touch device according to an embodiment of the present invention.
  • the touch device structure includes a substrate 100, an insulating layer 220, a plurality of first sensing electrodes 230, a plurality of second sensing electrodes 240, and a transfer base film 200.
  • the substrate 100 is divided into a viewing area 110.
  • the first sensing electrodes 230 are disposed on the substrate 100 of the visible region 110 at intervals from each other and are arranged along a first axial direction (for example, an X direction).
  • the insulating layer 220 is disposed on the first sensing electrode 230.
  • the second sensing electrodes 240 are disposed on the transfer base film 200 at intervals from each other and are arranged in the second axial direction (for example, the Y direction).
  • the second sensing electrodes 240 are formed on the insulating layer 220 by a transfer process and are alternately arranged with the first sensing electrodes 230.
  • the insulating layer 220 is located between the first sensing electrode 230 and the second sensing electrode 240 to insulate the first sensing electrode 230 and the second sensing electrode 240 from each other through the insulating layer 220.
  • the second sensing electrode 240 is formed on the insulating layer 220 by transfer.
  • the second sensing electrode 240 is first formed on the transfer base film 200 by a printing process, such as a gravure printing process, and then the transfer base film 200 having the second sensing electrode 240 is attached to the substrate 100.
  • the insulating layer 220 is disposed between the first sensing electrode 230 and the second sensing electrode 240.
  • the first sensing electrode 230 can also be formed on the substrate 100 by a similar transfer process. In other embodiments, the first sensing electrode 230 can also be formed directly on the substrate 100 by printing.
  • the materials of the first sensing electrode 230 and the second sensing electrode 240 are not limited to the high temperature resistant conductive material.
  • the materials of the first sensing electrode 230 and the second sensing electrode 240 may be optically transparent conductive inks, and the transparent conductive inks include nano silver sols, indium tin oxides (Indium) Tin Oxide, ITO) Sol, Indium Zinc Oxide (IZO) Sol, Indium Tin Fluorine Oxide, ITFO) Sol, Aluminum Zinc Oxide (AZO) Sol, Fluorine Zinc Oxide (Fluorine Zinc) Oxide, FZO) sol, carbon nanotube sol or conductive polymer sol (for example, poly(3,4-ethylenedioxythiophene, PEDOT)), wherein the conductivity of the transparent conductive ink is higher than 1 / ⁇ cm.
  • the transfer process described above may be replaced by a sputtering, lithography, and etching process to form the first sensing electrode 230.
  • the first sensing electrode 230 may be composed of a refractory material containing ITO, IZO, ITFO, AZO, or FZO.
  • the substrate 100 further includes a bezel area 130 surrounding the viewable area 110.
  • the touch device structure further includes a plurality of leads 300 disposed on the substrate 100 of the frame region 130 to be electrically connected to the first sensing electrode 230 and the second sensing electrode 240, respectively.
  • the plurality of leads 300 are disposed on the transfer base film 210, and the leads 300 are disposed on the substrate 100 disposed on the frame region 130 to be electrically connected to the first sensing electrodes 230 and the second sense. Measuring electrode 240.
  • the touch device structure includes a substrate 100, an insulating layer 220, a plurality of first sensing electrodes 230, a plurality of second sensing electrodes 240, and a transfer base film 200.
  • the substrate 100 is divided into a viewing area 110.
  • the first sensing electrodes 230 are disposed on the substrate 100 of the visible region 110 at intervals from each other and are arranged along a first axial direction (for example, an X direction).
  • the second sensing electrodes 240 are disposed on the transfer base film 200 at intervals from each other and are arranged in the second axial direction (for example, the Y direction).
  • the insulating layer 220 is disposed on the second sensing electrode 240.
  • the second sensing electrode 240 and the insulating layer 220 are disposed on the first sensing electrode 230 by a transfer, wherein the first sensing electrode 230 and the second sensing electrode 240 are staggered, and the insulating layer 220 is located at the first sensing electrode 230.
  • the first sensing electrode 230 and the second sensing electrode 240 are insulated from each other by the insulating layer 220.
  • the second sensing electrode 240 and the insulating layer 220 are disposed on the first sensing electrode 230 by transfer.
  • the second sensing electrode 240 is first formed on the transfer base film 200 by a first printing process, such as a first gravure printing process.
  • an insulating layer 220 is formed on the second sensing electrode 240 by a second printing process, such as a second gravure printing process.
  • the transfer base film 200 having the second sensing electrode 240 and the insulating layer 220 is attached to the substrate 100 such that the insulating layer 220 is located between the first sensing electrode 230 and the second sensing electrode 240.
  • the first sensing electrode 230 can also be formed on the substrate 100 by a similar transfer process.
  • the first sensing electrode 230 can also be formed directly on the substrate 100 by printing.
  • the materials of the first sensing electrode 230 and the second sensing electrode 240 are the same as those of the foregoing embodiment of FIG. 1D, and therefore will not be described again.
  • the insulating layer 220 is fabricated by a gravure printing process, the insulating layer 220 is composed of an insulating ink material (for example, an optically clear ink), and its electrical conductivity is less than 10-10 / ⁇ cm.
  • the substrate 100 further includes a bezel area 130 surrounding the viewable area 110.
  • the touch device structure further includes a plurality of leads 300 disposed on the substrate 100 of the frame region 130 to be electrically connected to the first sensing electrode 230 and the second sensing electrode 240.
  • the plurality of leads 300 are disposed on the transfer base film 210, and the leads 300 are disposed on the substrate 100 disposed on the frame region 130 to be electrically connected to the first sensing electrodes 230 and the second sense. Measuring electrode 240.
  • the touch device structure includes a substrate 100, a plurality of first sensing electrodes 230, a plurality of second sensing electrodes 240, and a second transfer base film 200B.
  • the substrate 100 has a viewing zone 110 and has a first surface 100A and a second surface 100B opposite the first surface 100A.
  • the first sensing electrodes 230 are disposed on the first surface 100A of the substrate 100 at a distance from each other.
  • the second sensing electrodes 240 are disposed on the second transfer base film 200B at intervals from each other, and are disposed on the second surface 100B of the substrate 100 by transfer.
  • the first sensing electrode 230 and the second sensing electrode 240 are staggered and disposed on the substrate 100 of the visible area 110.
  • the substrate 100 is located between the first sensing electrode 230 and the second sensing electrode 240 to insulate the first sensing electrode 230 and the second sensing electrode 240 from each other through the substrate 100.
  • the second sensing electrode 240 is disposed on the second surface 100B of the substrate 100 by transfer.
  • the second sensing electrode 240 is first formed on the second transfer base film 200B by a printing process such as a gravure printing process.
  • the second transfer base film 200B having the second sensing electrode 240 is attached to the second surface 100B of the substrate 100.
  • the material of the second sensing electrode 240 is the same as that of the embodiment shown in FIG. 1D, and therefore will not be described again.
  • the touch device structure further includes a plurality of leads 300 disposed on the substrate 100 of the frame region 130 for electrically connecting to the first sensing electrode 230 and the second sensing electrode 240.
  • the plurality of leads 300 are disposed on the transfer base film 210, and the leads 300 are electrically connected to the first layer by being transferred between the substrate 100 disposed on the frame region 130 and the transfer base film 200.
  • the electrode 230 and the second sensing electrode 240 are examples of leads 300 disposed on the substrate 100 of the frame region 130 for electrically connecting to the first sensing electrode 230 and the second sensing electrode 240.
  • the touch device structure includes a first transfer base film 200A and a second transfer base film 200B, wherein the first sensing electrode 230 is formed on the first transfer base film.
  • the first sensing electrode 230 is formed on the first transfer base film.
  • the second sensing electrode 240 is formed on the second transfer base film 200B and is disposed on the second surface 100B of the substrate 100 by transfer.
  • the materials of the first sensing electrode 230 and the second sensing electrode 240 are optically transparent conductive inks.
  • the transparent conductive ink comprises a nanosilver sol, an ITO sol, an IZO sol, an ITFO sol, an AZO sol, an FZO sol, a carbon nanotube sol or a conductive polymer sol, wherein the conductivity of the transparent conductive ink is higher than 1/ ⁇ cm.
  • FIG. 1A to FIG. 1E are schematic cross-sectional views showing a manufacturing method of a touch device structure corresponding to the embodiment of FIG. 1D.
  • a substrate 100 is provided.
  • the substrate is divided into a visible area 110 and a border area 130 surrounding the visible area 110.
  • a plurality of first sensing electrodes 230 are formed on the substrate 100 of the visible region 110, and the first sensing electrodes 230 are spaced apart from each other and arranged along a first axial direction (for example, an X direction).
  • the first sensing electrode 230 may be formed on the substrate 100 by a transfer process.
  • the first sensing electrode 230 is formed on a transfer base film (not shown) by a printing process.
  • the transfer base film having the first sensing electrode 230 is attached to the substrate 100. Finally, the transfer base film is peeled off.
  • the first sensing electrode 230 can also be directly formed on the substrate 100 by a printing process. Furthermore, the above transfer process may be replaced by a sputtering, lithography, and etching process to form the first sensing electrode 230.
  • An insulating layer 220 is formed on the first sensing electrode 230.
  • the insulating layer 220 may also be formed on the first sensing electrode 230 by transfer.
  • the insulating layer 220 is formed on a transfer base film (not shown) by a printing process such as a gravure printing process.
  • the transfer base film having the insulating layer 220 is attached to the first sensing electrode 230.
  • the insulating layer 220 is composed of an insulating ink material such as an optically clear ink having a conductivity of less than 10 - 10 / ⁇ cm.
  • the insulating layer 220 can be formed by a printing or deposition process.
  • the transfer of the plurality of second sensing electrodes 240 on the insulating layer 220 is illustrated.
  • the second sensing electrodes 240 are spaced apart from each other, and the first sensing electrodes 230 and the second sensing electrodes 240 are staggered and insulated from each other by the insulating layer 220.
  • a plurality of second sensing electrodes 240 and a plurality of leads 300 are formed on the transfer base film 200 by a printing process.
  • the second sensing electrode 240 is electrically connected to the lead 300,
  • the printing process is preferably gravure printing.
  • the second sensing electrode 240 and the lead 300 may be formed simultaneously in the same printing process, or may be separately formed in different printing processes.
  • the transfer base film 200 having the second sensing electrode 240 and the lead 300 is attached to the substrate 100.
  • the second sensing electrode 240 is corresponding to the visible region 110 and is staggered with the first sensing electrode 230 , and wherein the insulating layer 220 is located between the first sensing electrode 230 and the second sensing electrode 240 to make the first
  • the sensing electrode 230 and the second sensing electrode 240 are insulated from each other, and the lead 300 corresponds to the frame region 130 and electrically connected to the first sensing electrode 230 and the second sensing electrode 240, respectively.
  • heat or ultraviolet treatment may be performed to cure according to the material of the transfer base film 200.
  • the second sensing electrode 240 and the lead 300 may be performed to cure according to the material of the transfer base film 200.
  • the transfer base film 200 can be peeled off from the substrate 100.
  • the surface of the substrate 100 relative to the surface of the first sensing electrode 230 is used to provide direct touch by the user.
  • FIGS. 1A to 1E are schematic cross-sectional views showing a manufacturing method of the touch device structure corresponding to the embodiment of FIG. 2D.
  • the same components as those in FIGS. 1A to 1E are denoted by the same reference numerals and the description thereof will be omitted.
  • a substrate 100 is provided.
  • the substrate is divided into a visible area 110 and a frame area 130 surrounding the visible area 110.
  • a plurality of first sensing electrodes 230 are formed on the substrate 100 of the visible region 110, and the first sensing electrodes 230 are spaced apart from each other and arranged along a first axial direction (for example, an X direction).
  • the method for forming the first sensing electrode 230 is the same as that of the first embodiment described above, and therefore will not be described again.
  • an insulating layer 220 and a plurality of second sensing electrodes 240 are transferred onto the first sensing electrode 230.
  • the second sensing electrodes 240 are spaced apart from each other.
  • the first sensing electrode 230 and the second sensing electrode 240 are staggered and insulated from each other by the insulating layer 220.
  • a plurality of second sensing electrodes 240 and a plurality of leads 300 are formed on the transfer base film 200 by a printing process.
  • the second sensing electrode 240 is electrically connected to the lead 300, and the printing process is preferably a gravure printing process.
  • the second sensing electrode 240 and the lead 300 may be formed simultaneously in the same printing process, or may be separately formed in different printing processes.
  • an insulating layer 220 is formed on the second sensing electrode 240.
  • the insulating layer 220 is formed on the second sensing electrode 240 by a printing process such as a gravure printing process.
  • the insulating layer 220 may be composed of an insulating ink material such as an optically clear ink having a conductivity of less than 10 - 10 / ⁇ cm.
  • the transfer base film 200 having the insulating layer 220, the second sensing electrode 240, and the leads 300 is attached to the substrate 100.
  • the second sensing electrode 240 is corresponding to the visible region 110 and is staggered with the first sensing electrode 230 , and wherein the insulating layer 220 is located between the first sensing electrode 230 and the second sensing electrode 240 to make the first
  • the sensing electrode 230 and the second sensing electrode 240 are insulated from each other, and the lead 300 corresponds to the frame region 130 and electrically connected to the first sensing electrode 230 and the second sensing electrode 240, respectively.
  • heat or ultraviolet rays may be applied depending on the material of the transfer base film 200. Processing to cure the insulating layer 220, the second sensing electrode 240, and the lead 300.
  • the transfer base film 200 can be peeled off from the substrate 100.
  • the surface of the substrate 100 relative to the surface of the first sensing electrode 230 is used to provide direct touch by the user.
  • FIGS. 3A to 3C are cross-sectional views showing a manufacturing method of the touch device structure of the embodiment of FIGS. 3B-1 and 3B, respectively, wherein the same reference numerals are used for the same components as those of FIGS. 1A to 1E, and the description thereof is omitted.
  • a substrate 100 is provided.
  • the substrate 100 is divided into a visible area 110 and a border area 130 surrounding the visible area 110.
  • the substrate 100 has a first surface 100A and a second surface 100B opposite the first surface 100A.
  • a plurality of first sensing electrodes 230 are formed on the first surface 100A of the substrate 100, and the first sensing electrodes 230 are located in the visible region 110 and are spaced apart from each other.
  • the first sensing electrode 230 may be directly formed on the substrate 100 by printing, or may be formed on the substrate 100 by a sputtering, lithography, and etching process.
  • a second transfer base film 200B is provided for transferring the second sensing electrode 240 on the second surface 100B of the substrate 100.
  • a plurality of second sensing electrodes 240 and a plurality of leads 300 are formed on the second transfer base film 200B by a printing process, and the printing process is preferably gravure printing.
  • the second sensing electrode 240 and the lead 300 may be formed simultaneously in the same printing process, or may be separately formed in different printing processes.
  • the second transfer base film 200B having the second sensing electrode 240 and the lead 300 is attached to the second surface 100B of the substrate 100.
  • the second sensing electrode 240 is located in the visible region 110 , and the second sensing electrode 240 is staggered with the first sensing electrode 230 , and the substrate 100 is located between the first sensing electrode 230 and the second sensing electrode 240 .
  • the first sensing electrode 230 and the second sensing electrode 240 are insulated from each other.
  • the lead 300 corresponds to the frame region 130 and is electrically connected to the first sensing electrode 230 and the second sensing electrode 240, respectively.
  • heating or ultraviolet light may be performed according to the material of the second transfer base film 200B. Processing to cure the second sensing electrode 240 and the lead 300.
  • a first transfer base film 200A is provided, and a plurality of first sensing electrodes 230 and a plurality of leads electrically connected to the first sensing electrodes 230 are formed by a printing process ( Not shown) on the first transfer base film 200A, the printing process is preferably gravure printing.
  • the first transfer base film 200A having the first sensing electrode 230 and the leads connected thereto is attached to the first surface 100A of the substrate 100.
  • the first sensing electrode 230 corresponds to the visible area 110 and the lead line corresponds to the bezel area 130.
  • a second transfer base film 200B is provided, and a plurality of second sensing electrodes 240 and a plurality of leads 300 are formed on the second transfer base film 200B by a printing process, and the leads 300 are electrically connected to the second sensing electrodes 240.
  • the printing process is preferably gravure printing.
  • the second transfer base film 200B having the second sensing electrode 240 and the lead 300 is attached to the second surface 100B of the substrate 100.
  • the second sensing electrode 240 corresponds to the visible area 110 and the lead 300 corresponds to the frame area 130.
  • the first sensing electrode 230 and the second sensing electrode 240 are staggered, and the substrate 100 is located between the first sensing electrode 230 and the second sensing electrode 240 to make the first sensing electrode 230 and the second sensing electrode 240 Insulate each other. Furthermore, after the step of attaching the second transfer base film 200B having the second sensing electrode 240 and the lead 300 to the substrate 100, depending on the materials of the first and second transfer base films 200A, 200B, Heating or ultraviolet treatment may be performed to cure the first sensing electrode 230, the lead connected to the first sensing electrode 230, the second sensing electrode 240, and the lead 300.
  • the first transfer base film can be formed by making other functional layers (for example, a protective layer, an anti-reflection layer, etc.) in the touch device structure, or to facilitate bonding with other electronic components (for example, display modules, etc.)
  • the 200A and second transfer base film 200B are peeled off from the substrate 100.
  • the substrate 100 may be constructed of glass, plastic film, or other conventional transparent substrate materials.
  • the insulating layer 220 may be composed of an insulating ink material such as an optically clear ink, and has a conductivity of less than 10 - 10 / ⁇ cm.
  • the lead 300 may be composed of a conductive ink such as silver paste, copper paste or carbon paste, and has a conductivity higher than 1/ ⁇ cm.
  • the transfer base film 200, the first transfer base film 200A, and the second transfer base film 200B may be made of a flexible plastic film (for example, a polyester film (polyethylene) Terephthalate, PET), polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl alcohol or polyimide). Further, the thickness of the transfer base film 200 may range from 20 micrometers to 200 micrometers.
  • a flexible plastic film for example, a polyester film (polyethylene) Terephthalate, PET), polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl alcohol or polyimide.
  • the thickness of the transfer base film 200 may range from 20 micrometers to 200 micrometers.
  • the transfer process is performed by transferring the base film to form the insulating layer and the sensing electrode of the touch device, the multilayer structure can be formed into two parts, and thus is processed by sputtering and photolithography.
  • the adverse effect on the layer structure formed in the previous step when forming the second layer structure can be reduced, thereby improving the yield and improving the material selectivity of the sensing electrode in the touch device without Limited by high temperature resistant materials.
  • the process can be simplified and the production efficiency can be improved.
  • there is no need for expensive processes (such as sputtering and lithography) equipment it can increase the price competitive advantage and reduce the pollution of chemical agents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacture Of Switches (AREA)
  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)

Abstract

本发明提供一种触控装置结构之制造方法,包括提供一基底,基底区分有一可视区。形成复数第一感测电极于可视区的基底上,且第一感测电极相互间隔排列。形成一绝缘层于第一感测电极上。转印复数第二感测电极于绝缘层上,其中第二感测电极相互间隔排列,且其中第一感测电极与第二感测电极交错排列,且通过绝缘层相互绝缘。本发明还提供一种触控装置结构。通过转印制程制作绝缘层及感测电极,以降低或排除形成次一层结构时对前一步骤已形成之层结构产生的不良影响,进而提升良率。

Description

触控装置结构及其制造方法 技术领域
本发明涉及触控技术领域,特别是有关于一种触控装置结构及其制造方法。
背景技术
随着资讯科技的发展,触控装置成为人机之间资讯传递的方式之一。触控装置通常是由复数X方向电极及复数Y方向电极交错排列所构成,X方向电极及Y方向电极形成于不同的层位,且X方向电极与Y方向电极通过绝缘层相互绝缘。
这种具有多层电极的触控装置的制作方法,通常是通过溅镀及光刻制程在基底上依序制作出X方向电极、覆盖X方向的绝缘层以及Y方向电极。然而,上述触控装置的制作方法中,形成次一层结构时会对前一步骤已形成之层结构产生影响。例如,上述制作方法中经过多次真空溅镀、曝光、显影与蚀刻制程后,电极可能会出现裂纹或脱离基底等问题。
因此,有必要寻求一种新的触控装置结构之制造方法,其能够解决或改善上述的问题。
发明内容
本发明提供一种触控装置结构及其制造方法,通过转印制程制作感测电极,以降低或排除形成次一层结构时对前一步骤已形成之层结构产生的不良影响,进而提升良率。
本发明提供一种触控装置结构之制造方法,包括提供一基底,基底区分有一可视区;形成复数第一感测电极于可视区的基底上,且第一感测电极相互间隔排列;形成一绝缘层于第一感测电极上;以及转印复数第二感测电极于绝缘层上,其中第二感测电极相互间隔排列,且其中第一感测电极与第二感测电极交错排列,且通过绝缘层相互绝缘。
本发明提供另一种触控装置结构之制造方法,包括提供一基底,基底区分有一可视区;形成复数第一感测电极于可视区的基底上,且第一感测电极相互间隔排列;以及转印一绝缘层及复数第二感测电极于第一感测电极上,其中第二感测电极相互间隔排列,且其中第一感测电极与第二感测电极交错排列,且通过绝缘层相互绝缘。
本发明提供另一种触控装置结构之制造方法,包括提供一基底 ,基底区分有一可视区,且具有第一表面及与第一表面相对的第二表面;形成复数第一感测电极于第一表面上,且第一感测电极相互间隔排列;以及转印复数第二感测电极于第二表面上,其中第二感测电极相互间隔排列,且其中第一感测电极与第二感测电极交错排列,且通过基底相互绝缘。
本发明提供一种触控装置结构,包括一基底,基底区分有一可视区;复数第一感测电极,相互间隔地设置于可视区的基底上;一绝缘层,设置于第一感测电极上;一转印基膜;以及复数第二感测电极,相互间隔地设置于转印基膜上,其中第二感测电极通过转印制程形成于绝缘层上,且其中第一感测电极与第二感测电极交错排列,且通过绝缘层相互绝缘。
本发明提供另一种触控装置结构,包括一基底,基底区分有一可视区;复数第一感测电极,相互间隔地设置于可视区的基底上;一转印基膜;复数第二感测电极,相互间隔地设置于转印基膜上;以及一绝缘层,设置于第二感测电极上,其中第二感测电极及绝缘层通过转印制程形成于第一感测电极上,且其中第一感测电极与第二感测电极交错排列,且通过绝缘层相互绝缘。
本发明提供另一种触控装置结构,包括一基底,基底区分有一可视区,且具有第一表面及与第一表面相对的第二表面;复数第一感测电极,相互间隔地设置于基底的第一表面上;第二转印基膜;以及复数第二感测电极,相互间隔地设置于第二转印基膜上,其中第二感测电极通过转印制程设置于基底的第二表面上,且其中第一感测电极与第二感测电极交错排列,且通过基底相互绝缘。
根据本发明实施例,由于通过转印制程制作触控装置的绝缘层及感测电极,可将多层结构分成两部分形成,因此与通过溅镀及光刻制程的传统制造方法相比,可以降低形成次一层结构时对前一步骤已形成之层结构产生的不良影响,进而提升良率。再者,以转印制程取代溅镀及光刻制程,可简化制程,进而提高生产效率。另外由于无需昂贵的制程(例如,溅镀及光刻制程)设备,因此可提高价格竞争优势以及降低化学药剂的污染。
附图说明
图1A至1E为本发明一实施例之触控装置结构制造方法剖面示意图;
图2A至2E为本发明另一实施例之触控装置结构制造方法剖面示意图;
图3A至3C为本发明另一实施例之触控装置结构结构制造方法剖面示意图;以及
图4为本发明一实施例之触控装置结构的爆炸图。
具体实施方式
以下说明本发明实施例之触控装置结构及其制造方法。然而,可轻易了解本发明所提供的实施例仅用于说明以特定方法制作及使用本发明,并非用以局限本发明的范围。再者,在本发明实施例之图式及说明内容中使用相同的标号来表示相同或相似的部件。
请参照图1D及图4,为根据本发明一实施例之触控装置结构剖面示意图及爆炸图。在本实施例中,触控装置结构包括:一基底100、一绝缘层220、复数第一感测电极230、复数第二感测电极240及一转印基膜200。
基底100区分有一可视区110。第一感测电极230相互间隔地设置于可视区110的基底100上,且沿第一轴向(例如X方向)排列。绝缘层220设置于第一感测电极230上。第二感测电极240相互间隔地设置于转印基膜200上,且沿第二轴向(例如Y方向)排列。第二感测电极240通过转印制程形成于绝缘层220上,并与第一感测电极230交错排列。其中第一轴向与第二轴向相互交叉,例如第一轴向与第二轴向相互垂直,但不以此为限。绝缘层220位于第一感测电极230与第二感测电极240之间,以使第一感测电极230与第二感测电极240通过绝缘层220相互绝缘。
本实施例中,第二感测电极240通过转印形成于绝缘层220上。举例而言,先通过印刷制程,例如凹版印刷制程,在转印基膜200上形成第二感测电极240,接着,将具有第二感测电极240的转印基膜200贴附于基底100上,使绝缘层220位于第一感测电极230与第二感测电极240之间。第一感测电极230也可通过相似的转印制程形成于基底100上。在其他实施例中,第一感测电极230也可以通过印刷直接形成于基底100上。相较于传统的溅镀及光刻制程,由于进行转印制程时不需要高温处理,因此第一感测电极230及第二感测电极240的材料不受限于耐高温的导电材料。第一感测电极230及第二感测电极240的材料可为光学透明导电油墨,透明导电油墨包括纳米银溶胶、铟锡氧化物(Indium Tin Oxide,ITO) 溶胶、铟锌氧化物(Indium Zinc Oxide,IZO)溶胶、铟锡氟氧化物(Indium Tin Fluorine Oxide,ITFO)溶胶、铝锌氧化物(Aluminum Zinc Oxide,AZO)溶胶、氟锌氧化物(Fluorine Zinc Oxide,FZO)溶胶、纳米碳管溶胶或导电高分子溶胶(例如,聚乙烯二氧噻吩(poly(3,4-ethylenedioxythiophene),PEDOT)),其中透明导电油墨的导电率高于1/Ωcm。在其他实施例中,可通过溅镀、微影及蚀刻制程取代上述转印制程,以形成第一感测电极230。在此情形中,第一感测电极230可由含ITO、IZO、ITFO、AZO或FZO的耐高温材料所构成。
在本实施例中,基底100更包括围绕可视区110的边框区130。再者,触控装置结构更包括复数引线300,设置于边框区130的基底100上,以分别电性连接于第一感测电极230及第二感测电极240。在另一实施例中,复数引线300设置于转印基膜210上,且引线300通过转印设置于边框区130的基底100上,以电性连接于第一感测电极230及第二感测电极240。
请参照图2D,为根据本发明另一实施例之触控装置结构剖面示意图,其中相同于图1D之部件使用相同之标号并省略其说明。在本实施例中,触控装置结构包括:一基底100、一绝缘层220、复数第一感测电极230、复数第二感测电极240及一转印基膜200。基底100区分有一可视区110。第一感测电极230相互间隔地设置于可视区110的基底100上,且沿第一轴向(例如X方向)排列。第二感测电极240相互间隔地设置于转印基膜200上,沿第二轴向(例如Y方向)排列。绝缘层220设置于第二感测电极240上。第二感测电极240及绝缘层220通过转印设置于第一感测电极230上,其中第一感测电极230与第二感测电极240交错排列,绝缘层220位于第一感测电极230与第二感测电极240之间,以使第一感测电极230与第二感测电极240通过绝缘层220相互绝缘。
本实施例中,第二感测电极240及绝缘层220通过转印设置于第一感测电极230上。举例而言,首先通过第一印刷制程,例如第一凹版印刷制程,形成第二感测电极240于转印基膜200上。接着,通过第二印刷制程,例如第二凹版印刷制程,形成绝缘层220于第二感测电极240上。然后,将具有第二感测电极240及绝缘层220的转印基膜200贴附于基底100上,使绝缘层220位于第一感测电极230与第二感测电极240之间。第一感测电极230也可通过相似的转印制程形成于基底100上。在其他实施例中,第一感测电极230也可以通过印刷直接形成于基底100上。第一感测电极230及第二感测电极240的材料与前述图1D实施例相同,故不再赘述。当绝缘层220采用凹版印刷制程制作时,绝缘层220由绝缘油墨材料(例如光学透明油墨)所构成,且其导电率低于10-10/Ωcm。
在本实施例中,基底100更包括围绕可视区110的边框区130。再者,触控装置结构更包括复数引线300设置于边框区130的基底100上,以电性连接于第一感测电极230及第二感测电极240。在另一实施例中,复数引线300设置于转印基膜210上,且引线300通过转印设置于边框区130的基底100上,以电性连接于第一感测电极230及第二感测电极240。
请参照图3B-1,为根据本发明另一实施例之触控装置结构剖面示意图,其中相同于图1D之部件使用相同之标号并省略其说明。在本实施例中,触控装置结构包括:一基底100、复数第一感测电极230、复数第二感测电极240及一第二转印基膜200B。在本实施例中,基底100具有一可视区110,且具有第一表面100A及与第一表面100A相对的第二表面100B。第一感测电极230相互间隔地设置于基底100的第一表面100A上。第二感测电极240相互间隔地设置于第二转印基膜200B上,且通过转印设置于基底100的第二表面100B上。第一感测电极230及第二感测电极240交错排列设置于可视区110的基底100上。基底100位于第一感测电极230与第二感测电极240之间,以使第一感测电极230与第二感测电极240通过基底100相互绝缘。
本实施例中,第二感测电极240通过转印设置于基底100的第二表面100B上。举例而言,首先通过印刷制程,例如凹版印刷制程,形成第二感测电极240于第二转印基膜200B上。接着,将具有第二感测电极240的第二转印基膜200B贴附于基底100的第二表面100B上。第二感测电极240的材料与前述图1D所示实施例的相同,故不再赘述。
另外,触控装置结构更包括复数引线300设置于边框区130的基底100上,用以电性连接于第一感测电极230及第二感测电极240。在另一实施例中,复数引线300设置于转印基膜210上,且引线300通过转印设置于边框区130的基底100与转印基膜200之间,以电性连接于第一感测电极230及第二感测电极240。
请参照图3B-2,在另一实施例中,触控装置结构包括第一转印基膜200A及第二转印基膜200B,其中第一感测电极230形成于第一转印基膜200A上,且通过转印设置于基底100的第一表面100A上。第二感测电极240形成于第二转印基膜200B上,且通过转印设置于基底100的第二表面100B上。第一感测电极230及第二感测电极240的材料为光学透明导电油墨。透明导电油墨包括纳米银溶胶、ITO溶胶、IZO溶胶、ITFO溶胶、AZO溶胶、FZO溶胶、纳米碳管溶胶或导电高分子溶胶,其中透明导电油墨的导电率高于1/Ωcm。
图1A至图1E为对应前述图1D实施例之触控装置结构的制造方法剖面示意图。请参照图1A,提供一基底100,基底区分有一可视区110及围绕可视区110的一边框区130。形成复数第一感测电极230于可视区110的基底100上,第一感测电极230相互间隔,且沿第一轴向(例如X方向)排列。其中第一感测电极230可通过转印制程形成于基底100上。举例而言,先通过印刷制程,在一转印基膜(未绘示)上形成第一感测电极230。接着,将具有第一感测电极230的转印基膜贴附于基底100上。最后,再将转印基膜剥离。另外,第一感测电极230也可以通过印刷制程直接形成于基底100上。再者,也可通过溅镀、微影及蚀刻制程取代上述转印制程,以形成第一感测电极230。
接着,请参照图1B, 形成一绝缘层220于第一感测电极230上。其中绝缘层220也可以通过转印形成于第一感测电极230上。举例而言,先通过印刷制程,例如凹版印刷制程,在转印基膜(未绘示)上形成绝缘层220。接着,将具有绝缘层220的转印基膜贴附于第一感测电极230上。绝缘层220由绝缘油墨材料所构成,例如光学透明油墨,其导电率低于10-10/Ωcm。在另一实施例中,绝缘层220可通过印刷或沉积制程形成。
请参照图1C-1D,其绘示出转印复数第二感测电极240于绝缘层220上。第二感测电极240相互间隔排列,第一感测电极230与第二感测电极240交错排列,且通过绝缘层220相互绝缘。首先,请参照图1C,通过印刷制程形成复数第二感测电极240及复数引线300于转印基膜200上。第二感测电极240与引线300电性连接, 印刷制程较佳为凹版印刷。第二感测电极240与引线300可以在同一印刷制程中同时形成,也可以在不同的印刷制程中分别形成。
接着,请参照图1D,将具有第二感测电极240及引线300的转印基膜200贴附于基底100上。其中第二感测电极240对应于可视区110且与第一感测电极230交错排列,且其中绝缘层220位于第一感测电极230及第二感测电极240之间,以使第一感测电极230与第二感测电极240相互绝缘,而引线300对应于边框区130,且分别电性连接第一感测电极230及第二感测电极240。再者,在将具有第二感测电极240及引线300的转印基膜200贴附于基底100上的步骤之后,根据转印基膜200的材料不同,可进行加热或紫外线处理,以固化第二感测电极240及引线300。
再接着,请参照图1E,为了制作触控装置结构中后续的其它功能层(例如,保护层、抗反射层等),或助于与其他电子部件(例如,显示模组等)的贴合,可将转印基膜200从基底100上剥离。当触控装置结构与其他电子部件贴合时,基底100上相对于形成第一感测电极230的表面用以提供使用者直接进行触控。
图2A至2D为对应图2D实施例之触控装置结构的制造方法剖面示意图。其中相同于图1A至图1E的部件使用相同的标号并省略其说明。请参照图2A,提供一基底100,基底区分有一可视区110及围绕可视区110的一边框区130。形成复数第一感测电极230于可视区110的基底100上,第一感测电极230相互间隔,且沿第一轴向(例如X方向)排列。其中第一感测电极230的形成方法与前述第1A所述实施例相同,故不再赘述。
请参照图2 B至图2D,为转印一绝缘层220及复数第二感测电极240于第一感测电极230上。其中,第二感测电极240相互间隔排列。第一感测电极230与第二感测电极240交错排列,且通过绝缘层220相互绝缘。首先,请参照图2B,通过印刷制程形成复数第二感测电极240及复数引线300于转印基膜200上。第二感测电极240电性连接于引线300,印刷制程较佳为凹版印刷制程。第二感测电极240与引线300可以在同一印刷制程中同时形成,也可以在不同的印刷制程中分别形成。
接着,请参照图2C,形成绝缘层220于第二感测电极240上。举例而言,先通过印刷制程,例如凹版印刷制程,在第二感测电极240上形成绝缘层220。绝缘层220可由绝缘油墨材料所构成,例如光学透明油墨,其导电率低于10-10/Ωcm。
再接着,请参照图2D,将具有绝缘层220、第二感测电极240及引线300的转印基膜200贴附于基底100上。其中第二感测电极240对应于可视区110且与第一感测电极230交错排列,且其中绝缘层220位于第一感测电极230及第二感测电极240之间,以使第一感测电极230与第二感测电极240相互绝缘,而引线300对应于边框区130,且分别电性连接第一感测电极230及第二感测电极240。再者,在将具有绝缘层220、第二感测电极240及引线300的转印基膜200贴附于基底100上的步骤之后,根据转印基膜200的材料不同,可进行加热或紫外线处理,以固化绝缘层220、第二感测电极240及引线300。
再接着,请参照图2A,为了制作触控装置结构中后续的其它功能层(例如,保护层、抗反射层等),或助于与其他电子部件(例如,显示模组等)的贴合,可将转印基膜200从基底100上剥离。当触控装置结构与其他电子部件贴合时,基底100上相对于形成第一感测电极230的表面用以提供使用者直接进行触控。
图3A至图3C分别为图3B-1及图3B-2实施例之触控装置结构的制造方法剖面示意图,其中相同于图1A至图1E的部件使用相同的标号并省略其说明。请参照图3A,提供一基底100,基底100区分有可视区110及围绕可视区110的一边框区130。再者,基底100具有第一表面100A及与第一表面100A相对的第二表面100B。
接着,请参照图3B-1,形成复数第一感测电极230于基底100的第一表面100A上,且第一感测电极230位于可视区110并相互间隔地设置。在本实施例中,第一感测电极230可通过印刷直接形成于基底100上,也可以通过溅镀、微影及蚀刻制程形成于基底100上。
接着,提供一第二转印基膜200B用以转印第二感测电极240于基底100的第二表面100B上。举例而言,先通过印刷制程形成复数第二感测电极240及复数引线300于第二转印基膜200B上,印刷制程较佳为凹版印刷。且第二感测电极240与引线300可以在同一印刷制程中同时形成,也可以在不同的印刷制程中分别形成。接着,将具有第二感测电极240及引线300的第二转印基膜200B贴附于基底100的第二表面100B上。其中第二感测电极240对应于可视区110,且第二感测电极240与第一感测电极230交错排列,基底100位于第一感测电极230及第二感测电极240之间,以使第一感测电极230与第二感测电极240相互绝缘。而引线300对应于边框区130,且分别电性连接第一感测电极230及第二感测电极240。再者,在将具有第二感测电极240及引线300的第二转印基膜200B贴附于基底100上的步骤之后,根据第二转印基膜200B的材料不同,可进行加热或紫外线处理,以固化第二感测电极240及引线300。
请参照图3B-2,在另一实施例中,提供一第一转印基膜200A,通过印刷制程形成复数第一感测电极230及与第一感测电极230电性连接的复数引线(未绘示)于第一转印基膜200A上,印刷制程较佳为凹版印刷。接着,将具有第一感测电极230及与其连接的引线的第一转印基膜200A贴附于基底100的第一表面100A上。其中第一感测电极230对应于可视区110且引线对应于边框区130。之后,提供一第二转印基膜200B,通过印刷制程形成复数第二感测电极240及复数引线300于第二转印基膜200B上,引线300电性连接于第二感测电极240,印刷制程较佳为凹版印刷。接着,将具有第二感测电极240及引线300的第二转印基膜200B贴附于基底100的第二表面100B上。其中第二感测电极240对应于可视区110且引线300对应于边框区130。第一感测电极230与第二感测电极240交错排列,基底100位于第一感测电极230及第二感测电极240之间,以使第一感测电极230与第二感测电极240相互绝缘。再者,在将具有第二感测电极240及引线300的第二转印基膜200B贴附于基底100上的步骤之后,根据第一、第二转印基膜200A、200B的材料不同,可进行加热或紫外线处理,以固化第一感测电极230、与第一感测电极230连接的引线、第二感测电极240及引线300。
再接着,请参照图3C,上述图3B-1及图3B-2实施例中,在将第一转印基膜200A及第二转印基膜200B贴附于基底100上的步骤之后,为了制作触控装置结构中后续的其它功能层(例如,保护层、抗反射层等),或助于与其他电子部件(例如,显示模组等)的贴合,可将第一转印基膜200A及第二转印基膜200B从基底100上剥离。
在前述各实施例中,基底100可由玻璃、塑胶薄膜或其他习用的透明基底材料所构成。绝缘层220可由绝缘油墨材料(例如光学透明油墨)所构成,且其导电率低于10-10/Ωcm。引线300可由导电油墨(例如银胶、铜胶或碳胶)所构成,其导电率高于1/Ωcm。转印基膜200、第一转印基膜200A及第二转印基膜200B可由具有可挠性的塑胶薄膜(例如聚酯薄膜(polyethylene terephthalate,PET)、聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚乙烯醇或聚酰亚胺)所构成。再者,转印基膜200的厚度可为20微米至200微米的范围。
根据本发明实施例,由于通过转印基膜进行转印制程以制作触控装置的绝缘层及感测电极,可将多层结构分成两部分形成,因此与通过溅镀及光刻制程的传统制造方法相比,可以降低形成次一层结构时对前一步骤已形成之层结构产生的不良影响,进而提升良率,同时提高了触控装置中感测电极的材料选择性,而不受限于耐高温材料。再者,以转印制程取代溅镀及光刻制程,可简化制程,进而提高生产效率。另外由于无需昂贵的制程(例如,溅镀及光刻制程)设备,因此可提高价格竞争优势以及降低化学药剂的污染。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明, 凡在本发明的精神和原则之内, 所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (24)

  1. 一种触控装置结构之制造方法,其特征在于,包括:
    提供一基底,该基底区分有一可视区;
    形成复数第一感测电极于该可视区的该基底上,且该等第一感测电极相互间隔排列;
    形成一绝缘层于该等第一感测电极上;以及
    转印复数第二感测电极于该绝缘层上,其中该等第二感测电极相互间隔排列,且其中该等第一感测电极与该等第二感测电极交错排列,且通过该绝缘层相互绝缘。
  2. 根据权利要求1所述的触控装置结构之制造方法,其特征在于,转印该等第二感测电极于该绝缘层上的步骤更包括:
    形成该等第二感测电极于一转印基膜上;以及
    将具有该等第二感测电极的该转印基膜贴附于该基底上,使该绝缘层位于该等第一感测电极与该等第二感测电极之间。
  3. 根据权利要求2所述的触控装置结构之制造方法,其特征在于,通过印刷制程形成该等第二感测电极于该转印基膜上。
  4. 一种触控装置结构之制造方法,其特征在于,包括:
    提供一基底,该基底区分有一可视区;
    形成复数第一感测电极于该可视区的该基底上,且该等第一感测电极相互间隔排列;以及
    转印一绝缘层及复数第二感测电极于该等第一感测电极上,其中该等第二感测电极相互间隔排列,且其中第一感测电极与第二感测电极交错排列,且通过该绝缘层相互绝缘。
  5. 根据权利要求4所述的触控装置结构之制造方法,其特征在于,转印该绝缘层及该等第二感测电极于该等第一感测电极上的步骤更包括:
    形成该等第二感测电极于一转印基膜上,该等第二感测电极相互间隔排列;
    形成该绝缘层于该等第二感测电极上;以及
    将具有该等第二感测电极及该绝缘层的该转印基膜贴附于该基底上,使该绝缘层位于该等第一感测电极与该等第二感测电极之间。
  6. 根据权利要求5所述的触控装置结构之制造方法,其特征在于,通过一第一印刷制程形成该等第二感测电极于该转印基膜上,通过一第二印刷制程形成该绝缘层于该等第二感测电极上。
  7. 根据权利要求1或4所述的触控装置结构之制造方法,其特征在于,该等第一感测电极通过转印形成于该基底上,其中该等第一感测电极的材质包括纳米银溶胶、铟锡氧化物溶胶、铟锌氧化物溶胶、铟锡氟氧化物溶胶、铝锌氧化物溶胶、氟锌氧化物溶胶、纳米碳管溶胶或导电高分子溶胶。
  8. 一种触控装置结构之制造方法,其特征在于,包括:
    提供一基底,该基底区分有一可视区,且具有一第一表面及与该第一表面相对的一第二表面;
    形成复数第一感测电极于该第一表面上,且该等第一感测电极相互间隔排列;以及
    转印复数第二感测电极于该第二表面上,其中该等第二感测电极相互间隔排列,且其中该等第一感测电极与该等第二感测电极交错排列,且通过该基底相互绝缘。
  9. 根据权利要求8所述的触控装置结构之制造方法,其特征在于,转印该等第二感测电极于该第二表面上的步骤更包括:
    形成该等第二感测电极于一第二转印基膜上,该等第二感测电极相互间隔排列;以及
    将具有该等第二感测电极的该第二转印基膜贴附于该基底的该第二表面上。
  10. 根据权利要求9所述的触控装置结构之制造方法,其特征在于,形成该等第一感测电极于该第一表面上的步骤更包括:
    形成该等第一感测电极于一第一转印基膜上,该等第一感测电极相互间隔排列;以及将具有该等第一感测电极的该第一转印基膜贴附于该基底的该第一表面上。
  11. 根据权利要求9所述的触控装置结构之制造方法,其特征在于,该等第二感测电极通过印刷制程形成。
  12. 根据权利要求10所述的触控装置结构之制造方法,其特征在于,该等第一感测电极通过印刷制程形成。
  13. 根据权利要求3、6、11及12项中任意一项所述的触控装置结构之制造方法,其特征在于,该印刷制程包括凹版印刷制程。
  14. 根据权利要求2、5、9及10项中任意一项所述的触控装置结构之制造方法,其特征在于,在将该转印基膜贴附于该基底的步骤之后,还包括剥离该转印基膜,以使所述触控装置结构与电子部件贴合。
  15. 根据权利要求1、4及8项中任意一项所述的触控装置结构之制造方法,其特征在于,该等第二感测电极的材质包括纳米银溶胶、铟锡氧化物溶胶、铟锌氧化物溶胶、铟锡氟氧化物溶胶、铝锌氧化物溶胶、氟锌氧化物溶胶、纳米碳管溶胶或导电高分子溶胶。
  16. 根据权利要求1、4及8项中任意一项所述的触控装置结构之制造方法,其特征在于,该基底更区分有围绕该可视区的一边框区,且该制造方法更包括在该边框区的该基底上形成复数引线,该等引线分别电性连接于该等第一感测电极及该等第二感测电极。
  17. 根据权利要求1、4及8项中任意一项所述的触控装置结构之制造方法,其特征在于,该基底更区分有围绕该可视区的一边框区,且该制造方法更包括转印复数引线于该边框区的该基底上,该等引线分别电性连接于该等第一感测电极及该等第二感测电极。
  18. 一种触控装置结构,其特征在于,包括:
    基底,该基底区分有一可视区;
    复数第一感测电极,相互间隔地设置于该可视区的该基底上;
    绝缘层,设置于该等第一感测电极上;
    转印基膜;以及
    复数第二感测电极,相互间隔地设置于该转印基膜上,其中该等第二感测电极通过一转印制程形成于该绝缘层上,且其中该等第一感测电极与该等第二感测电极交错排列,且通过该绝缘层相互绝缘。
  19. 一种触控装置结构,其特征在于,包括:
    基底,该基底区分有一可视区;
    复数第一感测电极,相互间隔地设置于该可视区的该基底上;
    转印基膜;
    复数第二感测电极,相互间隔地设置于该转印基膜上;以及
    绝缘层,设置于该等第二感测电极上,其中该等第二感测电极及该绝缘层通过一转印制程形成于该等第一感测电极上,且其中该等第一感测电极与该等第二感测电极交错排列,且通过该绝缘层相互绝缘。
  20. 一种触控装置结构,其特征在于,包括:
    基底,该基底区分有一可视区,且具有一第一表面及与该第一表面相对的一第二表面;
    复数第一感测电极,相互间隔地设置于该基底的该第一表面上;
    第二转印基膜;以及
    复数第二感测电极,相互间隔地设置于该第二转印基膜上,其中该等第二感测电极通过一转印制程设置于该基底的该第二表面上,且其中该等第一感测电极与该等第二感测电极交错排列,且通过该基底相互绝缘。
  21. 根据权利要求20所述的触控装置结构,其特征在于,更包括一第一转印基膜,该等第一感测电极设置于该第一转印基膜上,且该等第一感测电极通过额外的转印制程设置于该基底的该第一表面上。
  22. 根据权利要求18、19及20中任意一项所述的触控装置结构,其特征在于,该基底更区分有围绕该可视区的一边框区,且该触控装置结构更包括复数引线,该等引线设置于该边框区的该基底上,以分别电性连接于该等第一感测电极及该等第二感测电极。
  23. 根据权利要求18、19及20中任意一项所述的触控装置结构,其特征在于,该基底更区分有围绕该可视区的一边框区,且该触控装置结构更包括复数引线,该等引线设置于该转印基膜上,且对应于该边框区,以分别电性连接于该等第一感测电极及该等第二感测电极。
  24. 根据权利要求18、19及20项中任意一项所述的触控装置结构,其特征在于,该等第二感测电极的材质包括纳米银溶胶、铟锡氧化物溶胶、铟锌氧化物溶胶、铟锡氟氧化物溶胶、铝锌氧化物溶胶、氟锌氧化物溶胶、纳米碳管溶胶或导电高分子溶胶。
PCT/CN2013/083543 2012-09-27 2013-09-16 触控装置结构及其制造方法 WO2014048260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210388193.3 2012-09-27
CN201210388193.3A CN103699252B (zh) 2012-09-27 2012-09-27 触控装置结构及其制造方法

Publications (1)

Publication Number Publication Date
WO2014048260A1 true WO2014048260A1 (zh) 2014-04-03

Family

ID=49629951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083543 WO2014048260A1 (zh) 2012-09-27 2013-09-16 触控装置结构及其制造方法

Country Status (4)

Country Link
US (1) US9354671B2 (zh)
CN (1) CN103699252B (zh)
TW (2) TWI516995B (zh)
WO (1) WO2014048260A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262553B1 (ko) * 2014-02-05 2021-06-09 엘지이노텍 주식회사 터치 패널
CN105204673B (zh) * 2014-06-12 2019-03-01 宸鸿科技(厦门)有限公司 触控面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655752A (zh) * 2008-08-20 2010-02-24 奇信电子股份有限公司 触控面板
CN201955767U (zh) * 2010-12-21 2011-08-31 东南大学 一种电容式触摸感应器
CN102236482A (zh) * 2010-05-04 2011-11-09 宸鸿光电科技股份有限公司 电容式触控结构及其制造方法以及触控设备
KR20120072940A (ko) * 2010-12-24 2012-07-04 전자부품연구원 정전용량형 터치 스크린 패널
CN202838265U (zh) * 2012-09-27 2013-03-27 宝宸(厦门)光学科技有限公司 触控装置结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060845B2 (ja) * 2007-06-27 2012-10-31 株式会社ジャパンディスプレイイースト 画面入力型画像表示装置
JP2009129969A (ja) 2007-11-20 2009-06-11 Bridgestone Corp 画像形成方法、光透過性電磁波シールド材の製造方法、並びに光透過性電磁波シールド材
CN102063232A (zh) 2009-11-16 2011-05-18 祥闳科技股份有限公司 电容式多点触控面板的结构及其制作方法
CN102087886A (zh) * 2009-12-08 2011-06-08 中国科学院福建物质结构研究所 基于银纳米线的透明导电薄膜及其制备方法
CN102262469A (zh) * 2010-05-25 2011-11-30 东莞万士达液晶显示器有限公司 触控面板、触控显示面板及触控面板的制作方法
TW201234243A (en) * 2011-02-01 2012-08-16 Ind Tech Res Inst Projective capacitive touch sensor structure and fabricating method thereof
KR101376089B1 (ko) * 2011-12-30 2014-03-20 (주)멜파스 접촉 감지 장치 및 접촉 감지 장치 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655752A (zh) * 2008-08-20 2010-02-24 奇信电子股份有限公司 触控面板
CN102236482A (zh) * 2010-05-04 2011-11-09 宸鸿光电科技股份有限公司 电容式触控结构及其制造方法以及触控设备
CN201955767U (zh) * 2010-12-21 2011-08-31 东南大学 一种电容式触摸感应器
KR20120072940A (ko) * 2010-12-24 2012-07-04 전자부품연구원 정전용량형 터치 스크린 패널
CN202838265U (zh) * 2012-09-27 2013-03-27 宝宸(厦门)光学科技有限公司 触控装置结构

Also Published As

Publication number Publication date
TWI516995B (zh) 2016-01-11
TW201413526A (zh) 2014-04-01
US20140085550A1 (en) 2014-03-27
CN103699252B (zh) 2016-12-21
TWM462404U (zh) 2013-09-21
CN103699252A (zh) 2014-04-02
US9354671B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2011096700A2 (en) Touch panel and method of manufacturing the same
CN203350852U (zh) 静电电容耦合方式触摸面板
WO2014094493A1 (zh) 触控面板及其盖板结构
WO2014131343A1 (zh) 触控面板及其制作方法
US20110132670A1 (en) Capacitive touch device structure
WO2014173217A1 (zh) 触控面板及其制作方法
WO2012099394A2 (en) Touch panel and method for manufacturing the same
EP2543061B1 (en) A method for the production of a conformal element, a conformal element and uses of the same
TW201222385A (en) Flexible resistive touch sensor structure
WO2013091528A1 (zh) 触控面板及其制造方法
CN108241456A (zh) 触控感测模组及其制作方法以及应用其的触控显示面板
CN108984032A (zh) 触控基板及其制作方法、显示装置
WO2014048259A1 (zh) 触控装置结构及其制造方法
CN108845715A (zh) 触控显示装置及触控显示装置的制造方法
WO2015080496A1 (ko) 전도성 구조체 전구체, 전도성 구조체 및 이의 제조방법
WO2014048260A1 (zh) 触控装置结构及其制造方法
CN107577364A (zh) 一种触控显示面板及其制造方法
TWI465993B (zh) 觸控感測結構及其製造方法
WO2013053263A1 (en) Pattern of a capacitive touch device and manufacturing method thereof
WO2015069048A1 (ko) 한 장의 필름을 이용한 터치 센서를 구현하는 터치 패널 및 제조 방법
WO2014036899A1 (zh) 用于触控面板的盖板结构及其制造方法与触控面板
KR101133952B1 (ko) 윈도우 일체형 정전용량방식 터치스크린 패널 및 그 제조방법
WO2013102375A1 (zh) 触控面板及其制作方法
KR20110119130A (ko) 윈도우 일체형 정전용량방식 터치스크린 패널 및 그 제조방법
WO2014079284A1 (zh) 单片玻璃触控板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841678

Country of ref document: EP

Kind code of ref document: A1