WO2014046240A1 - 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランク - Google Patents

磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランク Download PDF

Info

Publication number
WO2014046240A1
WO2014046240A1 PCT/JP2013/075470 JP2013075470W WO2014046240A1 WO 2014046240 A1 WO2014046240 A1 WO 2014046240A1 JP 2013075470 W JP2013075470 W JP 2013075470W WO 2014046240 A1 WO2014046240 A1 WO 2014046240A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
cutting
glass blank
magnetic disk
flow
Prior art date
Application number
PCT/JP2013/075470
Other languages
English (en)
French (fr)
Inventor
勝彦 花田
磯野 英樹
秀和 谷野
村上 明
佐藤 崇
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2014536935A priority Critical patent/JPWO2014046240A1/ja
Publication of WO2014046240A1 publication Critical patent/WO2014046240A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • C03B7/11Construction of the blades
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/088Flat discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/70Horizontal or inclined press axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for manufacturing a magnetic disk glass blank having a pair of main surfaces, a method for manufacturing a magnetic disk glass substrate, and a magnetic disk glass blank.
  • a personal computer, a notebook personal computer, or a DVD (Digital Versatile Disc) recording device has a built-in hard disk device for data recording.
  • a hard disk device used in a portable computer such as a notebook personal computer
  • a magnetic disk in which a magnetic layer is provided on a glass substrate is used.
  • Magnetic recording information is recorded on or read from the magnetic layer by a magnetic head (DFH (Dynamic Flying Height) head) slightly floating above the surface of the magnetic disk.
  • a glass substrate is preferably used because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like.
  • the density of magnetic recording has been increased.
  • the magnetic recording information area is miniaturized by using a perpendicular magnetic recording method in which the magnetization direction in the magnetic layer is perpendicular to the surface of the substrate.
  • the storage capacity of one disk substrate can be increased.
  • the flying distance from the magnetic recording surface of the magnetic head is extremely shortened to reduce the magnetic recording information area.
  • the magnetic layer is formed flat so that the magnetization direction of the magnetic layer is substantially perpendicular to the substrate surface. For this reason, the surface irregularities of the glass substrate are made as small as possible.
  • Patent Document 1 As a method for producing a glass substrate used for a magnetic disk, for example, the following method is known (Patent Document 1). Specifically, by cutting the molten glass flow at a predetermined timing, a lump of molten glass is cut out from the molten glass flow, and this lump (glass gob) is dropped downward. The falling molten glass lump is sandwiched between the press surfaces so as to be in contact with only the press surface by a press unit having a pair of molds in which the surfaces facing each other are flat surfaces without unevenness. Press. Thereby, a glass blank is made.
  • Patent Document 3 a molten glass flow cutting method using a V-shaped blade arranged opposite to the molten glass flow.
  • the outer periphery of the cross section of the molten glass flow is gradually narrowed, and finally the molten glass flow is cut at the center portion of the molten glass flow.
  • the cutting blades arranged opposite to both sides of the molten glass flow are moved in opposite directions with respect to the cross section of the molten glass flow to cut the molten glass flow while applying shear. In either case, cutting is performed while narrowing the cross section of the molten glass flow.
  • the glass gob obtained by the cutting is given a speed component due to the rotation. Therefore, during the fall of the glass gob, the glass gob falls in an oblique direction due to this speed component. If the glass gob always falls in a certain oblique direction, the glass gob can be captured and pressed at a predetermined position on the press surface, so there is no problem for the glass blank to be formed. However, since the falling direction of the glass gob slightly changes every time, there is a problem that the drop stability is inferior and the quality (flatness, thickness deviation) of the glass blank to be formed varies.
  • the pair of cutting blades When cutting the molten glass flow, the pair of cutting blades are linearly moved in a direction approaching each other across the molten glass flow, and from the edge of the cross section of the molten glass flow, the radial direction of the cross section And cutting so that the cut region of the molten glass flow changes.
  • an end surface of the glass blank is, for example, a free-form surface.
  • the free-form surface is a surface formed by cooling the end face of the glass blank in the gas phase without contacting with an object such as a mold and not solidifying by cooling.
  • the free-form surface has, for example, no compression stress layer formed on the end face of the glass blank, or even a very small compression stress value.
  • (A)-(c) is a schematic block diagram which shows an example of the magnetic disc produced using the glass substrate for magnetic discs.
  • (A)-(d) is a figure explaining the example of the surface unevenness
  • (A)-(d) is a figure which shows the example of the press molding process of embodiment.
  • (A)-(d) is a figure explaining the example of the cutting
  • (A), (b) is a figure explaining an example of the cutting
  • (A), (b) is a figure explaining the other example of the cutting
  • FIG. 1A is a schematic configuration diagram showing an example of a magnetic disk manufactured using a magnetic disk glass substrate.
  • FIG. 1B is a schematic cross-sectional view of a magnetic disk.
  • FIG. 1C is a diagram showing a state in which the magnetic head floats on the surface of the magnetic disk.
  • the magnetic disk 1 has a ring shape and rotates about a rotation axis.
  • the magnetic disk 1 includes a glass substrate 2 and at least magnetic layers 3A and 3B.
  • an adhesion layer, a soft magnetic layer, a nonmagnetic underlayer, a perpendicular magnetic recording layer, a protective layer, a lubricating layer, and the like are formed.
  • a Cr alloy or the like is used for the adhesion layer.
  • the adhesion layer functions as an adhesive layer with the glass substrate 2.
  • a CoTaZr alloy or the like is used.
  • nonmagnetic underlayer for example, a granular nonmagnetic layer is used.
  • a granular magnetic layer is used for the perpendicular magnetic recording layer.
  • a material made of hydrogen carbon is used for the protective layer.
  • a fluorine-based resin or the like is used for the lubricating layer.
  • the magnetic disk 1 will be described using a more specific example.
  • an in-line sputtering apparatus is used to form CrTi adhesion layers, CoTaZr / Ru / CoTaZr soft magnetic layers, CoCrSiO 2 nonmagnetic granular underlayers, CoCrPt—SiO 2 on both main surfaces of the glass substrate 2.
  • a TiO 2 granular magnetic layer and a hydrogenated carbon protective film are sequentially formed. Further, a perfluoropolyether lubricating layer is formed on the formed uppermost layer by dipping.
  • the magnetic disk 1 rotates around the rotation axis at a rotation speed of 7200 rpm, for example.
  • each of the magnetic heads 4 ⁇ / b> A and 4 ⁇ / b> B of the hard disk device floats by a distance H from the surface of the magnetic disk 1 as the magnetic disk 1 rotates at high speed.
  • the distance H at which the magnetic heads 4A and 4B fly is, for example, 5 nm.
  • the magnetic heads 4A and 4B record or read information on the magnetic layer.
  • the magnetic recording information area can be miniaturized and magnetic recording can be performed by performing recording or reading on the magnetic layer at a short distance without sliding with respect to the magnetic disk 1. Achieve high density.
  • Such processing of the surface unevenness of the glass substrate 2 is produced through grinding using fixed abrasive grains having a small machining allowance and, as a result, first polishing and second polishing capable of reducing the machining allowance. Therefore, the “who problem” described above is solved.
  • Such a glass substrate can be produced by grinding and polishing the main surface of a disk-shaped glass blank.
  • the glass blank before grinding and polishing has a difference between the maximum thickness and the minimum thickness of the glass blank of 6 ⁇ m or less, the flatness of the glass blank is 4 ⁇ m or less, and the depth of the shear mark formed on the glass blank is 5 ⁇ 20 ⁇ m.
  • Such a glass blank can be achieved by a method for producing a glass blank for a magnetic disk described later.
  • the main surface of the glass blank is a press-molded surface that has not been machined.
  • the difference between the maximum diameter and the minimum diameter of the glass blank is preferably 0.1 to 5 mm.
  • the arithmetic average roughness Ra of the main surface of the glass blank is preferably 0.01 ⁇ m to 10 ⁇ m from the viewpoint of reducing the machining allowance for grinding and polishing.
  • Aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used as the material for the magnetic disk glass substrate in the present embodiment.
  • aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
  • the glass blank for magnetic disks and the glass substrate for magnetic disks of this embodiment may be amorphous aluminosilicate glass having the following composition (in terms of mol%).
  • SiO 2 56 to 75% ⁇ Al 2 O 3 : 1 to 11%, Li 2 O: more than 0% and 4% or less, Na 2 O: 1% or more and less than 15%, -K 2 O of 0% or more and less than 3%, Including And, -Substantially free of BaO
  • the total content of alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O is in the range of 6 to 15%; ⁇ Na 2 O molar ratio of the content of Li 2 O with respect to weight (Li 2 O / Na 2 O ) is less than 0.50, The molar ratio ⁇ K 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ of the K 2 O content to the total content of the alkali metal oxides is 0.13 or less, The total
  • mol% display ⁇ 50 to 75% of SiO 2 ⁇ 1 to 15% of Al 2 O 3
  • FIG. 3 is a diagram showing a flow of one embodiment of a method for manufacturing a glass substrate for magnetic disk.
  • a plate-shaped glass blank having a pair of main surfaces is produced by press molding (step S10).
  • the produced glass blank is scribed to produce an annular glass substrate (step S20).
  • shape processing is performed on the scribed glass substrate (step S30).
  • the glass substrate is ground with fixed abrasive grains (step S40).
  • the end surface of the glass substrate is polished (step S50).
  • step S60 1st grinding
  • polishing is performed to the main surface of a glass substrate (step S60).
  • chemical strengthening is performed on the glass substrate after the first polishing (step S70).
  • step S80 is performed on the chemically strengthened glass substrate (step S80).
  • step S10 The manufacturing method of the glass blank for magnetic disks which has a pair of main surface is performed in preparation of the glass blank by press molding of step S10.
  • each step will be described in detail. Note that the flow shown in FIG. 3 is an example, and each step can be omitted as appropriate. Moreover, the order of each process can also be changed suitably.
  • the press unit 120 illustrated in FIG. 4 includes a first mold 121, a second mold 122, a first drive unit 125, and a second drive unit 126.
  • Each of the first mold 121 and the second mold 122 is a plate-like member having a surface for press-molding the glass gob G G (see FIGS. 5B and 5C).
  • the normal direction of the two surfaces is a substantially horizontal direction, and the two surfaces are arranged to face each other in parallel.
  • the first driving unit 125 moves the first mold 121 forward and backward with respect to the second mold 122.
  • the second drive unit 126 moves the second mold 122 forward and backward with respect to the first mold 121.
  • the first driving unit 125 and the second driving unit 126 have a mechanism for rapidly bringing the surface of the first mold 121 and the surface of the second mold 122 into close proximity.
  • the 1st drive part 125 and the 2nd drive part 126 are the mechanisms which combined the air cylinder, the solenoid, and the coil spring, for example. Note that the structure of the press units 130, 140, and 150 is the same as that of the press unit 120, and a description thereof will be omitted.
  • Each press unit after moving to the capture position, the drive and the second drive unit first driving unit, a glass gob G G to fall first type and of predetermined sandwiched in Question second type thickness And a circular glass blank G is produced.
  • step S40 Grinding process with fixed abrasive
  • grinding machining
  • the double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. And, by moving either the upper surface plate or the lower surface plate, or both, the glass substrate and each surface plate are moved relatively to grind both main surfaces of the glass substrate. Can do.
  • step S50 End face polishing process
  • the end face polishing of the glass substrate is performed in the end face polishing process.
  • mirror finishing is performed on the inner peripheral end surface and the outer peripheral end surface of the glass substrate by brush polishing.
  • a slurry containing fine particles such as cerium oxide as free abrasive grains is used.
  • step S60 Next, 1st grinding
  • the machining allowance by the first polishing is, for example, about several ⁇ m to 50 ⁇ m.
  • the purpose of the first polishing is, for example, to remove scratches or distortions remaining on the main surface when grinding with fixed abrasive grains, or to adjust minute surface irregularities (microwaveness, roughness).
  • the machining allowance by the first polishing is, for example, about several ⁇ m to 50 ⁇ m.
  • polishing is performed using a double-side polishing apparatus equipped with a planetary gear mechanism while applying a polishing liquid.
  • annular flat polishing pad for example, a resin polisher, is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate. And, by moving either the upper surface plate or the lower surface plate, or both, the glass substrate and each surface plate are moved relatively to polish both main surfaces of the glass substrate. Can do.
  • the lithium ions and sodium ions on the surface layer of the glass substrate are respectively replaced with sodium ions and potassium ions having a relatively large ionic radius in the chemical strengthening solution.
  • a compressive stress layer is formed on the glass substrate and the glass substrate is strengthened. Note that the chemically strengthened glass substrate is cleaned. For example, after washing with sulfuric acid, it is washed with pure water or the like.
  • step S80 Second polishing (final polishing) step
  • polishing is given to the glass substrate after a chemical strengthening process.
  • the second polishing step aims at mirror polishing of the main surface.
  • the machining allowance by the second polishing is, for example, about 1 ⁇ m.
  • the double-side polishing apparatus used in the first polishing step is used. At this time, the difference from the first polishing step is that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
  • the free abrasive grains used in the second polishing step for example, fine particles (particle size: diameter of about 10 to 50 nm) such as colloidal silica made turbid in the slurry are used.
  • the polished glass substrate is washed with a neutral detergent, pure water, IPA or the like to obtain a glass substrate for a magnetic disk.
  • the second polishing step is carried out in that the level of surface irregularities on the main surface of the glass substrate can be further improved.
  • the roughness (Ra) of the main surface can be 0.1 nm or less and the micro waveness (MW-Rq) of the main surface can be 0.1 nm or less.
  • FIG. 5 (b) shows a state in which the cutting blades 161 and 162 of the cutting unit 160 has completed the cutting of the molten glass flow L G.
  • 5 (c) shows a state where the glass gob G G drops.
  • 5 (d) shows a state where the pressing unit 120 is press-molding glass gob G G.
  • the shape of the glass gob G G cleavage completion is a vertically asymmetrical shape with respect to the horizontal plane passing through the center of the glass gob G G, is deformed.
  • FIG 6 (a), (b) is a view of the cutting blade 161, 162 from the upstream side of the molten glass flow L G.
  • FIG 6 (c), (d) is a diagram viewed from a direction (lateral direction) of the arrow shown and the cutting blade 161, 162 the molten glass flow L G in Figure 6 (b).
  • the molten glass flow L G is continuously flowing out from the molten glass outflow port 111.
  • the cutting blade 162 of the upper cutting blade 161 and the lower side drives the cutting blade 162 of the upper cutting blade 161 and the lower side at a predetermined timing, the cutting blades 161 and 162 to each other in the flow direction of the molten glass flow L G Cross so that they rub against each other.
  • tip (blade edge) of each blade of a pair of cutting blade 161,162 is the shape extended in the direction inclined with respect to one direction (direction in which the cutting blade 161,162 moves). It is made.
  • the cutting edge of the cutting blade 161 and 162 passes through the center of the molten glass flow L G, forms a line-symmetrical shape with respect to a plane perpendicular to the moving direction of the cutting blade 161, 162.
  • the tips of the cutting blades 161 and 162 are inclined so as to form a V shape.
  • a pair of cutting blades 161 and 162 across the molten glass flow L G linearly moved toward each other, from the edge of the cross section of the molten glass flow L G, the diameter of the cross-sectional direction one direction, cut to the cutting area of the molten glass flow L G changes. That is, in the flow direction of the molten glass flow L G, the molten glass flow L G at the tip position of the V-shape formed by the cutting blades 161 and 162 which are formed by Awa sliding each other (position near shown in FIG. 6 (b) at point P) Cut off. As shown in FIG.
  • the press surface 121a of the first die 121 and the press surface 122a of the second die 122 are close to each other at a predetermined interval, and the press surface 121a of the first die 121 and the press of the second die 122 are pressed.
  • glass gob G G sandwiched between the surface 122a is formed into a thin plate.
  • the glass blank G does not spread over the entire press surfaces 121a and 122a. That is, the glass blank G is formed in a substantially circular shape without a frame for regulating the outer shape of the glass blank G. That is, the end surface of the glass blank G is a free-form surface.
  • From glass gob G G is in contact with the pressing surface 122a of the press surface 121a or the second die 122 of the first die 121, a state in which the first die 121 and second die 122 is confined complete gob G G
  • the time to become is as short as about 0.06 seconds. Therefore, the gob G G is formed into a substantially circular shape spread within a very short period of time along the pressing surface 122a of the press surface 121a and the second die 122 of the first die 121, further it is cooled non Solidifies as crystalline glass. Thereby, the glass blank G is produced.
  • the first mold 121 and the second mold 122 move in the horizontal direction so as to approach each other, but the first mold 121,
  • the moving direction of the second mold 122 is not limited as long as the falling glass gob GG can be captured and pressed by the first mold 121 and the second mold 122.
  • the glass blank G formed in the present embodiment is, for example, a circular plate having a diameter of 75 to 80 mm and a thickness of about 1 mm, although it depends on the size of the target magnetic disk glass substrate.
  • the press unit 120 quickly moves to the retracted position. After the press unit 120 moves to the retracted position, until the glass blank G is sufficiently cooled (for example, until the temperature reaches a certain temperature within the temperature range equal to or higher than the glass transition point and lower than the buckling point)
  • the second mold 122 maintains a closed state. Thereafter, the first driving unit 125 and the second driving unit 126 are driven to separate the first mold 121 and the second mold 122, and the glass blank G falls off the press unit 120 and is in the lower part. It is received by the conveyor 171 (see FIG. 4).
  • the first die 121 and the second die 122 are closed within an extremely short time of 0.1 seconds (about 0.06 seconds), and the press surface 121a of the first die 121 and the first die 121 are closed.
  • the molten glass comes into contact with the entire press surface 122a of the second mold 122 almost simultaneously. For this reason, it is suppressed that the press surface 121a of the 1st type
  • the glass gob G G is the circular forming Therefore, the temperature distribution of the glass blank G to be formed is substantially uniform. For this reason, when the molten glass is cooled, the distribution of the shrinkage amount of the glass material is small, and the distortion of the glass blank G hardly occurs. Therefore, the flatness of the main surface of the produced glass blank material G is 4 ⁇ m or less, and the flatness is improved as compared with a glass blank produced by conventional press molding, and the main surface necessary as a glass substrate for a magnetic disk. Target flatness of. Further, the difference between the maximum plate thickness and the minimum plate thickness is 6 ⁇ m or less.
  • the surface roughness of the press surface 121a and the press surface 122a is preferably 0.01 ⁇ m to 10 ⁇ m so that the roughness of the main surface of the glass blank G (arithmetic average roughness Ra) is 0.01 ⁇ m to 10 ⁇ m. It can be adjusted to be 1 ⁇ m.
  • the molten glass flow L G is formed is cut by a method as shown in FIG. 6 (a) ⁇ (d) .
  • FIG. 6 (a) As shown in FIG. 6 (a), (b) , using a portion forming the V-shaped cutting edge 161 and 162 overlap each other, the molten glass flow L G from the edge of the cross section of the molten glass flow L G Disconnect.
  • FIG. 6 (b) the cutting portion G S as a glass gob G G separated from the molten glass flow L G as shown in (c) is separated from the cutting blade 162 by its own weight.
  • the cutting portion G S does not contact the cutting blade 162 can be suppressed thermal cut portion G S is conducted to the cutting blade 162, the temperature of the cutting part G S is reduced. As a result, the depth of the shear mark can be reduced. That is, since a position in contact with the cutting blade 161 and 162 of the molten glass flow L G varies with time, the heat transferred from the portion of the molten glass flow L G in contact with the cutting blade 161, 162 to the cutting blade 161, 162 The amount of conduction is smaller than in the conventional method of cutting the molten glass flow while narrowing the cross section of the molten glass flow. For this reason, the sheer mark formed from the solidified region of the molten glass flow is formed at a shallow position near the surface of the glass blank.
  • the cutting blade 161 and 162 between the intersection angle theta may be 5 to 60 degrees, without deviating far the dropping direction of the gob G G from the vertical direction, falling posture change Is preferable in that it suppresses the above and maintains the drop stability.
  • the crossing angle ⁇ is more preferably 5 to 40 degrees, and particularly preferably 30 to 40 degrees.
  • Figure 7 is a diagram for describing resistance and extrusion force when the molten glass flow L G is cut by the cutting blade.
  • Resistance force F 1 to the cutting blade 162 receives from the molten glass flow L G, because represented by Fcos ⁇ / 2, as the angle theta / 2 is large, that is, the intersection angle theta of the pair of cutting blades 161 and 162 closer to 90 degrees as the resistance force F 1 is reduced.
  • the resistance force F 1 to the cutting blade 161 and 162 receives from the molten glass flow L G although slightly larger, separated from the molten glass flow L G gob since extrusion force F 2 that affect the falling posture of G G is small, it is possible to suppress the falling change in the attitude of the glass gob G G, improves the drop stability.
  • the crossing angle ⁇ of the pair of cutting blades 161 and 162 is 5 to 60 degrees or less, preferably 5 to 40 degrees, so that the glass gob GG is particularly separated, that is, the cutting. It is possible from the pair of cutting blades 161 and 162 at the end to reduce the extrusion force F 2 applied to the glass gob G G, to reduce the rotational moment of the gob G G in fall, suppress falling change in the attitude of the glass gob G G G Thus, the drop stability can be improved, and the quality (flatness, thickness deviation) of the glass blank obtained by pressing can be improved.
  • the drop stability is better as the crossing angle ⁇ approaches 0 degrees, but when the crossing angle ⁇ is 0 degrees, the action of sandwiching the molten glass with the cutting edge becomes stronger, so that the cooling and solidification region of the glass gob increases, There is a problem that the shear mark cannot be thinned.
  • the crossing angle ⁇ is preferably 5 degrees or more.
  • the crossing angle ⁇ is preferably 60 degrees or less.
  • the tip of each blade of the cutting blades 161 and 162 extend in a straight line, when cutting the molten glass flow L G, the cutting blades 161 and 162 between the intersection angle theta (see FIG. 6 (b)) it is maintained constant is preferable in terms of securing the drop stability of the glass gob G G.
  • the crossing angle ⁇ is preferably a constant angle within a range of 5 degrees to 60 degrees.
  • the inclination angle ⁇ (see FIG. 6A) of the cutting edges of the cutting blades 161 and 162 is 60 to 87.5 degrees, and it is preferable that they have the same inclination angle ⁇ .
  • FIG. 6 (b) is a diagram for explaining the falling glass gob G G, is a view from the arrow direction of FIG. 6 (b).
  • Gob G G as shown in FIG. 6 (a), (b) , the cutting blades 161 and 162 inclined in one direction, the cutting blades 161 and 162, approaches while the cutting blade 161, 162 to each other mutually pickpocket since linearly moved in the direction, the molten glass flow L G, as described above, during cutting, the cutting blade 161, 162 edge is inclined to the left of the paper shown in FIG.
  • the timing of the glass gob G G molten glass flow L G is completely cut is generated, the temperature and the cutting edge of the local temperature of the micro-fluctuations and the cutting blade 161 of the cutting portion of the molten glass flow L G It fluctuates depending on the wear state of the blade surfaces of 161 and 162. Therefore, by maintaining constant during cutting the crossing angle theta, it is possible to maintain the aspect of the dropping direction and rotation of the glass gob G G constant.
  • Figure 9 (a), (b) are diagrams illustrating the cutting of the molten glass flow L G using a cutting blade 261, 262 to conventional turning. Since the cutting blades 261 and 262 rotate in the arrow directions R 1 and R 2 shown in FIG. 9A, the crossing angle ⁇ changes with time. As described above, the timing at which the molten glass flow L G is completely cut to be used depend minutely as described above, completely molten glass flow L G is cut when a glass gob G G is generated, the glass gob extruding force of the lateral G G receives F 2 also varies. Therefore, if the intersection angle ⁇ varies with time during the cutting, it is impossible to maintain the dropping direction of the glass gob G G constant, is not stable dropping direction.
  • the tip ends (blade edges) 181 a and 182 a of the pair of cutting blades 181 and 182 according to the first modification are cut from the pair of cutting edges from one end portion to the other end portion in the width direction.
  • the blades 181 and 182 have a concave curved shape so that the crossing angle ⁇ of the blades 181 and 182 is small. That is, the cutting edge shapes of the pair of cutting blades 181 and 182 are curved in a concave shape with respect to the direction in which the pair of cutting blades 181 and 182 approach each other.
  • the cutting edge of the cutting blade 181 and 182 passes through the center of the molten glass flow L G, forms a line-symmetrical shape with respect to a plane perpendicular to the moving direction of the cutting blade 181 and 182.
  • a pair of cutting blades 181, 182 is moved linearly in the direction of approaching each other across the molten glass stream L G (arrow direction shown), the edges of the cross section of the molten glass flow L G Cut from contact.
  • a pair of cutting blades during than the intersection angle ⁇ of the cutting blades the glass gob G G from molten glass flow LG separating when cutting blades 181 and 182 begin to contact the molten glass flow L G
  • the crossing angle ⁇ becomes smaller.
  • the intersection angle ⁇ of the cutting blades 181 and 182 is less than 60 degrees in separating the glass gob G G from molten glass flow L G (when cutting ends), and more preferably 40 Less than or equal to degrees. Further, from the viewpoint of reducing the depth of the shea mark, the above-mentioned intersection angle ⁇ is preferably 5 degrees or more. Further, it is preferred that the glass gobs G crossing angle during cutting ends in terms of falling improved stability of G theta is less than 20 degrees, more preferably not more than 10 degrees.
  • the crossing angle ⁇ between the blades 181 and 182 is preferably 30 degrees or more, and more preferably 50 degrees or more.
  • FIG. 11 is a plan view illustrating the cutting blades 191 and 192 of the second modification.
  • the tips (blade tips) 191a and 191b, 192a and 192b of the cutting blades 191 and 192 extend in different directions inclined with respect to the direction in which the cutting blades 191 and 192 move. Is made. That is, the cutting edge of the cutting blade 191 includes a main cutting portion 191a having a long cutting edge and an auxiliary cutting portion 191b having a short cutting edge, and the cutting blade 191 moves between the main cutting portion 191a and the auxiliary cutting portion 191b. Each shape is inclined with respect to the direction and extends in a different direction.
  • the cutting edge of the cutting blade 192 includes a main cutting portion 192a having a long cutting edge and an auxiliary cutting portion 192b having a short cutting edge.
  • the main cutting portion 192a and the auxiliary cutting portion 192b of the cutting edge are formed by the cutting blade 192.
  • Each shape is inclined with respect to the moving direction and extends in a different direction.
  • the cutting edge of the cutting blade 191 and 192 passes through the center of the molten glass flow L G, forms a line-symmetrical shape with respect to a plane perpendicular to the moving direction of the cutting blade 191, 192.
  • the molten glass is cut and extruded by the main cutting portions 191a and 192a of the cutting edges of the pair of cutting blades 191 and 192, but the extrusion is moderately suppressed by the auxiliary cutting portions 191b and 192b of the cutting edges, result, it is possible to improve the falling stability of gob G G.
  • a pair of cutting blades 191 and 192 is moved linearly in the direction of approaching each other across the molten glass stream L G (arrow direction shown), the edges of the cross section of the molten glass flow L G contacting the cross-sectional diametrical direction of the molten glass flow L G from, cut to the cutting area of the molten glass flow L G changes.
  • the tips (blade edges) 201a, 202a of the cutting blades 201, 202 of the third modification are crossing angles of the pair of cutting blades 201, 202 from one end to the other end in the width direction. It has a convexly curved shape so that ⁇ is increased. That is, the cutting edge shapes of the pair of cutting blades 201 and 202 are curved in a convex shape with respect to the direction in which the pair of cutting blades 201 and 202 approach each other.
  • the leading ends (blade edges) 211a and 212a of the respective blades are intersecting angles of the pair of cutting blades 211 and 212 from one end portion to the other end portion in the width direction. It has a convexly curved shape so that ⁇ is increased. That is, the cutting edge shape of the pair of cutting blades 211 and 212 is curved in a convex shape with respect to the direction in which the pair of cutting blades 211 and 212 approach each other.
  • FIG. 14 is a view showing a cutting blade of Modification 5 used in the present embodiment.
  • Gobugaido member 163 is provided It has been.
  • the gob guide member 163 is a plate-like member that extends downward from the lower surface of the cutting blade 161.
  • FIGS. 15A and 15B are views showing cutting of a molten glass flow using a conventional V-shaped blade.
  • the molten glass flow L G is cut by the cutting blades 361 and 362 gradually decreases a gap surrounded by the V-type blades of the cutting blade 361 and 362.
  • the outer periphery of the molten glass flow L G in contact at four points of the cutting blade 361 and 362, because the heat is being cooled are deprived rapidly partially solidified molten glass flow by the cutting blades 361 and 362 L G is likely to be easily broken.
  • the molten glass flow L G is quenched in 4 portions of the cutting blades 361 and 362, moreover, rather than being gradually cut as in this embodiment , molten glass gathered in the central portion of the molten glass flow L G is once cut.
  • the cutting portion of the molten glass flow L G about to be cut by the cutting blade 361, 362 (cut portion of the top of the glass gob G G), the same position of the cutting blade 361, 362 as compared with the case of the embodiment For a long time. Therefore, the upper cut surface of the glass gob G G strongly is cooled in comparison with the present embodiment, it solidified area of the glass spreads into the interior of the glass gob G G.
  • the cutting portion G S does not contact the cutting blade 162 can be suppressed thermal cut portion G S is conducted to the cutting blade 162, the temperature of the cutting part G S is reduced.
  • the cutting method of the molten glass flow L G of the present embodiment can be shallow generated depth of sheer mark as compared with the prior art. Reducing the depth at which the shear mark is generated reduces the allowance for grinding and polishing performed in the subsequent steps, so that a glass substrate for a magnetic disk can be produced efficiently.
  • the tip of each blade of the pair of cutting blades 161 and 162 extend inclined linearly, when cutting the molten glass flow L G, the intersection angle between the cutting blade 161, 162 Is kept constant. Therefore, even if the variation timing of cutting the molten glass flow L G, because the intersection angle between the cutting blade 161, 162 is constant, part of the molten glass flow L G is cut in the lateral direction applied from the cutting blade 162 force is always constant, is constant transverse velocity component of the glass gob G G. Therefore, a constant always be dropping direction of the glass gob G G, also is constant aspect of the rotation of the glass gob G G fall.
  • Capturing position of the gob G G is the stability lack of dropping direction of the glass gob G G, be different for each glass gob G G, often cause positional displacement and capture the position of the gob G G that captured immediately before. Therefore, heat is transferred from the glass gob G G by capturing immediately before glass gob G G, under the influence of temperature distribution which remains in the first die 121 and second die 122 as a result, flatness of the glass blank The variation in thickness is increased, and the variation in thickness deviation is further increased.
  • the temperature of the glass blank G to be formed between the glass gob G G or the first die 121 and second die 122 receives the press-molding is not It tends to be uniform and has a non-uniform temperature distribution. As a result, the variation in flatness of the glass blank is increased, and the variation in thickness deviation is increased. In this respect, in order to uniform the dropping direction of Gobugarasu G G, it is preferably maintained in the cutting blade 161 and 162 intersecting angle between ⁇ is constant.
  • the glass gob GG is captured at the same capture position on the first mold 121 and the second mold 122. Thereby capturing the glass gob G G is the same capture position on the first die 121 and second die 122, as described above, to reduce variations in the flatness of the glass blank, to reduce the variation of thickness deviation This is preferable.
  • a gob guide member 163 that regulates the lateral movement and rotational movement of G is provided.
  • the glass used is an aluminosilicate glass having the following composition (expressed in mol%).
  • ⁇ SiO 2 50 to 75%, ⁇ 1 to 15% of Al 2 O 3 , A total of 5 to 35% of at least one component selected from Li 2 O, Na 2 O and K 2 O, -0-20% in total of at least one component selected from MgO, CaO, SrO, BaO and ZnO, A total of 0 to 10% of at least one component selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 ; Amorphous aluminosilicate glass satisfying the composition having the following was used.
  • the molten glass flow L G by flowing out the molten glass outflow port 111, various cutting blades (temperature room temperature) press molding was carried out using a.
  • a press molding a typical example of a method of press-molding across the gob G G in falling with the first die 121 and second die 122 shown in FIG. 5 (a) ⁇ (d) , first The horizontal pressing method in which the mold 121 and the second mold 122 are moved horizontally and the conventional vertical pressing method using the molds 221 and 223 shown in FIG. 16 were used.
  • the vertical press method is the method of pressing from above with a glass gob G G after receiving a glass gob G G obtained by cutting the molten glass flow L G in the first mold 221, the second die 222 .
  • the glass gob G G is susceptible to non-uniform temperature distribution in the glass gob G G.
  • the first type 221 of the lower side by receiving heat from the glass gob G G, higher temperature than that of the second mold 222, the temperature between the first mold 221 and second mold 222 Differences are likely to occur. This difference in temperature distribution and temperature distribution tends to adversely affect the flatness and thickness deviation of the glass blank G.
  • the cutting blades were all at room temperature (about 40 ° C.), and the pair of dies used for press molding were set to the same temperature.
  • Table 1 below shows the specifications of the example 1 and the comparative examples 1 to 4 (the shape of the cutting blade and the press molding method) and the results.
  • Ten glass blanks G of Example 1 and Comparative Examples 1 to 4 were taken out, and the thickness deviation (maximum thickness-minimum thickness), shear mark depth ( ⁇ m), and flatness ( ⁇ m).
  • the plate thickness deviation a single glass blank G is measured using a plurality of points (8 points) using a micrometer, the difference between the maximum plate thickness and the minimum plate thickness at that time is obtained, and the average is obtained as the plate thickness. Calculated as deviation.
  • the flatness ( ⁇ m) was measured by taking out 10 glass blanks G using a flatness tester FT-900 manufactured by Nidek. Further, the depth of the shear mark was determined by grinding the glass blank until the shear mark disappeared, and was determined from the grinding amount (removal allowance) when the shear mark disappeared.
  • the Examples in Table 1 and Comparative Examples 1 to 3 are the results of one glass blank G out of 10 glass blanks G produced using the same cutting blade configuration and the same press molding method. Only the glass blank G of the example has a plate thickness deviation (difference between the maximum plate thickness and the minimum plate thickness) of 6 ⁇ m or less, the flatness of the glass blank G is 4 ⁇ m or less, and the depth of the shear mark is 5 to 20 ⁇ m. there were. Moreover, the maximum value of the plate
  • the maximum value of the depth of the sheer mark of the ten glass blanks G was 20 ⁇ m, and the minimum value was 5 ⁇ m. Furthermore, the maximum value of the flatness of the ten glass blanks G was 4 ⁇ m, and the minimum value was 3 ⁇ m. Further, the difference between the maximum diameter and the minimum diameter of the glass blank G of the example was 0.1 to 5 mm, and the roughness of the main surface was 0.01 ⁇ m to 10 ⁇ m.
  • FIG. 15 (a) the so with the cutting blades 361 and 362 shown in (b), the cutting portion of the molten glass flow L G about to be cut by the cutting blade 361 and 362, the present embodiment Compared to the case, the cutting blades 361 and 362 are contacted for a long time. Therefore, the cutting portion of the glass gob G G is cooled in comparison with the embodiment. As a result, a sheer mark was formed at a deep position in the glass blank G.
  • Comparative Example 2 since the vertical press molding shown in FIG. 16 was performed, the flatness was large (poor) and the plate thickness deviation was large.
  • Comparative Example 3 since the vertical type press molding shown in FIG.
  • FIGS. 15A and 15B were performed using the cutting blades 361 and 362 shown in FIGS. 15A and 15B, the flatness of the glass blank G was large (bad), The plate thickness deviation was large, and a sheer mark was formed at a deep position.
  • the glass blank G produced using horizontal press molding has a plate thickness deviation (difference between the maximum plate thickness and the minimum plate thickness) of 6 ⁇ m or less, and the flatness of the glass blank G is 4 ⁇ m or less. And the condition that the depth of the shear mark is 5 to 20 ⁇ m is satisfied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 磁気ディスク用ガラスブランクの製造するとき、まず、互いに対向配置された一対の切断刃を用いて溶融ガラス流を切断することによって得られるガラスゴブを落下させる。この落下中の前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する。前記溶融ガラス流を切断するとき、前記一対の切断刃を、前記溶融ガラス流を挟んで互いに接近するように直線的に移動させることにより、前記切断刃が前記溶融ガラス流の流れ方向で隣接して互いに重なりかつ前記切断刃の双方と接触する前記溶融ガラス流の断面の縁部の一箇所から徐々に切断して行く。

Description

磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランク
 本発明は、一対の主表面を有する磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランクに関する。
 今日、パーソナルコンピュータ、ノート型パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、ガラス基板に磁性層が設けられた磁気ディスクが用いられている。この磁気ディスクの面上を僅かに浮上させた磁気ヘッド(DFH(Dynamic Flying Height)ヘッド)で磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板には、金属基板等に比べて塑性変形をしにくい性質を持つことから、ガラス基板が好適に用いられている。
 また、ハードディスク装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。例えば、磁性層における磁化方向を基板の面に対して垂直方向にする垂直磁気記録方式を用いて、磁気記録情報エリアの微細化が行われている。これにより、1枚のディスク基板における記憶容量を増大させることができる。しかも、記憶容量の一層の増大化のために、磁気ヘッドの磁気記録面からの浮上距離を極めて短くして磁気記録情報エリアを微細化することも行われている。このような磁気ディスクの基板においては、磁性層の磁化方向が基板面に対して略垂直方向に向くように、磁性層が平らに形成される。このために、ガラス基板の表面凹凸は可能な限り小さく作製されている。
 ところで、磁気ディスクに用いるガラス基板の製造方法として、例えば、以下の方法が知られている(特許文献1)。具体的には、溶融ガラス流を所定のタイミングで切断することによって、溶融ガラス流から溶融ガラスの塊を切り出してこの塊(ガラスゴブ)を下方に落下させる。この落下中の溶融ガラスの塊を、互いに対向する面が凹凸の無い平面であるプレス面となっている一対の型を有するプレスユニットによって、プレス面のみに接触するようにプレス面間で挟み込んでプレスする。これにより、ガラスブランクがつくられる。
 また、溶融ガラスの塊(ガラスゴブ)をつくるために溶融ガラス流を切断するとき、溶融ガラス流を挟むように水平に対向配置された一対の切断刃を溶融ガラス流に接触し始める時の交叉角度を3°~30°の範囲内として溶融ガラス流の片側のみにおいて交叉させて溶融ガラス流を切断することも知られている(特許文献2)。この場合、溶融ガラス流を切断する一対の切断刃は、回動する構成となっている。
 さらに、ガラスゴブをつくるために溶融ガラス流を切断するとき、溶融ガラス流を挟んで対向配置したV型刃を用いる溶融ガラス流の切断方式も知られている(特許文献3)。具体的には、溶融ガラス流の断面における外周を徐々に絞り最終的に溶融ガラス流の中心部分で溶融ガラス流を切断する。あるいは、溶融ガラス流の両側に対向配置された切断刃を、溶融ガラス流の断面に対してお互いに反対方向に移動させてせん断を与えながら溶融ガラス流を切断させる。いずれの場合も、溶融ガラス流の断面を狭く絞りながら切断する。
特開2011-207738号公報 特開平10-167732号公報 特開昭50-3412号公報
 しかし、上述したガラス基板の製造方法に、上述した一対の切断刃を回動させて溶融ガラス流を切断する切断方式を用いる場合、切断によって得られたガラスゴブには、回動による速度成分が付与されるので、ガラスゴブの落下中、この速度成分に起因してガラスゴブが斜め方向に落下する。ガラスゴブが常に一定の斜め方向に向かって落下すればプレス面の所定の位置でガラスゴブを捕獲してプレスすることができるため、成形されるガラスブランクにとって問題はない。しかし、ガラスゴブの落下方向が毎回微妙に変動するため、落下安定性が劣り、成形されるガラスブランクの品質(平面度、板厚偏差)にバラツキを与えるといった問題がある。
 また、上述したガラス基板の製造方法において、溶融ガラス流の断面を狭くなるように絞りながら溶融ガラス流を切断する上述した公知の方式を用いる場合、切断痕であるシアマークがガラスブランクの深い位置に形成される。すなわち、溶融ガラス流の断面を狭くなるように絞りながら溶融ガラス流を切断するとき、熔融ガラス流から切断に用いる刃への熱の伝導量が大きく、刃と接触する溶融ガラス流の表面部分からガラスの固化領域が内部に広がる。この溶融ガラス流の内部に広がった固化領域からガラスブランクにおけるシアマークが形成される。したがって、溶融ガラス流の断面を狭くなるように絞りながら溶融ガラス流を切断するとき、ガラスブランクの表面から深い位置にシアマークが形成される。このため、後工程で、深い位置に形成されるシアマークを除去するために研削の取り代を大きく定めることになり、ガラスブランクの製造効率が低下するといった問題がある。
 より具体的に説明すると、研削における取り代を大きくすると、ガラスブランクの表面に深いクラックが入るため、深いクラックが残留しないように、研削後に行う研磨においても取り代(研磨量)は必然的に大きくなる。このため、ガラスブランクの研磨は長時間を要することになり、ガラスブランクの製造効率が低下する。
 また、遊離砥粒および樹脂ポリッシャを用いる研磨において取り代を大きくすると、ガラスブランクの主表面の外周エッジ部近傍が丸く削られて、エッジ部の「だれの問題」が発生する。すなわち、ガラスブランクの外周エッジ部近傍が丸く削られるため、このガラスブランクをガラス基板として用いて磁気ディスクを作製したとき、外周エッジ部近傍の磁性層と磁気ヘッドとの間の距離が、ガラス基板の別の部分における磁気ヘッドの浮上距離より大きくなる。また、外周エッジ部近傍が丸みを持った形状となるため、表面凹凸が発生する。この結果、外周エッジ部近傍の磁性層において磁気ヘッドの記録及び読み出しの動作が正確でなくなる。これが「だれの問題」である。
 そこで、本発明は、従来に比べて、ガラスブランクの品質(平面度、板厚偏差)を向上しつつ、磁気ディスク用ガラス基板の作製効率を高めることができる磁気ディスク用ガラスブランクの製造方法及び磁気ディスク用ガラス基板の製造方法、さらには磁気ディスク用ガラスブランクを提供することを目的とする。
 本発明は以下の態様を有する。
 本発明の一態様は、磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法である。
[態様1]
 当該製造方法は、
 互いに対向配置された一対の切断刃を前記溶融ガラス流の流れ方向で交差させることにより溶融ガラス流を切断し、該切断によって得られるガラスゴブを落下させる工程と、
 落下中の前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する工程と、を含む。
前記溶融ガラス流を切断するとき、前記一対の切断刃を、前記溶融ガラス流を挟んで互いに接近する方向に直線的に移動させ、溶融ガラス流の断面の縁部から、断面の径方向一方向へ、溶融ガラス流の被切断領域が変化するように切断する。
[態様2]
 前記一対の切断は、前記切断刃の移動方向に対して直線状に傾斜して延びており、前記溶融ガラス流を切断するとき、前記切断刃同士の交差角度は一定に維持されている、態様1の磁気ディスク用ガラスブランクの製造方法。
[態様3]
 前記交差角度は5度~60度の範囲内の一定の角度である、態様2の磁気ディスク用ガラスブランクの製造方法。
[態様4]
 前記一対の切断刃の刃先形状は、前記一対の切断刃が互いに接近する方向に対して凹状に湾曲している、態様1に記載の磁気ディスク用ガラスブランクの製造方法。
[態様5]
 前記熔融ガラス流の切断終了時における前記一対の切断刃の切断刃同士の交差角度は、前記熔融ガラス流の切断開始時における前記一対の切断刃の切断刃同士の交差角度に比べて小さくなるような刃先形状を、前記一対の切断刃は有する、態様1または4に記載の磁気ディスク用ガラスブランクの製造方法。
[態様6]
 前記一対の切断刃の刃先形状は、前記一対の切断刃が互いに接近する方向に対して凸状に湾曲している、態様1に記載の磁気ディスク用ガラスブランクの製造方法。
[態様7]
 前記溶融ガラス流の切断中、切断されることで前記ガラスゴブとなる、前記溶融ガラス流の先端部分の横移動及び回転運動を規制する、態様1~6のいずれかに記載の磁気ディスク用ガラスブランクの製造方法。
[態様8]
 前記一対の切断刃は、例えば、前記溶融ガラス流の上流側に位置する上切断刃と下流側に位置する下切断刃を有し、前記上切断刃に、前記横移動及び前記回転運動を規制するゴブガイド部材が設けられている、態様7に記載の磁気ディスク用ガラスブランクの製造方法。
 また、本発明の他の態様は、磁気ディスク用ガラス基板の製造方法である。
[態様9]
 当該製造方法は、上述の態様1~8のいずれかに記載の磁気ディスク用ガラスブランクの製造方法で作製された前記ガラスブランクを機械加工する工程を含み、前記機械加工をする工程は、前記ガラスブランクの主表面の研削工程と、研削後の前記ガラスブランクの主表面を、遊離砥粒を用いて研磨する研磨工程を含む。
 さらに、本発明のさらに他の態様は、磁気ディスク用ガラス基板に用いられる磁気ディスク用ガラスブランクである。
[態様10]
 前記磁気ディスク用ガラスブランクの最大板厚と最小板厚の差が6μm以下であり、
 前記ガラスブランクの平面度が4μm以下であり、
 前記ガラスブランクに形成されるシアマークの深さが5~20μmである。
[態様11]
 前記ガラスブランクの主表面は、機械加工が施されていないプレス成形面である、態様10に記載の磁気ディスク用ガラスブランク。
[態様12]
 前記ガラスブランクの最大径と最小径の差は0.1~5mmである、態様10または11に記載の磁気ディスク用ガラスブランク。
[態様13]
 前記ガラスブランクの主表面の算術平均粗さRaは、0.01μm~10μmである、態様10~12のいずれかに記載の磁気ディスク用ガラスブランク。
[態様14]
 前記ガラスブランクの端面は、例えば、自由曲面である、態様10~13のいずれかに記載の磁気ディスク用ガラスブランク。
 ここで、自由曲面とは、前記ガラスブランクの端面が、金型等の物体と接触して冷却固化するのではなく、物体と接触することなく気相中で冷却されることで形成された面をいう。自由曲面は、ガラスブランクの端面において、例えば表面において圧縮応力層が形成されていない、あるいはあっても極めて薄く圧縮応力値が小さい。
 上述の磁気ディスク用ガラスブランクの製造方法及び磁気ディスク用ガラス基板の製造方法によれば、ガラスブランクの品質(平面度、板厚偏差)を向上しつつ、磁気ディスク用ガラス基板の作製効率を高めることができる。また、平面度、板厚偏差を向上した磁気ディスク用ガラスブランクは、磁気ディスク用ガラス基板の作製効率を向上させる。
(a)~(c)は、磁気ディスク用ガラス基板を用いて作製される磁気ディスクの一例を示す概略構成図である。 (a)~(d)は、磁気ディスク用ガラスブランクあるいはガラス基板における表面凹凸の例を説明する図である。 磁気ディスク用ガラス基板の製造方法の一実施形態のフローを示す図である。 実施形態のプレス成形において用いられる装置の平面図である。 (a)~(d)は、実施形態のプレス成形工程の例を示す図である。 (a)~(d)は、実施形態の溶融ガラス流の切断の例を説明する図である。 溶融ガラス流が切断刃によって切断される際の抵抗力及び押し出し力について説明する図である。 実施形態における溶融ガラス流の切断後のガラスゴブの落下を説明する図である。 (a),(b)は、従来の溶融ガラス流の切断の一例を説明する図である。 実施形態の変形例1の切断刃を示す図である。 実施形態の変形例2の切断刃を示す図である。 実施形態の変形例3の切断刃を示す図である。 実施形態の変形例4の切断刃を示す図である。 実施形態の変形例5の切断刃を示す図である。 (a),(b)は、従来の溶融ガラス流の切断の他の例を説明する図である。 従来のプレス成形について説明する図である。
 以下、本発明の磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランクについて詳細に説明する。
(磁気ディスクおよび磁気ディスク用ガラス基板)
 まず、図1を参照して、磁気ディスク用ガラス基板を用いて作製される磁気ディスクについて説明する。図1(a)は、磁気ディスク用ガラス基板を用いて作製される磁気ディスクの一例を示す概略構成図である。図1(b)は、磁気ディスクの概略断面図である。図1(c)は、磁気ヘッドが磁気ディスクの表面を浮上する状態を示す図である。
 図1(a)に示されるように、磁気ディスク1はリング状であり、回転軸を中心として回転する。図1(b)に示されるように、磁気ディスク1は、ガラス基板2と、少なくとも磁性層3A,3Bと、を備える。
 なお、磁性層3A,3B以外には、例えば、図示されない付着層、軟磁性層、非磁性下地層、垂直磁気記録層、保護層および潤滑層等が成膜される。付着層には、例えばCr合金等が用いられる。付着層は、ガラス基板2との接着層として機能する。軟磁性層には、例えばCoTaZr合金等が用いられる。非磁性下地層には、例えばグラニュラー非磁性層等が用いられる。垂直磁気記録層には、例えばグラニュラー磁性層等が用いられる。保護層には、水素カーボンからなる材料が用いられる。潤滑層には、例えばフッ素系樹脂等が用いられる。
 磁気ディスク1について、より具体的な例を用いて説明する。本実施形態では、インライン型スパッタリング装置を用いて、ガラス基板2の両主表面に、CrTiの付着層、CoTaZr/Ru/CoTaZrの軟磁性層、CoCrSiOの非磁性グラニュラー下地層、CoCrPt-SiO・TiOのグラニュラー磁性層、水素化カーボン保護膜を順次成膜される。さらに、成膜された最上層にディップ法によりパーフルオロポリエーテル潤滑層が成膜される。
 磁気ディスク1は、例えば7200rpmの回転速度で回転軸を中心として回転する。図1(c)に示されるように、ハードディスク装置の磁気ヘッド4A,4Bのそれぞれは、磁気ディスク1の高速回転に伴って、磁気ディスク1の表面から距離Hだけ浮上する。磁気ヘッド4A,4Bが浮上する距離Hは、例えば、5nmである。この状態で、磁気ヘッド4A,4Bは、磁性層に情報を記録し、あるいは読み出しを行う。この磁気ヘッド4A,4Bの浮上によって、磁気ディスク1に対して摺動することなく、しかも近距離で磁性層に対して記録あるいは読み出しを行うことにより、磁気記録情報エリアの微細化と磁気記録の高密度化を実現する。
 このとき、磁気ディスク1のガラス基板2の中央部から外周エッジ部5まで、目標とする表面精度で正確に加工され、距離H=5nmを保った状態で磁気ヘッド4A,4Bを正確に動作させることができる。
 このようなガラス基板2の表面凹凸の加工は、取り代の小さい固定砥粒を用いた研削と、その結果、取り代を小さくすることができる第1研磨および第2研磨を経て作製される。したがって、上述した「だれの問題」が解消される。
 このような磁気ディスク1に用いられるガラス基板2の主表面の表面凹凸は、平面度が例えば4μm以下であり、表面の粗さが例えば0.2nm以下である。平面度が4μm以下は、最終製品としての磁気ディスク用基板に求められる目標平面度である。
 平面度は、例えば、Nidek社製フラットネステスターFT-900を用いて測定することができる。
 主表面の粗さ(Ra)は、例えば、エスアイアイナノテクノロジーズ社製走査型プローブ顕微鏡(原子間力顕微鏡)で計測し、JIS R1683:2007で規定される方法で算出できる。
 ここで、図2を参照して、板状ガラスブランク(ガラス素材)やガラス基板における表面凹凸について説明する。図2(a)~(d)は、表面凹凸を説明する図である。表面凹凸は、凹凸の波長に応じて概略4つの凹凸によって定めることができる。
 具体的には、表面凹凸は、最も波長が大きなうねり(波長0.6μm~130mm程度)、ウェービネス(波長0.2μm~2mm程度)、マイクロウェービネス(波長0.1μm~1mm)、粗さ(波長10nm以下)に分けられる。
 この中で、うねりは上記平面度を指標として表すことができ、粗さは上記算術平均粗さRaを指標として表すことができる。
 このようなガラス基板は、円板状のガラスブランクの主表面を研削、研磨することにより作製され得る。研削、研磨前のガラスブランクは、ガラスブランクの最大板厚と最小板厚の差が6μm以下であり、ガラスブランクの平面度が4μm以下であり、ガラスブランクに形成されるシアマークの深さが5~20μmである。このようなガラスブランクは、後述する磁気ディスク用ガラスブランクの製造方法によって達成され得る。このとき、ガラスブランクの主表面は、機械加工が施されていないプレス成形面である。また、ガラスブランクの最大径と最小径の差分は0.1~5mmであることが好ましい。ガラスブランクの主表面の算術平均粗さRaは、0.01μm~10μmであることが、研削、研磨の取り代を少なくする点で好ましい。
 本実施形態における磁気ディスク用ガラス基板の材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平面度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。
 下記に示すガラス組成は、本実施形態の磁気ディスク用ガラスブランク及び磁気ディスク用ガラス基板のガラス組成を限定するものではないが、アルミノシリケートガラスとして、酸化物基準に換算した際に、モル%表示で、
・SiO:50~75%、
・Al:1~15%、
・LiO、NaO及びKOから選択される少なくとも1種の成分の合計:5~35%、
・MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分の合計:0~20%、
・ZrO、TiO、La、Y、Ta、Nb及びHfOから選択される少なくとも1種の成分の合計:0~10%、
を有する組成からなるアモルファスのアルミノシリケートガラスである。
 また、本実施形態の磁気ディスク用ガラスブランク及び磁気ディスク用ガラス基板は以下の組成(モル%表示で)からなるアモルファスのアルミノシリケートガラスでもよい。
・SiO:56~75%、
・Al:1~11%、
・LiO:0%超かつ4%以下、
・NaO:1%以上かつ15%未満、
・KOを0%以上かつ3%未満、
を含み、
かつ、
・BaOを実質的に含まず、
・LiO、NaOおよびKOからなる群から選ばれるアルカリ金属酸化物の合計含有量が6~15%の範囲であり、
・NaO含有量に対するLiO含有量のモル比(LiO/NaO)が0.50未満であり、
・上記アルカリ金属酸化物の合計含有量に対するKO含有量のモル比{KO/(LiO+NaO+KO)}が0.13以下であり、
・MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10~30%の範囲であり、
・MgOおよびCaOの合計含有量が10~30%の範囲であり、
・上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
・上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%の範囲であり、
・上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLiOの合計含有量のモル比{(MgO+CaO+LiO)/(LiO+NaO+KO+MgO+CaO+SrO)が0.50以上であり、
・ZrO、TiO、Y、La、Gd、NbおよびTaからなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下であり、
・Al含有量に対する上記酸化物の合計含有量のモル比{(ZrO+TiO+Y+La+Gd+Nb+Ta)/Al}が0.40以上である。
 さらに、本実施形態の磁気ディスク用ガラスブランク及び磁気ディスク用ガラス基板は以下の組成からなるアモルファスのアルミノシリケートガラスでもよい。
 モル%表示にて、
 SiOを50~75%、
 Alを0~5%、
 LiOを0~3%、
 ZnOを0~5%、
 NaOおよびKOを合計で3~15%、
 MgO、CaO、SrOおよびBaOを合計で14~35%、
 ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2~9%含み、
 モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.8~1の範囲であり、かつモル比[Al/(MgO+CaO)]が0~0.30の範囲内であるガラス。
 また、モル%表示で、
・SiOを50~75%、
・Alを1~15%、
・LiO、NaO及びKOから選択される少なくとも1種の成分を合計で12~35%、
・MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、及び、
・ZrO、TiO、La、Y、Ta、Nb及びHfOから選択される少なくとも1種の成分を合計で0~10%、有する組成からなるアルミノシリケートガラスを用いることが好ましい。
(磁気ディスク用ガラスブランク、磁気ディスク用ガラス基板の製造方法)
 次に、図3を参照して、磁気ディスク用ガラス基板の製造方法のフローを説明する。図3は、磁気ディスク用ガラス基板の製造方法の一実施形態のフローを示す図である。
 図3に示すように、先ず、一対の主表面を有する板状のガラスブランクをプレス成形により作製する(ステップS10)。次に、作製されたガラスブランクをスクライブして、円環状のガラス基板を作製する(ステップS20)。次に、スクライブされたガラス基板に対して形状加工(チャンファリング加工)を行う(ステップS30)。次に、ガラス基板に対して固定砥粒による研削を施す(ステップS40)。次に、ガラス基板の端面研磨を行う(ステップS50)。次に、ガラス基板の主表面に第1研磨を施す(ステップS60)。次に、第1研磨後のガラス基板に対して化学強化を施す(ステップS70)。次に、化学強化されたガラス基板に対して第2研磨を施す(ステップS80)。以上の工程を経て、磁気ディスク用ガラス基板が得られる。一対の主表面を有する磁気ディスク用ガラスブランクの製造方法は、ステップS10のプレス成形によるガラスブランクの作製において行われる。
 以下、各工程について、詳細に説明する。なお、図3に示すフローは一例であり、適宜各工程を省略することができる。また、各工程の順番も適宜変更することができる。
 (a)プレス成形工程(ステップS10)
 先ず、図4を参照して、プレス成形工程について説明する。プレス成形工程は、切断工程とプレス工程とを含む。図4は、プレス成形工程において用いられる装置の平面図である。図4に示されるように、装置101は、4組のプレスユニット120,130,140,150と、切断ユニット160と、を備える。切断ユニット160は、溶融ガラス流出口(供給部)111から流出する(供給される)溶融ガラスの経路上に設けられる。切断工程では、切断ユニット160によって溶融ガラス流が切断されることにより、溶融ガラスの塊であるガラスゴブが下方に落下する。プレス工程では、プレスユニット120,130,140,150は、落下中のガラスゴブを落下中のガラスゴブの両側から、互いに対向配置された一対の型のプレス面でガラスゴブを空中の所定の捕獲位置で挟み込みプレス成形することにより、ガラスブランクが成形される。
 図4に示される例では、4組のプレスユニット120,130,140,150は、溶融ガラス流出口111を中心として90度おきに設けられている。
 プレスユニット120,130,140及び150の各々は、図示しない移動機構によって駆動されて、溶融ガラス流出口111に対して進退可能となっている。すなわち、溶融ガラス流出口111の下方に位置する捕獲位置(図4においてプレスユニット140が実線で描画されている位置)と、溶融ガラス流出口111から離れた退避位置(図4において、プレスユニット120,130及び150が実線で描画されている位置、及びプレスユニット140が破線で描画されている位置)との間で移動可能となっている。
 図4に示すプレスユニット120は、第1の型121と、第2の型122と、第1駆動部125と、第2駆動部126と、を有する。
 第1の型121と第2の型122の各々は、ガラスゴブG(図5(b),(c)参照)をプレス成形するための面を有するプレート状の部材である。この2つの面の法線方向が略水平方向となり、この2つの面が互いに平行に対向するよう配置されている。
 第1駆動部125は、第1の型121を第2の型122に対して進退させる。一方、第2駆動部126は、第2の型122を第1の型121に対して進退させる。第1駆動部125及び第2駆動部126は、第1の型121の面と第2の型122の面とを急速に近接させる機構を有する。第1駆動部125及び第2駆動部126は、例えば、エアシリンダやソレノイドとコイルばねを組み合わせた機構である。
 なお、プレスユニット130,140及び150の構造は、プレスユニット120と同様であるため、説明は省略する。
 プレスユニットの各々は、捕獲位置に移動した後、第1駆動部と第2駆動部の駆動により、落下するガラスゴブGを第1の型と第2の型の問で挟み込んで所定の厚さに成形すると共に冷却し、円形状のガラスブランクGを作製する。
 図5(a)~(d)は、実施形態のプレス成形工程を具体的に示す図である。
 切断ユニット160は、捕獲位置と溶融ガラス流出口111との間の溶融ガラスの経路上に設けられる。切断ユニット160は、溶融ガラス流出口111から流出される溶融ガラスを適量に切り出してガラスゴブGを形成する。切断ユニット160は、鉛直方向(溶融ガラス流の流下方向)に互いにずらして配置され、且つ、水平方向で互いに対向配置された一対の切断刃161,162(上側切断刃及び下側切断刃)を有する。各切断刃161,162は、協働して溶融ガラス流Lを切断する。具体的には、各切断刃161,162は、一定のタイミングで溶融ガラス流Lの経路上で刃先が交差するよう駆動され、各切断刃161,162が交差した位置で溶融ガラス流Lが切り出されてガラスゴブGが得られる。溶融ガラス流Lの切断及びプレス成形の詳細な説明は後述する。
 (b)スクライブ工程(ステップS20)
 次に、スクライブ工程について説明する。プレス成形工程の後、スクライブ工程では、成形されたガラスブランクGに対してスクライブが行われる。
 ここでスクライブとは、成形されたガラスブランクGを所定のサイズのリング形状とするために、ガラスブランクGの表面に超鋼合金製あるいはダイヤモンド粒子を含んだスクライバにより2つの同心円(内側同心円および外側同心円)状の切断線(線状のキズ)を設けることをいう。2つの同心円の形状にスクライブされたガラスブランクGは、部分的に加熱され、ガラスブランクGの熱膨張の差異により、外側同心円の外側部分および内側同心円の内側部分が除去される。これにより、円環状のガラス基板が得られる。
 なお、ガラスブランクGに対してコアドリル等を用いて円孔を形成することにより円環状のガラス基板を得ることもできる。
 (c)形状加工工程(ステップS30)
 次に、形状加工工程について説明する。形状加工工程では、スクライブ工程後のガラス基板の端部に対するチャンファリング加工(外周端部および内周端部の面取り加工)を含む。チャンファリング加工は、スクライブ工程後のガラス基板の外周端面および内周端面において、ダイヤモンド砥石により面取りを施す形状加工である。面取り面の面取り角度は、主表面に対して例えば40~50度である。
 (d)固定砥粒による研削工程(ステップS40)
 固定砥粒による研削工程では、遊星歯車機構を備えた両面研削装置を用いて、形状加工工程後のガラス基板の主表面に対して研削加工(機械加工)を行う。研削による取り代は、例えば数μm~100μm程度である。固定砥粒の粒子サイズは、例えば10μm程度である。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、このガラス基板の両主表面を研削することができる。
 (e)端面研磨工程(ステップS50)
 次に、端面研磨工程について説明する。固定砥粒による研削工程後、端面研磨工程では、ガラス基板の端面研磨が行われる。
 端面研磨では、ガラス基板の内周端面及び外周端面に対して、ブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含むスラリーが用いられる。端面研磨を行うことにより、ガラス基板の端面での塵等が付着した汚染、ダメージあるいはキズ等の損傷の除去を行うことにより、サーマルアスペリティの発生の防止や、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。
 (f)第1研磨(主表面研磨)工程(ステップS60)
 次に、端面研磨工程後のガラス基板の主表面に第1研磨が施される。第1研磨による取り代は、例えば数μm~50μm程度である。第1研磨は、例えば固定砥粒による研削を行った場合に主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。第1研磨による取り代は、例えば数μm~50μm程度である。
 第1研磨工程では、例えば、遊星歯車機構を備えた両面研磨装置を用いて、研磨液を与えながら研磨する。第1研磨工程では、固定砥粒による研削と異なり、固定砥粒の代わりにスラリーに混濁した遊離砥粒を用いる。第1研磨に用いる遊離砥粒として、例えば、スラリーに混濁させた酸化セリウム砥粒、あるいはジルコニア砥粒など(粒子サイズ:直径1~2μm程度)が用いられる。両面研磨装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。なお、下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド、例えば、樹脂ポリッシャが取り付けられている。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、このガラス基板の両主表面を研磨することができる。
 (g)化学強化工程(ステップS70)
 次に、第1研磨工程後のガラス基板は化学強化される。
 化学強化液として、例えば硝酸カリウム(60重量%)と硫酸ナトリウム(40重量%)の混合液等を用いることができる。化学強化工程では、化学強化液を例えば300℃~400℃に加熱し、洗浄したガラス基板を例えば200℃~300℃に予熱した後、ガラス基板を化学強化液中に、例えば3時間~4時間浸漬する。この浸漬の際には、ガラス基板の両主表面全体が化学強化されるように、複数のガラス基板が端面で保持されるように、ホルダに収納した状態で行うことが好ましい。
 ガラス基板を化学強化液に浸漬することによって、ガラス基板の表層のリチウムイオン及びナトリウムイオンが、化学強化液中のイオン半径が相対的に大きいナトリウムイオン及びカリウムイオンにそれぞれ置換されることで表層部分に圧縮応力層が形成され、ガラス基板が強化される。
 なお、化学強化処理されたガラス基板は洗浄される。例えば、硫酸で洗浄された後に、純水等で洗浄される。
 (h)第2研磨(最終研磨)工程(ステップS80)
 次に、化学強化工程後のガラス基板に第2研磨が施される。第2研磨工程は、主表面の鏡面研磨を目的とする。第2研磨による取り代は、例えば1μm程度である。第2研磨工程では、例えば、第1研磨工程で用いた両面研磨装置を用いる。このとき、第1研磨工程と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。
 第2研磨工程に用いる遊離砥粒として、例えば、スラリーに混濁させたコロイダルシリカ等の微粒子(粒子サイズ:直径10~50nm程度)が用いられる。研磨されたガラス基板を中性洗剤、純水、IPA等を用いて洗浄することで、磁気ディスク用ガラス基板が得られる。
 第2研磨工程を実施することは必ずしも必須ではないが、ガラス基板の主表面の表面凹凸のレベルをさらに良好なものとすることができる点で実施することが好ましい。第2研磨工程を実施することで、主表面の粗さ(Ra)を0.1nm以下かつ上記主表面のマイクロウェービネス(MW-Rq)を0.1nm以下とすることができる。
 以上が、磁気ディスク用ガラスブランク及び磁気ディスク用ガラス基板の製造方法の説明である。
(溶融ガラス流の切断及びプレス成形)
 図6(a)~(d)は、溶融ガラス流Lの切断を説明する図である。図6(a)~(d)は、図5(a)に示す溶融ガラス流Lの状態から図5(b)に示す溶融ガラス流Lの状態に至る溶融ガラス流の切断状態を示している。以下、図5(a)~(d)及び図6(a)~(d)を参照しながら説明する。
 図5(a)は、溶融ガラス流Lと切断ユニット160の各切断刃161,162が接触する前の状態を示す。図5(b)は、切断ユニット160の各切断刃161,162が溶融ガラス流Lの切断が完了したときの状態を示す。図5(c)は、ガラスゴブGが落下する状態を示す。図5(d)は、プレスユニット120がガラスゴブGをプレス成形している状態を示す。ここで、切断完了時点のガラスゴブGの形状は、そのガラスゴブGの中心を通る水平面に対して上下非対称な形状であり、変形している。
 図6(a),(b)は、切断刃161,162を溶融ガラス流Lの上流側から見た図である。図6(c),(d)は、切断刃161,162と溶融ガラス流Lを図6(b)に示す矢印の方向(横方向)から見た図である。
 図5(a)に示されるように、まず、溶融ガラス流Lは、溶融ガラス流出口111から連続的に流出される。このとき、図5(b)に示されるように、所定のタイミングで上側の切断刃161と下側の切断刃162を駆動して、溶融ガラス流Lの流れ方向で切断刃161,162同士が互いにすり合うように交差させる。
 図6(a)に示すように、一対の切断刃161,162のそれぞれの刃の先端(刃先)は一方向(切断刃161,162が移動する方向)に対して傾斜した方向に延びる形状を成している。切断刃161,162の刃先は、溶融ガラス流Lの中心を通り、切断刃161,162の移動する方向に直交する平面に対して線対称な形状を成している。切断刃161,162は互いに交差するとき、切断刃161,162の刃の先端はVの字形状を成すように傾斜している。
 本実施形態では、一対の切断刃161,162を、溶融ガラス流Lを挟んで互いに接近する方向に直線的に移動させ、溶融ガラス流Lの断面の縁部から、断面の径方向一方向へ、溶融ガラス流Lの被切断領域が変化するように切断する。すなわち、溶融ガラス流Lの流れ方向において、互いにすり合わせて形成される切断刃161,162がなすV字形状の先端位置(図6(b)では点Pの位置近傍)で溶融ガラス流Lを切断していく。図6(b)に示すように、溶融ガラス流Lを切断する点Pは、切断刃161,162が互いに接近するにつれて、図中のX方向に移動する。
 これにより、溶融ガラス流Lが完全に切断され、切断された溶融ガラス流Lの先端部分は、ガラスゴブGとなる。図5(b)に示される例では、切断ユニット160を駆動する度に、例えば、半径10mm程度の体積のガラスゴブGが形成されるように、溶融ガラス流Lの時間当たりの流出量や切断ユニット160の駆動間隔が調整される。
 こうして溶融ガラス流Lの切断が完了して得られたガラスゴブGは、図5(c)に示されるように、プレスユニット120の第1の型121と第2の型122の隙間に向かって落下する。落下中のガラスゴブGが第1の型121と第2の型122の隙間に入るタイミングで、第1の型121と第2の型122が互いに近づくように、第1駆動部125及び第2駆動部126が駆動される。これにより、図5(d)に示されるように、第1の型121と第2の型122の間にガラスゴブGが捕獲(キャッチ)される。第1の型121のプレス面121aと第2の型122のプレス面122aとが、所定の間隔にて近接した状態になり、第1の型121のプレス面121aと第2の型122のプレス面122aの間に挟み込まれたガラスゴブGが、薄板状に成形される。このとき、図5(d)に示されるように、ガラスブランクGは、プレス面121a,122aの全体に広がらない。すなわち、ガラスブランクGはガラスブランクGの外形を規制する枠が無い状態で、略円形状につくられる。すなわち、ガラスブランクGの端面は、自由曲面となっている。自由曲面となって、プレス成形中、気相中で徐冷されるので、端面の表面に圧縮応力層が無いか、あっても極めて小さい。このとき、最大径と最小径の差が0.1~5mmであるガラスブランクGがつくられる。
 なお、第1の型121のプレス面121aと第2の型122のプレス面122aの間隔を一定に維持するために、第1の型121のプレス面121a及び第2の型122のプレス面122aの各々には、突起状のスペーサ121b,122bが設けられる。各スペーサ121b,122bが互いに当接することによって、第1の型121のプレス面121aと第2の型122のプレス面122aの間隔は一定に維持されて、板状の空間が作られる。
 第1の型121及び第2の型122には、図示しない温度調節機構が設けられている。第1の型121及び第2の型122の温度は、温度調節機構により、溶融ガラス流Lの歪点以下の温度に調整されていることが好ましい。あるいは、第1の型121及び第2の型122の温度は、溶融ガラス流Lのガラス転移点以上屈服点未満の温度に調整されていることも好ましい。
 ガラスゴブGが第1の型121のプレス面121a又は第2の型122のプレス面122aに接触してから、第1の型121と第2の型122とがゴブGを完全に閉じ込める状態になるまでの時間は約0.06秒と極めて短い。このため、ゴブGは極めて短時間の内に第1の型121のプレス面121a及び第2の型122のプレス面122aに沿って広がって略円形状に成形され、さらに、冷却されて非晶質のガラスとして固化する。これによって、ガラスブランクGが作製される。
 なお、本実施形態は、落下中のガラスゴブGGを捕獲しプレスするために、第1の型121,第2の型122は互いに接近するように水平方向に移動するが、第1の型121,第2の型122の移動方向は、落下中のガラスゴブGGを第1の型121,第2の型122が捕獲してプレスできる限りにおいて、制限されない。本実施形態において成形されるガラスブランクGは、目的とする磁気ディスク用ガラス基板の大きさにもよるが、例えば、直径75~80mm、厚さ約1mmの円形状の板である。
 第1の型121と第2の型122が閉じられた後、プレスユニット120は速やかに退避位置に移動する。プレスユニット120が退避位置に移動した後、ガラスブランクGが十分に冷却されるまで(例えば、ガラス転移点以上屈服点よりも低い温度範囲内のある温度になるまで)、第1の型121と第2の型122は閉じた状態を維特する。この後、第1駆動部125及び第2駆動部126が駆動されて第1の型121と第2の型122が離間し、ガラスブランクGは、プレスユニット120を離れて落下し、下部にあるコンベア171に受け止められる(図4参照)。
 プレスユニット120は速やかに退避位置に移動した後、続いて、図4に示す他のプレスユニット130がガラスゴブGの捕獲位置に移動し、このプレスユニット130によって、ガラスゴブGのプレスが行われる。この後、プレスユニット130は速やかに退避位置に移動し、退避位置において、ガラスブランクGは、プレスユニット120を離れて落下し、下部にあるコンベア172に受け止められる。同様に、プレスユニット140.150もガラスゴブGの捕獲位置に移動し、このプレスユニット140,150によって、ガラスゴブGのプレスが行われる。この後、プレスユニット140,150は速やかに退避位置に移動し、退避位置において、ガラスブランクGは、プレスユニット140,150を離れて落下し、下部にあるコンベア173,174に受け止められる。
 本実施形態では、0.1秒以内(約0.06秒)という極めて短時間の間に第1の型121と第2の型122が閉じられ、第1の型121のプレス面121aと第2の型122のプレス面122aの全体に、略同時に溶融ガラスが接触することになる。このため、第1の型121のプレス面121aと第2の型122のプレス面122aが溶融ガラスから局所的に熱を受けて高温にされることが抑制される。
 また、ガラスゴブGから第1の型121及び第2の型122に熱が移動して第1の型121及び第2の型122の温度分布をつくる前に、ガラスゴブGが円形状に成形されるため、成形されるガラスブランクGの温度分布は略一様となる。このため、溶融ガラスの冷却時、ガラス材料の収縮量の分布は小さく、ガラスブランクGの歪みが発生しにくい。したがって、作製されたガラスブランク材Gの主表面の平面度は、4μm以下となり、従来のプレス成形により作製されるガラスブランクに比べて平面度は向上し、磁気ディスク用ガラス基板として必要な主表面の目標平面度にすることができる。また、最大板厚と最小板厚の差は6μm以下となる。
 また、プレス面121a及びプレス面122aの表面の粗さは、ガラスブランクGの主表面の粗さ(算術平均粗さRa)が0.01μm~10μmとなるように、好ましくは、0.01μm~1μmとなるように、調整することができる。
 ガラスゴブGは、上述したように、図6(a)~(d)に示すような方法により溶融ガラス流Lが切断されて形成される。図6(a),(b)に示すように、切断刃161,162が互いに重なってV字形状を成す部分を用いて、溶融ガラス流Lの断面の縁部から溶融ガラス流Lを切断する。このため、図6(b),(c)に示すように溶融ガラス流Lから分離してガラスゴブGとなる切断部分Gは、自重により切断刃162から離れる。このため、切断部分Gは切断刃162と接触しないので、切断部分Gの熱が切断刃162に伝導して、切断部分Gの温度が低下することを抑制できる。この結果、シアマークの深さを浅くすることができる。すなわち、熔融ガラス流Lの切断刃161,162と接触する位置が時間とともに変化するので、切断刃161,162と接触する熔融ガラス流Lの部分から切断刃161,162へ移動する熱の伝導量は、溶融ガラス流の断面を狭く絞りながら溶融ガラス流を切断する従来の方式に比べて小さくなる。このため、溶融ガラス流の固化領域から形成されるシアマークはガラスブランクの表面近傍の浅い位置に形成される。
 ここで、切断刃161,162同士の交差角度θ(図6(b)参照)は、5~60度であることが、ガラスゴブGの落下方向を鉛直方向から大きく外れることなく、落下姿勢変化を抑制し落下安定性を維持する点で好ましい。交差角度θは、より好ましくは5~40度であり、特に好ましくは30~40度である。
 図7は、溶融ガラス流Lが切断刃によって切断される際の抵抗力及び押し出し力について説明する図である。切断刃162が溶融ガラス流Lから受ける抵抗力Fは、Fcosθ/2で表わされるので、角度θ/2が大きいほど、すなわち一対の切断刃161,162の交差角度θが90度に近づくほど抵抗力Fは小さくなる。一方、溶融ガラス流Lから分離されたガラスゴブGに対する押し出し力Fは、2Fcosθ/2・sinθ/2(=Fsinθ)で表わされるので、交差角度θが小さいほど押し出し力Fは小さくなる。要するに、一対の切断刃161,162の交差角度θが小さければ、切断刃161,162が溶融ガラス流Lから受ける抵抗力Fは若干大きくなるものの、溶融ガラス流Lから分離されたガラスゴブGの落下姿勢に影響する押し出し力Fが小さくなるので、ガラスゴブGの落下姿勢変化を抑制して、落下安定性を向上させることができる。
 本実施形態においては、上記のように、一対の切断刃161,162の交差角度θが5~60度以下、好ましくは5~40度としているので、特にガラスゴブGが分離する際、つまり切断終了時の一対の切断刃161,162からガラスゴブGに加わる押し出し力Fを小さくし、落下中のガラスゴブGの回転モーメントを小さくすることができるため、ガラスゴブGの落下姿勢変化を抑制して落下安定性を向上させることができ、プレスによって得られるガラスブランクの品質(平面度、板厚偏差)を向上させることができる。
  なお、上記の交差角度θを0度に近づけるほど落下安定性はよいが、交差角度θが0度の場合、刃先で溶融ガラスを挟み込む作用が強くなるため、ガラスゴブの冷却固化領域が増大し、シアマークを薄くできないという問題がある。シアマークの深さを浅くする観点からは、上記の交差角度θは5度以上であることが好ましい。また、上記の交差角度θが60度よりも大きいと、落下安定性を向上させる効果が十分に得られない。落下安定性向上の観点からは上記の交差角度θは60度以下であることが好ましい。 
 なお、切断刃161,162のそれぞれの刃の先端は直線状に延びており、溶融ガラス流Lを切断するとき、切断刃161,162同士の交差角度θ(図6(b)参照)が一定に維持されていることが、ガラスゴブGの落下安定性を確保する点で好ましい。例えば、交差角度θは5度~60度の範囲内の一定の角度であることが好ましい。この場合、切断刃161,162のそれぞれの刃先の傾斜角度φ(図6(a)参照)は、60~87.5度であり、同じ傾斜角度φを持つとよい。
 切断刃161,162同士の交差角度θ(図6(b)参照)を切断中、一定に維持することにより、以下に説明するように、ガラスゴブGの落下方向を一定に維持することができる。図7は、ガラスゴブGの落下を説明する図であり、図6(b)の矢印方向から見た図である。ガラスゴブGは、図6(a),(b)に示すように、切断刃161,162が一方向に傾斜し、切断刃161,162が、切断刃161,162同士がすり合いながら接近する方向に直線的に移動するので、溶融ガラス流Lには、上述したように、切断時、刃先が傾斜した切断刃161,162から図6(d)あるいは図8に示す紙面の左方向に向かう押し出し力Fが加えられる。この結果、ガラスゴブGは図8中の紙面の左方向に速度成分をもって落下する。このとき、溶融ガラス流Lが完全に切断されてガラスゴブGが生成されるときの生成のタイミングがわずかにずれても、交差角度θを切断中一定に維持することにより、ガラスゴブGには、常に一定の横方向の押し出し力Fを受ける。したがって、ガラスゴブGの落下に伴う横方向の速度成分も一定となる。また、横方向の速度成分が一定となるため、ガラスゴブGの落下の際の回転の態様も一定となる。実際、溶融ガラス流Lが完全に切断されてガラスゴブGが生成されるタイミングは、溶融ガラス流Lの切断部分の局部的な温度の微小変動や切断刃161,162の温度や切断刃161,162の刃面の摩耗状態等により変動する。このため、交差角度θを切断中一定に維持することにより、ガラスゴブGの落下方向及び回転の態様を一定に維持することができる。
 図9(a),(b)は、従来の回動する切断刃261,262を用いた溶融ガラス流Lの切断を説明する図である。切断刃261,262は、図9(a)に示す矢印方向R、Rに回動するので、交差角度θは時間とともに変化する。上述したように、溶融ガラス流Lが完全に切断されるタイミングは、上述したように微小に変動するので、完全に溶融ガラス流Lが切断されてガラスゴブGが生成されるとき、ガラスゴブGが受ける横方向の押し出し力Fも変動する。このため、交差角度θが切断中に時間とともに変化する場合、ガラスゴブGの落下方向を一定に維持することはできず、落下方向が安定しない。また、ガラスゴブGの回転により、ガラスゴブGの落下経路のばらつきが大きくなる。
 以上の点から、切断刃161,162同士の交差角度θを切断中一定に維持することにより、ガラスゴブGの落下方向を一定に維持することができる。ガラスゴブGの落下方向を一定に維持することにより、プレス成形を行う第1の型121及び第2の型122がガラスゴブGを捕獲する捕獲位置も一定になる。このため、後述するように、ガラスブランクGの平面度は向上し板厚偏差は小さくなる。
(変形例1)

 図6(a)~(d)に示す切断刃161,162は、交差角度θが一定に維持されるが、溶融ガラス流Lの切断開始時の一対の切断刃の交差角度よりも、溶融ガラス流からガラスゴブが分離する、つまり切断終了時の一対の切断刃の交差角度が小さくなる切断刃を切断刃161,162に替えて用いることもできる。図10は、本実施形態の変形例1の切断刃181,182を示す図である。
 図10に示されるように、変形例1の一対の切断刃181,182のそれぞれの刃の先端(刃先)181a,182aは、幅方向の一端部から他端部へ向けて、上記一対の切断刃181,182の交差角度θが小さくなるように、凹状に湾曲した形状を成している。すなわち、一対の切断刃181,182の刃先形状は、一対の切断刃181,182が互いに接近する方向に対して凹状に湾曲している。切断刃181,182の刃先は、溶融ガラス流Lの中心を通り、切断刃181,182の移動する方向に直交する平面に対して線対称な形状を成している。変形例1においても、一対の切断刃181,182を、溶融ガラス流Lを挟んで互いに接近する方向(図示する矢印方向)に直線的に移動させ、溶融ガラス流Lの断面の縁部から接触して切断する。これによって、一対の切断刃181,182が溶融ガラス流Lに接触し始める時の一対の切断刃の交差角度θよりも、溶融ガラス流LGからガラスゴブGが分離する際の一対の切断刃の交差角度θが小さくなる。ここで、本実施形態のような湾曲している形状の切断刃181,182における交差角度θとは、平面視において、一対の切断刃が交差する点と、その交差する点から各切断刃の刃先に沿って1mm離れた点とを通る2本の直線のなす角である。
 変形例1においては、一対の切断刃181,182が溶融ガラス流Lに接触し始めてから初期の段階では一対の切断刃181,182の交差角度θは100度程度とある程度大きく、溶融ガラス流の抵抗力Fが小さくなる。このため、溶融ガラス流Lの切断の際に一対の切断刃181,182の刃先において、溶融ガラス流Lから受ける力が小さくなる。この結果、切断刃の耐久性を向上させることができる。
 そして、特にガラスゴブGが分離する際、つまり切断終了時の切断刃181、182の交差角度θは小さくなる。このため、一対の切断刃181,182からガラスゴブGに加わる押し出し力Fを小さくでき、落下中のガラスゴブGの回転モーメントを小さくすることができる。したがって、ガラスゴブの落下姿勢の変化を抑制して落下の安定性を向上させることができ、プレスによって得られるガラスブランクの品質(平面度、板厚偏差)を向上させることができる。
 変形例1においても、溶融ガラス流LからガラスゴブGが分離する際(切断終了時)の一対の切断刃181,182の交差角度θが60度以下であることが好ましく、より好ましくは40度以下である。また、シアマークの深さを浅くする観点からは、上記の交差角度θは5度以上であることが好ましい。また、ガラスゴブGの落下安定性向上の観点からは切断終了時の交差角度θは20度以下であることが好ましく、10度以下であることがより好ましい。また、溶融ガラス流Lを切断する際の溶融ガラス流Lから受ける抵抗を小さくし切断刃181,182の耐久性を向上させる観点から、溶融ガラス流Lに接触する際の一対の切断刃181,182の交差角度θは30度以上が好ましく、50度以上がより好ましい。
(変形例2)
 図11は、変形例2の切断刃191,192を説明する平面図である。図11に示されるように、切断刃191,192のそれぞれの刃の先端(刃先)191a及び191b、192a及び192bは、切断刃191,192が移動する方向に対して傾斜した異なる方向に延びる形状を成している。つまり、切断刃191の刃先は、刃先の長い主切断部191aと、刃先の短い補助切断部191bとからなり、これら刃先の主切断部191aと補助切断部191bとは、切断刃191が移動する方向に対してそれぞれ傾斜し且つ異なる方向に延びる形状を成している。また同様に、切断刃192の刃先は、刃先の長い主切断部192aと、刃先の短い補助切断部192bとからなり、これら刃先の主切断部192aと補助切断部192bとは、切断刃192が移動する方向に対してそれぞれ傾斜し且つ異なる方向に延びる形状を成している。切断刃191,192の刃先は、溶融ガラス流Lの中心を通り、切断刃191,192の移動する方向に直交する平面に対して線対称な形状を成している。
 これによって、一対の切断刃191,192における刃先の各主切断部191a,192aで溶融ガラスを切断して溶融ガラスを押し出すが、刃先の各補助切断部191b,192bによって押し出しが適度に抑えられ、結果、ガラスゴブGの落下安定性を向上させることができる。
 変形例2においても、一対の切断刃191,192を、溶融ガラス流Lを挟んで互いに接近する方向(図示する矢印方向)に直線的に移動させ、溶融ガラス流Lの断面の縁部から接触して溶融ガラス流Lの断面の径方向一方向へ、溶融ガラス流Lの被切断領域が変化するように切断する。変形例2においては、一対の切断刃191.192が溶融ガラス流Lに接触し始めてから初期の段階では一対の切断刃191,192の交差角度θはある程度大きく、溶融ガラス流Lの抵抗力Fが小さくなるため、この部分では切断面が円滑となり、ガラスゴブGがプレスされた際のシアマークを浅くすることができ、切断面が円滑であるため空気を巻き込み難く泡の発生も抑えることができる。そして、一対の切断刃191,192における各刃先の主切断部191a,192aで溶融ガラス流Lを切断した後、切断による溶融ガラスの押し出しが、各刃先の補助切断部191b,192bによって適度に抑えられる。このため、一対の切断刃191,192からガラスゴブGに加わる押し出し力Fを小さくでき、落下中のガラスゴブGの回転モーメントを小さくすることができる。したがって、ガラスゴブGの落下姿勢の変化を抑制して落下の安定性を向上させることができる。これにより、プレスによって得られるガラスブランクの品質(平面度、板厚偏差)を向上させることができる。
(変形例3,4)
 図12及び図13は、さらに別の変形例3及び変形例4の切断刃を示す図である。変形例3,4は、溶融ガラス流Lの切断開始時の一対の切断刃の交差角度よりも、切断終了時の一対の切断刃の交差角度が大きくなる切断刃を切断刃161,162に替えて用いた例である。切断刃201,202および切断刃211,212の刃先は、溶融ガラス流Lの中心を通り、切断刃201,202および切断刃211,212の移動する方向に直交する平面に対して線対称な形状を成している。
 すなわち、変形例3である切断刃201,202のそれぞれの刃の先端(刃先)201a,202aは、幅方向の一端部から他端部へ向けて、上記一対の切断刃201,202の交差角度θが大きくなるように、凸状に湾曲した形状を成している。すなわち、一対の切断刃201,202の刃先形状は、一対の切断刃201,202が互いに接近する方向に対して凸状に湾曲している。変形例4である切断刃211,212についても、それぞれの刃の先端(刃先)211a,212aは、幅方向の一端部から他端部へ向けて、上記一対の切断刃211,212の交差角度θが大きくなるように、凸状に湾曲した形状を成している。すなわち、一対の切断刃211,212の刃先形状は、一対の切断刃211,212が互いに接近する方向に対して凸状に湾曲している。
 このような変形例3及び変形例4の切断刃であっても、一対の切断刃201,202、及び一対の切断刃211,212を、溶融ガラス流Lを挟んで互いに接近する方向に直線的に移動させることにより、溶融ガラス流Lを切断するとき、溶融ガラス流Lの断面の縁部から、断面の径方向一方向へ、溶融ガラス流Lの被切断領域が変化するように切断する。
 また、変形例3では、一対の切断刃201,202が溶融ガラス流Lに接触し始めてから初期の段階では、一対の切断刃201,202の交差角度θは0度に近く、一対の切断刃201,202から溶融ガラス流Lへの押し出し力が小さくなる。このため、落下中のガラスゴブGの回転モーメントを抑えることができる。そして、特にガラスゴブGが分離する際、つまり切断終了時では切断刃201,202の交差角度θは大きくなるため、溶融ガラス流Lの抵抗力Fが小さくなる。この結果、溶融ガラス流Lの切断の際に一対の切断刃201,202の刃先において、溶融ガラス流Lから受ける力が小さくなる。この結果、この部分では切断面が円滑となり、ガラスゴブGがプレスされた際のシアマークを浅くすることができ、切断面が円滑であるため空気を巻き込み難く泡の発生も抑えることができる。
 この変形例3の切断刃の効果は、変形例4の切断刃でも同様に得ることができる。
(変形例5)
 図14は、本実施形態に用いる変形例5の切断刃を示す図である。図14に示す変形例5の上側の切断刃161には、溶融ガラス流Lの切断中、溶融ガラス流Lの先端部分の横移動及び回転運動を規制するように、ゴブガイド部材163が設けられている。ゴブガイド部材163は、切断刃161の下面から下方向に延びた板状部材である。
 上述したように、切断刃161,162による溶融ガラス流Lの切断によって、ガラスゴブGには、横方向の押し出し力Fが作用する他、熔融ガラス流Lの断面の縁部の一箇所から徐々に切断して行くので、切断されようとする熔融ガラス流Lの先端部分の自重により、回転モーメントMが作用する。このような横方向の押し出し力F及び回転モーメントMの作用によってガラスゴブGは横移動及び回転運動をし易い。このため、本変形例では、ガラスゴブGの横移動及び回転運動を規制するためにゴブガイド部材163が設けられる。したがって、溶融ガラス流Lが完全に切断されてガラスゴブGが形成されるまでの間、切断されてガラスゴブGになろうとする溶融ガラス流Lの先端部分の横移動及び回転運動を規制する程度に、ゴブガイド部材163が下方に延びる長さが定められている。
(実施形態の切断刃と従来例の切断刃との違い)
 図15(a),(b)は、従来のV型刃を用いる溶融ガラス流の切断を示す図である。この切断では、溶融ガラス流Lが一対の切断刃361,362で切断されるとき、切断刃361,362のV型刃により囲まれる隙間が徐々に小さくなる。このとき、切断刃361,362の4箇所で接触する溶融ガラス流Lの外周は、熱が急速に奪われて冷却されて部分的に固化されるため、切断刃361,362により溶融ガラス流Lは容易に破断されやすくなる。しかし、図15(a),(b)に示す形態では、溶融ガラス流Lは切断刃361,362の4箇所で急冷され、しかも、本実施形態のように徐々に切断されるのではなく、溶融ガラス流Lの中心部分に集まった溶融ガラスは一気に切断される。このとき、切断刃361,362で切断されようとする溶融ガラス流Lの切断部分(ガラスゴブGの上部の切断部分)は、本実施形態の場合に比べて切断刃361,362の同じ位置に長時間接触する。このため、ガラスゴブGの上部切断面は、本実施形態に比べて強く冷却されて、ガラスの固化領域はガラスゴブGの内部にまで広がる。しかも、熔融ガラス流Lの切断時、熔融ガラス流Lが切断刃361,362と4箇所で接触し、その4箇所からガラスゴブGの内部に固化領域がよりいっそう広がっている。この結果、図5(a)~(d)に示すような第1の型121及び第2の型122によるプレスを行うと、成形されるガラスブランクの深い位置にシアマークが生じ易くなる。
 これに対して、本実施形態では、図6(c),(d)に示すように、溶融ガラス流Lから分離したガラスゴブGとなる切断部分(ガラスゴブGの上部の切断部分)G(図6(c)参照)は、自重により切断刃162から離れる。このため、切断部分Gは切断刃162と接触しないので、切断部分Gの熱が切断刃162に伝導して、切断部分Gの温度が低下することを抑制できる。この点から、本実施形態の溶融ガラス流Lの切断方式は、従来に比べてシアマークの発生する深さを浅くすることができる。シアマークの発生する深さを浅くすることは、以後の工程で行う、研削、研磨の取り代を少なくするので、磁気ディスク用ガラス基板を効率よく作製することができる。
 さらに、本実施形態では、一対の切断刃161,162のそれぞれの刃の先端は直線状に傾斜して延びており、溶融ガラス流Lを切断するとき、切断刃161,162同士の交差角度は一定に維持される。このため、溶融ガラス流Lを切断するタイミングが変動しても、切断刃161,162同士の交差角度は一定なので、切断される溶融ガラス流Lの部分が切断刃162から受ける横方向の力は常に一定であり、ガラスゴブGの横方向の速度成分も一定である。このため、ガラスゴブGの落下方向も常に一定であり、また、落下のガラスゴブGの回転の態様も一定である。したがって、プレス成形を行う第1の型121及び第2の型122において一定した捕獲位置でガラスゴブGを捕獲しプレス成形することができる。ガラスゴブGの捕獲位置が、ガラスゴブGの落下方向の安定性欠如により、ガラスゴブG毎に異なる場合、直前に捕獲したガラスゴブGの捕獲位置と位置ずれを起こす場合が多い。このため、直前のガラスゴブGの捕獲によりガラスゴブGから熱が移動し、その結果として第1の型121及び第2の型122に残存する温度分布の影響を受けて、ガラスブランクの平面度のばらつきを大きくし、さらに板厚偏差のばらつきを大きくする。
 第1の型121及び第2の型122に温度分布が残存すると、プレス成形を受けるガラスゴブGあるいは第1の型121及び第2の型122の間で成形されるガラスブランクGの温度は不均一になり易く、不均一な温度分布を持つことになる。この結果、ガラスブランクの平面度のばらつきを大きくし、板厚偏差のばらつきを大きくする。この点から、ゴブガラスGの落下方向を一定させるために、切断刃161,162同士の交差角度θが一定に維持されることが好ましい。
 また、溶融ガラス流Lの切断中、切断されてガラスゴブGになろうとする溶融ガラス流Lの部分の横移動及び回転運動を規制することが、ガラスゴブGの落下方向を安定させて第1の型121及び第2の型122上の同じ捕獲位置でガラスゴブGを捕獲させる点で好ましい。第1の型121及び第2の型122上の同じ捕獲位置でガラスゴブGを捕獲させることは、上述したように、ガラスブランクの平面度のばらつきを小さくし、板厚偏差のばらつきを小さくする点で好ましい。
 一対の切断刃161,162は、例えば、溶融ガラス流Lの上流側に位置する切断刃161と下流側に位置する切断刃162を有し、下流側に位置する切断刃161に、ガラスゴブGの横移動及び回転運動を規制するゴブガイド部材163が設けられる。ゴブガイド部材163を切断刃161に設けることで、ガラスゴブGの横移動及び回転運動を容易に規制することができる。
 このような溶融ガラス流Lの切断及びガラスゴブのプレス成形により、ガラスブランクGの板厚偏差(最大板厚と最小板厚の差)を6μm以下にし、ガラスブランクGの平面度を4μm以下にし、ガラスブランクGに形成されるシアマークの深さ方向の位置を5~20μmにすることができる。
 すなわち、ガラスブランクGの主表面は、機械加工が施されていないプレス成形面となっている。このため、図3に示す固定砥粒による研削、第1研磨、第2研磨の取り代を抑えることができ、磁気ディスク用ガラス基板の作製効率を上げることができる。
 (実験例)
 本実施形態の方法で上述のガラスブランクGを作製できるが、本実施形態以外の方法でガラスブランクGの作製が困難である点を実施例、従来例を用いて確認した。
 使用したガラスは、以下の組成(モル%表示)を有するアルミノシリケートガラスである。具体的には、酸化物基準に換算し、
・SiO:50~75%、
・Alを1~15%、
・LiO、NaO及びKOから選択される少なくとも1種の成分を合計で5~35%、
・MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、
・ZrO、TiO、La、Y、Ta、Nb及びHfOから選択される少なくとも1種の成分を合計で0~10%、
を有する組成を満足するアモルファスのアルミノシリケートガラスを使用した。
 溶融ガラス流Lを溶融ガラス流出口111から流出させて、各種切断刃(温度は室温)を用いてプレス成形を行った。プレス成形として、図5(a)~(d)に示す第1の型121及び第2の型122を用いて落下中のガラスゴブGを挟んでプレス成形する方式の代表例であり、第1の型121及び第2の型122を水平に移動させる水平プレス方式と、図16に示す型221,223を用いる従来の垂直プレス方式とを用いた。垂直プレス方式は、溶融ガラス流Lを切断して得られるガラスゴブGを第1の型221で受けた後ガラスゴブGを、第2の型222を用いて上方向からプレスする方式である。
 垂直プレス方式は、下側の第1の型221にガラスゴブGが載せられた後、上側の第2の型222がガラスゴブGを覆い、プレス成形をするので、ガラスゴブGの第1の型221と接触する部分は低温度になり、ガラスゴブGは、ガラスゴブG内で不均一な温度分布を生じ易い。また、下側の第1の型221も、ガラスゴブGから熱を受けて、第2の型222に比べて温度が高く、第1の型221と第2の型222との間で温度に差が生じやすい。この温度分布や温度分布の差は、ガラスブランクGの平面度及び板厚偏差に悪影響を与え易い。
 切断刃はいずれも常温(40℃程度)にし、プレス成形に用いる一対の型は、互いに同じ温度になるようにした。
 下記表1は、実施例1、比較例1~4の仕様(切断刃の形態及びプレス成形方式)とその結果を示している。作製された実施例1、比較例1~4のガラスブランクGを10枚ずつ取り出して、板厚偏差(最大板厚-最小板厚)、シアマークの深さ(μm)、及び平面度(μm)を調べた。
 板厚偏差については、1つのガラスブランクGについて複数の点(8点)を用いてマイクロメータを用いて計測し、そのときの最大板厚と最小板厚の差分を求め、その平均を板厚偏差として算出した。平面度(μm)については、Nidek社製フラットネステスターFT-900を用いてガラスブランクGを10枚取り出して測定した。
 又、シアマークの深さは、ガラスブランクを研削することによってシアマークが消滅するまで行い、シアマークが消滅するときの研削量(取り代)から求めた。
Figure JPOXMLDOC01-appb-T000001
 上記表1の実施例及び比較例1~3は、同じ切断刃の形態及び同じプレス成形方式を用いて作製した10枚のガラスブランクGのうち1枚のガラスブランクGの結果である。実施例のガラスブランクGのみが、板厚偏差(最大板厚と最小板厚の差)が6μm以下であり、ガラスブランクGの平面度が4μm以下であり、シアマークの深さが5~20μmであった。また、表1の実施例と同じ仕様により作製された9枚のガラスブランクGと実施例のガラスブランクGとを合わせた10枚のガラスブランクGにおける板厚偏差の最大値は5μmであり、最小値は3.5μmであった。また、上記10枚のガラスブランクGのシアマークの深さの最大値は20μmであり、最小値は5μmであった。さらに、上記10枚のガラスブランクGの平面度の最大値は4μmであり、最小値は3μmであった。
 また、実施例のガラスブランクGの最大径と最小径の差は0.1~5mmであり、主表面の粗さは、0.01μm~10μmであった。
 比較例1では、図15(a),(b)に示す切断刃361,362を用いたので、切断刃361,362で切断されようとする溶融ガラス流Lの切断部分は、本実施形態の場合に比べて切断刃361,362に長時間接触する。このため、ガラスゴブGの切断部分は、実施例に比べて冷却される。この結果、ガラスブランクGには深い位置にシアマークが形成された。
 一方、比較例2では、図16に示す垂直方式のプレス成形を行ったので、平面度が大きく(悪く)、板厚偏差が大きかった。
 比較例3では、図15(a),(b)に示す切断刃361,362を用い、図16に示す垂直方式のプレス成形を行ったので、ガラスブランクGの平面度は大きく(悪く)、板厚偏差は大きく、さらに、深い位置にシアマークが形成された。
 以上の結果より、図6(a)~(d)に示す切断刃の形態と、落下中のガラスゴブGを第1の型121及び第2の型122で挟んでプレス成形する方式の代表例である水平方式のプレス成形を用いて作製されるガラスブランクGは、板厚偏差(最大板厚と最小板厚の差)が6μm以下であり、かつガラスブランクGの平面度が4μm以下であり、かつシアマークの深さが5~20μmである条件を満足する、ことがわかった。比較例1~3の仕様(切断刃の形態及びプレス成形方式)と同じ仕様により作製した9枚のガラスブランクGについても測定したが、板厚偏差が6μm以下であり、かつ平面度が4μm以下であり、かつシアマークの深さが5~20μmである条件をいずれのガラスブランクGも満足しなかった。
 さらに、表1には示されない比較例4についても検討に加えた。比較例4では、図9(a),(b)に示す切断刃261,262を用い、水平方式のプレス成形を用いた。比較例4では、図9(a),(b)に示す切断刃261,262を用いたので、押し出し力FによりガラスゴブGの落下方向が安定せず、第1の型121及び第2の型122で捕獲するガラスゴブGの捕獲位置が変動した。具体的に、1000回の落下実験を行ったところ、落下するガラスゴブGのうち約30%しか、目標とする位置の許容範囲内で捕獲できなかった(捕獲率30%)。これに対して、実施例では、1000回の落下実験に対して、落下するガラスゴブGのうち98%が、目標とする位置の許容範囲内で捕獲できた(捕獲率98%)。これより、比較例4におけるプレス成形中のガラスブランクGの温度は不均一であるといえる。このため、比較例4におけるガラスブランクの板厚偏差に大きなバラツキが生じることは明らかである。
 なお、実施例に対して、図14に示すようなゴブガイド部材163を追加して、同様の落下実験を行ったところ、1000回の落下実験に対して、落下するガラスゴブGの全てが目標とする位置の許容範囲内で捕獲できた(捕獲率100%)。
 以上のように、ガラスブランクGの最大板厚と最小板厚の差が6μm以下であり、ガラスブランクGの平面度が4μm以下であり、ガラスブランクGに形成されるシアマークの深さが5~20μmであるガラスブランクGは、図6(a)~(d)に示す切断刃を用いて溶融ガラス流Lを切断し、水平方式のように落下中のガラスゴブGを第1の型121及び第2の型122のプレス面で挟んでプレス成形を行うことによってのみ実現されることが確認できた。
 また、図6(a)~(d)に示すように、溶融ガラス流Lを切断するとき、一対の切断刃161,162を、溶融ガラス流Lを挟んで互いに接近する方向に直線的に移動させて、溶融ガラス流Lの断面の縁部の一箇所から徐々に切断して行くことにより、シアマークが形成されるガラスブランクG内の位置を浅くすることができることがわかった。このため、以後で行われる研削、研磨の取り代を小さくでき、この結果、効率よく磁気ディスク用ガラス基板を作製することができる。
 以上、本発明の磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランクについて詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 1 磁気ディスク
 2 ガラス基板     
 3A,3B 磁性層
 4A,4B 磁気ヘッド
 5 外周エッジ部
 101 装置
 111 溶融ガラス流出口
 120、130、140,150 プレスユニット
 121,221 第1の型
 121a プレス面
 121b,122b スペーサ
 122,222 第2の型
 122a プレス面
 125第1駆動部
 126 第2駆動部
 160 切断ユニット
 161,162 切断刃
 163 ゴブガイド部材
 171,172,173,174 コンベア
 
 
 

Claims (14)

  1.  磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法であって、
     互いに対向配置された一対の切断刃を前記溶融ガラス流の流れ方向で互いに交差させることにより溶融ガラス流を切断し、該切断によって得られるガラスゴブを落下させる工程と、
     落下中の前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する工程と、を含み、
     前記溶融ガラス流を切断するとき、前記一対の切断刃を、前記溶融ガラス流を挟んで互いに接近する方向に直線的に移動させ、溶融ガラス流の断面の縁部から、断面の径方向一方向へ、溶融ガラス流の被切断領域が変化するように切断する、ことを特徴とする磁気ディスク用ガラスブランクの製造方法。
  2.  前記一対の切断刃は、前記切断刃の移動方向に対して直線状に傾斜して延びており、前記溶融ガラス流を切断するとき、前記切断刃同士の交差角度は一定に維持されている、請求項1に記載の磁気ディスク用ガラスブランクの製造方法。
  3.  前記交差角度は5度~60度の範囲内の一定の角度である、請求項2に記載の磁気ディスク用ガラスブランクの製造方法。
  4.  前記一対の切断刃の刃先形状は、前記一対の切断刃が互いに接近する方向に対して凹状に湾曲している、請求項1に記載の磁気ディスク用ガラスブランクの製造方法。
  5.  前記熔融ガラス流の切断終了時における前記一対の切断刃の切断刃同士の交差角度は、前記熔融ガラス流の切断開始時における前記一対の切断刃の切断刃同士の交差角度に比べて小さくなるような刃先形状を、前記一対の切断刃は有する、請求項1または4に記載の磁気ディスク用ガラスブランクの製造方法。
  6.  前記一対の切断刃の刃先形状は、前記一対の切断刃が互いに接近する方向に対して凸状に湾曲している、請求項1に記載の磁気ディスク用ガラスブランクの製造方法。
  7.  前記溶融ガラス流の切断中、切断されることで前記ガラスゴブとなる、前記溶融ガラス流の先端部分の横移動及び回転運動を規制する、請求項1~6のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法。
  8.  前記一対の切断刃は、前記溶融ガラス流の上流側に位置する上切断刃と下流側に位置する下切断刃を有し、前記上切断刃に、前記横移動及び前記回転運動を規制するゴブガイド部材が設けられている、請求項7に記載の磁気ディスク用ガラスブランクの製造方法。
  9.  請求項1~8のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法で作製された前記ガラスブランクを機械加工する工程を含み、
     前記機械加工をする工程は、前記ガラスブランクの主表面の研削工程と、研削後の前記ガラスブランクの主表面を、遊離砥粒を用いて研磨する研磨工程を含む、磁気ディスク用ガラス基板の製造方法。
  10.  磁気ディスク用ガラス基板に用いられる磁気ディスク用ガラスブランクであって、
     前記ガラスブランクの最大板厚と最小板厚の差が6μm以下であり、
     前記ガラスブランクの平面度が4μm以下であり、
     前記ガラスブランクに形成されるシアマークの深さが5~20μmである、ことを特徴とする磁気ディスク用ガラスブランク。
  11.  前記ガラスブランクの主表面は、機械加工が施されていないプレス成形面である、請求項10に記載の磁気ディスク用ガラスブランク。
  12.  前記ガラスブランクの最大径と最小径の差は0.1~5mmである、請求項10または11に記載の磁気ディスク用ガラスブランク。
  13.  前記ガラスブランクの主表面の算術平均粗さRaは、0.01μm~10μmである、請求項10~12のいずれか1項に記載の磁気ディスク用ガラスブランク。
  14.  前記ガラスブランクの主表面の端面は、自由曲面である、請求項10~13のいずれか1項に記載の磁気ディスク用ガラスブランク。
PCT/JP2013/075470 2012-09-20 2013-09-20 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランク WO2014046240A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536935A JPWO2014046240A1 (ja) 2012-09-20 2013-09-20 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012206713 2012-09-20
JP2012-206713 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046240A1 true WO2014046240A1 (ja) 2014-03-27

Family

ID=50341541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075470 WO2014046240A1 (ja) 2012-09-20 2013-09-20 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランク

Country Status (2)

Country Link
JP (1) JPWO2014046240A1 (ja)
WO (1) WO2014046240A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120144865A1 (en) * 2010-12-09 2012-06-14 Hoya Corporation Manufacturing method for a glass substrate for magnetic disk
JP2012171864A (ja) * 2011-02-18 2012-09-10 Hoya Corp 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG184234A1 (en) * 2010-03-31 2012-10-30 Hoya Corp Method for producing glass blank, method for producing magnetic recording medium substrate, and method for producing magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120144865A1 (en) * 2010-12-09 2012-06-14 Hoya Corporation Manufacturing method for a glass substrate for magnetic disk
JP2012171864A (ja) * 2011-02-18 2012-09-10 Hoya Corp 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法

Also Published As

Publication number Publication date
JPWO2014046240A1 (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5209807B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP5914030B2 (ja) 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法
JP6234522B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP5425976B2 (ja) 磁気ディスク用ガラスブランク
US8806895B2 (en) Manufacturing method for a glass substrate for magnetic disk
JP5632027B2 (ja) 磁気ディスク用ガラス基板及びガラスブランクの製造方法
JP5209806B2 (ja) 磁気ディスク用ガラス基板の製造方法および磁気ディスク用板状ガラス素材
US8567216B2 (en) Manufacturing method of a sheet glass material for magnetic disk, manufacturing method of a glass substrate for magnetic disk
JP5905765B2 (ja) 磁気ディスク用板状ガラス素材の製造方法、磁気ディスク用ガラス基板の製造方法
JP6009194B2 (ja) 磁気ディスク用板状ガラス素材の製造方法、磁気ディスク用ガラス基板の製造方法
US8869559B2 (en) Method of manufacturing a glass substrate for magnetic disk
WO2014046240A1 (ja) 磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び磁気ディスク用ガラスブランク
WO2013147149A1 (ja) 磁気ディスク用ガラスブランクの製造方法および磁気ディスク用ガラス基板の製造方法
JP2013209262A (ja) 磁気ディスク用ガラスブランクの製造方法および磁気ディスク用ガラス基板の製造方法
JP2014024742A (ja) 磁気ディスク用ガラスブランクの製造方法及び磁気ディスク用ガラス基板の製造方法
JP2012158513A (ja) 磁気ディスク用ガラス基板の製造方法
JP2013077366A (ja) 磁気ディスク用ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838106

Country of ref document: EP

Kind code of ref document: A1