WO2014045949A1 - スラグ除去装置及びスラグ除去方法 - Google Patents

スラグ除去装置及びスラグ除去方法 Download PDF

Info

Publication number
WO2014045949A1
WO2014045949A1 PCT/JP2013/074414 JP2013074414W WO2014045949A1 WO 2014045949 A1 WO2014045949 A1 WO 2014045949A1 JP 2013074414 W JP2013074414 W JP 2013074414W WO 2014045949 A1 WO2014045949 A1 WO 2014045949A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
slag removal
pulverized coal
hot air
liquid
Prior art date
Application number
PCT/JP2013/074414
Other languages
English (en)
French (fr)
Inventor
雅一 坂口
務 濱田
剛嗣 岡田
大本 節男
慶一 中川
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to IN2076DEN2015 priority Critical patent/IN2015DN02076A/en
Priority to CN201380048341.XA priority patent/CN104641003B/zh
Priority to KR20157006733A priority patent/KR20150044933A/ko
Priority to US14/428,907 priority patent/US20150240322A1/en
Priority to DE112013004601.6T priority patent/DE112013004601T5/de
Publication of WO2014045949A1 publication Critical patent/WO2014045949A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • C21B7/163Blowpipe assembly
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D25/00Devices or methods for removing incrustations, e.g. slag, metal deposits, dust; Devices or methods for preventing the adherence of slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1545Equipment for removing or retaining slag

Definitions

  • the present invention relates to a slag removing device and a slag removing method for a blow pipe applied to a blast furnace facility, and in particular, a slag suitable for a blow pipe for blowing pulverized coal obtained by pulverizing low-grade coal as auxiliary fuel into a furnace together with hot air.
  • the present invention relates to a removing device and a slag removing method.
  • Patent Document 2 discloses that slag is removed by driving a solid ball into the tuyere from the furnace outer end of the tuyere.
  • Patent Document 3 discloses that a lance is vibrated by blowing a solid tip having a particle diameter of 1 to 2 mm in order to remove deposits accumulated in a gap formed at the tip of two lances. Has been.
  • Patent Document 1 The problem with the prior art disclosed in Patent Document 1 is that it is difficult to completely (uniformly) mix pulverized coal and a solid additive (a fossilizer), and as a result, the mixing ratio of the additive is That is, the formation of slag in a portion lower than the predetermined value cannot be prevented.
  • a new source of calcium oxide (CaO) such as limestone and serpentine is required, and thus there is a problem that extra costs are generated.
  • Patent Document 2 the problem with the prior art disclosed in Patent Document 2 is that not all solid balls collide with the slag. Therefore, if there is a solid ball that does not collide with the slag, this solid ball may collide directly with the inner surface of the blow pipe, and there is a concern that the pipe or the like may be damaged by the collision of the solid ball.
  • the target of the slag damaged by the solid ball is a blower tuyere and a heat insulating ring.
  • Patent Document 3 vibrates the lance and is difficult to apply to a blow pipe or tuyere.
  • the slag removing device for blow pipes applied to the blast furnace equipment enables slag removal easily and reliably with a simple device configuration without adjusting the softening point.
  • a slag removing device for blow pipes applied to blast furnace equipment reduces the risk of pipe breakage or the like as much as possible, and enables easy and reliable slag removal with the simplest possible device configuration.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to remove slag easily and reliably with a simple apparatus configuration even when pulverized coal that does not adjust the softening point is used.
  • Another object of the present invention is to provide a slag removing device and a slag removing method for a blast furnace facility that can be achieved and further reduce the risk of pipe breakage and the like as much as possible.
  • the slag removing apparatus is provided in a blow pipe for blowing pulverized coal as auxiliary fuel together with hot air from the tuyere of a blast furnace body that manufactures pig iron from iron ore, and the hot air flows into the slag of the pulverized coal
  • a slag removal device for a blowpipe containing a component that melts by the combustion heat of the pulverized coal, wherein the pulverized coal flowing in the blowpipe and the hot air have a temperature in the vicinity of the tuyere.
  • An injection nozzle that blows a solid having a high melting point and a particle size larger than that of the pulverized coal is provided, and the injection nozzle includes a solid supply system that supplies the solid and is provided with an open / close control valve. .
  • a solid having a melting point higher than the temperature near the tuyere in the pulverized coal and hot air flowing in the blowpipe and having a particle size larger than that of the pulverized coal Since the injection nozzle for injecting an object is provided, and the injection nozzle is provided with a solid material supply system in which an open / close control valve is provided while supplying the solid material, the solid object blown into the blow pipe from the injection nozzle is It can be removed by melting the hot air flow as a driving force without melting and applying a mechanical impact to the slag adhering to the vicinity of the tuyere.
  • the flow of hot air can be used as the propulsion force of the solid matter in the blow pipe.
  • suitable solids include granular coal, slag, lime grains, pellet grains, sintered ore, iron powder, and the like, and one or more of these may be used in combination.
  • an injection nozzle that injects liquid toward a slag adhesion region in the blow pipe
  • the injection nozzle includes a liquid supply system that supplies liquid and is provided with an open / close control valve.
  • the solid slag adhering by liquid injection can be rapidly cooled and destroyed and removed by thermal contraction.
  • the solid injection nozzle and the liquid injection nozzle described above may be provided separately, or may be an integrated nozzle that can select the injection by switching the flow path by opening / closing the open / close control valve. .
  • a slag detection means for detecting a slag adhesion state by a differential pressure between the hot air pressure upstream of the injection nozzle and the hot air pressure in the vicinity of the outlet of the blow pipe is preferably provided.
  • Such slag detection means can detect that the adhesion of slag reduces the cross-sectional area of the flow path, and as a result, the differential pressure increases due to an increase in pressure loss.
  • the liquid and / or the solid matter is jetted by opening the open / close control valve and detected by the slag detection means
  • Said invention WHEREIN: It is preferable to provide the alarm output threshold value by which the said slag adhesion state was set to the value larger than the said slag removal threshold value. Thereby, it can be detected that the slag removal by the liquid jet nozzle or the jet nozzle is not performed as scheduled.
  • the slag removing method according to the second aspect of the present invention is provided in a blow pipe that blows pulverized coal of auxiliary fuel together with hot air from the tuyere of a blast furnace body that manufactures pig iron from iron ore, and the hot air is blown into the slag of the pulverized coal.
  • a slag removal method for a blow pipe containing a component that is melted by the combustion heat of the pulverized coal, from the temperature near the tuyere in the pulverized coal flowing in the blow pipe and the hot air
  • the solid matter having a melting point higher than the temperature near the tuyere and larger in particle diameter than the pulverized coal in the pulverized coal and hot air flowing in the blow pipe.
  • a first stage slag removal step in which a slag removal is performed by first injecting a liquid independently from the injection nozzle and an injection nozzle for injecting a liquid toward a slag adhesion region in the blow pipe And, when the predetermined slag removal cannot be achieved in the first stage slag removal process, the second stage slag removal process in which the solids are separately injected from the injection nozzle and the slag removal is carried out.
  • the first stage of the slag removal process by liquid injection which has less risk of pipe wear and breakage compared to solid collision, is performed preferentially.
  • a third stage slag removal process is performed in which slag removal is performed by spraying the solid and the liquid together. It is desirable that Thereby, the reliability of slag removal is further improved.
  • a suitable liquid in this case is a flammable liquid such as heavy oil.
  • slag removing device and the slag removing method of the present invention described above, since the slag is destroyed and removed by liquid injection or solid matter injection, even if pulverized coal without softening point adjustment is used, a simple device configuration Thus, slag removal can be achieved easily and reliably, and the risk of pipe wear and breakage can be reduced by giving priority to liquid jetting.
  • low grade coal with an ash melting point as low as about 1100 to 1300 ° C. such as subbituminous coal and lignite
  • pulverized coal for auxiliary fuel by reforming it as raw coal. That is, oxygen contained in the hot air of about 1200 ° C. into which the auxiliary fuel is blown reacts with pulverized coal, so that the low melting point slag dissolved by the combustion heat generated by this combustion reaction comes into contact with the low temperature tuyere and rapidly cools. Even if it becomes solid slag and adheres to the tuyere, slag adhered by liquid injection or solid matter injection can be easily destroyed and removed to prevent the flow path of the blow pipe from becoming clogged. .
  • FIG. 1 It is a schematic block diagram which shows one Embodiment of the slag removal apparatus and slag removal method which concern on this invention. It is a schematic block diagram which shows the modification of a swirl flow formation part about the slag removal apparatus and slag removal method shown in FIG. It is a principal part enlarged view explaining the structural example of a slag detection means about the slag removal apparatus and slag removal method shown in FIG. It is a figure which shows the structural example of the blast furnace equipment with which the slag removal apparatus and slag removal method shown in FIG. 1 are applied.
  • the slag removal apparatus and the slag removal method of this embodiment are used in blast furnace equipment in which pulverized coal, which is low-grade coal, is blown into the blast furnace together with hot air from the tuyere.
  • a raw material 1 such as iron ore, limestone, and coal is supplied from a raw material fixed supply device 10 to a furnace top hopper 21 provided at the top of a blast furnace body 20 via a carry-in conveyor 11.
  • the lower side wall of the blast furnace main body 20 is provided with a plurality of tuyere 22 arranged at substantially equal pitches in the circumferential direction.
  • Each tuyere 22 is connected to a downstream end of a blow pipe 30 that supplies hot air 2 into the blast furnace body 20.
  • the upstream end of each blow pipe 30 is connected to a hot air supply device 40 that is a supply source of the hot air 2 supplied to the inside of the blast furnace body 20.
  • pretreatment such as evaporation of moisture in the coal from raw coal (low-grade coal such as subbituminous coal and lignite) is performed, and after this pretreatment, low-grade coal is A pulverized coal production apparatus 50 that is pulverized into pulverized coal is installed.
  • the reformed pulverized coal (modified coal) 3 produced by the pulverized coal production apparatus 50 is gas-transported to the cyclone separator 60 by a carrier gas 4 such as nitrogen gas. After the gas transported pulverized coal 3 is separated from the transported gas 4 by the cyclone separator 60, it is dropped into the storage tank 70 and stored.
  • the pulverized coal 3 after such reforming is used as blast furnace blown coal (PCI charcoal) of the blast furnace body 20.
  • the pulverized coal 3 in the storage tank 70 is supplied into the injection lance (hereinafter referred to as “lance”) 31 of the blow pipe 30 described above.
  • the pulverized coal 3 is combusted by being supplied into the hot air flowing through the blow pipe 30 and forms a flame at the tip of the blow pipe 30 to form a raceway.
  • the coal etc. which are contained in the raw material 1 thrown in in the blast furnace main body 20 are burned.
  • the iron ore contained in the raw material 1 is reduced to become pig iron (molten metal) 5 and taken out from the tap outlet 23.
  • a suitable property of the pulverized coal 3 that is supplied from the lance 31 to the inside of the blow pipe 30 and becomes the blast furnace blowing coal that is, a modified pulverized coal (auxiliary fuel) obtained by reforming and pulverizing low-grade coal.
  • the oxygen atom content (dry base) is 10 to 18% by weight
  • the average pore diameter is 10 to 50 nm (nanometers).
  • a more preferable average pore diameter of the modified pulverized coal is 20 to 50 nm (nanometers).
  • Such pulverized coal 3 is largely reduced in the main skeleton (C, H, O) although the tar-generating groups of the oxygen-containing functional groups (carboxyl group, aldehyde group, ester group, hydroxyl group, etc.) are greatly reduced.
  • the decomposition (decrease) of the combustion component is greatly suppressed. For this reason, when the hot air 2 is blown into the blast furnace body 20 from the tuyere 22, the main skeleton contains a large amount of oxygen atoms, and the oxygen in the hot air 2 easily diffuses into the charcoal due to the large-diameter pores.
  • tar content is very difficult to generate, complete combustion can be achieved with almost no unburned carbon (soot).
  • low-grade coal such as sub-bituminous coal or lignite as raw coal (dry base oxygen atom content ratio: 18% by weight)
  • a drying step is carried out by heating (110 to 200 ° C. ⁇ 0.5 to 1 hour) in a low oxygen atmosphere having an oxygen concentration of 5% by volume or less.
  • the raw coal After removing moisture in the above-described drying step, the raw coal is heated again in a low oxygen atmosphere (oxygen concentration: 2% by volume or less) (460 to 590 ° C. (preferably 500 to 550 ° C.)) ⁇ 0.5 to 1
  • a dry distillation step is carried out.
  • the raw coal is carbonized by this carbonization process, so that generated water, carbon dioxide and tar are removed as carbonized gas or carbonized oil.
  • the raw coal that has advanced to the cooling step is cooled (50 ° C. or lower) in a low oxygen atmosphere having an oxygen concentration of 2% by volume or less, and then finely pulverized (particle size: 77 ⁇ m or less (80%) Pass)) and is easily manufactured.
  • the blow pipe 30 is used for the purpose of removing the slag S attached to the inner wall surface of the blow pipe 30, which is a slag adhesion region, the tuyere 22 and the inner wall surface in the vicinity thereof.
  • An injection nozzle 80 is provided for injecting the liquid 6 or the solid material 7 into the inside.
  • the injection nozzles 80 are provided in the circumferential direction along the inner peripheral surface of the blow pipe 30 as appropriate.
  • the suitable liquid 6 ejected from the ejection nozzle 80 include flammable liquids such as water or heavy oil.
  • suitable solid substance 7 injected from the injection nozzle 80 granular coal, slag, a lime grain, a pellet grain, a sintered ore, iron powder, etc. can be illustrated, 1 type or multiple types are mixed from these. Can be used.
  • the liquid 6 ejected from the ejection nozzle 80 rapidly cools the slag adhering to the vicinity of the blow pipe 30 and the tuyere 22 using the latent heat of vaporization.
  • the slag S that has been rapidly cooled by the injection of the liquid 6 is destroyed by the heat shrinkage and can be easily removed.
  • the solid material 7 injected from the injection nozzle 80 travels without melting in the blow pipe 30 by using the flow of the hot air 2 as a driving force, and therefore collides with the slag S adhering to the vicinity of the tuyere 22. To do. Therefore, the solid material 7 can collide with the slag S and give a mechanical impact. As a result, the slag S subjected to the collision of the solid material 7 is easily removed because it is destroyed by the impact at the time of the collision.
  • the injection nozzle 80 is configured so that the outlet opening of the nozzle tip 81 that injects the fluid of the liquid 6 or the solid material 7 is not blocked by the pulverized coal 3 or the slag S. It is desirable that the lance 31 is provided at a position substantially coincident with the tip 31a of the lance 31 or slightly upstream.
  • the nozzle tip 81 of the injection nozzle 80 preferably has a nozzle shape that injects fluid in the direction of the tuyere 22, particularly liquid in a rod shape, and the injection direction may be variable as necessary.
  • the injection direction of the nozzle tip 81 is variable, for example, the nozzle tip 81 is swung or swung using the supply pressure of the liquid or solid carrier gas.
  • the radial position at which the injection nozzle 80 is installed does not become a flow path resistance of the hot air 2 and can be directly irradiated toward the slag S attached to the wall surface of the blow pipe 30. A position close to the wall is desirable.
  • the ejection nozzle 80 is connected to a liquid supply source 83 via a liquid supply pipe 84.
  • the liquid supply pipe 84 includes, as main components, a supply pump 85 for pressure-feeding the liquid in the liquid supply source 83 to the injection nozzle 80, and a liquid supply (ON / OFF) to the injection nozzle 80 by switching operation of the open / close state. And an open / close control valve 86 for controlling (OFF).
  • the injection nozzle 80 is connected via a solid supply source 87 and a solid supply pipe 88.
  • the solid material of the solid material supply source 87 includes a solid material transport gas supply source (not shown) such as nitrogen gas.
  • the solid material supply pipe 88 is provided with an open / close control valve 89 that controls supply (on / off) of solid material to the injection nozzle 80 by switching operation of the open / close state as a main component.
  • Open / close control of the open / close control valves 86 and 89 is performed based on the value of the differential pressure ⁇ P measured by the differential pressure gauge 90.
  • two pressure introduction pipes 90a and 90b are connected to the differential pressure gauge 90 so as to measure a differential pressure ⁇ P between the hot air mother pipe 32 and the blow pipe downstream position near the tuyere 22 of the blow pipe 30. ing.
  • the ejection nozzle 80 supplies the liquid 6 to be ejected and includes a liquid supply system including the opening / closing control valve 86, and a solid material supply system including the solid material 7 to be ejected and including the opening / closing control valve 89.
  • a differential pressure gauge (slag detecting means) 90 for detecting a slag state in the slag adhesion region. Therefore, the illustrated injection nozzle 80 selects either the liquid 6 or the solid material 7 from one nozzle tip 81 according to the open / close state of the open / close control valves 86 and 89, or the liquid 6 and the solid material. 7 can be injected simultaneously.
  • liquid supply system and a solid material supply system are connected to one injection nozzle 80
  • the present invention is not limited to this configuration. That is, the liquid supply system and the solid material supply system may be configured to include independent liquid injection nozzles or solid material injection nozzles.
  • the determination of the amount of slag adhesion is made based on the differential pressure between the hot air pressure upstream of the injection nozzle 80 and the hot air pressure near the outlet of the blow pipe 30. That is, if slag S adheres to the inner wall surface of the blow pipe 30 or near the tuyere 22, pressure loss occurs due to a reduction in the cross-sectional area of the flow path of the blow pipe 30, so that the blast furnace body is supplied from the hot air mother pipe 32. A pressure drop will occur in the flow of hot air flowing out to 20.
  • the differential pressure gauge 90 determines whether the hot air 2 generated before and after the slag adhesion region by the differential pressure gauge 90.
  • the pressure ⁇ P is measured, and the adhesion state of the slag S is estimated from the magnitude of the differential pressure ⁇ P.
  • the differential pressure ⁇ P thus measured is used for the opening / closing operation of the opening / closing control valves 86 and 89 described above by comparison with a predetermined threshold value.
  • the injection nozzle 80 described above may perform slag removal by spraying the liquid 6 or the solid material 7 alone, or may perform slag removal by simultaneously spraying both the liquid 6 and the solid material 7. Also good.
  • the liquid is independently injected from the injection nozzle 80 to perform the slag removal, and the predetermined slag removal is achieved in the first stage slag removal process.
  • the solid material 7 is jetted independently from the jet nozzle 80 as a second stage slag removing step.
  • a third slag removal is performed by simultaneously injecting the liquid 6 and the solid material 7 from the injection nozzle 80 so that the predetermined slag removal cannot be achieved in the second-stage slag removal process.
  • a step of removing slag may be provided.
  • the slag removal that injects the liquid 6 has an advantage that the risk of pipe wear or breakage is small as compared with the slag removal that causes the solid 7 to collide. Accordingly, the first stage of slag removal process by liquid jet is preferentially executed, and only when the slag S cannot be removed by this liquid jet, for example, the slag removal is completed even if the liquid is jetted continuously for a predetermined time. The second stage slag removal step is performed only when it is not possible to confirm that this has been done. As a result, even the slag S that could not be removed by the liquid 6 can be reliably removed using the impact force of the solid material 7.
  • a more preferable slag removal method cannot achieve predetermined slag removal even in the slag removal process in which the solid substance 7 is independently injected from the injection nozzle 80 as the second stage slag removal process and the solid substance 7 is separately injected in the second stage.
  • the slag removal is performed by simultaneously jetting the liquid 6 and the solid material 7 from the jet nozzle 80.
  • the liquid 6 and the solid material 7 can be simultaneously injected.
  • the opening / closing control of the opening / closing control valves 86 and 89 based on the threshold value of the differential pressure ⁇ P and the differential pressure ⁇ P measured by the differential pressure gauge 90 will be specifically described.
  • the operation of the delivery pump 85 is started so that the liquid is ejected from the ejection nozzle 80 when the open / close control valve 86 is opened. Is done.
  • two threshold values that is, a first threshold value (slag removal threshold value) HL for opening the open / close control valves 86 and 89 in the closed state, and a second threshold value (closing the open / close control valves 86 and 89 in the open state).
  • Slag removal stop threshold) LL As for the two threshold values, the same value may be adopted in the slag removing process such as the first stage and the second stage described above, or the first stage slag removing process by, for example, liquid injection is preferentially performed. In some cases, for example, a larger value may be employed in the subsequent stage slag removal process than in the first stage slag removal process.
  • the first threshold value (slag removal threshold value) HL opens the open / close control valves 86 and 89 when the slag adhesion amount detected by the differential pressure gauge 90 of the slag detection means is greater than or equal to the slag removal threshold value, and opens the liquid 6 And a threshold value for injecting the solid material 7.
  • the second threshold value (slag removal stop threshold value) LL closes the open / close control valves 86 and 89 when the slag adhesion amount detected by the differential pressure gauge 90 of the slag detection means is smaller than the slag removal stop threshold value. 6 and a threshold value for stopping the injection of the solid material 7.
  • the open / close control valves 86 and 89 are set in a closed state, and the differential pressure ⁇ P detected by the differential pressure gauge 90 is a second threshold value. It is lower than LL and there is almost no differential pressure ( ⁇ P ⁇ 0).
  • the slag S gradually adheres and accumulates on the wall surface at the blow pipe 30 and the tuyere 22, and as a result, the flow path resistance decreases due to the decrease in the cross-sectional area of the flow path. Will gradually increase. Therefore, when the value of the differential pressure ⁇ P detected by the differential pressure gauge 90 increases and reaches the first threshold value HL, the opening signals of the open / close control valves 86 and 89 are output from the differential pressure gauge 90 that has detected this. By this open signal, the opening / closing control valves 86 and 89 are opened, and the delivery pump 85 is also started simultaneously.
  • the liquid 6 stored in the liquid supply source 83 is sprayed from the spray nozzle 80 toward the inside of the blow pipe 30, and at the same time, the solid material 7 stored in the solid material supply source 87 is also It is injected toward the inside of the blow pipe 30 from the injection nozzle 80.
  • the injected solid material 7 flows in the direction of the tuyere 22 along the flow of the hot air 2, and when it hits the attached slag S, an impact force is generated so that the brittle slag S is broken with a glassy solid. To break.
  • the slag S hit by the solid material 7 and received an impact force is broken and removed from the wall surface. That is, the slag S that is broken and becomes a relatively small lump is removed into the furnace of the blast furnace body 20 by the hot air 2 or the flow of liquid.
  • the flow path resistance decreases with an increase in the cross-sectional area of the flow path, so the differential pressure ⁇ P detected by the differential pressure gauge 90 also decreases.
  • a closing signal for the opening / closing control valves 86 and 89 is output. The opening / closing control valves 86 and 89 are closed by this closing signal, and the operation of the delivery pump 92 is also stopped at the same time, so that the injection of the liquid 6 and the solid material 7 is stopped.
  • the first threshold value HL described above is slightly large in order to prevent frequent opening and closing of the opening and closing control valves 86 and 89 by providing a hysteresis with the second threshold value LL that opens the opening and closing control valves 86 and 89.
  • the value (HL> LL) is set.
  • the third threshold HHL may be set.
  • the third threshold value HHL is a set value (HHL> HL) that is larger than the first threshold value HL that opens the open / close control valves 86 and 89 in the closed state, and when a differential pressure ⁇ P exceeding the threshold value HHL is detected. Therefore, it can be determined that there is a problem in removing the slag S.
  • the third threshold value HHL is an alarm output threshold value in which the slag adhesion amount is set to a value larger than the first threshold value (slag removal threshold value) HL described above.
  • a swirl flow is generated in the flow of the hot air 2 between the lance 31 and a position upstream of the lance 31 into which the pulverized coal 3 is blown, that is, between the hot air mother pipe 32 supplying the hot air 2 and the lance 31.
  • a swirl flow forming portion is provided for generating
  • the swirl flow forming unit may employ a swirl vane 33 as shown in FIG. 1, for example, or may employ a swirl ribbon 34 as shown in FIG. 2 as a modification.
  • the swirl vane 33 is formed by arranging a plurality of vanes having an angle with respect to the flow path cross section in the circumferential direction, and the swirl ribbon 34 is a thin plate formed into a spiral shape.
  • the hot air 2 flowing in the blow pipe 30 becomes a swirl flow by passing through the swirl flow forming part.
  • the solid material 7 blown out from the injection nozzle 80 is affected by the swirl flow formed in the blow pipe 30, and gathers to the outer peripheral side by centrifugal force. Accordingly, the solid matter 7 collides with the pipe inner surface of the blow pipe 30 to which the slag S adheres or the inner surface of the tuyere 22 intensively, and efficient slag removal becomes possible.
  • the slag S is destroyed and removed by liquid injection or solid injection, so the pulverized coal 3 that does not adjust the softening point is used. Even in this case, slag removal can be achieved easily and reliably with a simple device configuration. Furthermore, by implementing slag removal giving priority to liquid injection, it is possible to reduce the risk of wear or breakage occurring in the blow pipe 30. Therefore, the attached slag S can be destroyed and removed without adjusting the softening point of the pulverized coal 3, so that the maintenance period of the blow pipe 30 can be extended to the wear life of the tuyere 22, for example. It becomes.
  • the component contained in the slag S of the pulverized coal 3 and melted by the hot air 2 or the combustion heat of the pulverized coal 3, that is, the low melting point slag component generally has an ash melting point when the hot air 2 of about 1200 ° C. is used. It is about 1100-1300 ° C.
  • Such a low-melting-point slag component is also included in reformed coal that has been subjected to reforming treatment such as drying or dry distillation using low-grade coal such as subbituminous coal or lignite as the raw coal of pulverized coal 3.
  • reforming treatment such as drying or dry distillation using low-grade coal such as subbituminous coal or lignite as the raw coal of pulverized coal 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

 軟化点調整を行わない微粉炭を用いた場合でも、簡単な装置構成で容易かつ確実にスラグ除去を達成でき、さらに、パイプ破損等のリスクを極力低減できる高炉設備のスラグ除去装置を提供する。鉄鉱石から銑鉄を製造する高炉本体(20)の羽口(22)から熱風(2)とともに補助燃料の微粉炭(3)を吹き込むブローパイプ(30)に設けられ、微粉炭(3)のスラグ(S)に熱風(2)及び/または微粉炭(3)の燃焼熱により溶融する成分を含んでいるブローパイプ用のスラグ除去装置であって、ブローパイプ(30)内を流れる微粉炭(3)及び熱風(2)の中に羽口付近の温度より融点が高くかつ微粉炭(3)より粒径の大きい固形物(7)を吹き込む噴射ノズル(80)を設け、該噴射ノズル(80)は、固形物(7)を供給するとともに開閉制御弁(89)を設けた固形物供給系を備えている。

Description

スラグ除去装置及びスラグ除去方法
 本発明は、高炉設備に適用されるブローパイプ用のスラグ除去装置及びスラグ除去方法に係り、特に、補助燃料として低品位炭を粉砕した微粉炭を熱風とともに炉内へ吹き込むブローパイプに好適なスラグ除去装置及びスラグ除去方法に関する。
 高炉設備は、高炉本体の内部に、頂部から鉄鉱石や石灰石や石炭等の原料を投入するとともに、側部の下方寄りの羽口から熱風及び補助燃料として微粉炭(PCI炭)を吹き込むことにより、鉄鉱石から銑鉄を製造できるようになっている。
 このような高炉設備において、微粉炭の吹き込み運転をする際、微粉炭として亜瀝青炭や褐炭などの一般的に灰融点が1100~1300℃程度と低い低品位炭を使用した場合には、微粉炭を炉内に吹き込むために使用する約1200℃の熱風中に含まれる酸素と微粉炭の一部とが燃焼反応を示す。これにより、この時に生じる燃焼熱で融点の低い灰(以下、「スラグ」と呼ぶ)がインジェクションランスや羽口内で溶解する。
 こうして溶解したスラグは、高炉の温度から守るために常時冷却されている羽口と接触することで急激に冷却される。この結果、固体のスラグが羽口に付着することにより、ブローパイプの流路を詰まらせるという問題がある。
 このような問題を解決するため、例えば下記の特許文献1に開示されている従来技術のように、微粉炭中のスラグ軟化点(温度)が低い場合には、高炉内の温度以上の融点となるように軟化点調整処理を行い、羽口へのスラグ付着を防止することが行われている。
 また、下記の特許文献2には、羽口の炉外側端部から羽口内部に固球を打ち込むことでスラグを除去することが開示されている。
 さらに、下記の特許文献3には、2本のランス先端部に形成される隙間に蓄積される付着物を除去するため、粒径1~2mmの固形チップを吹き込んでランスを振動させることが開示されている。
特開平5-156330号公報 特開平6-192714号公報 特開2006-63376号公報
 しかしながら、上述した従来技術には、下記の問題点が指摘されている。
 特許文献1に開示された従来技術の問題は、微粉炭と固体の添加物(造滓剤)とを完全に(均一に)混合させることが困難であり、この結果、添加物の混合割合が所定値より低い部分におけるスラグ形成を防止できないことである。また、添加物を用いる場合には、新たに石灰石や蛇紋岩などの酸化カルシウム(CaO)源が必要となるため、余分なコストが発生するという問題も指摘されている。
 次に、特許文献2に開示された従来技術の問題は、必ずしも全ての固球がスラグに衝突するとは限らないことである。従って、スラグに衝突しない固球が存在すると、この固球がブローパイプ内面に直接衝突することもあるので、固球の衝突によりパイプ等を傷つけることが懸念されている。この特許文献2において、固球により破損するスラグの対象は、送風羽口及び断熱リングである。
 特許文献3に開示された従来技術はランスを振動させるものであり、ブローパイプや羽口への適用は困難である。
 このような背景から、高炉設備に適用されるブローパイプ用のスラグ除去装置は、軟化点調整を行わなくても簡単な装置構成で容易かつ確実にスラグ除去を可能にすることが望まれる。また、高炉設備に適用されるブローパイプ用のスラグ除去装置は、パイプ破損等のリスクを極力低減し、できるだけ簡単な装置構成で容易かつ確実なスラグ除去を可能にすることが望まれる。
 本発明は、上記の課題を解決するためになされたもので、その目的とするところは、軟化点調整を行わない微粉炭を用いた場合でも、簡単な装置構成で容易かつ確実にスラグ除去を達成でき、さらに、パイプ破損等のリスクを極力低減できる高炉設備のスラグ除去装置及びスラグ除去方法を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の第1の態様に係るスラグ除去装置は、鉄鉱石から銑鉄を製造する高炉本体の羽口から熱風とともに補助燃料の微粉炭を吹き込むブローパイプに設けられ、前記微粉炭のスラグに前記熱風及び/または前記微粉炭の燃焼熱により溶融する成分を含んでいるブローパイプ用のスラグ除去装置であって、前記ブローパイプ内を流れる前記微粉炭及び前記熱風の中に前記羽口付近の温度より融点が高くかつ前記微粉炭より粒径の大きい固形物を吹き込む噴射ノズルを設け、該噴射ノズルは、前記固形物を供給するとともに開閉制御弁を設けた固形物供給系を備えているものである。
 このような本発明の第1の態様に係るスラグ除去装置によれば、ブローパイプ内を流れる微粉炭及び熱風の中に羽口付近の温度より融点が高く、かつ微粉炭より粒径の大きい固形物を吹き込む噴射ノズルを設け、該噴射ノズルは、固形物を供給するとともに開閉制御弁を設けた固形物供給系を備えているので、噴射ノズルからブローパイプの内部に吹き込まれた固形物は、熱風の流れを推進力として溶融することなく進み、羽口付近に付着しているスラグに力学的な衝撃を与えることによって除去することができる。この場合、ブローパイプ内における固形物の推進力として、熱風の流れを利用できる。
 好適な固形物としては、粒状石炭、スラグ、石灰粒、ペレット粒、焼結鉱、鉄粉等を例示でき、これらの中から1種または複数種を混合して使用すればよい。
 上記の発明において、前記ブローパイプの内部で前記微粉炭を吹き込むインジェクションランスより上流側となる位置に、前記熱風の流れに旋回流を発生させる旋回流形成部を備えていることが好ましい。
 これにより、吹き出された固形物は、ブローパイプ内に形成された旋回流により遠心力を受け、スラグが付着しているパイプ内面または羽口内面に対して集中的に衝突するようになる。
 上記の発明において、前記ブローパイプ内のスラグ付着領域に向けて液体を噴射する噴射ノズルを備え、前記噴射ノズルは、液体を供給するとともに開閉制御弁を設けた液体供給系を備えていることが好ましい。
 これにより、固形物によるスラグ除去を行う前に、液体噴射により付着した固体のスラグを急冷し、熱収縮により破壊して除去することができる。
 上述した固形物の噴射ノズル及び液体の噴射ノズルは、各々別体に設けたものでもよいし、あるいは、開閉制御弁の開閉操作で流路を切り換えて噴射物を選択できる一体型のノズルでもよい。
 上記の発明において、前記噴射ノズルより上流側の熱風圧力と、前記ブローパイプの出口近傍熱風圧力との差圧により、スラグ付着状況を検出するスラグ検出手段を備えていることが望ましい。
 このようなスラグ検出手段は、スラグの付着が流路断面積を減少させ、この結果、圧力損失の増加により差圧が大きくなることを検出できる。
 上記の発明において、前記スラグ検出手段で検出したスラグ付着状況がスラグ除去閾値以上と判断した場合、前記開閉制御弁を開いて前記液体及び/または前記固形物が噴射され、前記スラグ検出手段で検出したスラグ付着量がスラグ除去停止閾値より少ないと判断した場合、前記開閉制御弁を閉じて前記液体及び/または前記固形物の噴射が停止されることが好ましい。
 これにより、スラグ付着量が多い必要時にのみ液体噴射ノズルからの液体や噴射ノズルからの固形物を噴射できる。
 上記の発明において、前記スラグ付着状況が前記スラグ除去閾値より大きい値に設定されたアラーム出力閾値を備えていることが好ましい。
 これにより、液体噴射ノズルや噴射ノズルによるスラグ除去が予定通り行われていないことを検出できる。
 本発明の第2の態様に係るスラグ除去方法は、鉄鉱石から銑鉄を製造する高炉本体の羽口から熱風とともに補助燃料の微粉炭を吹き込むブローパイプに設けられ、前記微粉炭のスラグに前記熱風及び/または前記微粉炭の燃焼熱により溶融する成分を含んでいるブローパイプ用のスラグ除去方法であって、前記ブローパイプ内を流れる前記微粉炭及び前記熱風の中に前記羽口付近の温度より融点が高くかつ前記微粉炭より粒径の大きい固形物を吹き込む噴射ノズルと、前記ブローパイプ内のスラグ付着領域に向けて液体を噴射する噴射ノズルとを備え、最初に前記噴射ノズルから前記液体を単独噴射してスラグ除去が実施される第1段階のスラグ除去工程と、前記第1段階のスラグ除去工程で所定のスラグ除去を達成できない場合、前記噴射ノズルから前記固形物を単独噴射してスラグ除去が実施される第2段階のスラグ除去工程と、を備えているものである。
 このような本発明の第2の態様に係るスラグ除去方法によれば、ブローパイプ内を流れる微粉炭及び熱風の中に羽口付近の温度より融点が高くかつ微粉炭より粒径の大きい固形物を吹き込む噴射ノズルと、ブローパイプ内のスラグ付着領域に向けて液体を噴射する噴射ノズルとを備え、最初に噴射ノズルから液体を単独噴射してスラグ除去が実施される第1段階のスラグ除去工程と、第1段階のスラグ除去工程で所定のスラグ除去を達成できない場合、噴射ノズルから固形物を単独噴射してスラグ除去が実施される第2段階のスラグ除去工程と、を備えているので、固形物の衝突と比較すればパイプの摩耗や破損のリスクが小さい液体噴射による第1段階のスラグ除去工程を優先的に実施し、液体噴射ではスラグ除去できなかった場合にのみ、固形物の単独噴射による第2段階のスラグ除去工程を実施して、より確実なスラグ除去が可能となる。
 上記の発明において、前記第2段階のスラグ除去工程で所定のスラグ除去を達成できない場合、前記固形物及び前記液体をともに噴射することでスラグ除去が実施される第3段階のスラグ除去工程を備えていることが望ましい。
 これにより、スラグ除去の確実性がより一層向上する。この場合に好適な液体は、例えば重油等の可燃性液体である。
 上述した本発明のスラグ除去装置及びスラグ除去方法によれば、液体噴射や固形物噴射によりスラグを破壊して除去するので、軟化点調整を行わない微粉炭を用いた場合でも、簡単な装置構成で容易かつ確実にスラグ除去を達成でき、さらに、液体噴射を優先することでパイプの摩耗や破損等のリスク低減が可能になる。
 この結果、亜瀝青炭や褐炭などのように灰融点が1100~1300℃程度と低い低品位炭についても、これを原料炭とする改質などにより、補助燃料の微粉炭として使用可能となる。すなわち、補助燃料を吹き込む約1200℃の熱風中に含まれる酸素が微粉炭と燃焼反応するので、この燃焼反応によって生じる燃焼熱で溶解した低融点のスラグが低温の羽口に接触することによって急冷され、固体のスラグとなって羽口に付着するような場合であっても、液体噴射や固形物噴射によって付着したスラグを容易に破壊・除去してブローパイプの流路が詰まることを防止できる。
本発明に係るスラグ除去装置及びスラグ除去方法の一実施形態を示す概略構成図である。 図1に示したスラグ除去装置及びスラグ除去方法について、旋回流形成部の変形例を示す概略構成図である。 図1に示したスラグ除去装置及びスラグ除去方法について、スラグ検出手段の構成例を説明する要部拡大図である。 図1に示したスラグ除去装置及びスラグ除去方法が適用される高炉設備の構成例を示す図である。
 以下、本発明に係るスラグ除去装置及びスラグ除去方法の一実施形態を図面に基づいて説明する。
 本実施形態のスラグ除去装置及びスラグ除去方法は、原料炭が低品位炭の微粉炭を羽口から高炉内に熱風とともに吹き込む高炉設備に用いられる。
 例えば図4に示すような高炉設備において、鉄鉱石、石灰石及び石炭等の原料1は、原料定量供給装置10から搬入コンベア11を介して高炉本体20の頂部に設けた炉頂ホッパ21に供給される。高炉本体20の下部側壁には、円周方向に略等ピッチで配設された複数の羽口22を備えている。各羽口22には、高炉本体20の内部へ熱風2を供給するブローパイプ30の下流側端部が連結されている。また、各ブローパイプ30の上流側端部は、高炉本体20の内部へ供給する熱風2の供給源である熱風送給装置40と接続されている。
 高炉本体20の近傍には、原料炭(亜瀝青炭や褐炭等のような低品位炭)から石炭中の水分を蒸発させるなどの前処理(改質)を行い、この前処理後に低品位炭を粉砕して微粉炭とする微粉炭製造装置50が設置されている。
 微粉炭製造装置50で製造された改質後の微粉炭(改質炭)3は、窒素ガス等の搬送ガス4によりサイクロンセパレータ60へと気体搬送される。気体搬送された微粉炭3は、サイクロンセパレータ60で搬送ガス4を分離した後、貯蔵タンク70内に落下して貯蔵される。このような改質後の微粉炭3は、高炉本体20の高炉吹込炭(PCI炭)として使用される。
 貯蔵タンク70内の微粉炭3は、上述したブローパイプ30のインジェクションランス(以下、「ランス」と呼ぶ)31内へ供給される。この微粉炭3は、ブローパイプ30を流れる熱風中に供給されることで燃焼し、ブローパイプ30の先端で火炎となってレースウェイを形成する。これにより、高炉本体20内に投入された原料1の中に含まれる石炭等を燃焼させる。この結果、原料1の中に含まれる鉄鉱石が還元され、銑鉄(溶銑)5となって出銑口23から取り出される。
 上述したランス31からブローパイプ30の内部へ供給されて高炉吹込炭となる微粉炭3の好適な性状は、すなわち、低品位炭を改質して粉砕した改質微粉炭(補助燃料)の好適な性状は、酸素原子含有割合(ドライベース)が10~18重量%であり、かつ、平均細孔径が10~50nm(ナノメートル)である。改質微粉炭のより好ましい平均細孔径は、20~50nm(ナノメートル)である。
 このような微粉炭3は、含酸素官能基(カルボキシル基、アルデヒド基、エステル基、水酸基等)のタール生成基が離脱して大きく減少しているものの、主骨格(C,H,Oを中心とする燃焼成分)の分解(減少)が大きく抑制されている。このため、高炉本体20の内部に羽口22から熱風2とともに吹き込むと、主骨格中に酸素原子を多く含むとともに、径の大きい細孔によって、熱風2の酸素が炭の内部にまで拡散しやすいだけでなく、タール分が非常に生じにくくなっているので、未燃炭素(煤)をほとんど生じることなく完全燃焼することができる。
 このような微粉炭3を製造(改質)するには、上述した微粉炭製造装置50において、原料炭である亜瀝青炭や褐炭等の低品位炭(ドライベースの酸素原子含有割合:18重量%超、平均細孔径:3~4nm)を酸素濃度が5体積%以下の低酸素雰囲気中で加熱(110~200℃×0.5~1時間)して乾燥する乾燥工程が実施される。
 上述した乾燥工程で水分を除去した後、原料炭を低酸素雰囲気中(酸素濃度:2体積%以下)で再度加熱(460~590℃(好ましくは、500~550℃)×0.5~1時間)する乾留工程が実施される。この乾留工程により原料炭が乾留されることにより、生成水、二酸化炭素及びタール分が乾留ガスや乾留油として除去される。
 この後、冷却工程に進んだ原料炭は、酸素濃度が2体積%以下の低酸素雰囲気中で冷却(50℃以下)された後、微粉砕工程で微粉砕(粒径:77μm以下(80%パス))されることによって容易に製造される。
 本実施形態では、例えば図1及び2に示すように、スラグ付着領域であるブローパイプ30の内壁面や羽口22及びその近傍の内壁面に付着したスラグSの除去を目的として、ブローパイプ30の内部に対して液体6または固形物7を吹き込むための噴射ノズル80が設けられている。この噴射ノズル80は、例えばブローパイプ30の内周面に沿って、円周方向に1または複数個が適宜設けられている。
 この場合、噴射ノズル80から噴射する好適な液体6としては、水または重油等の可燃性液体を例示できる。また、噴射ノズル80から噴射する好適な固形物7としては、粒状石炭、スラグ、石灰粒、ペレット粒、焼結鉱、鉄粉等を例示でき、これらの中から1種または複数種を混合して使用すればよい。
 噴射ノズル80から噴射される液体6は、その蒸発潜熱を有効利用してブローパイプ30や羽口22の付近に付着したスラグを急冷するものである。液体6の噴射を受けて急冷されたスラグSは、熱収縮により破壊されるため容易に除去することができる。
 これに対し、噴射ノズル80から噴射される固形物7は、熱風2の流れを推進力としてブローパイプ30内を溶融することなく進むので、羽口22の付近に付着しているスラグSに衝突する。従って、固形物7は、スラグSに衝突して力学的な衝撃を与えることができる。この結果、固形物7の衝突を受けたスラグSは、衝突時の衝撃により破壊されるため容易に除去することができる。
 噴射ノズル80は、液体6や固形物7の流体を噴射するノズル先端81の出口開口が微粉炭3やスラグS等によって塞がれないようにするため、ブローパイプ30の軸方向において微粉炭3を供給するランス31の先端部31aと略一致する位置か、あるいは、若干上流側に設置されることが望ましい。この場合、噴射ノズル80のノズル先端81は、羽口22の方向へ流体を、特に液体を棒状に噴射するノズル形状が好ましく、必要に応じて噴射方向を可変としてもよい。ノズル先端81の噴射方向を可変とする場合には、例えば液体や固形物搬送ガスの供給圧力を利用して揺動や旋回をさせるものがある。
 また、噴射ノズル80を設置する半径方向の位置は、熱風2の流路抵抗とならないように、そして、ブローパイプ30の壁面に付着したスラグSに向けて直射できるようにするため、ブローパイプ30の壁面から近い位置が望ましい。
 噴射ノズル80は、例えば図3に示すように、液体供給源83と液体供給配管84を介して接続されている。
 液体供給配管84には、主な構成要素として、液体供給源83内の液体を噴射ノズル80へ圧送するための送出ポンプ85と、開閉状態の切替操作によって噴射ノズル80への液体供給(オン・オフ)を制御する開閉制御弁86と、が設けられている。
 さらに、噴射ノズル80は、固形物供給源87と固形物供給配管88を介して接続されている。
 固形物供給源87の固形物は、例えば窒素ガス等のように、図示しない固形物搬送ガス供給源を備えている。また、固形物供給配管88には、主な構成要素として、開閉状態の切替操作によって噴射ノズル80への固形物供給(オン・オフ)を制御する開閉制御弁89が設けられている。
 開閉制御弁86,89の開閉制御は、差圧計90で計測した差圧ΔPの値により行われる。この差圧計90には、例えば熱風母管32とブローパイプ30の羽口22近傍であるブローパイプ下流位置との差圧ΔPを測定するように、2本の圧力導入管90a,90bが接続されている。
 このように、噴射ノズル80は、噴射する液体6を供給するとともに開閉制御弁86を備えた液体供給系と、噴射する固形物7を供給するとともに開閉制御弁89を備えた固形物供給系と、スラグ付着領域のスラグ状況を検出する差圧計(スラグ検出手段)90とを備えている。従って、図示の噴射ノズル80は、開閉制御弁86,89の開閉状態に応じて、1つのノズル先端81から液体6または固形物7のいずれか一方を選択して、あるいは、液体6及び固形物7の両方を同時に噴射することができる。
 以下の説明では、図示されたように、1つの噴射ノズル80に液体供給系及び固形物供給系を接続した構成について説明するが、この構成に限定されることはない。すなわち、液体供給系及び固形物供給系が、各々独立した液体噴射ノズルまたは固形物噴射ノズルを備えた構成としてもよい。
 そして、スラグ付着量の判断は、噴射ノズル80より上流側の熱風圧力と、ブローパイプ30の出口近傍熱風圧力との差圧によりなされる。
 すなわち、ブローパイプ30の内壁面や羽口22の付近にスラグSが付着していると、ブローパイプ30の流路断面積低下により圧力損失が生じるので、熱風母管32から供給されて高炉本体20へ流出する熱風の流れには圧力低下が生じることとなる。従って、熱風母管32に接続された圧力導入管90aと、ブローパイプ30のブローパイプ下流位置に接続された圧力導入管90bとにより、差圧計90によりスラグ付着領域の前後に生じる熱風2の差圧ΔPを計測し、差圧ΔPの大小からスラグSの付着状況を推測する。
 こうして計測した差圧ΔPは、予め定めた閾値との比較により、上述した開閉制御弁86,89の開閉操作に使用される。
 上述した噴射ノズル80は、液体6または固形物7を単独で噴射してスラグ除去を実施してもよいし、あるいは、液体6及び固形物7の両方を同時に噴射してスラグ除去を実施してもよい。
 しかし、好ましいスラグ除去方法としては、第1段階のスラグ除去工程として、最初に噴射ノズル80から液体を単独噴射してスラグ除去を実施し、第1段階のスラグ除去工程で所定のスラグ除去を達成できない場合には、第2段階のスラグ除去工程として、噴射ノズル80から固形物7を単独で噴射する。
 また、必要に応じて、第2段階のスラグ除去工程で所定のスラグ除去を達成できない場合に実施するように、噴射ノズル80から液体6及び固形物7を同時に噴射してスラグ除去をする第3段階のスラグ除去工程を設けてもよい。
 すなわち、液体6を噴射するスラグ除去には、固形物7を衝突させるスラグ除去と比較すれば、パイプの摩耗や破損等のリスクが小さいという利点がある。
 従って、液体噴射による第1段階のスラグ除去工程を優先的に実施し、この液体噴射ではスラグSを除去できなかった場合にのみ、例えば所定時間継続して液体噴射をしてもスラグ除去が完了したことを確認できないような場合にのみ、第2段階のスラグ除去工程を実施する。この結果、液体6では除去できなかったスラグSについても、固形物7による衝撃力を利用して確実に除去することが可能になる。
 より好ましいスラグ除去方法は、第2段階のスラグ除去工程として噴射ノズル80から固形物7を単独で噴射し、第2段階の固形物7を単独噴射するスラグ除去工程でも所定のスラグ除去を達成できない場合には、さらに第3段階のスラグ除去工程として、噴射ノズル80から液体6及び固形物7を同時に噴射してスラグ除去が実施する。この第3段階のスラグ除去工程では、液体6として可燃性液体を使用することが望ましい。
 第2段階のスラグ除去工程において、液体6及び固形物7を同時噴射することも可能である。
 以下、差圧ΔPの閾値と、差圧計90で計測した差圧ΔPに基づく開閉制御弁86,89の開閉制御について、具体的に説明する。以下の説明では、液体6及び固形物7の両方を同時に噴射するものとし、開閉制御弁86が開となった状態では、噴射ノズル80から液体を噴射するように、送出ポンプ85の運転が起動される。
 本実施形態では、二つの閾値、すなわち、閉状態の開閉制御弁86,89を開く第1の閾値(スラグ除去閾値)HLと、開状態の開閉制御弁86,89を閉じる第2の閾値(スラグ除去停止閾値)LLと、が設定されている。
 二つの閾値については、上述した第1段階及び第2段階等のスラグ除去工程で同じ値を採用してもよいし、あるいは、例えば液体噴射による第1段階のスラグ除去工程を優先的に実施する場合など、後段階のスラグ除去工程に第1段階のスラグ除去工程より大きな値を採用してもよい。
 換言すれば、第1の閾値(スラグ除去閾値)HLは、スラグ検出手段の差圧計90で検出したスラグ付着量がスラグ除去閾値以上と判断した場合、開閉制御弁86,89を開いて液体6及び固形物7を噴射するための閾値である。
 また、第2の閾値(スラグ除去停止閾値)LLは、スラグ検出手段の差圧計90で検出したスラグ付着量がスラグ除去停止閾値より少ないと判断した場合、開閉制御弁86,89を閉じて液体6及び固形物7の噴射を停止するための閾値である。
 そして、スラグSの付着がない運転開始時(初期設定時)には、開閉制御弁86,89が閉状態に設定されており、さらに、差圧計90で検出した差圧ΔPは第2の閾値LLより低く、しかも、ほとんど差圧がない状態(ΔP≒0)となっている。
 上述した初期設定時の状態から高炉設備の運転を継続すると、ブローパイプ30や羽口22において壁面にスラグSが徐々に付着して堆積し、この結果、流路断面積の低下により流路抵抗も徐々に増加していく。従って、差圧計90で検出した差圧ΔPの値が増加して第1の閾値HLに到達すると、これを検知した差圧計90から開閉制御弁86,89の開信号が出力される。
 この開信号により、開閉制御弁86,89が開とされ、同時に送出ポンプ85も起動される。この結果、液体供給源83内に貯蔵されている液体6は、噴射ノズル80よりブローパイプ30の内部に向けて噴射され、同時に、固形物供給源87内に貯蔵されている固形物7も、噴射ノズル80よりブローパイプ30の内部に向けて噴射される。
 この結果、噴射された液体6は、付着したスラグSに当たると蒸発潜熱を奪って急冷する。このため、この急冷により、ガラス状の固体で脆いスラグSが急激に熱収縮し、液体6の噴射を受けて熱収縮したスラグSは破損して壁面から除去される。すなわち、破損して比較的小さな塊となったスラグSは、熱風2や液体の流れによって高炉本体20の炉内へ除去される。
 一方、噴射された固形物7は、熱風2の流れにのって羽口22の方向へ流れ、付着したスラグSに当たると衝撃力が発生してガラス状の固体で脆いスラグSを砕くように破損させる。この結果、固形物7が当たって衝撃力を受けたスラグSは、破損して壁面から除去される。すなわち、破損して比較的小さな塊となったスラグSは、熱風2や液体の流れによって高炉本体20の炉内へ除去される。
 こうしてスラグSが除去されると、流路断面積の増加に伴って流路抵抗が低下することになるので、差圧計90で検出される差圧ΔPも低下する。そして、差圧計90で検出した差圧ΔPが低下して第2の閾値LLに到達すると、開閉制御弁86,89の閉信号が出力される。この閉信号により、開閉制御弁86,89が閉とされ、同時に送出ポンプ92の運転も停止されるので、液体6及び固形物7の噴射は停止される。
 上述した第1の閾値HLは、開閉制御弁86,89を開状態とする第2の閾値LLとの間にヒステリシスを設けて開閉制御弁86,89の頻繁な開閉を防止するため、若干大きな値(HL>LL)に設定されている。
 このように、液体6の蒸発潜熱を利用したスラグSの急冷や固形物7の衝撃力を利用したスラグSの粉砕により、スラグSを除去する噴射ノズル80を設けたことにより、固球や研掃材を吹き込むブラスト等の供給設備が不要となる。しかも、水や可燃性液体等の液体は、噴射後に蒸気や燃焼ガスとなるので、この液体噴射を優先して実施すればスラグ除去後の後処理が極めて容易である。
 特に、液体として重油等の可燃性液体を採用すれば、可燃性液体が燃焼することで熱風の温度をさらに上昇させることができる。
 また、上述した実施形態では、閉状態の開閉制御弁86,89を開く第1の閾値HLと、開状態の開閉制御弁86,89を閉じる第2の閾値LLとの二つの閾値を設定しているが、さらに、第3の閾値HHLを設定してもよい。
 第3の閾値HHLは、閉状態の開閉制御弁86,89を開く第1の閾値HLより大きな設定値(HHL>HL)であり、この閾値HHLを超えた差圧ΔPを検出した場合には、スラグSの除去等に問題があると判断できる。従って、差圧ΔPが第3の閾値HHLを超えた場合には、例えば高炉設備の制御室等にアラームを出力することで早急に必要な対応を実施できるようになるので、ブローパイプ30の破損といった高炉設備の重大なトラブルを未然に防止することが可能になる。すなわち、第3の閾値HHLは、スラグ付着量が上述した第1の閾値(スラグ除去閾値)HLより大きい値に設定されたアラーム出力閾値である。
 上述したブローパイプ30の内部には、微粉炭3を吹き込むランス31より上流側となる位置、すなわち、熱風2を供給する熱風母管32とランス31との間に、熱風2の流れに旋回流を発生させる旋回流形成部が設けられている。この旋回流形成部は、例えば図1に示すような旋回ベーン33を採用してもよいし、あるいは、変形例として図2に示す旋回リボン34を採用してもよい。旋回ベーン33は、流路断面に対して角度を有する複数のベーンを周方向に配置したものであり、旋回リボン34は、薄板を螺旋状に成形したものである。
 このように、旋回ベーン33や旋回リボン34旋回流形成部のような旋回流形成部を設けると、ブローパイプ30内を流れる熱風2が旋回流形成部を通過することにより旋回流となる。このため、噴射ノズル80から吹き出された固形物7は、ブローパイプ30内に形成された旋回流の影響を受けることにより、遠心力によって外周側へ集まる。従って、スラグSが付着しているブローパイプ30のパイプ内面または羽口22の内面に対し、固形物7が集中的に衝突するようになり、効率のよいスラグ除去が可能になる。
 このように、上述した本実施形態のスラグ除去装置及びスラグ除去方法によれば、液体噴射や固形物噴射によりスラグSを破壊して除去するので、軟化点調整を行わない微粉炭3を用いた場合でも、簡単な装置構成で容易かつ確実にスラグ除去を達成できる。
 さらに、液体噴射を優先したスラグ除去を実施することで、ブローパイプ30に生じる摩耗や破損等のリスクを低減することができる。
 従って、微粉炭3の軟化点調整を行わなくても、付着したスラグSを破壊して除去することができるので、ブローパイプ30については、例えば羽口22の摩耗寿命までメンテナンス期間の延長が可能となる。
 上述した微粉炭3のスラグSに含まれ、熱風2や微粉炭3の燃焼熱等によって溶融する成分、すなわち低融点のスラグ成分は、約1200℃の熱風2を使用する場合の灰融点が概ね1100~1300℃程度である。このような低融点のスラグ成分は、微粉炭3の原料炭として亜瀝青炭や褐炭などの低品位炭を用い、乾燥や乾留等の改質処理を施した改質炭にも含まれている。
 本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
1 原料
2 熱風
3 微粉炭(改質炭)
4 搬送ガス
5 銑鉄(溶銑)
6 液体
7 固形物
10 原料定量供給装置
20 高炉本体
21 炉頂ホッパ
22 羽口
30 ブローパイプ
31 インジェクションランス(ランス)
32 熱風母管
33 旋回ベーン(旋回流形成部)
34 旋回リボン(旋回流形成部)
40 熱風送給装置
50 微粉炭製造装置
60 サイクロンセパレータ
70 貯蔵タンク
80 噴射ノズル
81 ノズル先端
86,89 開閉制御弁
90 差圧計
S スラグ(灰)

Claims (8)

  1.  鉄鉱石から銑鉄を製造する高炉本体の羽口から熱風とともに補助燃料の微粉炭を吹き込むブローパイプに設けられ、前記微粉炭のスラグに前記熱風及び/または前記微粉炭の燃焼熱により溶融する成分を含んでいるブローパイプ用のスラグ除去装置であって、
     前記ブローパイプ内を流れる前記微粉炭及び前記熱風の中に前記羽口付近の温度より融点が高くかつ前記微粉炭より粒径の大きい固形物を吹き込む噴射ノズルを設け、該噴射ノズルは、前記固形物を供給するとともに開閉制御弁を設けた固形物供給系を備えているスラグ除去装置。
  2.  前記ブローパイプの内部で前記微粉炭を吹き込むインジェクションランスより上流側となる位置に、前記熱風の流れに旋回流を発生させる旋回流形成部を備えている請求項1に記載のスラグ除去装置。
  3.  前記ブローパイプ内のスラグ付着領域に向けて液体を噴射する噴射ノズルを備え、前記噴射ノズルは、液体を供給するとともに開閉制御弁を設けた液体供給系を備えている請求項1または2に記載のスラグ除去装置。
  4.  前記噴射ノズルより上流側の熱風圧力と、前記ブローパイプの出口近傍熱風圧力との差圧により、スラグ付着状況を検出するスラグ検出手段を備えている請求項1から3のいずれか1項に記載のスラグ除去装置。
  5.  前記スラグ検出手段で検出したスラグ付着状況がスラグ除去閾値以上と判断した場合、前記開閉制御弁を開いて前記液体及び/または前記固形物が噴射され、前記スラグ検出手段で検出したスラグ付着量がスラグ除去停止閾値より少ないと判断した場合、前記開閉制御弁を閉じて前記液体及び/または前記固形物の噴射が停止される請求項4に記載のスラグ除去装置。
  6.  前記スラグ付着状況が前記スラグ除去閾値より大きい値に設定されたアラーム出力閾値を備えている請求項5に記載のスラグ除去装置。
  7.  鉄鉱石から銑鉄を製造する高炉本体の羽口から熱風とともに補助燃料の微粉炭を吹き込むブローパイプに設けられ、前記微粉炭のスラグに前記熱風及び/または前記微粉炭の燃焼熱により溶融する成分を含んでいるブローパイプ用のスラグ除去方法であって、
     前記ブローパイプ内を流れる前記微粉炭及び前記熱風の中に前記羽口付近の温度より融点が高くかつ前記微粉炭より粒径の大きい固形物を吹き込む噴射ノズルと、前記ブローパイプ内のスラグ付着領域に向けて液体を噴射する噴射ノズルとを備え、
     最初に前記噴射ノズルから前記液体を単独噴射してスラグ除去が実施される第1段階のスラグ除去工程と、
     前記第1段階のスラグ除去工程で所定のスラグ除去を達成できない場合、前記噴射ノズルから前記固形物を単独噴射してスラグ除去が実施される第2段階のスラグ除去工程と、
    を備えているスラグ除去方法。
  8.  前記第2段階のスラグ除去工程で所定のスラグ除去を達成できない場合、前記固形物及び前記液体をともに噴射することでスラグ除去が実施される第3段階のスラグ除去工程を備えている請求項7に記載のスラグ除去方法。
PCT/JP2013/074414 2012-09-20 2013-09-10 スラグ除去装置及びスラグ除去方法 WO2014045949A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN2076DEN2015 IN2015DN02076A (ja) 2012-09-20 2013-09-10
CN201380048341.XA CN104641003B (zh) 2012-09-20 2013-09-10 炉渣除去装置
KR20157006733A KR20150044933A (ko) 2012-09-20 2013-09-10 슬래그 제거장치 및 슬래그 제거방법
US14/428,907 US20150240322A1 (en) 2012-09-20 2013-09-10 Slag removal device and slag removal method
DE112013004601.6T DE112013004601T5 (de) 2012-09-20 2013-09-10 Schlackeentfernungsvorrichtung und Schlackeentfernungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012207275A JP6057642B2 (ja) 2012-09-20 2012-09-20 スラグ除去装置及びスラグ除去方法
JP2012-207275 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014045949A1 true WO2014045949A1 (ja) 2014-03-27

Family

ID=50341263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074414 WO2014045949A1 (ja) 2012-09-20 2013-09-10 スラグ除去装置及びスラグ除去方法

Country Status (7)

Country Link
US (1) US20150240322A1 (ja)
JP (1) JP6057642B2 (ja)
KR (1) KR20150044933A (ja)
CN (1) CN104641003B (ja)
DE (1) DE112013004601T5 (ja)
IN (1) IN2015DN02076A (ja)
WO (1) WO2014045949A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6016549B2 (ja) * 2012-09-20 2016-10-26 三菱重工業株式会社 スラグ除去装置
CN107655321B (zh) * 2017-11-08 2023-12-01 辽宁科技大学 一种强电磁力推动弹体清除回转窑出口结渣的装置及方法
JP7130898B2 (ja) * 2019-03-28 2022-09-06 株式会社神戸製鋼所 高炉の操業方法
CN111455128B (zh) * 2020-04-22 2021-12-21 山东钢铁股份有限公司 一种炉下积渣降温装置及工作方法
CN113739594A (zh) * 2021-09-22 2021-12-03 新疆宜化化工有限公司 一种防止电石炉内物料板结的自动破除工艺及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161905A (ja) * 1986-01-10 1987-07-17 Kobe Steel Ltd 高炉送風羽口の堆積物除去装置
JPS6428312A (en) * 1987-07-24 1989-01-30 Nippon Steel Corp Blowing method for powdered material into blast furnace
JPH06192714A (ja) * 1992-12-24 1994-07-12 Sumitomo Metal Ind Ltd 高炉羽口内面の灰分除去方法
JPH08100208A (ja) * 1994-10-03 1996-04-16 Nkk Corp 高炉微粉炭吹込み用羽口部構造
JPH1150113A (ja) * 1997-08-02 1999-02-23 Nippon Steel Corp 微粉炭の高炉内吹き込み方法
JP2001342508A (ja) * 2000-06-05 2001-12-14 Nkk Corp 高炉送風羽口の開孔装置およびその方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012359B2 (ja) * 2012-09-20 2016-10-25 三菱重工業株式会社 ブローパイプ構造
JP6016549B2 (ja) * 2012-09-20 2016-10-26 三菱重工業株式会社 スラグ除去装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161905A (ja) * 1986-01-10 1987-07-17 Kobe Steel Ltd 高炉送風羽口の堆積物除去装置
JPS6428312A (en) * 1987-07-24 1989-01-30 Nippon Steel Corp Blowing method for powdered material into blast furnace
JPH06192714A (ja) * 1992-12-24 1994-07-12 Sumitomo Metal Ind Ltd 高炉羽口内面の灰分除去方法
JPH08100208A (ja) * 1994-10-03 1996-04-16 Nkk Corp 高炉微粉炭吹込み用羽口部構造
JPH1150113A (ja) * 1997-08-02 1999-02-23 Nippon Steel Corp 微粉炭の高炉内吹き込み方法
JP2001342508A (ja) * 2000-06-05 2001-12-14 Nkk Corp 高炉送風羽口の開孔装置およびその方法

Also Published As

Publication number Publication date
CN104641003A (zh) 2015-05-20
DE112013004601T5 (de) 2015-06-11
JP6057642B2 (ja) 2017-01-11
US20150240322A1 (en) 2015-08-27
IN2015DN02076A (ja) 2015-08-14
JP2014062293A (ja) 2014-04-10
CN104641003B (zh) 2017-04-26
KR20150044933A (ko) 2015-04-27

Similar Documents

Publication Publication Date Title
WO2014045949A1 (ja) スラグ除去装置及びスラグ除去方法
JP2544584B2 (ja) 石炭ガス化炉及び石炭ガス化炉の使用方法
JP6012358B2 (ja) ブローパイプ構造
JP5087955B2 (ja) 溶融還元方法
KR20010095028A (ko) 고온 배기가스용 온도 제어 장치 및 온도 제어 방법
MX2011007968A (es) Metodo para gasificacion y un gasificador.
JP2007078239A (ja) 廃棄物ガス化溶融装置の溶融炉、並びに該溶融炉における制御方法及び装置
JP5574708B2 (ja) 鉱物繊維の製造方法及び製造装置
JP6016549B2 (ja) スラグ除去装置
KR20190027916A (ko) 전기로용 조연 버너
JP4747662B2 (ja) 気体還元材吹込み用のランス、高炉および高炉操業方法
JP6012359B2 (ja) ブローパイプ構造
JPH0325202A (ja) 微粉原料ガス化用バーナ及び微粉原料ガス化装置
JPH08134472A (ja) 気流層ガス化装置
JP3863359B2 (ja) 吹込み操業方法
JP2009019125A (ja) ガス化方法及び装置
JP2011195781A (ja) ガス化炉
JP5958935B2 (ja) 銑鉄製造方法およびこれに使用する高炉設備
KR100867054B1 (ko) 고로에의 환원재 취입장치, 그 장치를 사용한 고로조업방법
CN118623618A (zh) 一种铁矿石回转窑直接还原供热曲线调整方法
JP3230420B2 (ja) 廃棄物の溶融処理方法
JP2001208325A (ja) 脱水汚泥の処理方法および球状粉末スラグの製造方法
JPH04354810A (ja) 高炉への微粉炭吹込み方法及び装置
KR20130026129A (ko) 미분탄 공급장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006733

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428907

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201501567

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 1120130046016

Country of ref document: DE

Ref document number: 112013004601

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839871

Country of ref document: EP

Kind code of ref document: A1