WO2014045695A1 - ホースの劣化診断方法、ホースの劣化診断装置 - Google Patents

ホースの劣化診断方法、ホースの劣化診断装置 Download PDF

Info

Publication number
WO2014045695A1
WO2014045695A1 PCT/JP2013/069583 JP2013069583W WO2014045695A1 WO 2014045695 A1 WO2014045695 A1 WO 2014045695A1 JP 2013069583 W JP2013069583 W JP 2013069583W WO 2014045695 A1 WO2014045695 A1 WO 2014045695A1
Authority
WO
WIPO (PCT)
Prior art keywords
hose
deterioration
surface hardness
internal pressure
temperature
Prior art date
Application number
PCT/JP2013/069583
Other languages
English (en)
French (fr)
Inventor
青池 聡
本棒 享子
常男 塙
圭論 寺尾
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2014045695A1 publication Critical patent/WO2014045695A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • G01N2203/0232High pressure

Definitions

  • the present invention relates to a method and apparatus for diagnosing hose deterioration.
  • a cooling water system is installed to cool the inside of the reactor pressure vessel that becomes high temperature.
  • the cooling water system usually includes a metal pipe.
  • metal piping has a small layout freedom such as length and arrangement, and takes time to install. Then, application of the cooling water system by the resin-made hose at the time of emergency is examined.
  • the cooling water system of the resin hose has been attracting attention not only as an emergency or temporary installation but also as a permanent installation.
  • a resin hose has a problem of deterioration and needs to be detected immediately before reaching the use limit.
  • the following are known as an example of a method for diagnosing deterioration of a resin hose.
  • the relationship between the test temperature and the time with respect to the hardness in the air aging test of the rubber hose is graphed in advance. And the hardness of a rubber hose is measured and the operation time of a rubber hose is confirmed.
  • an estimated use temperature corresponding to this hardness and operating time is estimated (for example, see Patent Document 1).
  • the estimated use temperature is estimated from the relationship between the test temperature and the time with respect to the hardness of the rubber.
  • the hardness of the rubber hose surface depends on the temperature and the internal pressure of the hose, it has been difficult to accurately perform the deterioration diagnosis of the hose during operation in which the internal pressure acts in the surrounding environment.
  • the hose deterioration diagnosis method of the present invention is a method of diagnosing deterioration of a resin hose on which internal pressure acts, a step of measuring the outer surface hardness of the hose, a step of measuring the outer surface temperature of the hose, and a hose Correct the measured hose outer surface hardness based on the process of measuring the internal pressure, the process of creating deterioration characteristics indicated by the external surface hardness over time, and the measured internal pressure of the hose and the external surface temperature of the hose.
  • the method includes a step of calculating a corrected outer surface hardness and a step of calculating an estimated usage time by applying the corrected outer surface hardness to a deterioration characteristic.
  • the hose deterioration diagnosis device of the present invention is a device for diagnosing deterioration of a resin hose on which internal pressure acts, and measurement data including the hose outer surface hardness, outer surface temperature, and internal pressure as a set, and the passage of time.
  • the storage unit stores the deterioration characteristics indicated by the external surface hardness, the first influence degree that the internal pressure has on the external surface hardness, and the second influence degree that the external surface temperature has on the external surface hardness.
  • a hose outer surface hardness is corrected based on the first influence degree and the second influence degree to obtain a corrected outer surface hardness, and an arithmetic unit that calculates the estimated usage time by applying the corrected outer surface hardness to the deterioration characteristic.
  • the outer surface hardness, outer surface temperature and inner pressure of the resin hose on which the inner pressure is acting are measured, and the measured hose hardness is determined using the measured outer surface temperature and inner pressure. Is corrected to the standard outer surface hardness obtained under the outer surface temperature and the inner pressure. Moreover, the characteristic of the outer surface hardness with respect to the passage of time is prepared in advance, and the estimated usage time of the hose is calculated by applying the corrected outer surface hardness to the characteristic. Therefore, even when the coolant is flowing inside, the deterioration of the resin hose can be diagnosed. For this reason, deterioration diagnosis can be performed without stopping a device such as a cooling system using a resin hose, and the soundness of the device can be maintained for a long period of time.
  • Hose deterioration evaluation diagram showing the relationship between hose outer surface hardness H and time t used at temperature T0.
  • the figure which shows the process sequence which registers the evaluation information of a hose degradation diagnosis in a degradation diagnostic apparatus.
  • the flowchart which shows one Embodiment of a hose deterioration diagnostic process.
  • the characteristic view which shows the relationship between the internal pressure P of a hose, and hose deformation amount (delta).
  • FIG. 1 is a schematic layout diagram of a nuclear power plant in which a resin hose that is a degradation diagnosis target of the present invention is laid.
  • a storage device 4 such as a transport vehicle or a fixed base is equipped with a heat exchanger 5a and water supply pumps 6a and 6b arranged before and after the heat exchanger 5a.
  • the cooling water 3 or seawater 1 stored in the water storage tank 2 is supplied to the heat exchanger 5a via a resin hose 21.
  • the cooling water 3 or the seawater 1 which finished heat exchange is discharged
  • the high-temperature water in the reactor pressure vessel 11 is supplied to the heat exchanger 5a via the pipe 23.
  • the high temperature water cooled by the heat exchanger 5 a is supplied again into the reactor pressure vessel 11 through the pipe 24.
  • the pipe 23 and the pipe 24 become high temperature, it is desirable to use a metal pipe or a flexible tube.
  • the pipe 23 and the pipe 24 are made of resin. A hose can be used.
  • the resin hoses 21 and 22 laid in this way may have a total length of several tens of kilometers in one nuclear power plant, for example. For this reason, it is necessary to reliably and quickly find the hoses 21 and 22 that have been diagnosed for deterioration of the hoses 21 and 22 and have reached the replacement time. In this embodiment, the deterioration of the resin hoses 21 and 22 can be diagnosed while the cooling liquid is allowed to flow, management of the replacement time of the hoses is facilitated, and reliability related to safety is improved.
  • the term used as a resin hose is used to include a rubber hose.
  • FIG. 2 is a block diagram showing a deterioration diagnosis apparatus according to the present invention.
  • the deterioration diagnosis device 50 includes a CPU 51, an input unit 52, a display unit 53, and a storage device 54.
  • the storage device 54 stores a deterioration diagnosis program, deterioration characteristics described later with reference to FIG.
  • the storage device 54 also stores measurement data of the hose in service which is a degradation evaluation target.
  • the CPU 51 executes this deterioration diagnosis program, the use time of the hose during service operation is estimated using the deterioration characteristics created in advance, and the deterioration of the hose is evaluated by comparing with the known service life.
  • the evaluation result is stored in the storage device 54 and can be appropriately displayed on the display unit 53.
  • the hose deterioration evaluation chart is prepared in a short period of time from the change in the hardness of the resin material obtained in the deterioration test carried out under accelerated conditions.
  • Arrhenius equation (1) is known as for the influence of temperature on the deterioration rate K of a polymer material including a resin material.
  • E activation energy
  • R is a gas constant
  • T is a deterioration temperature (absolute temperature)
  • A is a constant independent of temperature.
  • the deterioration rate K of the resin material can be accelerated by increasing the temperature Texam of the deterioration test.
  • the deterioration test performed for the test time texam under the condition of the temperature Texam corresponds to the deterioration test performed for the time t under the condition of the reference temperature T0 (formula (2)).
  • the deterioration evaluation diagram of the hose converts the deterioration test time under the acceleration condition into the time t under the condition of the reference temperature T0 according to the equation (2) for the result of the deterioration test performed under a plurality of test conditions. It is created by plotting the hardness measurement results of the hose in FIG.
  • Specifi- cally prepare the same specimen (sample) as the in-service hose to be evaluated.
  • hoses having the same material, shape, structure, and size are used as specimens.
  • the deterioration test temperature Texam is determined in consideration of an evaluation period necessary for evaluating the hose to be evaluated and a period during which the test can be performed.
  • the specimen temperature is maintained at Texam.
  • the outer surface hardness of the specimen is measured with a durometer, and an outer surface hardness-elapsed time database representing the relationship between the elapsed time and the outer surface hardness is created.
  • the elapsed time is converted into the elapsed time t under the condition of the reference temperature T0 by the equation (2), and the outer surface hardness is plotted to create an approximate expression by the method of least squares, and as a hose deterioration evaluation chart Formulate.
  • the hose temperature Tm may differ from the reference temperature T0 in the hose deterioration evaluation diagram.
  • the internal pressure Pm is loaded on the hose by the cooling water (coolant) flowing in the hose.
  • the hardness Hm measured on the outer surface of the hose increases (cures) as the internal pressure increases, and decreases (softens) as the temperature increases. For this reason, if the evaluation based on the deterioration evaluation diagram of the hose is performed using the measured hardness Hm without correcting the temperature and the internal pressure, the evaluation error becomes large because the reference temperature T0 and the reference internal pressure P0 are different. .
  • the outer surface hardness Hm of the hose 21 measured during the service operation is corrected by the equation (3) based on the temperature Tm of the hose 21 and the inner pressure Pm at the time of measuring the outer surface hardness.
  • Hc Hm ⁇ (Pm ⁇ P0) + ⁇ (Tm ⁇ T0) Equation (3)
  • Hc is a correction value for the hardness of the hose outer surface
  • P0 and T0 are the reference temperature and reference internal pressure of the hose deterioration evaluation chart
  • is the hose cure rate as the internal pressure increases
  • is Shows the softening rate of the hose with increasing temperature.
  • the coefficient ⁇ of the hose hardening rate due to internal pressure and the coefficient ⁇ of the hose softening rate due to temperature are calculated in advance as follows.
  • the hardening rate ⁇ of the hose accompanying an increase in internal pressure and the softening rate ⁇ of the hose accompanying an increase in temperature differ for each type of hose. For this reason, the change in the outer surface hardness when only the internal pressure is changed under the condition where the hose temperature is constant and the change in the outer surface hardness when only the temperature is changed under the condition where the hose internal pressure is constant are evaluated in advance. Then, it is classified into a linearly changing region, and ⁇ and ⁇ are evaluated by multiple regression analysis.
  • FIG. 4 is a diagram illustrating an example of the relationship between the hose outer surface hardness H and the hose internal pressure P in a state where the hose temperature is constant.
  • the hose outer surface hardness H increases linearly with the increase of the hose internal pressure P up to a predetermined internal pressure P2. Further, when the hose internal pressure P exceeds the predetermined internal pressure P2, the hose outer surface hardness H becomes a substantially constant value and does not vary.
  • FIG. 5 is a diagram illustrating an example of the relationship between the outer surface hardness H of the hose and the temperature T of the hose in a state where the internal pressure of the hose is constant. As shown in FIG. 5, under the condition where the internal pressure P of the hose is constant, the hose outer surface hardness H decreases linearly with the increase of the outer surface temperature T of the hose in the entire measurement section.
  • the coefficients ⁇ and ⁇ shown in the expression (3) are obtained by dividing the measured data of the hardness H into a region below the internal pressure P2 and a region exceeding the internal pressure P2, and each divided region.
  • a regression equation is obtained and evaluated by multiple regression analysis with the hardness H as a solution and the internal pressure P and temperature T as variables.
  • the coefficient of the internal pressure P in the regression equation derived by the multiple regression analysis is ⁇
  • the coefficient of the temperature T is ⁇ .
  • the curing rate ⁇ calculated as described above is used as the first influence degree that the internal pressure has on the outer surface hardness
  • the softening ratio ⁇ calculated as above is used as the second influence degree that the outer surface temperature has on the outer surface hardness.
  • the first and second influences may use influences other than the curing rate and the softening rate.
  • FIG. 6 is a diagram for explaining a procedure of processing for registering evaluation information for hose deterioration diagnosis according to the present invention.
  • the deterioration characteristic shown in FIG. 3 and the correction expression shown in equation (3) are created in advance in steps S1 to S4 shown in FIG.
  • step S1 degradation characteristics are created as described above.
  • step S2 the created deterioration characteristic is registered in the deterioration diagnosis apparatus 50.
  • step S3 the outer surface hardness correction formula (3) is created as described above, and formula (3) is registered in the deterioration diagnosis apparatus 50 in step S4. Details of each procedure are as described above.
  • the deterioration diagnosis device 50 starts the deterioration diagnosis program registered in the storage device 54.
  • the deterioration diagnosis program is started, in step S11, a dialog for prompting input of measurement data of the hose in service is displayed on the display screen of the display unit 53.
  • the hose outer surface hardness Hm, temperature Tm, and internal pressure Pm are input as measurement data in step S12, these input data are stored in a predetermined storage area of the storage device 54 in step S13.
  • the outer surface hardness Hm of the hose 21 is a measured value obtained by measuring an appropriate position of the hose 21 (including 22) illustrated in FIG. 1 with, for example, a durometer.
  • the temperature Tm of the hose 21 is the temperature of the outer surface of the hose 21 measured by a temperature sensor.
  • the internal pressure Pm of the hose 21 is data measured by a pressure sensor. Pressure sensors installed on the pumps 6a and 6b can be used.
  • step S14 these measurement data are substituted into equation (3), and the measured hose outer surface hardness Hm is converted into a corrected outer surface hardness Hc.
  • step S15 the use time tu corresponding to the corrected outer surface hardness Hc is calculated with reference to the deterioration characteristics of FIG.
  • step S16 the use time tu of the hose to be evaluated is compared with the known endurance limit time tend of the hose. For example, if the usage time tu exceeds the endurance limit time tend, the process proceeds to step S17, where a dialog “Hose in service operation is time to replace” is displayed on the display unit 53 to warn the operator. In this case, a warning may be given by voice or a warning sound may be output. If the use time tu does not exceed the endurance limit time tend, the process proceeds to step S18, the use remaining life ti obtained by subtracting the use time tu from the endurance limit time tend is calculated, and the display unit 53 displays “the remaining life of the hose is ti. “Time is” dialog is displayed to alert the operator.
  • the safety factor As S (S> 1), it is compared whether or not the use time tu ⁇ S is longer than the endurance limit time tend.
  • the remaining use life ti is calculated as a difference between the service life time tend and the service time tu, but may be calculated as a ratio of the service time tu to the service life time tend.
  • the measured outer surface hardness Hm of the hose 21 is corrected in accordance with the outer surface temperature Tm and the inner pressure Pm of the hose 21.
  • the internal pressure Pm of the hose 21 at the measurement position is a value measured by the pressure sensor due to pressure loss. It will be different. For this reason, it is required to accurately measure the internal pressure of the hose 21 during service operation regardless of the length of the hose 21 and the measurement position.
  • FIG. 8 is a graph showing the relationship between the hose internal pressure P and the hose deformation amount ⁇ when a predetermined load (external load) F0 is applied to the outer surface of the hose, that is, the hose internal pressure-deformation amount characteristic. Created in advance. The amount of deformation ⁇ when an external load F0 is applied to the hose in service is measured, and the amount of deformation ⁇ is applied to the above-mentioned hose internal pressure-deformation amount characteristic to estimate the internal pressure P of the hose during service.
  • FIG. 9 is a diagram illustrating a hose internal pressure-deformation amount test apparatus that performs the internal pressure measurement described above.
  • the hose internal pressure-deformation amount characteristic of FIG. 8 can also be created based on data collected by this apparatus.
  • the hose internal pressure-deformation amount test apparatus 70 includes a frame body 72 fixed on a base plate 71 by bolts 81.
  • the frame body 72 is formed in a U-shaped cross section having a pair of side portions 72b rising upward from a fixed portion 72a attached to the base plate 71 and a top plate 72c connecting the pair of side portions 72b.
  • a female thread that penetrates the top plate 72c in the thickness direction is formed at the center of the top plate 72c.
  • a male screw formed on the outer periphery of the rod 75 a of the press elevating mechanism 75 is screwed to the female screw, and the press elevating mechanism 75 is attached to the frame body 72.
  • a load load plate 76 having a length straddling between a pair of side portions 72b of the frame body 72 is disposed below the rod 75a of the press elevating mechanism 75.
  • the base plate 71, the top plate 72c, and the load application plate 76 are arranged in parallel to each other.
  • a load cell 73 is interposed between the load plate 76 and the lower end 75b of the rod 75a of the press elevating mechanism 75.
  • a hose displacement gauge 77 is attached to one side 72 b of the frame body 72.
  • the hose displacement gauge 77 is provided with a scale 77 a for reading the deformation amount of the hose 21.
  • the load load plate 76 is provided with an instruction position mark 76 a for indicating the position of the scale 77 a of the hose displacement gauge 77.
  • the hose internal pressure-deformation amount test apparatus 70 is formed in such a size that a space in which the hose 21 can be inserted is formed between the load plate 76 and the base plate 71.
  • a method of measuring the hose internal pressure by the hose internal pressure-deformation amount test apparatus 70 will be described.
  • the bolt 81 is removed and the frame body 72 is separated from the base plate 71.
  • the base plate 71 is inserted between the hose 21 to be measured and the hose grounding surface, the hose 21 is covered with the frame body 72, and the frame body 72 is fastened to the base plate 71 with the bolts 81 to be integrated.
  • the press elevating mechanism 75 is rotated clockwise or counterclockwise, and the hose 21 to be measured is inserted between the load loading plate 76 and the base plate 71.
  • the load plate 76 is brought into contact with the upper outer surface of the hose 21.
  • the output value of the load cell 73 is zero so that the load plate 76 touches the outer surface of the hose 21 so that the hose 21 is not deformed.
  • the hose displacement gauge 77 is attached to the side portion 72b of the frame body 72 so as to be movable in the vertical direction so that the indication position mark 76a faces the “0” position of the scale 77a. Adjust the position of the hose displacement gauge 77. In this case, when the load is applied, the hose deformation amount may be obtained by reading the value of the scale 77a indicated by the indication position mark 76a.
  • the scale 77a when the output value of the load cell 73 is zero is read, and when the load is applied, the hose deformation amount is the initial scale from the scale 77 indicated by the indication position mark 76a.
  • a value obtained by subtracting 77 readings may be used.
  • the press elevating mechanism 75 is rotated to apply a preset load F0 from the outer surface of the hose 21.
  • the load F0 is applied while confirming the output value of the load cell with a display (not shown).
  • the hose 21 is deformed from a circular shape to an elliptical shape.
  • the deformation amount ⁇ of the hose 21 at this time is read by the indication position mark 76a. By applying this deformation amount ⁇ to the hose internal pressure P-deformation amount ⁇ characteristic of FIG. 8, the internal pressure P of the hose 21 is obtained.
  • the measurement of the deformation amount ⁇ of the hose 21 can be easily and accurately performed at any position in the length direction of the hose 21. For this reason, the measurement accuracy of the internal pressure Pm of the hose 21 is improved, and the correction accuracy from the actually measured outer surface hardness Hm of the hose 21 to the outer surface hardness Hc of the hose 21 is improved. Thereby, the deterioration diagnosis of a hose can be made highly accurate. According to the deterioration diagnosis method including such steps, the following operational effects can be obtained.
  • the deterioration diagnosis of the resin hose 21 in service is performed as follows.
  • the cooling liquid flows at a predetermined pressure inside the hose 21 in service.
  • the deterioration diagnosis method of one embodiment includes a step of measuring the outer surface hardness Hm of the hose, a step of measuring the outer surface temperature Tm of the hose 21, a step of measuring the internal pressure Pm of the hose 21, and an outer surface hardness with respect to the passage of time.
  • a step of creating a deterioration characteristic indicated by the above, a step of correcting the measured hose outer surface hardness Hm based on the internal pressure of the hose 21 and the outer surface temperature of the hose, and calculating a corrected outer surface hardness Hc, and a corrected outer surface hardness A step of calculating the estimated usage time tu by applying the height Hc to the deterioration characteristic. Then, deterioration of the hose 21 is diagnosed using the calculated estimated usage time tu. Therefore, the deterioration diagnosis of the hose 21 during the service operation can be performed. As a result, since the deterioration of the hose in service can be diagnosed without stopping the apparatus / equipment, the operating rate of the apparatus / equipment is improved.
  • the deterioration diagnosis device 50 of FIG. 2 is a measurement data set of the outer surface hardness, the outer surface temperature, and the inner pressure of the hose, the deterioration evaluation characteristics of the outer surface hardness over time, and the inner pressure of the outer surface hardness.
  • a storage unit 54 that stores a curing rate that is a degree of influence and a softening rate that is a second degree of influence caused by the outer surface temperature of the outer surface hardness, and a hose outer surface hardness that is stored in the storage unit 54 has a first effect.
  • a calculation unit 51 that calculates the estimated use time by applying the correction outer surface hardness to the deterioration evaluation characteristic.
  • the correction formula (3) for the hose outer surface hardness is illustrated as being stored in advance in the deterioration diagnosis device 50.
  • the correction formula (3) of the hose outer surface hardness may be input to the deterioration diagnosis device 50 in step S12 of FIG. That is, in step S12, the correction formula (3) of the hose outer surface hardness may be input together with the hose outer surface hardness Hm, the measurement temperature Tm, and the inner pressure Pm.
  • the hose outer surface hardness Hm, the measurement temperature Tm, and the internal pressure Pm are input from the input unit 52.
  • the output of the measuring instrument that measures the hose outer surface hardness Hm, the temperature Tm at the time of measurement, and the internal pressure Pm may be transmitted to a computer installed in the management room, and may be taken into the computer at a predetermined timing. .
  • the present invention can also be used for deterioration diagnosis of hoses used for factories and research facilities other than nuclear plants.
  • the present invention is not limited to the evaluation of deterioration of a resin hose through which a coolant flows, but can be applied to deterioration evaluation and deterioration diagnosis of a resin hose in which various fluids flow and internal pressure acts.
  • the present invention is not limited to the one embodiment described above, and various modifications can be made within the scope of the gist of the invention, and the hardness of the hose outer surface during service operation, the outer surface of the hose Based on the measurement data that sets the temperature and the internal pressure of the hose, the measured external surface hardness is corrected corresponding to the external surface temperature and internal pressure, and the corrected external surface hardness of the hose external surface hardness with respect to the elapsed time acquired in advance
  • the estimated use time may be calculated by applying to the deterioration characteristic indicating the relation of the deterioration to diagnose the deterioration.
  • the operator measures the hose outer surface temperature Tm, the inner pressure Pm, and the outer surface hardness Hm during the test, and then calculates the corrected outer surface hardness Hc using Equation (3). Further, the operator applies the corrected outer surface hardness Hc to the graph of deterioration characteristics in FIG. 3 to read the estimated usage time, and evaluates the deterioration of the hose based on the read estimated usage time and the known service life limit. it can.
  • a deterioration diagnosis method is also included in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

 供用運転中において、ホースの劣化診断が可能な方法を提供する。内部に所定圧で冷却液体が流動している樹脂製のホース21の外面硬さHm、ホースの外面温度Tmおよび内圧Pmを測定する。ホース外面硬さHmを、所定の外面温度T0および内圧P0下で得られる補正外面硬さHcに補正する。ホース外面硬さと基準温度における使用時間との関係を表す劣化特性に補正外面硬さHcを当てはめ、ホースの推定使用時間を算出する。この推定使用時間とホースの限界使用時間との差分により、ホースの劣化を診断する。

Description

ホースの劣化診断方法、ホースの劣化診断装置
 本発明は、ホースの劣化診断を行う方法、及び装置に関する。
 原子力プラント等においては、高温となる原子炉圧力容器内を冷却する冷却水系が設置されている。冷却水系は、通常は、金属製の配管を備えている。しかし、金属製の配管は、長さ・配置等のレイアウトの自由度が小さく、設置に時間がかかる。そこで、緊急時における樹脂製のホースによる冷却水系の適用が検討されている。樹脂製ホースの冷却水系は、単に、応急的または仮設的な敷設だけでなく、常設の設備としても注目されている。樹脂製のホースにおいては、劣化の問題があり、使用限界に達する直前に、これを検出する必要ある。
 樹脂製ホースの劣化診断方法の一例として次のものが知られている。予め、ゴムホースの空気老化試験における硬度に対する試験温度と時間との関係をグラフにして作成しておく。そして、ゴムホースの硬度を測定すると共にゴムホースの稼働時間を確認する。硬度計で測定したゴムの硬度を上記グラフに当てはめることにより、この硬度と稼働時間とに対応した推定使用温度を推定する(例えば、特許文献1参照)。
特開2003-215023公報
 特許文献1においては、ゴムの硬度に対する試験温度と時間との関係から推定使用温度を推定している。しかし、ゴムホース表面の硬さは、ホースの温度および内圧に依存するので、周囲環境下で内圧が作用している運転中のホースの劣化診断を正確に行うことが難しかった。
(1)本発明のホースの劣化診断方法は、内圧が作用する樹脂製ホースの劣化を診断する方法において、ホースの外面硬さを計測する工程と、ホースの外面温度を計測する工程と、ホースの内圧を計測する工程と、時間の経過に対する外面硬さで示される劣化特性を作成する工程と、計測したホースの内圧およびホースの外面温度に基づいて、計測したホース外面硬さを補正して補正外面硬さを演算する工程と、補正外面硬さを劣化特性に当てはめて推定使用時間を算出する工程とを備えることを特徴とする。
(2)本発明のホースの劣化診断装置は、内圧が作用する樹脂製ホースの劣化を診断する装置において、ホースの外面硬さ、外面温度、および内圧をセットとする測定データと、時間の経過に対する外面硬さで示される劣化特性と、内圧が外面硬さに与える第1影響度と、外面温度が外面硬さに与える第2影響度とが記憶される記憶部と、記憶部に記憶したホース外面硬さを第1影響度と第2影響度とに基づいて補正して補正外面硬さとし、この補正外面硬さを劣化特性に当てはめて推定使用時間を算出する演算部とを備えることを特徴とする。
 本発明によれば、内圧が作用している樹脂製のホースの外面硬さ、外面温度および内圧を測定して、測定されたホースの硬さを、測定した外面温度と内圧を用いて、所定の外面温度および内圧の下で得られる基準の外面硬さに補正する。また、時間の経過に対する外面硬さの特性を予め作成しておき、補正後の外面硬さをその特性に当てはめてホースの推定使用時間を算出するようにした。したがって、内部に冷却剤が流動している状態であっても、樹脂製のホースの劣化を診断することができる。このため、樹脂製のホースを使用する冷却システム等の装置を停止することなく劣化診断を行い、装置の健全性を長期間にわたり維持することが可能となる。
本発明による劣化診断の対象である樹脂製のホースが配設された原子力プラントの模式的レイアウト図。 本発明のホースの劣化診断装置を示すブロック図。 ホース外面硬さHと温度T0で使用した時間tとの関係を示すホースの劣化評価図。 ホースの温度を一定とした状態での、ホースの外面硬さHとホースの内圧Pとの関係の一例を示す図。 ホースの内圧を一定とした状態での、ホースの外面硬さHとホースの温度Tとの関係の一例を示す図。 ホースの劣化診断の評価情報を劣化診断装置に登録する処理手順を示す図。 ホース劣化診断処理の一実施の形態を示すフローチャート。 ホースの内圧Pとホース変形量δとの関係を示す特性図。 ホース内圧―変形量試験装置の一実施の形態を説明する図。
以下、図を参照して、本発明に係るホースの劣化診断方法を説明する。
 -ホース敷設設備-
図1は、本発明の劣化診断対象である樹脂製のホースが敷設された原子力プラントの模式的レイアウト図である。搬送車または固定台等の格納装置4には、熱交換器5aと、その前後に配置された給水用のポンプ6a、6bが搭載されている。ポンプ6aを駆動することで、熱交換器5aには、貯水槽2に貯留された冷却水3または海水1が、樹脂製のホース21を介して供給される。なお、熱交換を終えた冷却水3または海水1は、樹脂製のホース22を介して排出される。ポンプ6bを駆動することで、熱交換器5aには、原子炉圧力容器11内の高温水が、配管23を介して供給される。熱交換器5aで冷却された高温水は、配管24を介して、再び原子炉圧力容器11内に供給される。なお、配管23と配管24は、高温となるため、金属製の配管やフレキシブルチューブを用いるのが望ましいが、原子炉圧力容器11内の温度が十分に低下している場合には、樹脂製のホースを使用することができる。
 このように敷設された樹脂製のホース21、22は、例えば、1つの原子力発電所で、全長数十Kmにもなる場合がある。このため、ホース21、22の劣化を診断して交換時期に達したホース21、22を確実かつ迅速に見出す必要がある。この実施形態は、冷却液体を流したまま樹脂製のホース21、22の劣化を診断可能とし、ホースの交換時期の管理を容易とし、また、安全性に関する信頼性の向上を図るものである。なお、本明細書において、樹脂製のホースとして用いる用語は、ゴム製のホースを含むものとして用いられている。
 ―劣化診断装置―
図2は本発明にかかる劣化診断装置を示すブロック図である。この劣化診断装置50は、CPU51と、入力部52と、表示部53と、記憶装置54とを備えている。記憶装置54には劣化診断プログラムや、図3で後述する劣化特性などが記憶されている。また、記憶装置54には、劣化評価対象である供用運転中のホースの測定データも記憶されている。CPU51がこの劣化診断プログラムを実行することにより、あらかじめ作成した劣化特性を用いて供用運転中のホースの使用時間を推定し、既知の耐用時間と比較することでホースの劣化を評価する。評価結果は記憶装置54に記憶され、適宜、表示部53に表示することができる。
 ―劣化診断方法の原理―
ホースの劣化診断方法の原理について説明する。本発明による劣化診断方法では、樹脂材料の劣化に伴い、樹脂の硬さが増加する特性に着目して、測定したホースの外面硬さからホースの劣化程度を診断する。この際、ホースへの内圧負荷によりホース外面で測定される硬さが硬化すること、ホース温度の上昇によりホース外面で測定される硬さが軟化することを考慮する。具体的には、予め設定した基準温度T0における使用時間(ホースの劣化程度)に対応するホース外面の硬さ推移を表した、ホースの劣化評価図(図3)を作成し、硬さ測定時のホースの内圧および温度で補正した硬さ測定値Hcから基準温度T0における使用時間tuを算出する。この使用時間tuがホースの劣化程度であり、既知のホース耐久時間との比較により当該ホースの余寿命を評価できる。ホースの劣化評価図の作成およびホースの内圧および温度による硬さ測定値の補正の一実施形態を以下に示す。
 ―ホースの劣化評価図の作成―
本発明におけるホースの劣化評価図の作成では、加速条件下で実施する劣化試験で得られる樹脂材料の硬さの変化からホースの劣化評価図を短期間で作成する。なお、樹脂材料を含む高分子材料の劣化速度Kに及ぼす温度の影響については、アレニウスの式(1)が知られている。
Figure JPOXMLDOC01-appb-M000001
式(1)において、Eは活性化エネルギ、Rは気体定数、Tは劣化温度(絶対温度)、Aは温度に無関係な定数を示す。
 アレニウスの式(1)に従うと、劣化試験の温度Texamを高温にすることで、樹脂材料の劣化速度Kを加速することができる。温度Texamの条件で試験時間texamの間実施した劣化試験は、基準温度T0の条件でt時間実施した劣化試験に相当する(式(2))。
Figure JPOXMLDOC01-appb-M000002
ホースの劣化評価図は、複数の試験条件で実施した劣化試験の結果について、加速条件下における劣化試験時間を、式(2)によって、基準温度T0の条件下での時間tに変換して、ホースの硬さ測定結果を図3にプロットすることで作成する。
 具体的には、評価対象である供用運転中のホースと同一の供試体(サンプル)を準備する。この実施形態では、材質、形状、構造、大きさが同一のホースを供試体として使用する。評価対象であるホースの評価に必要な評価期間と試験を実施可能な期間を考慮して、劣化試験温度Texamを決定する。供試体の温度をTexamに維持する。所定時間ごとに、デュロメータにて供試体の外面硬さを計測し、経過時間と外面硬さとの関係を表す外面硬さ-経過時間のデータベースを作成する。経過時間を式(2)によって、基準温度T0の条件下での経過時間tに変換するとともに、外面硬さをプロットして、最小二乗法による近似式を作成して、ホースの劣化評価図として策定する。
 ―ホースの内圧および温度による硬さ測定値の補正―
ホースが実際に使用される装置・設備においては、ホースの温度Tmが、上記ホースの劣化評価図の基準温度T0と相違する場合がある。さらに、ホース内を流動する冷却水(冷却剤)によって内圧Pmがホースに負荷される。ホース外面で測定される硬さHmは、内圧の増加に伴い増大(硬化)し、温度の上昇に伴い減少(軟化)する。このため、温度と内圧の補正をせずに、測定した硬さHmを用いてホースの劣化評価図による評価を行うと、基準温度T0および基準内圧P0が異なるために、評価誤差が大となる。
 そこで、供用運転中に測定したホース21の外面硬さHmを、外面硬さ測定時におけるホース21の温度Tmと、内圧Pmに基づき、式(3)により、補正する。
    Hc=Hm-α(Pm-P0)+β(Tm-T0)    式(3)
 上記式(3)において、Hcはホース外面硬さの補正値を、P0およびT0はホースの劣化評価図の基準温度および基準内圧を、αは内圧の増加に伴うホースの硬化率を、βは温度の上昇に伴うホースの軟化率を示す。
 ―硬化率α、軟化率β―
 内圧によるホースの硬化率の係数αと温度によるホースの軟化率の係数βは以下のようにしてあらかじめ算出される。内圧の増加に伴うホースの硬化率αおよび温度の上昇に伴うホースの軟化率βは、ホースの種類毎に異なる。このため、予め、ホースの温度が一定の条件で内圧のみを変動させた場合の外面硬さの変化と、ホース内圧が一定の条件で温度のみを変動させた場合の外面硬さの変化を評価し、線形的に変化する領域に分類して、重回帰分析によりαおよびβを評価する。
 図4は、ホースの温度を一定とした状態での、ホースの外面硬さHとホースの内圧Pとの関係の一例を示す図である。図4に図示されるように、ホースの外面温度Tが一定の条件下では、ホース外面硬さHは、所定の内圧P2までは、ホース内圧Pの上昇と共に線形的に増大する。また、ホース内圧Pが所定の内圧P2を超えると、ホース外面硬さHは、ほぼ、一定値となり、変動しない。
 図5は、ホースの内圧を一定とした状態での、ホースの外面硬さHとホースの温度Tとの関係の一例を示す図である。図5に図示されるように、ホースの内圧Pが一定の条件下では、ホース外面硬さHは、測定区間の全領域において、ホースの外面温度Tの上昇と共に線形的に低下する。
 このような特性を有するホースにおいて、式(3)に示す係数α、βは、測定した硬さHの測定データを、内圧P2以下の領域と、内圧P2を超える領域に分割し、各分割領域に対して、硬さHを解、内圧Pおよび温度Tを変数とした重回帰分析により回帰式を求めて評価する。重回帰分析により導出される回帰式の内圧Pの係数がα、温度Tの係数がβである。
 なお、内圧が外面硬さに与える第1影響度として上述のように算出した硬化率αを使用し、外面温度が外面硬さに与える第2影響度として上述のように算出した軟化率βを使用したが、第1および第2影響度は硬化率、軟化率以外の影響度を使用してもよい。
 ―劣化評価の具体的手順―
次に、本発明によるホースの劣化診断方法の一実施の形態を具体的に説明する。図6は、本発明によるホース劣化診断の評価情報を登録する処理の手順を説明する図である。図3に示す劣化特性と式(3)で示す補正式は、あらかじめ図6に示す手順S1~S4で作成され劣化診断装置50に記憶される。
 手順S1において、上述したようにして劣化特性を作成する。手順S2において、作成した劣化特性を劣化診断装置50に登録する。手順S3において、上述したようにして外面硬さ補正式(3)を作成し、手順S4において式(3)を劣化診断装置50に登録する。各手順の詳細は上述したとおりである。
 図7のフローチャートで記述した劣化診断を行うアプリケーション(プログラム)は、図2に示した記憶装置54にあらかじめ登録されている。また、図3のグラフや式(3)も記録されている。以下の各ステップの実行主体はCPU51であり、各ステップの説明では実行主体についての説明は省略する。
 操作者の入力操作により入力部52から劣化診断アプリケーションが起動指令されると、劣化診断装置50は記憶装置54に登録されている劣化診断プログラムを起動する。劣化診断プログラムが起動されると、ステップS11において、表示部53の表示画面には、供用運転中のホースの計測データの入力を促すダイアローグが表示される。ステップS12において、計測データとしてホース外面硬さHm、温度Tm、内圧Pmを入力すると、ステップS13において、これらの入力データが記憶装置54の所定の記憶領域に記憶される。
 ホース21の外面硬さHmは、図1に図示されたホース21(22を含む)の適宜な位置を、例えば、デュロメータによって測定した計測値である。ホース21の温度Tmは、温度センサにより測定したホース21の外面の温度である。また、ホース21の内圧Pmは、圧力センサによって測定したデータである。ポンプ6a、6bに据え付けた圧力センサを用いることができる。ステップS14では、これらの計測データを式(3)に代入し、計測したホース外面硬さHmを修正外面硬さHcに変換する。ステップS15では、図3の劣化特性を参照して修正外面硬さHcに対応する使用時間tuを算出する。
 ステップS16では、評価対象であるホースの使用時間tuと、既知であるホースの耐久限界時間tendとを比較する。例えば、使用時間tuが耐久限界時間tendを超えていれば、ステップS17に進み、表示部53に「供用運転中のホースが交換時期です」のダイアローグを表示して操作者に警告する。この場合、音声にて警告したり、警告音を出力してもよい。使用時間tuが耐久限界時間tendを超えていなければ、ステップS18に進み、耐久限界時間tendから使用時間tuを減算した使用余寿命tiを演算して表示部53に「当該ホースの余寿命はti時間です」のダイアローグを表示して操作者に警告する。安全率をS(S>1)として考慮する場合、使用時間tu×Sが耐久限界時間tendより大きいか否かを比較する。使用余寿命tiは、耐用使用時間tendと使用時間tuとの差として算出したが、耐用使用時間tendに対する使用時間tuの割合として算出してもよい。
 -ホース内圧測定について-
 上記一実施の形態に示したホースの劣化診断方法では、ホース21の外面温度Tmおよび内圧Pmに対応させて、測定したホース21の外面硬さHmを補正する。しかし、ホース21の内圧Pmの測定において、圧力センサが設置された位置から測定する位置までの距離が長くなると、圧力損失により、測定位置におけるホース21の内圧Pmは、圧力センサにより測定された値とは異なるものとなる。このため、ホース21の長さや、測定位置に関わりなく、供用運転中のホース21の内圧を精度よく測定することが要求される。
 この測定方法を図8と図9を用いて説明する。図8は、ホースの外面に所定荷重(外荷重)F0を与えたときのホース内圧Pとホースの変形量δとの関係、すなわち、ホース内圧―変形量特性を示すグラフであり、この特性が予め作成されている。供用運転中のホースに外荷重F0を与えたときの変形量δを測定し、変形量δを上記ホース内圧―変形量特性に当てはめ、供用運転中のホースの内圧Pを推定する。
 (ホース内圧―変形量試験装置)
図9は、上述した内圧測定を行うホース内圧―変形量試験装置を説明する図である。なお、図8のホース内圧―変形量特性もこの装置で採取したデータに基づいて作成することができる。
 ホース内圧―変形量試験装置70は、ベースプレート71上にボルト81により固定された枠体72を備えている。枠体72は、ベースプレート71に取り付けられた固定部72aから上方に立ち上がる一対の側部72bと、一対の側部72bを連結する天板72cを有する、断面コ字形状に形成されている。天板72cの中央部には、天板72cを厚さ方向に貫通する雌ねじが形成されている。この雌ねじには、プレス昇降機構75のロッド75aの外周に形成された雄ねじが螺合され、プレス昇降機構75が枠体72に取り付けられている。
 プレス昇降機構75のロッド75aの下方には、枠体72の一対の側部72b間に跨がる長さの荷重負荷プレート76が配置されている。ベースプレート71、天板72cおよび荷重負荷プレート76は、互いに平行に配置されている。荷重負荷プレート76とプレス昇降機構75のロッド75aの下端75bとの間には、ロードセル73が介装されている。
 枠体72の一方の側部72bには、ホース変位ゲージ77が取り付けられている。ホース変位ゲージ77には、ホース21の変形量を読み取るための目盛り77aが付されている。荷重負荷プレート76には、ホース変位ゲージ77の目盛り77aの位置を示すための指示位置マーク76aが設けられている。
 ホース内圧―変形量試験装置70は、荷重負荷プレート76とベースプレート71との間に、ホース21を挿入可能な空間が形成される大きさに形成されている。
 (ホース内圧の測定方法)
上記ホース内圧―変形量試験装置70によるホース内圧の測定方法を説明する。ボルト81を取り外して枠体72をベースプレート71から分離する。測定対象のホース21とホース接地面との間にベースプレート71を挿入し、ホース21に枠体72を被せてボルト81で枠体72をベースプレート71に締結して一体化する。プレス昇降機構75を時計方向または反時計方向に回転し、荷重負荷プレート76とベースプレート71の間に、測定するホース21を挿通する。
 この状態で、ホース21の上部外面に荷重負荷プレート76を接触させる。この接触は、ホース21が変形することが無いように、荷重プレート76がホース21の外面に触れる程度にするこの時のロードセル73の出力値はゼロである。図9に図示されるように、ホース変位ゲージ77を、枠体72の側部72bに垂直方向に移動可能に取り付けておき、指示位置マーク76aが目盛り77aの「0」位置に対峙するようにホース変位ゲージ77の位置を調節する。この場合は、荷重を負荷したときホース変形量は、指示位置マーク76aが指示する目盛り77aの値を読み取ればよい。
 ホース変位ゲージ77が固定式の場合は、ロードセル73の出力値がゼロの時の目盛り77aを読み取っておき、荷重を負荷したときホース変形量は、指示位置マーク76aが指示する目盛り77から初期の目盛り77の読み取り値を差し引いた値とすればよい。
 そして、プレス昇降機構75を回転操作し、ホース21の外面からあらかじめ設定した荷重F0を負荷する。ロードセルの出力値を図示しない表示器で確認しながら荷重F0を負荷する。ホース21は、図9に二点鎖線で示すように、断面が円形から楕円形状に変形する。この時のホース21の変形量δを指示位置マーク76aで読み取る。この変形量δを、図8のホース内圧P―変形量δ特性に当てはめて、ホース21の内圧Pを得る。
 ホース21の変形量δの測定は、ホース21の長さ方向におけるどの位置においても、容易に、且つ、精度よく行うことができる。このため、ホース21の内圧Pmの計測精度が向上し、実測したホース21の外面硬さHmからホース21の外面硬さHcへの補正精度が向上する。これにより、ホースの劣化診断を精度の高いものとすることができる。このような工程を備えた劣化診断方法によれば次のような作用効果を得ることができる
 (1)本発明の一実施の形態では、次のようにして、供用運転中の樹脂製のホース21の劣化診断が行われる。供用運転中のホース21の内部には、所定圧で冷却液体が流動している。一実施形態の劣化診断方法は、ホースの外面硬さHmを計測する工程と、ホース21の外面温度Tmを計測する工程と、ホース21の内圧Pmを計測する工程と、時間の経過に対する外面硬さで示される劣化特性を作成する工程と、ホース21の内圧およびホースの外面温度に基づいて、計測したホース外面硬さHmを補正して補正外面硬さHcを演算する工程と、補正外面硬さHcを劣化特性に当てはめて推定使用時間tuを算出する工程とを備える。そして、算出された推定使用時間tuを用いてホース21の劣化を診断する。したがって、供用運転中におけるホース21の劣化診断が可能となる。その結果、装置・設備を停止させることなく供用運転中のホースの劣化を診断できるので、装置・設備の稼働率が向上する。
 (2)図9に示す内圧測定装置70を使用して、供用運転中のホース21に所定の外荷重F0を与え、その際の変形量δを計測し、この変形量δを図8に示した内圧P-変形量δ特性に当てはめることにより、ホース21の内圧Pを測定することができる。そのため、供用運転中のホース21の内圧Pの測定精度を高くすることができる。とくに、内圧の計測センサと外面硬さを測定する箇所とが離れている場合に正確な内圧が計測できるので、更に精度の高い劣化診断が可能となる。
 図2の劣化診断装置50は、ホースの外面硬さ、外面温度、および内圧をセットとする測定データと、時間の経過に対する外面硬さの劣化評価特性と、外面硬さの内圧に起因した第1影響度である硬化率と、外面硬さの外面温度に起因した第2影響度である軟化率とが記憶される記憶部54と、記憶部54に記憶したホース外面硬さを第1影響度と第2影響度とに基づいて補正して補正外面硬さとし、この補正外面硬さを劣化評価特性に当てはめて推定使用時間を算出する演算部51とを備える。
 ―変形例―
上記一実施の形態では、図6に図示されるように、ホース外面硬さの補正式(3)を、予め、劣化診断装置50に記憶させておくものとして例示した。しかし、ホース外面硬さの補正式(3)を、図7のステップS12で、劣化診断装置50に入力するようにしてもよい。つまり、ステップS12において、ホース外面硬さHm、計測時の温度Tmおよび内圧Pmとともにホース外面硬さの補正式(3)も入力するようにしてもよい。
 上記一実施の形態では、ホース外面硬さHm、計測時の温度Tmおよび内圧Pmを入力部52から入力するようにした。しかし、ホース外面硬さHm、計測時の温度Tmおよび内圧Pmを測定する測定器の出力を、管理室に設置したコンピュータに送信可能に設け、所定のタイミングで、コンピュータに取り込むようにしてもよい。
 上記一実施の形態では、原子力プラントの冷却水系に樹脂製のホース21を使用した場合で説明した。しかし、原子力プラント以外の工場や研究施設用に用いるホースの劣化診断にも本発明を用いることができる。また、冷却剤が流動する樹脂製ホースの劣化評価に限らず、種々の流体が流動して内圧が作用する樹脂製ホースの劣化評価、劣化診断に本発明を適用できる。
 その他、本発明は、上記一実施の形態に限定されるものではなく、発明の趣旨の範囲内で、種々の変更をすることが可能であり、供用運転中のホース外面硬さ、ホースの外面温度およびホース内圧をセットする測定データに基づいて、測定した外面硬さを外面温度および内圧に対応して補正し、この補正されたホース外面硬さを、予め取得した経過時間に対するホース外面硬さの関連を示す劣化特性に当てはめて推定使用時間を算出して劣化を診断するようにすればよい。
 したがって、劣化診断装置50ですべての診断を自動的に行う必要はない。たとえば、作業者は、試験時のホース外面温度Tm、内圧Pm、外面硬さHmを計測し、次いで、式(3)を用いて補正外面硬さHcを算出する。さらに作業者は、補正外面硬さHcを図3の劣化特性のグラフに当てはめて推定使用時間を読み取り、読み取った推定使用時間と既知の耐用限界時間とに基づいてホースの劣化を評価することもできる。このような劣化診断方法も本発明に含まれる。
 6a、6b  ポンプ
 10   原子炉建屋
 11   原子炉圧力容器
 20   冷却水系
 21、22  ホース
 50   劣化診断装置
 51   CPU
 52   入力部
 53   表示部
 54   記憶装置
 70   ホース内圧―変形量試験装置
 73   ロードセル
 75   プレス昇降機構

Claims (8)

  1.  内圧が作用する樹脂製ホースの劣化を診断する方法において、
     前記ホースの外面硬さを計測する工程と、
     前記ホースの外面温度を計測する工程と、
     前記ホースの内圧を計測する工程と、
     時間の経過に対する外面硬さで示される劣化特性を作成する工程と、
     前記計測したホースの内圧およびホースの外面温度に基づいて、前記計測したホース外面硬さを補正して補正外面硬さを演算する工程と、
     前記補正外面硬さを前記劣化特性に当てはめて推定使用時間を算出する工程とを備えることを特徴とするホースの劣化診断方法。
  2.  請求項1に記載のホースの劣化診断方法において、
     前記補正外面硬さを演算する工程は、
     前記内圧がホースの外面硬さに与える第1影響度と、前記外面温度がホースの外面硬さに与える第2影響度とに基づいて前記計測したホース外面硬さを補正して補正外面硬さを演算することを特徴とするホースの劣化診断方法。
  3.  請求項2に記載のホースの劣化診断方法において、
     前記補正外面硬さを演算する工程は、次式に基づいて行うことを特徴とするホースの劣化診断方法。
      Hc=Hm-α(Pm-P0)+β(Tm-T0)  
     但し、Hcはホース外面硬さの補正値を、P0およびT0は、ホースの劣化評価図の基準温度および基準内圧を、αは内圧の増加に伴うホースの硬化率を、βは温度の上層に伴うホースの軟化率を示す。
  4.  請求項1に記載のホースの劣化診断方法において、
     前記算出された推定使用時間を用いてホースの劣化を診断する工程とを備えることを特徴とするホースの劣化診断方法。
  5.  請求項4に記載のホースの劣化診断方法において、
     前記劣化を診断する工程は、
     前記ホースの劣化が限界使用時間に達しているか否かを判定する工程と、
     前記ホースの劣化が限界使用時間に達していないと判定されたとき、前記ホースの使用余寿命を演算する工程とを含むことを特徴とするホースの劣化診断方法。
  6.  請求項4または5に記載のホースの劣化診断方法において、
     前記劣化を診断する工程は、
     前記ホースの劣化が限界使用時間に達しているか否かを判定する工程と、
     前記ホースの劣化が限界使用時間に達していると判定されたとき、その旨の警告を行う工程とを含むことを特徴とするホースの劣化診断方法。
  7.  請求項1に記載のホースの劣化診断方法において、
     前記ホースの内圧を計測する工程は、
     ホース外面に所定の荷重を与えたときのホースの変形量と、この変形量を与えたときのホースの荷重との関係を示す変形量―内圧特性を作成する工程と、
     前記ホースに前記所定の荷重を与えたときの前記ホースの変形量を測定する工程と、
     測定した変形量を前記変形量―内圧特性に照合して前記ホースの内圧を算出する工程とを含むことを特徴とするホースの劣化診断方法。
  8.  内圧が作用する樹脂製ホースの劣化を診断する装置において、
     前記ホースの外面硬さ、外面温度、および内圧をセットとする測定データと、時間の経過に対する外面硬さで示される劣化特性と前記内圧がホースの外面硬さに与える第1影響度と、前記外面温度がホースの外面硬さに与える第2影響度とが記憶される記憶部と、
     前記記憶部に記憶したホース外面硬さを前記第1影響度と第2影響度とに基づいて補正して補正外面硬さとし、この補正外面硬さを前記劣化特性に当てはめて推定使用時間を算出する演算部とを備えることを特徴とするホースの劣化診断装置。
PCT/JP2013/069583 2012-09-24 2013-07-19 ホースの劣化診断方法、ホースの劣化診断装置 WO2014045695A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-209559 2012-09-24
JP2012209559A JP2014062876A (ja) 2012-09-24 2012-09-24 ホースの劣化診断方法、ホースの劣化診断装置

Publications (1)

Publication Number Publication Date
WO2014045695A1 true WO2014045695A1 (ja) 2014-03-27

Family

ID=50341021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069583 WO2014045695A1 (ja) 2012-09-24 2013-07-19 ホースの劣化診断方法、ホースの劣化診断装置

Country Status (2)

Country Link
JP (1) JP2014062876A (ja)
WO (1) WO2014045695A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002370A1 (ja) * 2015-06-30 2017-01-05 株式会社ブリヂストン 反力測定装置、劣化診断方法及び劣化診断装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964399B2 (ja) * 2015-09-02 2021-11-10 旭有機材株式会社 配管部材劣化診断方法及び装置
JP7396832B2 (ja) 2019-06-19 2023-12-12 株式会社ブリヂストン ホースの残存寿命予測方法及びホースの残存寿命予測システム
JP7549978B2 (ja) 2020-06-19 2024-09-12 日立Geニュークリア・エナジー株式会社 高分子材料の余寿命判定方法および検査方法
WO2023013308A1 (ja) * 2021-08-06 2023-02-09 株式会社ブリヂストン ホースの残存寿命予測方法、及びホースの残存寿命予測システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108940A (ja) * 1988-10-18 1990-04-20 Honda Motor Co Ltd ゴムホース劣化測定方法
JPH0627010A (ja) * 1992-07-09 1994-02-04 Sekisui House Ltd シート防水材の硬度計による劣化判定方法
JPH11160215A (ja) * 1997-12-02 1999-06-18 Asahi Chem Ind Co Ltd 建物屋根のシート防水材の劣化評価方法
JP2007263908A (ja) * 2006-03-30 2007-10-11 Jfe Steel Kk 油圧ホースの劣化診断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108940A (ja) * 1988-10-18 1990-04-20 Honda Motor Co Ltd ゴムホース劣化測定方法
JPH0627010A (ja) * 1992-07-09 1994-02-04 Sekisui House Ltd シート防水材の硬度計による劣化判定方法
JPH11160215A (ja) * 1997-12-02 1999-06-18 Asahi Chem Ind Co Ltd 建物屋根のシート防水材の劣化評価方法
JP2007263908A (ja) * 2006-03-30 2007-10-11 Jfe Steel Kk 油圧ホースの劣化診断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002370A1 (ja) * 2015-06-30 2017-01-05 株式会社ブリヂストン 反力測定装置、劣化診断方法及び劣化診断装置
US10605693B2 (en) 2015-06-30 2020-03-31 Bridgestone Corporation Reaction force measuring device, degradation diagnosing method and degradation diagnosing device

Also Published As

Publication number Publication date
JP2014062876A (ja) 2014-04-10

Similar Documents

Publication Publication Date Title
WO2014045695A1 (ja) ホースの劣化診断方法、ホースの劣化診断装置
US4935195A (en) Corrosion-erosion trend monitoring and diagnostic system
JP2006337144A (ja) 橋梁の疲労寿命診断方法及び診断支援装置
CN116413614A (zh) 检查辅助设备
EP3121584B1 (en) Method for predicting remaining service life of hose and method for diagnosing deterioration of hose
FI86765B (fi) Anordning foer detektering av aonglaosens drift.
JP2012058937A (ja) 原子力プラントの機器診断方法および機器診断装置
JP2011075373A (ja) 機器診断方法及び機器診断装置
CN102207366B (zh) 应变传感器结构及安装方法
US20130191038A1 (en) Method for quantifying corrosion at a pressure containing boundary
KR101187832B1 (ko) 증기 터빈의 수명예측방법
JP2014145657A (ja) 金属部材の寿命評価方法及び寿命評価装置
RU2619822C1 (ru) Способ контроля состояния конструкции инженерно-строительного сооружения
JP2016222387A (ja) 昇降機の診断方式
JP6781757B2 (ja) 漏れを診断するための方法および燃料電池システム
GB2531529A (en) Method for assessing the condition of piping and vessels
JP2023158383A (ja) 圧力容器の余命を評価する方法
KR101061938B1 (ko) 연료탱크의 누유 검사 시스템
RU2571018C2 (ru) Способ определения срока службы трубопровода
CN106414195B (zh) 用于检测机动车辆的制动系统的方法
KR100729029B1 (ko) 고온 고압 환경 피로 시험기
CN109477769B (zh) 评估复合构件损伤的方法
JP2016225379A5 (ja) 変圧器の余寿命診断法、余寿命診断装置および余寿命診断システム
JP4767184B2 (ja) ボイラー管および付属配管の健全性評価方法
AU2015333544B2 (en) Method of inspecting a degraded area of a metal structure covered by a composite repair and method of measuring a remaining wall thickness of a composite structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838433

Country of ref document: EP

Kind code of ref document: A1