WO2014045489A1 - Illumination light source and illumination device - Google Patents

Illumination light source and illumination device Download PDF

Info

Publication number
WO2014045489A1
WO2014045489A1 PCT/JP2013/002841 JP2013002841W WO2014045489A1 WO 2014045489 A1 WO2014045489 A1 WO 2014045489A1 JP 2013002841 W JP2013002841 W JP 2013002841W WO 2014045489 A1 WO2014045489 A1 WO 2014045489A1
Authority
WO
WIPO (PCT)
Prior art keywords
globe
led
light
base
led module
Prior art date
Application number
PCT/JP2013/002841
Other languages
French (fr)
Japanese (ja)
Inventor
考志 大村
倉地 敏明
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014045489A1 publication Critical patent/WO2014045489A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/005Sealing arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/506Cooling arrangements characterised by the adaptation for cooling of specific components of globes, bowls or cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/006Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate being distinct from the light source holder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an illumination light source and an illumination device, for example, an LED lamp and an illumination device using a light emitting element such as an LED (Light Emitting Diode).
  • a light emitting element such as an LED (Light Emitting Diode).
  • LEDs Since LEDs have high efficiency and long life, they are expected as new light sources such as lamps, and research and development of LED lamps using LEDs as light sources are being promoted.
  • a bulb-type LED lamp (bulb-shaped LED lamp) that replaces a bulb-type fluorescent lamp or an incandescent bulb, or a straight-tube LED lamp (straight-tube LED lamp) that replaces a straight-tube fluorescent lamp Etc.
  • Patent Document 1 discloses a conventional bulb-type LED lamp.
  • Patent Document 2 discloses a conventional straight tube LED lamp.
  • the LED lamp includes a housing made of glass or the like and an LED module arranged in the housing.
  • the LED module includes a base, an LED (light emitting element) disposed on the base, and a sealing resin that seals the LED.
  • the LED lamp there is a problem that heat is generated from the LED, and the luminous efficiency of the LED is lowered by this heat. Therefore, in order to improve the heat dissipation of the LED, it is conceivable to hermetically seal the casing in which the LED module is arranged and enclose helium gas having a high cooling effect therein.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an illumination light source and an illumination device that can suppress a decrease in luminous flux.
  • an illumination light source includes a hermetically sealed casing, a base disposed in the casing, and a light emitting element disposed on the base. And oxygen is sealed in the housing.
  • helium may be further enclosed in the housing.
  • nitrogen may be further enclosed in the housing.
  • a sealing member that covers the light emitting element may be further provided.
  • the sealing member may include a wavelength conversion material that converts a wavelength of light emitted from the light emitting element into a predetermined wavelength.
  • the sealing member may be a resin.
  • the resin may be a silicone resin.
  • a conductive adhesive member that is electrically connected to the light emitting element may be further provided.
  • a lead wire that is inserted from the outside of the housing while being hermetically sealed and connected to the base may be provided.
  • the aspect of the light source for illumination according to the present invention further includes a metal wiring formed on the base, and the metal wiring and the lead wire are electrically connected by the conductive adhesive member. It is good as it is.
  • the casing may be a glass bulb sealed with glass.
  • the light emitting element may be directly mounted on the base.
  • the light source may further include a container having a recess, the light emitting element may be mounted in the recess, and a sealing member may be sealed in the recess.
  • an aspect of the illumination device according to the present invention is characterized by including any one of the illumination light sources described above.
  • FIG. 1 is an external perspective view of a light bulb shaped lamp according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the light bulb shaped lamp according to the embodiment of the present invention.
  • 4A and 4B are diagrams showing a configuration around the LED module in the light bulb shaped lamp according to the embodiment of the present invention, wherein FIG. 4A is a top view, and FIGS. 4B, C, and D are sectional views. is there.
  • FIG. 5 is an enlarged cross-sectional view of an LED in the LED module of the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 1 is an external perspective view of a light bulb shaped lamp according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the light bulb
  • FIG. 6 is a diagram for explaining how the resin of the sealing member deteriorates in the LED module of the light bulb shaped lamp of Comparative Example 1.
  • FIG. 7 is a diagram showing an analysis result of the siloxane component in the LED peripheral portion (discolored portion) of the sealing resin shown in FIG.
  • FIG. 8A is a diagram showing a result of micro Raman analysis of the sealing resin in the peripheral portion of the LED in the initial state shown in FIG.
  • FIG. 8B is a diagram showing a result of micro Raman analysis of the sealing resin in the LED peripheral part (discolored part) after 1000 hours of lighting shown in FIG. 6B.
  • FIG. 9A is a diagram showing a life test result of a light bulb shaped lamp in which 100% helium is enclosed in a hermetically sealed globe.
  • FIG. 9A is a diagram showing a life test result of a light bulb shaped lamp in which 100% helium is enclosed in a hermetically sealed globe.
  • FIG. 9B is a diagram showing an acceleration test result of a light bulb shaped lamp in which 100% helium is enclosed in a hermetically sealed globe.
  • FIG. 10 is a diagram showing a life test result when air, helium, and a mixed gas of air and helium are sealed in a bulb lamp in which a globe is hermetically sealed.
  • FIG. 11 is an external perspective view of a light bulb shaped lamp according to Modification 1 of the embodiment of the present invention.
  • FIG. 12 is an exploded perspective view of a light bulb shaped lamp according to Modification 1 of the embodiment of the present invention.
  • FIG. 13 is an external perspective view of a light bulb shaped lamp according to a second modification of the embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of the LED module in the light bulb shaped lamp according to the third modification of the embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of an LED module in a light bulb shaped lamp according to Modification 4 of the embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view of the illumination device according to the embodiment of the present invention.
  • a light bulb shaped lamp will be described as an example of an illumination light source.
  • FIG. 1 is an external perspective view of a light bulb shaped lamp 1 according to the present embodiment.
  • FIG. 2 is an exploded perspective view of the light bulb shaped lamp 1 according to the present embodiment.
  • FIG. 3 is a cross-sectional view of the light bulb shaped lamp 1 according to the present embodiment.
  • the upper side of the paper is the front of the light bulb shaped lamp 1
  • the lower side of the paper is the rear of the light bulb shaped lamp 1
  • the left and right sides of the paper are the sides of the light bulb shaped lamp 1.
  • “rear” means the direction of the base with respect to the LED module 20
  • “front” means the direction of the side opposite to the base with respect to the LED module 20.
  • “side” means a direction parallel to the main surface of the base 21 of the LED module 20.
  • the alternate long and short dash line drawn along the vertical direction of the drawing indicates the lamp axis J (center axis) of the bulb-type lamp 1.
  • the lamp axis J is an axis serving as a rotation center when the light bulb shaped lamp 1 is attached to a socket of a lighting device (not shown), and coincides with the rotation axis of the base.
  • the light bulb shaped lamp 1 is a light bulb shaped LED lamp (LED light bulb) that is an alternative to a light bulb shaped fluorescent light or an incandescent light bulb. As shown in FIGS. 1 to 3, a light-transmitting globe 10 and a light source are used. An LED module 20, a heat sink 30, lead wires 40, a lighting circuit 50, a resin case 60, and a base 70 are provided.
  • LED light bulb LED light bulb
  • FIGS. 1 to 3 a light-transmitting globe 10 and a light source are used.
  • An LED module 20, a heat sink 30, lead wires 40, a lighting circuit 50, a resin case 60, and a base 70 are provided.
  • the globe 10 is hermetically sealed, and a predetermined gas is sealed in the globe 10 at a predetermined gas pressure (atmospheric pressure) different from the atmospheric pressure.
  • the predetermined gas includes oxygen gas.
  • the predetermined gas may be a mixed gas containing a gas other than oxygen together with oxygen gas.
  • the gas pressure in the globe 10 is lower than the atmospheric pressure (1 atm).
  • the volume (volume) in the globe 10 is 56000 mm 3
  • the sealed gas pressure in the globe 10 is 0.85 atm.
  • an envelope is constituted by the globe 10, the resin case 60 (first case portion 61), and the base 70. Further, in the light bulb shaped lamp 1 in the present embodiment, the LED module 20 is configured to have a brightness equivalent to the 60 W type.
  • the globe 10 is a hollow housing that houses the LED module 20 and is made of a translucent material that transmits light from the LED module 20 to the outside of the lamp. Therefore, the light of the LED module 20 that has entered the inner surface of the globe 10 passes through the globe 10 and is extracted outside the globe 10.
  • the globe 10 includes a globe body 11 and a sealing portion 12.
  • the globe body 11 has a substantially circular opening 11a before sealing, and the entire shape of the globe body 11 is a shape that bulges out from the opening 11a. More specifically, the shape of the globe body 11 is such that a part of a hollow sphere narrows while extending in a direction away from the center of the sphere, and the opening 11a is located at a position away from the center of the sphere. Is formed.
  • a glass bulb having the same shape as a general incandescent bulb can be used.
  • a glass bulb of A shape, G shape, E shape or the like can be used as the glove body 11.
  • the sealing part 12 is a plate-like member for closing the opening 11a of the globe main body part 11, and is, for example, a glass member for sealing having a substantially thin circular shape.
  • the sealing portion 12 constitutes the bottom surface of the globe 10.
  • the opening 11 a of the globe body 11 is closed so as to be covered by the sealing part 12.
  • the opening 11a of the globe body 11 is closed with the sealing portion 12, and the contact portion between the globe body 11 and the sealing portion 12 is welded or the like, so that the globe body 11 and the sealing portion 12 are connected. Join. Thereby, the airtight sealed glove 10 can be obtained.
  • two lead wires 40 and four metal support bars 41 are inserted into the sealing portion 12 while maintaining the airtight sealing state of the globe 10. Is supported and fixed to the sealing portion 12.
  • At least oxygen (O 2 ) is enclosed in the hermetically sealed globe 10.
  • oxygen in addition to oxygen, helium (He) having a high cooling effect and a thermal conductivity of 0.1513 [W / m ⁇ K] is enclosed. Since the inside of the glass-sealed globe 10 is kept airtight, the gas sealed in the globe 10 does not leak out of the globe 10. Further, oxygen (oxygen gas) and helium (helium gas) sealed in the globe 10 exist in the globe 10 so as to enclose the LED module 20. Note that helium in the globe 10 preferably accounts for 50% or more of the total gas present in the globe 10. In the present embodiment, a mixed gas of oxygen gas and helium gas is enclosed in the globe 10 at a gas pressure of 0.85 atm.
  • the globe 10 (the globe body 11 and the sealing portion 12) in the present embodiment is made of a material that is transparent to the light of the LED module 20.
  • a globe 10 for example, a glass valve (clear valve) made of silica glass that is transparent to visible light can be used.
  • the LED module 20 housed in the globe 10 can be viewed from the outside of the globe 10.
  • the glass bulb made of silica glass has a thermal conductivity of about 1.0 [W / m ⁇ K].
  • the globe 10 is not necessarily transparent to visible light, and the globe 10 may have a light diffusion function.
  • a milky white light diffusing film may be formed by applying a resin or a white pigment containing a light diffusing material such as silica or calcium carbonate to the inner surface or the outer surface of the globe 10.
  • the material of the globe 10 is not limited to a glass material, and a resin material such as a synthetic resin such as acrylic (PMMA) or polycarbonate (PC) may be used.
  • the LED module 20 is a light emitting module (light emitting device) having an LED (LED chip), and emits light when power is supplied through the lead wire 40. As shown in FIG. 3, the LED module 20 (base 21) is disposed in the globe 10 and is held in the hollow in the globe 10 by the heat sink 30.
  • the LED module 20 is preferably arranged at the center position of the spherical portion of the globe 10 (for example, inside the large diameter portion where the inner diameter of the globe 10 is large).
  • the light distribution characteristic of the light bulb shaped lamp 1 can be made to be a light distribution characteristic approximate to that of a general incandescent light bulb using a conventional filament coil. it can.
  • the heat sink 30 supports the LED module 20 and radiates heat generated by the LED module 20.
  • the heat sink 30 is disposed in the globe 10 without contact with the globe 10, and is supported by the globe 10 by four metal support bars 41 inserted through the sealing portion 12 of the globe 10.
  • heat generated in the LED module 20 can be conducted to the heat sink 30. Therefore, even if it is not in contact with the globe 10, by arranging the heat sink 30, it is possible to increase the area where the heat of the LED module 20 comes into contact with the helium gas enclosed in the globe 10. Can be improved.
  • the heat sink 30 is constituted by a support 31 and a support base 32.
  • the support column 31 functions as a support member that supports the base 21 of the LED module 20. Thereby, the LED module 20 is held at a predetermined position in the globe 10.
  • the support column 31 is provided so as to extend from the opening 11 a side of the globe body 11 toward the inner side (center) of the globe 10 (the globe body 11).
  • pillar 31 is a metal metal support
  • pillar 31 functions also as a heat radiating member for radiating the heat
  • the support column 31 is made of an aluminum alloy.
  • pillar 31 is not limited to what is comprised only with a metal like this Embodiment. For example, you may comprise the support
  • the column 31 is a long member, and for example, a columnar member can be used. One end of the column 31 in the longitudinal direction is connected to the LED module 20, and the other end is connected to the support base 32.
  • the support 31 and the LED module 20 can be fixed using, for example, an adhesive such as silicone resin.
  • the support 31 and the support base 32 can be fixed using an adhesive or a screw.
  • the support base (support plate) 32 is a support member that supports the support column 31 and is configured in a disk shape.
  • the ends of the four metal support bars 41 are attached to the back surface of the support base 32.
  • the support base 32 is supported by the metal support bar 41.
  • the support base 32 is provided with an insertion hole for inserting the lead wire 40.
  • the lead wire 40 is inserted into the insertion hole without contacting the support base 32.
  • the support base 32 is made of a metal material having a high thermal conductivity such as aluminum, like the support 31. Thereby, the heat of the LED module 20 can be efficiently conducted.
  • pillar 31 may be integrally shape
  • the two lead wires 40 are elongated metal wires (metal conductors) that supply power from the lighting circuit 50 to the LED module 20 for lighting the LEDs.
  • the lead wire 40 in the present embodiment is an electric metal bare wire that exposes the metal surface.
  • the glass sealing portion of the disc-shaped sealing portion 12 is a dumet wire, and both sides of the dumet wire are provided on both sides.
  • a metal wire constructed by welding nickel iron wires of approximately the same length and further welding a copper wire to the tip of the nickel iron wire in order to connect to the LED module 20 can be used.
  • the other lead wire 40 may be composed only of a dumet wire, and if it is a wire that can keep the glove 10 in an airtight sealed state, for example, an iron nickel 52% wire or the like is used without using the jumet wire. You may comprise.
  • the portion of the lead wire 40 between the LED module 20 and the support base 32 is covered with the tube 42 in order to cover the lead wire 40 from which the metal is exposed.
  • the insulation between the lead wire 40 through which the current flows and other members can be improved.
  • the tube 42 for example, an insulating pipe made of resin can be used.
  • Each lead wire 40 is inserted into the sealing portion 12 of the globe 10 and fixed to the sealing portion 12 while keeping the airtight sealing state of the globe 10.
  • Each lead wire 40 extends from the resin case 60 to the LED module 20 in the globe 10 via the sealing portion 12. That is, the lead wire 40 is configured to protrude from the sealing portion 12 to the inside of the globe 10 and from the sealing portion 12 to the inside of the resin case 60.
  • the lead wire 40 has one end electrically connected to the terminal of the LED module 20 and the other end electrically connected to the lighting circuit 50.
  • the two lead wires 40 are connected to the LED module 20 through the insertion holes provided in the support base 32 of the heat sink 30.
  • a cavity may be provided in the support 31 and each lead wire 40 may be connected to the LED module 20 so as to pass through the cavity.
  • the lead wire 40 is a bare metal wire, but a vinyl wire composed of a metal core wire and an insulating resin covering the core wire may be used as the lead wire 40.
  • the lead wire 40 and the LED module 20 are electrically connected via the exposed core wire.
  • the metal support bar 41 is a support member that supports the heat sink 30, and, like the lead wire 40, is inserted into the sealing portion 12 of the globe 10 while maintaining the hermetic sealing state of the globe 10, and is connected to the sealing portion 12. It is fixed.
  • each metal support bar 41 extends from the inside of the resin case 60 to the inside of the globe 10 through the sealing portion 12. That is, the lead wire 40 is configured to protrude from the sealing portion 12 to the inside of the globe 10 and from the sealing portion 12 to the inside of the resin case 60.
  • the metal support bar 41 in the present embodiment uses a dumet wire as the glass sealing portion of the sealing portion 12, and welds nickel iron wires of approximately the same length on both sides of the dumet wire.
  • the metal wire comprised can be used.
  • the metal support bar 41 may be composed only of a dumet wire, or may be composed of, for example, an iron-nickel 52% wire or the like without using a jumet wire as long as the wire can be kept airtight. I do not care.
  • the metal support bar 41 also functions as a heat radiating member that radiates the heat of the LED module 20 conducted to the heat sink 30 to the outside of the globe 10. That is, the heat of the LED module 20 conducted to the metal support bar 41 through the heat sink 30 is transmitted through the globe 10 that fixes the metal support bar 41 or through a portion of the metal support bar 41 that protrudes outside the globe 10. To dissipate heat. In addition, the current for turning on the LED does not flow through the metal support bar 41.
  • the lighting circuit 50 is a drive circuit (circuit unit) for lighting the LEDs of the LED module 20, and is covered with a resin case 60.
  • the lighting circuit 50 includes a circuit that converts AC power fed from the base 70 into DC power, and supplies the converted DC power to the LEDs of the LED module 20 via the two lead wires 40.
  • the lead wire 40 and the lighting circuit 50 are electrically connected via another lead wire (vinyl wire or the like), but the lead wire 40 may be directly connected to the lighting circuit 50.
  • the lighting circuit 50 includes, for example, a circuit board 51 and a plurality of circuit elements (electronic components) 51 mounted on the circuit board.
  • the circuit board 51 is a printed board on which metal wiring is patterned, and electrically connects a plurality of circuit elements 52 mounted on the circuit board 51.
  • the circuit board 51 is arranged in a posture in which the main surface is orthogonal to the lamp axis J.
  • the circuit element 52 is, for example, various capacitors, resistor elements, rectifier circuit elements, coil elements, choke coils (choke transformers), noise filters, diodes, or integrated circuit elements, and the lighting circuit 50 includes these circuit elements. It is configured by appropriately selecting from the inside.
  • the light bulb shaped lamp 1 is not necessarily provided with the lighting circuit 50.
  • the lighting circuit 50 a dimmer circuit, a booster circuit, and the like may be appropriately selected and combined.
  • the resin case 60 is an insulating case (circuit holder) for housing the lighting circuit 50. As shown in FIGS. 2 and 3, the resin case 60 has a first case portion 61 having a large-diameter cylindrical shape and a second case having a small-diameter cylindrical shape. It is comprised by the case part 62. FIG.
  • the resin case 60 is made of, for example, polybutylene terephthalate (PBT).
  • the second case portion 62 is configured such that the outer peripheral surface is in contact with the inner peripheral surface of the base 70, and a screwing portion for screwing with the base 70 is formed on the outer peripheral surface of the second case portion 62. ing.
  • the base 70 is a power receiving unit that receives power for causing the LEDs of the LED module 20 to emit light from the outside of the light bulb shaped lamp 1.
  • the base 70 receives AC power through two contact points, and the received power is input to the power input unit of the lighting circuit 50 via a lead wire.
  • the base 70 is supplied with AC power from a commercial power supply (AC 100 V).
  • AC 100 V commercial power supply
  • the base 70 is attached to a socket of a lighting fixture (lighting device) and receives AC power from the socket. Thereby, the light bulb shaped lamp 1 (LED module 20) is turned on.
  • the base 70 has a metal bottomed cylindrical shape (cap shape), and includes a shell part whose outer peripheral surface is a male screw and an eyelet part attached to the shell part via an insulating part.
  • a screwing portion for screwing into the socket of the lighting device is formed on the outer peripheral surface of the base 70, and a screwing portion for screwing with the resin case 60 is formed on the inner peripheral surface of the base 70.
  • the base 70 is made of metal, and the heat conducted to the base 70 is radiated to the lighting fixture. Note that heat transmitted to the resin case 60 and heat generated from the lighting circuit 50 are conducted to the base 70.
  • the type of the base 70 is not particularly limited, but in the present embodiment, a screwed type Edison type (E type) base is used.
  • E type screwed type Edison type
  • As the base 70 for example, E26 type, E17 type, or E16 type can be used.
  • a plug-type base may be used as the base 70.
  • FIG. 4 is a diagram showing a configuration around the LED module 20 in the light bulb shaped lamp 1 according to the present embodiment.
  • FIG. 4A is a plan view when the LED module 20 is viewed from above
  • FIG. 4B is a cross-sectional view of the LED module 20 taken along line XX ′ in FIG. 4C
  • FIG. 4D is a cross-sectional view of the LED module 20 taken along the line ZZ ′ in FIG. FIG.
  • the LED module 20 is a light emitting module (light emitting device) that emits light mainly toward the front and sides.
  • a COB Chip On Board
  • a bare chip is directly mounted on the surface of the base 21.
  • the LED module 20 includes a base 21, an LED (light emitting element) 22 mounted on the base 21, and a sealing member 23 for sealing the LED 22. Is provided. Further, the LED module 20 includes a metal wiring 24, a wire 25, a terminal 26, and a conductive adhesive member 27.
  • the base 21 is a mounting substrate (LED mounting substrate) for mounting the LED 22, and a first main surface (front side surface) on which the LED 22 is mounted and a second main surface facing the first main surface. And a main surface (back side surface).
  • the base 21 is a rectangular plate-like substrate, and a translucent substrate or a non-translucent substrate can be used.
  • the base 21 is, for example, a ceramic substrate made of Al 2 O 3 (alumina) or AlN (aluminum nitride), a resin substrate, a glass substrate, a flexible substrate, a resin-coated metal substrate (metal base substrate), or the like.
  • the flexible substrate for example, a substrate in which a resin layer is formed on both surfaces of a thin metal plate such as aluminum can be used.
  • the long side is 25 mm
  • the short side is 18 mm
  • the thickness is 1 mm.
  • the base 21 is a translucent substrate having translucency with respect to visible light.
  • the light of the LED 22 is transmitted through the inside of the base 21 and is emitted from the surface (back side surface) on which the LED 22 is not mounted. Therefore, even when the LED 22 is mounted only on the first main surface (front side surface) of the base 21, light is emitted from the second main surface (back side surface). Optical characteristics can be obtained. Moreover, since light can be emitted from the LED module 20 in all directions, it is possible to realize all light distribution characteristics.
  • a substrate having a high light transmittance for example, a substrate having a total transmittance of 80% or more for visible light, or transparent to visible light (that is, a state in which the other side can be seen through the other side with a very high transmittance)
  • Substrate can be used.
  • a translucent substrate a translucent ceramic substrate made of polycrystalline alumina or aluminum nitride, a transparent glass substrate made of glass, a quartz substrate made of crystal, a sapphire substrate made of sapphire, or a transparent resin material made of transparent resin material A resin substrate or the like can be used.
  • a substrate having a light reflectance of 50% or more with respect to the light emitted from the LED 22 for example, a ceramic substrate mainly composed of any one of Al 2 O 3 , MgO, SiO, and TiO 2 is used. It can also be used.
  • a substrate having a low light transmittance with respect to the light emitted from the LED 22 for example, a white substrate such as a white alumina substrate having a total transmittance of 10% or less, a metal substrate, or the like can be used.
  • a white substrate such as a white alumina substrate having a total transmittance of 10% or less, a metal substrate, or the like
  • a substrate having a low light transmittance it is possible to suppress light from being transmitted through the base 21 and emitted from the second main surface, and it is possible to suppress color unevenness. Further, since an inexpensive white substrate can be used, cost reduction can be realized.
  • a polycrystalline ceramic substrate made of sintered alumina (Al 2 O 3 ) having a total transmittance of 90% or more for visible light is used as the base 21.
  • the base 21 is provided with through holes 21 a and 21 b penetrating the base 21.
  • the through-hole 21a is provided to fit the base 21 and the convex portion 30a of the heat sink 30 (support 31).
  • the LED module 20 is fixed to the heat sink 30 by fitting the convex portion 30a of the heat sink 30 into the through hole 21a.
  • the through hole 21 a is provided with a rectangular shape in plan view at the center of the base 21.
  • two through holes 21b are provided for electrical connection with the two lead wires 40.
  • the through holes 21b are provided at both ends of the base 21 in the longitudinal direction.
  • the through hole 21b has a circular shape in plan view.
  • the LED 22 is an example of a light emitting element, and is a semiconductor light emitting element that emits light with a predetermined power. In the present embodiment, the same LED is used for all of the plurality of LEDs, for example, blue LED chips that emit blue light when energized.
  • the blue LED chip for example, a gallium nitride based semiconductor light emitting device having a central wavelength of 440 nm to 470 nm, which is made of an InGaN based material, can be used.
  • the LEDs 22 form a plurality of rows along the long side direction of the base 21 on the first main surface (front side surface) of the base 21. A plurality of them are implemented.
  • the plurality of LEDs 22 are configured as six element rows in parallel.
  • the plurality of LEDs 22 in each element array are linearly arranged at the same pitch, and are connected in series.
  • column is connected in parallel.
  • one element row can be constituted by eight LEDs (bare chips), and six of this element row can be provided (total number of LEDs 48).
  • FIG. 5 is an enlarged cross-sectional view around the LED (LED chip) in the LED module 20 of the light bulb shaped lamp 1 according to the embodiment of the present invention.
  • the LED 22 includes a sapphire substrate 122 a and a plurality of nitride semiconductor layers 122 b that are stacked on the sapphire substrate 122 a and have different compositions.
  • a cathode electrode 122c and an anode electrode 122d are provided at both ends of the upper surface of the nitride semiconductor layer 122b.
  • a wire bond portion 122e is provided on the cathode electrode 122c, and a wire bond portion 122f is provided on the anode electrode 122d.
  • the cathode electrode 122c of one LED 22 and the anode electrode 122d of the other LED 22 are connected by a wire 25 via wire bond portions 122e and 122f.
  • the LED 22 is fixed on the base 21 with a translucent chip bonding material 122g so that the surface on the sapphire substrate 122a side faces the first main surface of the base 21.
  • a translucent chip bonding material 122g a silicone resin containing a filler composed of metal oxide can be used.
  • the sealing member 23 is made of a resin and configured to cover the LED. As shown in FIGS. 4A, 4 ⁇ / b> C, and 4 ⁇ / b> D, the sealing member 23 collectively seals each element row composed of the plurality of LEDs 22 and seals the metal wiring 24. . That is, six sealing members 23 are formed in parallel. Each of the six sealing members 23 is linearly provided on the first main surface of the base 21 along the arrangement direction (column direction) of the plurality of LEDs 22.
  • the sealing member 23 is a wavelength conversion member that converts the wavelength (color) of light emitted from the LED.
  • the sealing member 23 is made of an insulating resin material containing phosphor particles as a wavelength conversion material. The phosphor particles in the sealing member 23 are excited by light emitted from the LED 22 and emit light of a desired color (wavelength).
  • the phosphor particles when the LED 22 is a blue LED that emits blue light, phosphor particles that convert the wavelength of the blue light into yellow light are used in order to emit white light from the sealing member 23.
  • YAG (yttrium / aluminum / garnet) yellow phosphor particles can be used as the phosphor particles.
  • the yellow phosphor particles emit fluorescent light using blue light as excitation light.
  • the blue light which was not absorbed by the yellow phosphor particles (the wavelength was not converted) and the yellow light which was wavelength-converted by the yellow phosphor particles were diffused and mixed in the sealing member 23.
  • the white light is emitted from the sealing member 23.
  • phosphor particles that emit fluorescence other than yellow, such as red phosphor particles may be included as necessary.
  • each sealing member 23 a transparent resin material such as silicone resin or an organic material such as fluorine resin can be used.
  • the sealing member 23 is made of a phosphor-containing resin in which predetermined phosphor particles are dispersed in a silicone resin, and can be formed by applying to the surface of the base 21 with a dispenser.
  • the shape of the cross section perpendicular to the longitudinal direction of the sealing member 23 is substantially semicircular.
  • the phosphor-containing resin amount of the sealing member 23 applied on the base 21 is 100 mg.
  • a light diffusing material such as silica particles may be dispersed in each sealing member 23.
  • the metal wiring 24 is a conductive wiring through which a current for causing the LED to emit light flows, and is patterned on the surface of the base 21 in a predetermined shape. As shown in FIGS. 4A and 4D, the metal wiring 24 is formed on the first main surface of the base 21.
  • the metal wiring 24 is formed to connect a plurality of LEDs in each LED element row in series.
  • the metal wiring 24 is formed in an island shape between adjacent LEDs.
  • the metal wiring 24 is formed to connect the element rows in parallel.
  • the metal wiring 24 can be formed, for example, by patterning or printing a metal film made of a metal material.
  • a metal material of the metal wiring 24 for example, silver (Ag), tungsten (W), copper (Cu), or the like can be used.
  • the surface of the metal wiring 24 may be plated with nickel (Ni) / gold (Au) or the like.
  • the metal wiring 24 exposed from the sealing member 23 is preferably covered with a glass film (glass coat film) made of a glass material or a resin film (resin coat film) made of a resin material, except for the terminals 26.
  • a glass film glass coat film
  • resin film resin coat film
  • the wire 25 is an electric wire such as a gold wire. As shown in FIG. 4D, the wire 25 connects the LED 22 and the metal wiring 24. As described with reference to FIG. 5, the wire 25 bonds the wire bonding portion 122 e (122 f) provided on the upper surface of the LED 22 to the metal wiring 24 formed adjacent to both sides of the LED 22.
  • the entire wire 25 may be embedded in the sealing member 23 so as not to be exposed from the sealing member 23 as in the present embodiment.
  • the terminal 26 is an external connection electrode (connection land) that is soldered to the lead wire 40. As shown in FIG. 4B, the terminal 26 is formed in a predetermined shape on the first main surface of the base 21 so as to surround the through hole 21b. The terminal 26 is formed continuously with the metal wiring 24 and is electrically connected to the metal wiring 24. The terminal 26 is patterned simultaneously with the metal wiring 24 using the same metal material as the metal wiring 24.
  • the terminal 26 is a power feeding unit of the LED module 20 and receives power for causing the LED 22 to emit light from the outside of the LED module 20.
  • the received electric power is supplied to each LED 22 via the metal wiring 24 and the wire 25.
  • the conductive adhesive member 27 is, for example, a conductive adhesive such as solder or silver paste. As shown in FIG. 4B, the conductive adhesive member 27 electrically connects the terminal 26 and the lead wire 40. Thus, the LED module 20 and the lead wire 40 are electrically and physically connected by the conductive adhesive member 27.
  • solder is used as the conductive adhesive member 27, and the amount of solder per location of the terminal 26 is 25 mg (the amount of internal flux is about 0.75 mg).
  • the conductive adhesive member 27 is formed on the surface of the terminal 26 so as to cover the side surface at the tip of the lead wire 40 with respect to the lead wire 40 inserted through the through hole 21b.
  • the conductive adhesive member 27 is provided so as to close the opening on the first main surface side of the base 21 in the through hole 21b.
  • the tip of the lead wire 40 is provided so as to be exposed from the surface of the conductive adhesive member 27.
  • the tip of the lead wire 40 is provided. May be completely covered by the conductive adhesive member 27.
  • the light bulb shaped lamp 1 having the above configuration shown in FIGS. 1 to 3 can be manufactured, for example, as follows.
  • a sealing part 12 made of a disk-shaped glass plate provided with a glass capillary is prepared by passing two lead wires 40 and four metal support bars 41 therethrough.
  • the lead wire 40 and the LED module 20 are electrically and physically connected, and the heat sink 30 and four metal support bars are connected.
  • the LED module 20 and the heat sink 30 are inserted into the globe body 11, and the opening 11 a of the globe body 11 is closed by the sealing portion 12 configured as described above. And in this state, the edge of the sealing part 12 and the edge of the opening 11a of the globe main-body part 11 are glass-welded. Thereby, the glove body part 11 and the sealing part 12 are joined, and the glove 10 can be obtained.
  • the glass (tubule) is used to replace the gas (air) in the globe 10 with a predetermined gas (oxygen, helium), and the globe 10 is filled with the predetermined gas to seal the glass tube.
  • a predetermined gas oxygen, helium
  • the globe 10 hermetically sealed by glass sealing can be obtained.
  • the inside of the globe 10 thus obtained is a sealed space where gas cannot enter and exit from the outside.
  • the bulb-shaped lamp 1 can be assembled by combining the globe 10 hermetically sealed with the other components such as the lighting circuit 50, the resin case 60, and the base 70.
  • LED lamps such as light bulb-shaped LED lamps have a problem that the light emission efficiency of the LEDs decreases due to the heat generated by the LEDs themselves. Therefore, the inventors of the present application have considered that the globe is hermetically sealed in order to improve the heat dissipation of the LED, and helium gas having a high cooling effect is sealed therein. Specifically, the LED module 20 shown in FIG. 4 was placed in the globe 10, helium gas was replaced and sealed in the globe body 11, and the opening 11 a of the globe body 11 was glass sealed. A bulb-type lamp was produced using the hermetically sealed glove. Note that the inside of the globe 10 is an inert atmosphere of 100% helium gas.
  • the luminous flux of the LED module 20 decreases when the light bulb shaped lamp thus produced is kept on.
  • the cause is the deterioration of the sealing member 23 covering the LED 22.
  • FIG. 6 is a diagram for explaining how the resin of the sealing member deteriorates in the LED module of the light bulb shaped lamp of Comparative Example 1 (hermetic sealing).
  • a light bulb shaped lamp of Comparative Example 1 was prepared in which the LED module 20 was placed in a hermetically sealed globe 10 and helium gas was sealed. Further, as the light bulb shaped lamp of Comparative Example 2, a lamp in which the LED module 20 was arranged in the globe 10 that was not hermetically sealed was prepared. In Comparative Example 1 and Comparative Example 2, the same LED module 20 was used, and a silicone resin containing yellow phosphor particles was used as the sealing member 23 in both cases.
  • the sealing member 23 was locally discolored. Specifically, the LED peripheral portion (LED mounting portion) 23X of the sealing member 23 is colored brown.
  • the junction temperature Tj of the LED 22 is 210 ° C., and the continuous lighting time is 1000 hours.
  • FIG. 7 is a diagram showing an analysis result of the siloxane component in the LED peripheral portion 23X (discoloration portion) of the sealing member 23 shown in FIG. 6B.
  • FIGS. 8A and 8B are diagram showing the results of micro Raman analysis of the sealing member 23 in the peripheral portion of the LED in the initial state shown in FIG.
  • FIG. 8B is a figure which shows the result of the micro Raman analysis of the sealing member 23 in LED peripheral part 23X (color change part) after 1000-hour continuous lighting shown in FIG.6 (b).
  • the sealing member 23 in the initial state is irradiated with He—Ne laser light having a wavelength of 633 nm.
  • He—Ne laser light having a wavelength of 633 nm.
  • no particularly strong fluorescence was observed.
  • the sealing member 23 after 1000 hours of continuous lighting is irradiated with He—Ne laser light having a wavelength of 633 nm. Strong fluorescence was observed in the portion 23X (discolored portion). When the distribution of fluorescence was analyzed with the laser power weakened, it was found that there was a correlation between fluorescence and discoloration.
  • an aromatic compound or a flux can be considered.
  • the aromatic compound may be an aromatic epoxy contained in a die bond agent or other adhesive when mounting an LED.
  • an aromatic compound the acetone etc. which are contained in the washing
  • the flux (solder flux) is used when the terminal 26 of the LED module 20 and the lead wire 40 are connected by the conductive adhesive member 27 (solder), and remains in the connection portion. Such organic matter remains in the LED module 20 in some form when the LED module 20 is manufactured.
  • the organic substance (organic gas) remaining in the LED module 20 is mixed in the sealing member 23, for example, is thermally decomposed and diffused by the heat of the LED, and deterioration is promoted by the light of the LED.
  • the LED peripheral portion 23X of the sealing member 23 changes color. That is, the organic matter such as flux mixed in the sealing member 23 changes color in the sealing member 23.
  • organic substances such as flux may be present in the base 21 and the conductive adhesive member 27, for example.
  • a silicone resin containing 0.2 wt% flux was prepared.
  • the silicone resin contaminated with the flux was irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 30 mJ / cm 2 for 72 hours, the silicone resin turned brown. This is presumably because abietic acid (organic substance) contained in the flux caused browning phenomenon due to ultraviolet irradiation, causing discoloration and fluorescence, and the discoloration substance was generated in the silicone resin. This means that a carbon-based organic substance having a conjugated system exists in the silicone resin.
  • the discolored silicone resin was continuously irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 110 mJ / cm 2 for 24 hours, before being decolored (bleached) and irradiated with ultraviolet rays. Returned to the state.
  • the reason why the flux-containing silicone resin is once discolored and then decolorized is considered to be that the discolored substance produced by the browning phenomenon has been oxidatively decomposed (reduced) by oxygen around the silicone resin and has become colorless.
  • the present invention has been made based on such knowledge. That is, the inventors of the present application have found a new problem that the sealing member is discolored by hermetically sealing (sealing) the globe, and as a result of intensive studies to solve this problem, the hermetically sealed globe The idea of enclosing oxygen (O 2 ) gas in 10 could be obtained.
  • FIG. 9A is a diagram showing a life test result of a light bulb shaped lamp in which 100% helium is enclosed in a hermetically sealed globe.
  • FIG. 9B is a figure which shows the acceleration test result of the same bulb-type lamp.
  • the volume in the globe was 56000 mm 3 and the sealed gas pressure in the globe was 0.85 atm.
  • the light flux gradually decreases in the light bulb shaped lamp in which 100% helium is sealed in a hermetically sealed globe.
  • the junction temperature of the LED also increases, and it can be seen that after 2000 hours, the initial value has increased from 125 ° C. by about 5 ° C.
  • FIG. 9B shows the result of an acceleration test using a bulb-type lamp similar to FIG. 9A (with 100% helium enclosed in a hermetically sealed glove) to increase the temperature load and accelerate the life deterioration.
  • in the figure, it can be seen from this experimental result that the luminous flux clearly decreases and the junction temperature of the LED increases.
  • FIG. 10 shows a bulb-type lamp in which a globe is hermetically sealed, in which 100% of air is enclosed ( ⁇ ), 100% of helium is enclosed ( ⁇ ), and 20% air and 80% helium. It is a figure which shows the life test result about ( ⁇ ) when enclosing the mixed gas of.
  • the luminous flux hardly decreases even when the lamp is lit for 300 hours in the case of only air ( ⁇ ) and in the case of the mixed gas (air / helium) ( ⁇ ). That is, it can be seen that the decrease in the luminous flux can be suppressed if at least oxygen is enclosed in the globe 10.
  • the light beam is slightly decreased in the initial stage, it is considered that the organic matter mixed in the sealing member 23 is once discolored to decrease the light beam, and then the organic matter is oxidized and decomposed to return the light beam to the original state. .
  • the air in the globe 10 may be at least 20% of the total gas existing in the globe 10. Moreover, considering that the oxygen content contained in the air is about 20%, the oxygen enclosed in the globe 10 may be at least about 4% with respect to the total gas present in the globe 10. I understand that.
  • the globe 10 Since the globe 10 is hermetically sealed, once oxygen is sealed, the globe 10 is not additionally supplemented with oxygen (air). In spite of this, in FIG. 10, the light flux does not decrease because all the organic substances contained in the sealing member 23 are oxidized and decomposed. That is, the organic matter discolored by the light of the LED is decomposed into oxygen and becomes water and carbon dioxide, and there is no substance that changes color.
  • oxygen gas is sealed in the hermetically sealed globe 10, so that the organic matter mixed in the sealing member 23 is oxidized. Can be disassembled. Thereby, since it can suppress that the sealing member 23 discolors, it can suppress that the light beam of the LED module 20 falls.
  • an increase in the junction temperature of the LED 22 can also be suppressed by oxidizing and decomposing the organic matter mixed inside the sealing member 23.
  • the glove 10 is hermetically sealed and the hermeticity in the glove 10 is maintained. Thereby, it can prevent that water, water vapor
  • the light bulb shaped lamp 1 it is preferable to enclose helium gas in the globe 10 in addition to oxygen gas.
  • Helium has a relatively high thermal conductivity among gases and has an excellent cooling effect. Therefore, when helium is enclosed in the globe 10, the heat generated in the LED module 20 (LED 22) is efficiently conducted and radiated into the gas containing helium in the globe 10. Since the thermal conductivity of the globe 10 is higher than the thermal conductivity of helium, the heat generated in the LED module 20 (LED 22) is efficiently conducted to the globe 10 through a gas containing helium, and the bulb 10 emits light from the bulb 10. Heat is radiated to the outside of the shaped lamp 1.
  • LED module 20 LED22
  • produces in LED module 20 LED22
  • LED22 can be thermally radiated efficiently, it can suppress that the luminous efficiency of LED22 falls with heat.
  • a light bulb-type LED lamp that can further suppress a decrease in luminous flux can be realized.
  • nitrogen (N 2 ) gas may be enclosed in the globe 10 in addition to oxygen gas.
  • Nitrogen has a higher dielectric breakdown voltage than air, so that the insulation can be improved by enclosing nitrogen gas in the globe 10.
  • the molecular weight of nitrogen gas is smaller than the average molecular weight of air, an improvement in heat dissipation can be expected.
  • Nitrogen gas may be enclosed in the globe 10 together with helium gas and oxygen gas.
  • gas which can improve heat dissipation
  • gas (gas) whose molecular weight is smaller than the average molecular weight of air should just be sufficient
  • hydrogen gas other than helium gas and nitrogen gas.
  • FIG. 11 is an external perspective view of a light bulb shaped lamp according to Modification 1 of the embodiment of the present invention.
  • FIG. 12 is an exploded perspective view of a light bulb shaped lamp according to Modification 1 of the embodiment of the present invention.
  • the light bulb shaped lamp 2 includes a globe 10A, an LED module 20, a pair of lead wires 40A, a lighting circuit 50, and a base 70.
  • circuit elements in the lighting circuit 50 are not shown.
  • the globe 10A includes a globe body 11 and a sealing portion 12A.
  • the glove body 11 is the same as the above embodiment and has an opening 11a.
  • the sealing portion 12 ⁇ / b> A is a stem provided so as to extend from the opening 11 a of the globe body 11 toward the inside of the globe body 11.
  • the sealing part 12A in the present embodiment can be the same as a glass stem used in a general incandescent bulb.
  • the sealing portion 12A can be configured using soft glass that is transparent to visible light. Thereby, it can suppress that the light which generate
  • the flared portion 12Aa which is the end of the sealing portion 12A on the base side, is formed in a flared shape so as to coincide with the shape of the opening 11a of the glove main body portion 11, and the glove main body. It joins to the opening 11a so that the opening 11a of the part 11 may be plugged up. Specifically, it can be joined by welding the flare portion 12Aa of the sealing portion 12A and the opening 11a of the globe main body portion 11. Thereby, the globe 10A can be hermetically sealed. A part of each of the two lead wires 40A is sealed to the sealing portion 12A.
  • the two lead wires 40A are electric wires for holding and feeding, hold the LED module 20 at a fixed position in the globe 10A, and supply the power supplied from the base 70 to the LED module 20.
  • each lead wire 40A is electrically connected to the terminal 26 of the LED module 20 by solder or the like.
  • the other end of each lead wire 40 ⁇ / b> A is electrically connected to the power output unit of the lighting circuit 50.
  • Each lead wire 40A is constituted by, for example, a composite wire in which an internal lead wire, a dumet wire (copper-coated nickel steel wire), and an external lead wire are joined in this order.
  • the lead wire 40A is not necessarily a composite wire, and may be a single wire made of the same metal wire as the lead wire 40 described above.
  • FIG. 13 is an external perspective view of a light bulb shaped lamp according to a second modification of the embodiment of the present invention.
  • the light bulb shaped lamp 3 includes a globe 10, an LED module 20A, a heat sink 30A, a lighting circuit 50 (not shown), a resin case 60, a base 70, and a lead. And a light column 80.
  • the LED module 20A is, for example, a surface mount type (SMD) LED module, which includes a container having a recess, one or a plurality of LEDs (LED chips) mounted in the recess, and a recess. It is comprised with the sealing member (phosphor containing resin) enclosed in the inside.
  • SMD surface mount type
  • the LED module 20A is disposed on the heat sink 30A, and is configured such that light emitted from the LED module 20A enters the light guide column 80.
  • the heat sink 30A can be configured by only the support base 32 in the above-described embodiment, for example.
  • the light guide column 80 is, for example, a light guide body made of a highly light-transmitting resin such as an acrylic resin, and is configured to extend inward of the globe 10.
  • the light guide column 80 in the present embodiment is a long rectangular column.
  • the light guide column 80 radiates light incident from the LED module 20 ⁇ / b> A from the entire surface of the light guide column 80 by internally reflecting and scattering the light.
  • the surface of the light guide column 80 may be processed to form an uneven portion.
  • a COB type LED module may be used as the LED module 20A.
  • FIG. 14 is a cross-sectional view of the LED module in the light bulb shaped lamp according to the third modification of the embodiment of the present invention.
  • the LED module 20 ⁇ / b> B in the present modification is provided with LEDs 22 on both surfaces of a base 21.
  • the LED module 20B has the LED 22, the sealing member 23, the metal wiring 24, the wire 25, and the terminal also on the second main surface (back side surface) of the base 21 with respect to the LED module 20 shown in FIG. (Not shown) and a conductive adhesive member (not shown) are provided.
  • light can be actively emitted not only to the globe top side but also to the base side, so that light distribution characteristics with a wide light distribution angle can be easily realized. Therefore, it is possible to realize a light bulb shaped lamp having a light distribution characteristic more similar to an incandescent light bulb.
  • FIG. 15 is a cross-sectional view of an LED module in a light bulb shaped lamp according to Modification 4 of the embodiment of the present invention.
  • the LED module 20 ⁇ / b> C in the present modification is configured by preparing two bases on which the LEDs 22 are provided only on the front surface and bonding the back surfaces of the two bases together.
  • the base 21 is composed of two bases, that is, a first base 21X and a second base 21Y, with respect to the LED module 20B shown in FIG.
  • an adhesive 28 is provided between the first base 21X and the second base 21Y. That is, the LED module 20 ⁇ / b> C in this modification can be configured by bonding the back surfaces of the bases 21 of the LED module 20 shown in FIG. 4 with the adhesive 28.
  • the adhesive 28 is made of, for example, a resin such as a silicone resin or a metal paste such as an Ag paste.
  • a metal paste the thermal conductivity between the first base 21X and the second base 21Y is increased to increase the thermal conductivity as the base 21, so the heat dissipation efficiency of the base 21 is increased. be able to.
  • the light-shielding property of the base 21 can be improved by using the adhesive agent 28 (metal layer) of a metal paste. Thereby, since the light which goes to the back surface from the surface of the 1st base 21X and the 2nd base 21Y can be reflected, a color nonuniformity can also be suppressed.
  • the first base 21X and the second base 21Y are plate-like substrates, but are not limited thereto.
  • the first base 21 ⁇ / b> X and the second base 21 ⁇ / b> Y may be used as the base 21 with an insulating layer and a metal plate sandwiched therebetween. That is, as the base 21, a metal base substrate in which an insulating layer is coated on both surfaces of a metal plate can be used.
  • the glass sealed glass bulb (globe 10) is used as the hermetically sealed casing, but an airtight sealing structure is realized by a method other than glass sealing. It doesn't matter.
  • a hermetically sealed housing can be realized by mechanically sealing using a closing member that closes the opening 11a of the globe body 11 and a sealing member such as a resin or metal O-ring. it can.
  • the closing member may be the base 70
  • a hermetically sealed housing may be realized by sealing the globe main body 11 and the base 70 with a sealing member.
  • a method of closing the opening 11a by adhering the opening 11a of the globe body 11 and the closing member with a silicone resin without using a sealing member such as an O-ring is also conceivable. It is difficult to hermetically seal 11. That is, the silicone resin has a low gas barrier property, and the silicone resin alone allows gas inside and outside the globe to pass through. However, by using an adhesive that has a high gas barrier property and does not allow gas inside and outside the globe to pass therethrough, it is possible to bond the opening 11a of the glove body 11 and the closing member to realize a hermetically sealed casing. Is possible.
  • helium is enclosed with oxygen in the globe 10, but the gas enclosed with oxygen is not limited to helium.
  • any gas other than the necessary and sufficient oxygen may be sealed.
  • a rare gas (such as argon) other than helium can be enclosed together with oxygen.
  • the heat sink 30 is disposed in the globe 10, but the heat sink 30 is not necessarily disposed.
  • the LED module 20 may be supported by the lead wire 40 or the metal support bar 41.
  • the heat sink 30 it is possible to prevent the light radiated to the rear side (the base side) from being blocked by the heat sink 30. Therefore, a light distribution characteristic with a wide light distribution angle can be easily realized.
  • the heat sink 30 is supported by the metal support bar 41.
  • the metal support bar 41 is not necessarily provided.
  • the heat sink 30 may not be arranged.
  • the support base 32 is provided at the rear end of the column 31, but the support base 32 is not necessarily provided.
  • the metal support bar 41 may be directly attached to the rear end of the column 31.
  • the hermetically sealed casing a glass sealed and completely sealed casing is used, but it is not a completely hermetically sealed structure that does not allow any gas to pass. It doesn't matter.
  • gas oxygen, helium, nitrogen, etc.
  • gas outside the lamp is adjusted by adjusting the gas pressure in the globe in comparison with the atmospheric pressure, or by adjusting the oxygen concentration in the globe in comparison with the oxygen concentration in the atmosphere. It is preferable to configure so that does not enter the glove.
  • the LED module is configured to emit white light by the blue LED and the yellow phosphor, but is not limited thereto.
  • a phosphor-containing resin containing a red phosphor and a green phosphor may be used so that white light is emitted by combining this with a blue LED.
  • the LED may be an LED that emits a color other than blue.
  • a combination of phosphor particles that emit light in three primary colors (red, green, and blue) can be used as the phosphor particles.
  • a wavelength conversion material other than the phosphor particles may be used.
  • the wavelength conversion material absorbs light of a certain wavelength such as a semiconductor, a metal complex, an organic dye, or a pigment, and has a wavelength different from the absorbed light.
  • a material containing a substance that emits light may be used.
  • the LED is exemplified as the light emitting element.
  • a semiconductor light emitting element such as a semiconductor laser
  • an EL element such as an organic EL (Electro Luminescence) or an inorganic EL, or other solid state light emitting element. May be used.
  • the LED module has a COB type configuration in which the LED chip is directly mounted on the substrate, but is not limited thereto.
  • a package type LED element SMD type LED element
  • an LED chip light emitting element
  • a sealing member phosphor-containing resin
  • An SMD type LED module configured by mounting a plurality of LED elements on a substrate on which a metal wiring is formed may be used. Since the SMD type LED element is mounted on the base 21 by reflow solder or the like, an organic substance such as solder flux is mixed in the sealing member as in the case of the COB type.
  • a SMD type LED element as the base 21, it is preferable to use a flexible substrate especially.
  • a light bulb-type lamp has been described as an example of an illumination light source.
  • a straight tube lamp, a round lamp, a light can be used as long as it has a hermetically sealed casing.
  • the present invention can also be applied to a flat (disk-shaped) lamp such as an engine or an HID lamp.
  • the present invention can also be applied to a halogen bulb lamp, a high ceiling bulb lamp, a candle lamp, or the like.
  • the shape of the base on which the LED is mounted, the globe, and the housing may be formed according to the shape of each lamp.
  • the present invention can also be realized as an illumination device including the above-described light bulb shaped lamp.
  • the lighting device 100 is configured as a lighting device including the above-described light bulb shaped lamp 1 and a lighting fixture (lighting fixture) 200 to which the light bulb shaped lamp 1 is attached.
  • the lighting device 200 is for turning off and lighting the light bulb shaped lamp 1 and includes, for example, a device main body 210 attached to the ceiling and a lamp cover 220 covering the light bulb shaped lamp 1.
  • the appliance main body 210 has a socket 211 to which the cap of the light bulb shaped lamp 1 is attached and which supplies power to the light bulb shaped lamp 1.
  • a translucent plate may be provided in the opening of the lamp cover 220.
  • the present invention is useful as an illumination light source having a light emitting element such as an LED, in particular, a lamp such as a light bulb shaped lamp that replaces a conventional incandescent bulb, etc. be able to.
  • a light emitting element such as an LED
  • a lamp such as a light bulb shaped lamp that replaces a conventional incandescent bulb, etc. be able to.

Abstract

A bulb-shaped lamp (1), provided with: a globe (10) sealed so as to be airtight; a base (21) disposed in the globe (10); and an LED (22) disposed on the base (21), oxygen being sealed in the globe (10).

Description

照明用光源及び照明装置Illumination light source and illumination device
 本発明は、照明用光源及び照明装置に関し、例えば、LED(Light Emitting Diode)等の発光素子を用いたLEDランプ及び照明装置に関する。 The present invention relates to an illumination light source and an illumination device, for example, an LED lamp and an illumination device using a light emitting element such as an LED (Light Emitting Diode).
 LEDは、高効率及び長寿命であることから、ランプ等の新しい光源として期待されており、LEDを光源とするLEDランプの研究開発が進められている。 Since LEDs have high efficiency and long life, they are expected as new light sources such as lamps, and research and development of LED lamps using LEDs as light sources are being promoted.
 LEDランプとしては、電球形蛍光灯や白熱電球に代替する電球形のLEDランプ(電球形LEDランプ)、あるいは、直管形蛍光灯に代替する直管形のLEDランプ(直管形LEDランプ)等がある。例えば、特許文献1には、従来の電球形LEDランプが開示されている。また、特許文献2には、従来の直管形LEDランプが開示されている。 As the LED lamp, a bulb-type LED lamp (bulb-shaped LED lamp) that replaces a bulb-type fluorescent lamp or an incandescent bulb, or a straight-tube LED lamp (straight-tube LED lamp) that replaces a straight-tube fluorescent lamp Etc. For example, Patent Document 1 discloses a conventional bulb-type LED lamp. Patent Document 2 discloses a conventional straight tube LED lamp.
 LEDランプは、ガラス等からなる筐体と、筐体内に配置されたLEDモジュールとを備える。LEDモジュールは、基台と、基台上に配置されたLED(発光素子)と、LEDを封止する封止樹脂とを備える。 The LED lamp includes a housing made of glass or the like and an LED module arranged in the housing. The LED module includes a base, an LED (light emitting element) disposed on the base, and a sealing resin that seals the LED.
特開2006-313717号公報JP 2006-313717 A 特開2009-043447号公報JP 2009-043447 A
 LEDランプでは、LEDから熱が発生し、この熱によって、LEDの発光効率が低下するという問題がある。そこで、LEDの放熱性を向上させるために、LEDモジュールを配置する筐体を気密封止して、その中に冷却効果の高いヘリウムガスを封入することが考えられる。 In the LED lamp, there is a problem that heat is generated from the LED, and the luminous efficiency of the LED is lowered by this heat. Therefore, in order to improve the heat dissipation of the LED, it is conceivable to hermetically seal the casing in which the LED module is arranged and enclose helium gas having a high cooling effect therein.
 しかしながら、筐体を気密封止すると、LEDを封止する封止樹脂が劣化し、光束が低下するという問題がある。 However, when the casing is hermetically sealed, there is a problem that the sealing resin for sealing the LED deteriorates and the luminous flux decreases.
 本発明は、上記問題を解決するためになされたものであり、光束の低下を抑制することのできる照明用光源及び照明装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an illumination light source and an illumination device that can suppress a decrease in luminous flux.
 上記目的を達成するために、本発明に係る照明用光源の一態様は、気密封止された筐体と、前記筐体内に配置された基台と、前記基台に配置された発光素子とを備え、前記筐体内に、酸素が封入されていることを特徴とする。 In order to achieve the above object, one aspect of an illumination light source according to the present invention includes a hermetically sealed casing, a base disposed in the casing, and a light emitting element disposed on the base. And oxygen is sealed in the housing.
 また、本発明に係る照明用光源の一態様において、前記筐体内に、さらに、ヘリウムが封入されている、としてもよい。 Further, in one aspect of the illumination light source according to the present invention, helium may be further enclosed in the housing.
 また、本発明に係る照明用光源の一態様において、前記筐体内に、さらに、窒素が封入されている、としてもよい。 Further, in one aspect of the illumination light source according to the present invention, nitrogen may be further enclosed in the housing.
 また、本発明に係る照明用光源の一態様において、さらに、前記発光素子を覆う封止部材を備える、としてもよい。 Further, in one aspect of the illumination light source according to the present invention, a sealing member that covers the light emitting element may be further provided.
 また、本発明に係る照明用光源の一態様において、前記封止部材は、前記発光素子が発する光の波長を所定の波長に変換する波長変換材を含む、としてもよい。 Further, in one aspect of the illumination light source according to the present invention, the sealing member may include a wavelength conversion material that converts a wavelength of light emitted from the light emitting element into a predetermined wavelength.
 また、本発明に係る照明用光源の一態様において、前記封止部材は、樹脂である、としてもよい。 Further, in one aspect of the illumination light source according to the present invention, the sealing member may be a resin.
 この場合、本発明に係る照明用光源の一態様において、前記樹脂は、シリコーン樹脂である、としてもよい。 In this case, in one aspect of the illumination light source according to the present invention, the resin may be a silicone resin.
 また、本発明に係る照明用光源の一態様において、さらに、前記発光素子と電気的に接続される導電性接着部材を備える、としてもよい。 Moreover, in one aspect of the illumination light source according to the present invention, a conductive adhesive member that is electrically connected to the light emitting element may be further provided.
 また、本発明に係る照明用光源の一態様において、さらに、気密封止を保ったまま前記筐体の外部から内部に挿通され、前記基台に接続されたリード線を備える、としてもよい。 Further, in one aspect of the light source for illumination according to the present invention, a lead wire that is inserted from the outside of the housing while being hermetically sealed and connected to the base may be provided.
 また、本発明に係る照明用光源の一態様において、さらに、前記基台の上に形成された金属配線を備え、前記金属配線と前記リード線とは、前記導電性接着部材によって電気的に接続されている、としてもよい。 Moreover, the aspect of the light source for illumination according to the present invention further includes a metal wiring formed on the base, and the metal wiring and the lead wire are electrically connected by the conductive adhesive member. It is good as it is.
 また、本発明に係る照明用光源の一態様において、前記筐体は、ガラス封止されたガラスバルブである、としてもよい。 Further, in one aspect of the illumination light source according to the present invention, the casing may be a glass bulb sealed with glass.
 また、本発明に係る照明用光源の一態様において、前記発光素子は、前記基台の上に直接実装されている、としてもよい。 Further, in one aspect of the illumination light source according to the present invention, the light emitting element may be directly mounted on the base.
 また、本発明に係る照明用光源の一態様において、さらに、凹部を有する容器を備え、前記発光素子は、前記凹部に実装され、前記凹部には封止部材が封入されている、としてもよい。 Further, in one aspect of the illumination light source according to the present invention, the light source may further include a container having a recess, the light emitting element may be mounted in the recess, and a sealing member may be sealed in the recess. .
 また、本発明に係る照明装置の一態様は、上記いずれかに記載の照明用光源を備えることを特徴とする。 Further, an aspect of the illumination device according to the present invention is characterized by including any one of the illumination light sources described above.
 本発明によれば、発光素子を封止する樹脂の劣化を抑制することができる。 According to the present invention, deterioration of the resin that seals the light emitting element can be suppressed.
図1は、本発明の実施の形態に係る電球形ランプの外観斜視図である。FIG. 1 is an external perspective view of a light bulb shaped lamp according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る電球形ランプの分解斜視図である。FIG. 2 is an exploded perspective view of the light bulb shaped lamp according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る電球形ランプの断面図である。FIG. 3 is a cross-sectional view of the light bulb shaped lamp according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る電球形ランプにおけるLEDモジュールの周辺の構成を示す図であり、(a)は上面図、(b)、(c)及び(d)は断面図である。4A and 4B are diagrams showing a configuration around the LED module in the light bulb shaped lamp according to the embodiment of the present invention, wherein FIG. 4A is a top view, and FIGS. 4B, C, and D are sectional views. is there. 図5は、本発明の実施の形態に係る電球形ランプのLEDモジュールにおけるLEDの拡大断面図である。FIG. 5 is an enlarged cross-sectional view of an LED in the LED module of the light bulb shaped lamp according to the embodiment of the present invention. 図6は、比較例1の電球形ランプのLEDモジュールにおいて、封止部材の樹脂が劣化する様子を説明する図である。FIG. 6 is a diagram for explaining how the resin of the sealing member deteriorates in the LED module of the light bulb shaped lamp of Comparative Example 1. 図7は、図6(b)に示す封止樹脂のLED周辺部(変色部分)のシロキサン成分の分析結果を示す図である。FIG. 7 is a diagram showing an analysis result of the siloxane component in the LED peripheral portion (discolored portion) of the sealing resin shown in FIG. 図8Aは、図6(a)に示す初期状態のLED周辺部における封止樹脂の顕微Raman分析の結果を示す図である。FIG. 8A is a diagram showing a result of micro Raman analysis of the sealing resin in the peripheral portion of the LED in the initial state shown in FIG. 図8Bは、図6(b)に示す1000時間点灯後のLED周辺部(変色部分)における封止樹脂の顕微Raman分析の結果を示す図である。FIG. 8B is a diagram showing a result of micro Raman analysis of the sealing resin in the LED peripheral part (discolored part) after 1000 hours of lighting shown in FIG. 6B. 図9Aは、気密封止されたグローブ内に100%ヘリウムが封入された電球形ランプのライフ試験結果を示す図である。FIG. 9A is a diagram showing a life test result of a light bulb shaped lamp in which 100% helium is enclosed in a hermetically sealed globe. 図9Bは、気密封止されたグローブ内に100%ヘリウムが封入された電球形ランプの加速試験結果を示す図である。FIG. 9B is a diagram showing an acceleration test result of a light bulb shaped lamp in which 100% helium is enclosed in a hermetically sealed globe. 図10は、グローブが気密封止された電球形ランプにおいて、空気、ヘリウム、及び、空気とヘリウムの混合ガスを封入した場合のライフ試験結果を示す図である。FIG. 10 is a diagram showing a life test result when air, helium, and a mixed gas of air and helium are sealed in a bulb lamp in which a globe is hermetically sealed. 図11は、本発明の実施の形態の変形例1に係る電球形ランプの外観斜視図である。FIG. 11 is an external perspective view of a light bulb shaped lamp according to Modification 1 of the embodiment of the present invention. 図12は、本発明の実施の形態の変形例1に係る電球形ランプの分解斜視図である。FIG. 12 is an exploded perspective view of a light bulb shaped lamp according to Modification 1 of the embodiment of the present invention. 図13は、本発明の実施の形態の変形例2に係る電球形ランプの外観斜視図である。FIG. 13 is an external perspective view of a light bulb shaped lamp according to a second modification of the embodiment of the present invention. 図14は、本発明の実施の形態の変形例3に係る電球形ランプにおけるLEDモジュールの断面図である。FIG. 14 is a cross-sectional view of the LED module in the light bulb shaped lamp according to the third modification of the embodiment of the present invention. 図15は、本発明の実施の形態の変形例4に係る電球形ランプにおけるLEDモジュールの断面図である。FIG. 15 is a cross-sectional view of an LED module in a light bulb shaped lamp according to Modification 4 of the embodiment of the present invention. 図16は、本発明の実施の形態に係る照明装置の概略断面図である。FIG. 16 is a schematic cross-sectional view of the illumination device according to the embodiment of the present invention.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 以下の実施の形態では、照明用光源の一例として、電球形ランプについて説明する。 In the following embodiment, a light bulb shaped lamp will be described as an example of an illumination light source.
 [電球形ランプの全体構成]
 まず、本発明の実施の形態に係る電球形ランプ1の全体構成について、図1~図3を参照しながら説明する。
[Overall configuration of bulb-type lamp]
First, the overall configuration of a light bulb shaped lamp 1 according to an embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施の形態に係る電球形ランプ1の外観斜視図である。図2は、本実施の形態に係る電球形ランプ1の分解斜視図である。図3は、本実施の形態に係る電球形ランプ1の断面図である。 FIG. 1 is an external perspective view of a light bulb shaped lamp 1 according to the present embodiment. FIG. 2 is an exploded perspective view of the light bulb shaped lamp 1 according to the present embodiment. FIG. 3 is a cross-sectional view of the light bulb shaped lamp 1 according to the present embodiment.
 なお、図3において、紙面上方が電球形ランプ1の前方であり、紙面下方が電球形ランプ1の後方であり、紙面左右が電球形ランプ1の側方である。ここで、本明細書において、「後方」とは、LEDモジュール20を基準として口金側の方向のことであり、「前方」とは、LEDモジュール20を基準として口金と反対側の方向のことであり、「側方」とは、LEDモジュール20の基台21の主面と平行な方向のことである。また、図3において、紙面上下方向に沿って描かれた一点鎖線は電球形ランプ1のランプ軸J(中心軸)を示している。ランプ軸Jとは、電球形ランプ1を照明装置(不図示)のソケットに取り付ける際の回転中心となる軸であり、口金の回転軸と一致している。 In FIG. 3, the upper side of the paper is the front of the light bulb shaped lamp 1, the lower side of the paper is the rear of the light bulb shaped lamp 1, and the left and right sides of the paper are the sides of the light bulb shaped lamp 1. Here, in this specification, “rear” means the direction of the base with respect to the LED module 20, and “front” means the direction of the side opposite to the base with respect to the LED module 20. Yes, “side” means a direction parallel to the main surface of the base 21 of the LED module 20. In FIG. 3, the alternate long and short dash line drawn along the vertical direction of the drawing indicates the lamp axis J (center axis) of the bulb-type lamp 1. The lamp axis J is an axis serving as a rotation center when the light bulb shaped lamp 1 is attached to a socket of a lighting device (not shown), and coincides with the rotation axis of the base.
 電球形ランプ1は、電球形蛍光灯又は白熱電球の代替品となる電球形LEDランプ(LED電球)であって、図1~図3に示すように、透光性のグローブ10と、光源であるLEDモジュール20と、ヒートシンク30と、リード線40と、点灯回路50と、樹脂ケース60と、口金70とを備える。 The light bulb shaped lamp 1 is a light bulb shaped LED lamp (LED light bulb) that is an alternative to a light bulb shaped fluorescent light or an incandescent light bulb. As shown in FIGS. 1 to 3, a light-transmitting globe 10 and a light source are used. An LED module 20, a heat sink 30, lead wires 40, a lighting circuit 50, a resin case 60, and a base 70 are provided.
 グローブ10は気密封止されており、グローブ10内には、大気圧とは異なる所定のガス圧(気圧)で所定のガスが封入されている。後述するように、所定のガスには、酸素ガスが含まれる。また、所定のガスは、酸素ガスとともに酸素以外のガスが含まれた混合ガスとしてもよい。また、グローブ10内のガス圧は、大気圧(1atm)よりも低くしている。本実施の形態において、グローブ10内の体積(容積)は56000mmであり、グローブ10内の封入ガス圧は、0.85atmである。 The globe 10 is hermetically sealed, and a predetermined gas is sealed in the globe 10 at a predetermined gas pressure (atmospheric pressure) different from the atmospheric pressure. As will be described later, the predetermined gas includes oxygen gas. Further, the predetermined gas may be a mixed gas containing a gas other than oxygen together with oxygen gas. Moreover, the gas pressure in the globe 10 is lower than the atmospheric pressure (1 atm). In the present embodiment, the volume (volume) in the globe 10 is 56000 mm 3 , and the sealed gas pressure in the globe 10 is 0.85 atm.
 電球形ランプ1は、グローブ10と樹脂ケース60(第1ケース部61)と口金70とによって外囲器が構成されている。また、本実施の形態における電球形ランプ1では、60W形相当の明るさとなるようにLEDモジュール20が構成されている。 In the light bulb shaped lamp 1, an envelope is constituted by the globe 10, the resin case 60 (first case portion 61), and the base 70. Further, in the light bulb shaped lamp 1 in the present embodiment, the LED module 20 is configured to have a brightness equivalent to the 60 W type.
 以下、本実施の形態に係る電球形ランプ1の各構成要素について詳細に説明する。 Hereinafter, each component of the light bulb shaped lamp 1 according to the present embodiment will be described in detail.
 [グローブ]
 グローブ10は、LEDモジュール20を収納する中空の筐体であって、LEDモジュール20からの光をランプ外部に透光する透光性材料によって構成されている。したがって、グローブ10の内面に入射したLEDモジュール20の光は、グローブ10を透過してグローブ10の外部へと取り出される。
[Glove]
The globe 10 is a hollow housing that houses the LED module 20 and is made of a translucent material that transmits light from the LED module 20 to the outside of the lamp. Therefore, the light of the LED module 20 that has entered the inner surface of the globe 10 passes through the globe 10 and is extracted outside the globe 10.
 図2に示すように、グローブ10は、グローブ本体部11と封止部12とによって構成されている。グローブ本体部11は、封止前の状態において略円形の開口11aを有しており、グローブ本体部11の全体形状は、開口11aから球状に膨出するような形状である。より具体的に、グローブ本体部11の形状は、中空の球の一部が当該球の中心部から遠ざかる方向に延びながら狭まったような形状であり、球の中心部から遠ざかった位置に開口11aが形成されている。このような形状のグローブ本体部11としては、一般的な白熱電球と同様の形状のガラスバルブを用いることができる。例えば、グローブ本体部11として、A形、G形又はE形等のガラスバルブを用いることができる。 As shown in FIG. 2, the globe 10 includes a globe body 11 and a sealing portion 12. The globe body 11 has a substantially circular opening 11a before sealing, and the entire shape of the globe body 11 is a shape that bulges out from the opening 11a. More specifically, the shape of the globe body 11 is such that a part of a hollow sphere narrows while extending in a direction away from the center of the sphere, and the opening 11a is located at a position away from the center of the sphere. Is formed. As the globe body 11 having such a shape, a glass bulb having the same shape as a general incandescent bulb can be used. For example, a glass bulb of A shape, G shape, E shape or the like can be used as the glove body 11.
 封止部12は、グローブ本体部11の開口11aを塞ぐための板状部材であり、例えば略薄板円形状の封止用ガラス部材である。封止部12は、グローブ10の底面を構成する。グローブ本体部11の開口11aは封止部12によって蓋されるように閉じられる。具体的には、グローブ本体部11の開口11aを封止部12で塞ぎ、グローブ本体部11と封止部12との接触部分を溶着等することによってグローブ本体部11と封止部12とを接合する。これにより、気密封止されたグローブ10を得ることができる。なお、封止部12には、グローブ10の気密封止状態を保ったままで2本のリード線40と4本の金属支持棒41とが挿通されており、リード線40と金属支持棒41とは、封止部12に支持固定されている。 The sealing part 12 is a plate-like member for closing the opening 11a of the globe main body part 11, and is, for example, a glass member for sealing having a substantially thin circular shape. The sealing portion 12 constitutes the bottom surface of the globe 10. The opening 11 a of the globe body 11 is closed so as to be covered by the sealing part 12. Specifically, the opening 11a of the globe body 11 is closed with the sealing portion 12, and the contact portion between the globe body 11 and the sealing portion 12 is welded or the like, so that the globe body 11 and the sealing portion 12 are connected. Join. Thereby, the airtight sealed glove 10 can be obtained. Note that two lead wires 40 and four metal support bars 41 are inserted into the sealing portion 12 while maintaining the airtight sealing state of the globe 10. Is supported and fixed to the sealing portion 12.
 気密封止されたグローブ10内には、少なくとも酸素(O)が封入されている。本実施の形態では、酸素に加えて、さらに、冷却効果が高くて熱伝導率が0.1513[W/m・K]であるヘリウム(He)が封入されている。ガラス封止されたグローブ10内は気密性が保たれているので、グローブ10内に封入されたガスは、グローブ10外に漏れ出すことがない。また、グローブ10内に封入された酸素(酸素ガス)及びヘリウム(ヘリウムガス)は、LEDモジュール20を包み込むようにグローブ10内に存在する。なお、グローブ10内のヘリウムは、グローブ10内に存在する全気体に対して50%以上の割合を占めていることが好ましい。本実施の形態では、酸素ガスとヘリウムガスとの混合ガスが、0.85atmのガス圧でグローブ10内に封入されている。 At least oxygen (O 2 ) is enclosed in the hermetically sealed globe 10. In the present embodiment, in addition to oxygen, helium (He) having a high cooling effect and a thermal conductivity of 0.1513 [W / m · K] is enclosed. Since the inside of the glass-sealed globe 10 is kept airtight, the gas sealed in the globe 10 does not leak out of the globe 10. Further, oxygen (oxygen gas) and helium (helium gas) sealed in the globe 10 exist in the globe 10 so as to enclose the LED module 20. Note that helium in the globe 10 preferably accounts for 50% or more of the total gas present in the globe 10. In the present embodiment, a mixed gas of oxygen gas and helium gas is enclosed in the globe 10 at a gas pressure of 0.85 atm.
 また、本実施の形態におけるグローブ10(グローブ本体部11及び封止部12)は、LEDモジュール20の光に対して透明な材料によって構成されている。このようなグローブ10としては、例えば可視光に対して透明なシリカガラス製のガラスバルブ(クリアバルブ)を用いることができる。この場合、グローブ10内に収納されたLEDモジュール20は、グローブ10の外側から視認することができる。シリカガラス製のガラスバルブの熱伝導率は、1.0[W/m・K]程度である。 Moreover, the globe 10 (the globe body 11 and the sealing portion 12) in the present embodiment is made of a material that is transparent to the light of the LED module 20. As such a globe 10, for example, a glass valve (clear valve) made of silica glass that is transparent to visible light can be used. In this case, the LED module 20 housed in the globe 10 can be viewed from the outside of the globe 10. The glass bulb made of silica glass has a thermal conductivity of about 1.0 [W / m · K].
 なお、グローブ10は、必ずしも可視光に対して透明である必要はなく、グローブ10に光拡散機能を持たせてもよい。例えば、シリカや炭酸カルシウム等の光拡散材を含有する樹脂や白色顔料等をグローブ10の内面又は外面に塗布することによって乳白色の光拡散膜を形成してもよい。また、グローブ10の材質としては、ガラス材に限らず、アクリル(PMMA)やポリカーボネート(PC)等の合成樹脂等による樹脂材を用いてもよい。 Note that the globe 10 is not necessarily transparent to visible light, and the globe 10 may have a light diffusion function. For example, a milky white light diffusing film may be formed by applying a resin or a white pigment containing a light diffusing material such as silica or calcium carbonate to the inner surface or the outer surface of the globe 10. Further, the material of the globe 10 is not limited to a glass material, and a resin material such as a synthetic resin such as acrylic (PMMA) or polycarbonate (PC) may be used.
 [LEDモジュール]
 LEDモジュール20は、LED(LEDチップ)を有する発光モジュール(発光装置)であって、リード線40を介して電力が供給されることにより発光する。図3に示すように、LEDモジュール20(基台21)は、グローブ10内に配置されており、ヒートシンク30によってグローブ10内の中空に保持されている。
[LED module]
The LED module 20 is a light emitting module (light emitting device) having an LED (LED chip), and emits light when power is supplied through the lead wire 40. As shown in FIG. 3, the LED module 20 (base 21) is disposed in the globe 10 and is held in the hollow in the globe 10 by the heat sink 30.
 LEDモジュール20は、グローブ10の球形状部分の中心位置(例えば、グローブ10の内径が大きい径大部分の内部)に配置されることが好ましい。このように、グローブ10の中心位置にLEDモジュール20が配置されることにより、電球形ランプ1の配光特性を、従来のフィラメントコイルを用いた一般白熱電球と近似した配光特性とすることができる。 The LED module 20 is preferably arranged at the center position of the spherical portion of the globe 10 (for example, inside the large diameter portion where the inner diameter of the globe 10 is large). Thus, by arranging the LED module 20 at the center position of the globe 10, the light distribution characteristic of the light bulb shaped lamp 1 can be made to be a light distribution characteristic approximate to that of a general incandescent light bulb using a conventional filament coil. it can.
 なお、LEDモジュール20の詳細な構成については後述する。 The detailed configuration of the LED module 20 will be described later.
 [ヒートシンク]
 ヒートシンク30は、LEDモジュール20を支持するとともに、LEDモジュール20で発生する熱を放熱させる。ヒートシンク30は、グローブ10と非接触でグローブ10内に配置されており、グローブ10の封止部12に挿通された4本の金属支持棒41によってグローブ10に支持されている。
[heatsink]
The heat sink 30 supports the LED module 20 and radiates heat generated by the LED module 20. The heat sink 30 is disposed in the globe 10 without contact with the globe 10, and is supported by the globe 10 by four metal support bars 41 inserted through the sealing portion 12 of the globe 10.
 このように、ヒートシンク30をグローブ10内に配置することによって、LEDモジュール20で発生する熱をヒートシンク30に伝導させることができる。したがって、グローブ10と非接触であってもヒートシンク30を配置することにより、LEDモジュール20の熱が、グローブ10内に封入されるヘリウムガスと接触する面積を大きくすることができるので、放熱性を向上させることができる。 Thus, by arranging the heat sink 30 in the globe 10, heat generated in the LED module 20 can be conducted to the heat sink 30. Therefore, even if it is not in contact with the globe 10, by arranging the heat sink 30, it is possible to increase the area where the heat of the LED module 20 comes into contact with the helium gas enclosed in the globe 10. Can be improved.
 また、本実施の形態において、ヒートシンク30は、支柱31と支持台32とによって構成されている。 Further, in the present embodiment, the heat sink 30 is constituted by a support 31 and a support base 32.
 支柱31は、LEDモジュール20の基台21を支持する支持部材として機能する。これにより、LEDモジュール20は、グローブ10内の所定の位置に保持される。支柱31は、グローブ本体部11の開口11a側からグローブ10(グローブ本体部11)の内方(中心)に向かって延びるように設けられている。本実施の形態において、支柱31は、金属製の金属支柱(ステム)である。なお、支柱31の一端はLEDモジュール20に接続され、他端は支持台32に接続されている。 The support column 31 functions as a support member that supports the base 21 of the LED module 20. Thereby, the LED module 20 is held at a predetermined position in the globe 10. The support column 31 is provided so as to extend from the opening 11 a side of the globe body 11 toward the inner side (center) of the globe 10 (the globe body 11). In this Embodiment, the support | pillar 31 is a metal metal support | pillar (stem). One end of the column 31 is connected to the LED module 20, and the other end is connected to the support base 32.
 また、支柱31は、LEDモジュール20で発生する熱を口金70側に放熱させるための放熱部材としても機能する。したがって、支柱31は、例えばアルミニウム(Al)、銅(Cu)又は鉄(Fe)等を主成分とする熱伝導率の高い金属材料によって構成することが好ましい。これにより、支柱31を介してLEDモジュール20で発生した熱を効率良く支持台32に伝導させることができ、温度上昇によるLEDの発光効率の低下及び寿命の低下を効果的に抑制することができる。本実施の形態において、支柱31は、アルミニウム合金によって構成した。なお、支柱31は、本実施の形態のように金属のみによって構成するものに限定されない。例えば、樹脂製の柱状部材の表面に金属膜を形成することによって支柱31を構成しても構わない。 Moreover, the support | pillar 31 functions also as a heat radiating member for radiating the heat | fever which generate | occur | produces in the LED module 20 to the nozzle | cap | die 70 side. Therefore, it is preferable that the support column 31 is made of a metal material having a high thermal conductivity mainly composed of aluminum (Al), copper (Cu), iron (Fe), or the like. Thereby, the heat generated in the LED module 20 via the support column 31 can be efficiently conducted to the support base 32, and the decrease in the light emission efficiency and the lifetime of the LED due to the temperature increase can be effectively suppressed. . In the present embodiment, the support column 31 is made of an aluminum alloy. In addition, the support | pillar 31 is not limited to what is comprised only with a metal like this Embodiment. For example, you may comprise the support | pillar 31 by forming a metal film in the surface of resin-made columnar members.
 支柱31は、長尺状部材であり、例えば、円柱状部材を用いることができる。支柱31の長手方向の一端はLEDモジュール20に接続されており、他端は支持台32に接続されている。支柱31とLEDモジュール20との固定は、例えばシリコーン樹脂等の接着剤を用いて行うことができる。また、支柱31と支持台32との固定は、接着剤又はネジを用いて行うことができる。 The column 31 is a long member, and for example, a columnar member can be used. One end of the column 31 in the longitudinal direction is connected to the LED module 20, and the other end is connected to the support base 32. The support 31 and the LED module 20 can be fixed using, for example, an adhesive such as silicone resin. The support 31 and the support base 32 can be fixed using an adhesive or a screw.
 支持台(支持板)32は、支柱31を支持する支持部材であり、円盤状に構成されている。支持台32の裏面には4本の金属支持棒41の端部が取り付けられている。これにより、支持台32は金属支持棒41によって支持される。また、支持台32には、リード線40を挿通するための挿通孔が設けられている。リード線40は、支持台32と非接触で挿通孔に挿通される。 The support base (support plate) 32 is a support member that supports the support column 31 and is configured in a disk shape. The ends of the four metal support bars 41 are attached to the back surface of the support base 32. As a result, the support base 32 is supported by the metal support bar 41. The support base 32 is provided with an insertion hole for inserting the lead wire 40. The lead wire 40 is inserted into the insertion hole without contacting the support base 32.
 支持台32は、支柱31と同様に、アルミニウム等の熱伝導率の高い金属材料により構成されている。これにより、LEDモジュール20の熱を効率良く伝導させることができる。なお、支持台32と支柱31とは、同一の金型によって一体的に成形されていてもよい。 The support base 32 is made of a metal material having a high thermal conductivity such as aluminum, like the support 31. Thereby, the heat of the LED module 20 can be efficiently conducted. In addition, the support base 32 and the support | pillar 31 may be integrally shape | molded by the same metal mold | die.
 [リード線、金属支持棒]
 2本のリード線40は、細長く延びる針金状の金属電線(金属導線)であって、LEDを点灯させるための電力を、点灯回路50からLEDモジュール20へと供給する。本実施の形態におけるリード線40は、金属表面が露出する電気用金属裸線である。リード線40としては、例えば、封止部12をグローブ本体部11に封着する前において、円板状の封止部12のガラス封着部分をジュメット線とし、そのジュメット線の両側に両方でほぼ同じ長さのニッケル鉄線を溶接し、さらに、LEDモジュール20と接続するためにニッケル鉄線の先に銅線を溶接して構成される金属線を用いることができる。なお、銅線を用いずに、ニッケル鉄線をLEDモジュール20が位置する場所まで延長させたものをリード線40としてもよい。その他リード線40としては、ジュメット線のみによって構成しても構わないし、グローブ10の気密封止状態を保つことのできる線であれば、ジュメット線を用いずに、例えば鉄ニッケル52%線等によって構成しても構わない。
[Lead wire, metal support bar]
The two lead wires 40 are elongated metal wires (metal conductors) that supply power from the lighting circuit 50 to the LED module 20 for lighting the LEDs. The lead wire 40 in the present embodiment is an electric metal bare wire that exposes the metal surface. As the lead wire 40, for example, before the sealing portion 12 is sealed to the glove body 11, the glass sealing portion of the disc-shaped sealing portion 12 is a dumet wire, and both sides of the dumet wire are provided on both sides. A metal wire constructed by welding nickel iron wires of approximately the same length and further welding a copper wire to the tip of the nickel iron wire in order to connect to the LED module 20 can be used. In addition, it is good also considering the thing which extended the nickel iron wire to the place where the LED module 20 is located, without using a copper wire. The other lead wire 40 may be composed only of a dumet wire, and if it is a wire that can keep the glove 10 in an airtight sealed state, for example, an iron nickel 52% wire or the like is used without using the jumet wire. You may comprise.
 また、本実施の形態では、金属が露出するリード線40を覆うために、リード線40のLEDモジュール20と支持台32との間の部分はチューブ42で覆われている。これにより、電流が流れるリード線40と他の部材との絶縁性を向上させることができる。チューブ42は、例えば、樹脂製の絶縁パイプを用いることができる。 In this embodiment, the portion of the lead wire 40 between the LED module 20 and the support base 32 is covered with the tube 42 in order to cover the lead wire 40 from which the metal is exposed. Thereby, the insulation between the lead wire 40 through which the current flows and other members can be improved. As the tube 42, for example, an insulating pipe made of resin can be used.
 各リード線40は、グローブ10の気密封止状態を保ったままグローブ10の封止部12に挿通されて封止部12に固定されている。各リード線40は、封止部12を介して、樹脂ケース60内からグローブ10内のLEDモジュール20まで延設されている。すなわち、リード線40は、封止部12からグローブ10の内方に突出するように、かつ、封止部12から樹脂ケース60の内方に突出するように構成されている。 Each lead wire 40 is inserted into the sealing portion 12 of the globe 10 and fixed to the sealing portion 12 while keeping the airtight sealing state of the globe 10. Each lead wire 40 extends from the resin case 60 to the LED module 20 in the globe 10 via the sealing portion 12. That is, the lead wire 40 is configured to protrude from the sealing portion 12 to the inside of the globe 10 and from the sealing portion 12 to the inside of the resin case 60.
 リード線40は、一端がLEDモジュール20の端子と電気的に接続され、他端が点灯回路50と電気的に接続されている。本実施の形態において、2本のリード線40は、ヒートシンク30の支持台32に設けられた挿通孔に通されてLEDモジュール20に接続されている。なお、支柱31の内部に空洞を設けておき、各リード線40を当該空洞内に通すようにしてLEDモジュール20と接続してもよい。 The lead wire 40 has one end electrically connected to the terminal of the LED module 20 and the other end electrically connected to the lighting circuit 50. In the present embodiment, the two lead wires 40 are connected to the LED module 20 through the insertion holes provided in the support base 32 of the heat sink 30. Alternatively, a cavity may be provided in the support 31 and each lead wire 40 may be connected to the LED module 20 so as to pass through the cavity.
 本実施の形態において、リード線40は金属裸線としたが、金属の芯線とこの芯線を被覆する絶縁性樹脂とで構成されるビニル線を、リード線40として用いてもよい。この場合、リード線40とLEDモジュール20とは、露出させた芯線を介して電気的に接続される。 In the present embodiment, the lead wire 40 is a bare metal wire, but a vinyl wire composed of a metal core wire and an insulating resin covering the core wire may be used as the lead wire 40. In this case, the lead wire 40 and the LED module 20 are electrically connected via the exposed core wire.
 なお、リード線40のLEDモジュール20との接続関係の詳細については後述する。 The details of the connection relationship between the lead wire 40 and the LED module 20 will be described later.
 金属支持棒41は、ヒートシンク30を支持する支持部材であり、リード線40と同様に、グローブ10の気密封止状態を保ったままグローブ10の封止部12に挿通されて封止部12に固定されている。 The metal support bar 41 is a support member that supports the heat sink 30, and, like the lead wire 40, is inserted into the sealing portion 12 of the globe 10 while maintaining the hermetic sealing state of the globe 10, and is connected to the sealing portion 12. It is fixed.
 本実施の形態において、金属支持棒41は、4本設けられており、各金属支持棒41は、封止部12を介して、樹脂ケース60内からグローブ10内にまで延設されている。すなわち、リード線40は、封止部12からグローブ10の内方に突出するように、かつ、封止部12から樹脂ケース60の内方に突出するように構成されている。 In the present embodiment, four metal support bars 41 are provided, and each metal support bar 41 extends from the inside of the resin case 60 to the inside of the globe 10 through the sealing portion 12. That is, the lead wire 40 is configured to protrude from the sealing portion 12 to the inside of the globe 10 and from the sealing portion 12 to the inside of the resin case 60.
 本実施の形態における金属支持棒41は、リード線40と同様に、封止部12のガラス封着部分をジュメット線とし、そのジュメット線の両側に両方でほぼ同じ長さのニッケル鉄線を溶接して構成される金属線を用いることができる。なお、金属支持棒41としては、ジュメット線のみによって構成しても構わないし、気密を保つことのできる線であれば、ジュメット線を用いずに、例えば鉄ニッケル52%線等によって構成しても構わない。 Similarly to the lead wire 40, the metal support bar 41 in the present embodiment uses a dumet wire as the glass sealing portion of the sealing portion 12, and welds nickel iron wires of approximately the same length on both sides of the dumet wire. The metal wire comprised can be used. Note that the metal support bar 41 may be composed only of a dumet wire, or may be composed of, for example, an iron-nickel 52% wire or the like without using a jumet wire as long as the wire can be kept airtight. I do not care.
 また、金属支持棒41は、ヒートシンク30に伝導したLEDモジュール20の熱をグローブ10の外部に放熱させる放熱部材としても機能する。つまり、ヒートシンク30を介して金属支持棒41に伝導したLEDモジュール20の熱は、金属支持棒41を固定するグローブ10を介して、又は、金属支持棒41のグローブ10外に突出する部分を介して放熱される。なお、金属支持棒41には、LEDを点灯させるための電流は流れない。 The metal support bar 41 also functions as a heat radiating member that radiates the heat of the LED module 20 conducted to the heat sink 30 to the outside of the globe 10. That is, the heat of the LED module 20 conducted to the metal support bar 41 through the heat sink 30 is transmitted through the globe 10 that fixes the metal support bar 41 or through a portion of the metal support bar 41 that protrudes outside the globe 10. To dissipate heat. In addition, the current for turning on the LED does not flow through the metal support bar 41.
 [点灯回路]
 点灯回路50は、LEDモジュール20のLEDを点灯させるための駆動回路(回路ユニット)であり、樹脂ケース60によって覆われている。点灯回路50は、口金70から給電された交流電力を直流電力に変換する回路を含み、2本のリード線40を介して変換後の直流電力をLEDモジュール20のLEDに供給する。なお、リード線40と点灯回路50とは、別のリード線(ビニル線等)を介して電気的に接続されているが、リード線40を直接点灯回路50に接続しても構わない。
[Lighting circuit]
The lighting circuit 50 is a drive circuit (circuit unit) for lighting the LEDs of the LED module 20, and is covered with a resin case 60. The lighting circuit 50 includes a circuit that converts AC power fed from the base 70 into DC power, and supplies the converted DC power to the LEDs of the LED module 20 via the two lead wires 40. The lead wire 40 and the lighting circuit 50 are electrically connected via another lead wire (vinyl wire or the like), but the lead wire 40 may be directly connected to the lighting circuit 50.
 点灯回路50は、例えば、回路基板51と、回路基板に実装された複数の回路素子(電子部品)51とによって構成される。回路基板51は、金属配線がパターン形成されたプリント基板であり、当該回路基板51に実装された複数の回路素子52同士を電気的に接続する。本実施の形態において、回路基板51は、主面がランプ軸Jと直交する姿勢で配置されている。また、回路素子52は、例えば、各種コンデンサ、抵抗素子、整流回路素子、コイル素子、チョークコイル(チョークトランス)、ノイズフィルタ、ダイオード又は集積回路素子であり、点灯回路50は、これらの回路素子の中から適宜選択して構成される。 The lighting circuit 50 includes, for example, a circuit board 51 and a plurality of circuit elements (electronic components) 51 mounted on the circuit board. The circuit board 51 is a printed board on which metal wiring is patterned, and electrically connects a plurality of circuit elements 52 mounted on the circuit board 51. In the present embodiment, the circuit board 51 is arranged in a posture in which the main surface is orthogonal to the lamp axis J. The circuit element 52 is, for example, various capacitors, resistor elements, rectifier circuit elements, coil elements, choke coils (choke transformers), noise filters, diodes, or integrated circuit elements, and the lighting circuit 50 includes these circuit elements. It is configured by appropriately selecting from the inside.
 なお、電球形ランプ1は、必ずしも点灯回路50を備える必要はない。例えば、照明器具又は電池等から電球形ランプ1に直接直流電力が供給される場合には、電球形ランプ1は、点灯回路50を備えなくてもよい。また、点灯回路50として、調光回路及び昇圧回路等を適宜選択して組み合わせてもよい。 Note that the light bulb shaped lamp 1 is not necessarily provided with the lighting circuit 50. For example, when direct-current power is directly supplied to the light bulb shaped lamp 1 from a lighting fixture or a battery, the light bulb shaped lamp 1 may not include the lighting circuit 50. Further, as the lighting circuit 50, a dimmer circuit, a booster circuit, and the like may be appropriately selected and combined.
 [樹脂ケース]
 樹脂ケース60は、点灯回路50を収納するための絶縁ケース(回路ホルダ)であり、図2及び図3に示すように、大径円筒状の第1ケース部61と、小径円筒状の第2ケース部62とによって構成されている。樹脂ケース60は、例えば、ポリブチレンテレフタレート(PBT)によって構成されている。
[Resin case]
The resin case 60 is an insulating case (circuit holder) for housing the lighting circuit 50. As shown in FIGS. 2 and 3, the resin case 60 has a first case portion 61 having a large-diameter cylindrical shape and a second case having a small-diameter cylindrical shape. It is comprised by the case part 62. FIG. The resin case 60 is made of, for example, polybutylene terephthalate (PBT).
 第1ケース部61の外表面は外気に露出しているので、樹脂ケース60に伝導した熱は、主に第1ケース部61から放熱される。第2ケース部62は、外周面が口金70の内周面と接触するように構成されており、第2ケース部62の外周面には口金70と螺合するための螺合部が形成されている。 Since the outer surface of the first case portion 61 is exposed to the outside air, the heat conducted to the resin case 60 is mainly dissipated from the first case portion 61. The second case portion 62 is configured such that the outer peripheral surface is in contact with the inner peripheral surface of the base 70, and a screwing portion for screwing with the base 70 is formed on the outer peripheral surface of the second case portion 62. ing.
 [口金]
 口金70は、LEDモジュール20のLEDを発光させるための電力を電球形ランプ1の外部から受ける受電部である。口金70は、二接点によって交流電力を受電し、受電した電力はリード線を介して点灯回路50の電力入力部に入力される。例えば、口金70には商用電源(AC100V)から交流電力が供給される。具体的には、口金70は、照明器具(照明装置)のソケットに取り付けられてソケットから交流電力を受ける。これにより、電球形ランプ1(LEDモジュール20)が点灯する。
[Base]
The base 70 is a power receiving unit that receives power for causing the LEDs of the LED module 20 to emit light from the outside of the light bulb shaped lamp 1. The base 70 receives AC power through two contact points, and the received power is input to the power input unit of the lighting circuit 50 via a lead wire. For example, the base 70 is supplied with AC power from a commercial power supply (AC 100 V). Specifically, the base 70 is attached to a socket of a lighting fixture (lighting device) and receives AC power from the socket. Thereby, the light bulb shaped lamp 1 (LED module 20) is turned on.
 口金70は、金属製の有底筒体形状(キャップ状)であり、外周面が雄ネジとなっているシェル部と、シェル部に絶縁部を介して装着されたアイレット部とを備える。口金70の外周面には照明装置のソケットに螺合させるための螺合部が形成され、口金70の内周面には樹脂ケース60に螺合させるための螺合部が形成されている。 The base 70 has a metal bottomed cylindrical shape (cap shape), and includes a shell part whose outer peripheral surface is a male screw and an eyelet part attached to the shell part via an insulating part. A screwing portion for screwing into the socket of the lighting device is formed on the outer peripheral surface of the base 70, and a screwing portion for screwing with the resin case 60 is formed on the inner peripheral surface of the base 70.
 また、口金70は、金属からなり、口金70に伝導した熱は照明器具へと放熱される。なお、口金70には、樹脂ケース60に伝導した熱や点灯回路50から発する熱が伝導する。 The base 70 is made of metal, and the heat conducted to the base 70 is radiated to the lighting fixture. Note that heat transmitted to the resin case 60 and heat generated from the lighting circuit 50 are conducted to the base 70.
 口金70の種類は、特に限定されるものではないが、本実施の形態では、ねじ込み型のエジソンタイプ(E型)の口金を用いている。口金70として、例えば、E26形又はE17形、又はE16形等を用いることができる。なお、口金70として、差し込み型の口金を用いてもよい。 The type of the base 70 is not particularly limited, but in the present embodiment, a screwed type Edison type (E type) base is used. As the base 70, for example, E26 type, E17 type, or E16 type can be used. Note that a plug-type base may be used as the base 70.
 [LEDモジュールの詳細構成]
 次に、LEDモジュール20の詳細な構成について、図4を用いて説明する。図4は、本実施の形態に係る電球形ランプ1におけるLEDモジュール20の周辺の構成を示す図である。
[Detailed configuration of LED module]
Next, a detailed configuration of the LED module 20 will be described with reference to FIG. FIG. 4 is a diagram showing a configuration around the LED module 20 in the light bulb shaped lamp 1 according to the present embodiment.
 なお、図4(a)は、LEDモジュール20を上方から見たとき平面図であり、図4(b)は、(a)のX-X’線における同LEDモジュール20の断面図であり、図4(c)は、(a)のY-Y’線における同LEDモジュール20の断面図であり、図4(d)は、(a)のZ-Z’線における同LEDモジュール20の断面図である。 4A is a plan view when the LED module 20 is viewed from above, and FIG. 4B is a cross-sectional view of the LED module 20 taken along line XX ′ in FIG. 4C is a cross-sectional view of the LED module 20 taken along the line YY ′ in FIG. 4A, and FIG. 4D is a cross-sectional view of the LED module 20 taken along the line ZZ ′ in FIG. FIG.
 LEDモジュール20は、主として前方及び側方に向けて光を放出する発光モジュール(発光装置)であり、本実施の形態では、ベアチップが直接基台21の表面上に実装されたCOB(Chip On Board)構造である。 The LED module 20 is a light emitting module (light emitting device) that emits light mainly toward the front and sides. In this embodiment, a COB (Chip On Board) in which a bare chip is directly mounted on the surface of the base 21. ) Structure.
 図4の(b)~(d)に示すように、LEDモジュール20は、基台21と、基台21に実装されたLED(発光素子)22と、LED22を封止する封止部材23とを備える。さらに、LEDモジュール20は、金属配線24と、ワイヤー25と、端子26と、導電性接着部材27とを備える。 As shown in FIGS. 4B to 4D, the LED module 20 includes a base 21, an LED (light emitting element) 22 mounted on the base 21, and a sealing member 23 for sealing the LED 22. Is provided. Further, the LED module 20 includes a metal wiring 24, a wire 25, a terminal 26, and a conductive adhesive member 27.
 以下、LEDモジュール20の各構成部材について詳細に説明する。 Hereinafter, each component of the LED module 20 will be described in detail.
 [基台]
 基台21は、LED22を実装するための実装基板(LED実装用基板)であり、LED22が実装される面である第1主面(表側面)と、当該第1主面に対向する第2主面(裏側面)とを有する。
[Base]
The base 21 is a mounting substrate (LED mounting substrate) for mounting the LED 22, and a first main surface (front side surface) on which the LED 22 is mounted and a second main surface facing the first main surface. And a main surface (back side surface).
 本実施の形態において、基台21は、矩形板状の基板であり、透光性基板又は非透光性基板を用いることができる。基台21は、例えばAl(アルミナ)又はAlN(窒化アルミニウム)等からなるセラミックス基板、樹脂基板、ガラス基板、フレキシブル基板、又は樹脂被膜された金属基板(メタルベース基板)等である。フレキシブル基板としては、例えば、アルミニウム等の金属薄板の両面に樹脂層が形成されたものを用いることができる。本実施の形態における基台21のサイズは、長辺が25mmで、短辺が18mmで、厚さが1mmである。 In the present embodiment, the base 21 is a rectangular plate-like substrate, and a translucent substrate or a non-translucent substrate can be used. The base 21 is, for example, a ceramic substrate made of Al 2 O 3 (alumina) or AlN (aluminum nitride), a resin substrate, a glass substrate, a flexible substrate, a resin-coated metal substrate (metal base substrate), or the like. As the flexible substrate, for example, a substrate in which a resin layer is formed on both surfaces of a thin metal plate such as aluminum can be used. As for the size of the base 21 in the present embodiment, the long side is 25 mm, the short side is 18 mm, and the thickness is 1 mm.
 具体的に、基台21は、可視光に対して透光性を有する透光性基板である。透光性を有する基台21を用いることにより、LED22の光は、基台21の内部を透過し、LED22が実装されていない面(裏側面)からも出射される。したがって、LED22が基台21の第1主面(表側面)だけに実装された場合であっても、第2主面(裏側面)からも光が出射されるので、白熱電球と近似した配光特性を得ることが可能となる。また、LEDモジュール20から全方位に光を放出させることができるので、全配光特性を実現することも可能となる。 Specifically, the base 21 is a translucent substrate having translucency with respect to visible light. By using the base 21 having translucency, the light of the LED 22 is transmitted through the inside of the base 21 and is emitted from the surface (back side surface) on which the LED 22 is not mounted. Therefore, even when the LED 22 is mounted only on the first main surface (front side surface) of the base 21, light is emitted from the second main surface (back side surface). Optical characteristics can be obtained. Moreover, since light can be emitted from the LED module 20 in all directions, it is possible to realize all light distribution characteristics.
 透光性基板としては、光透過率が高い基板、例えば、可視光に対する全透過率が80%以上の基板、又は、可視光に対して透明(すなわち透過率が極めて高く向こう側が透けて見える状態)の基板を用いることができる。このような透光性基板としては、多結晶のアルミナや窒化アルミニウムからなる透光性セラミックス基板、ガラスからなる透明ガラス基板、水晶からなる水晶基板、サファイアからなるサファイア基板又は透明樹脂材料からなる透明樹脂基板等を用いることができる。 As a light-transmitting substrate, a substrate having a high light transmittance, for example, a substrate having a total transmittance of 80% or more for visible light, or transparent to visible light (that is, a state in which the other side can be seen through the other side with a very high transmittance) ) Substrate can be used. As such a translucent substrate, a translucent ceramic substrate made of polycrystalline alumina or aluminum nitride, a transparent glass substrate made of glass, a quartz substrate made of crystal, a sapphire substrate made of sapphire, or a transparent resin material made of transparent resin material A resin substrate or the like can be used.
 また、透光性基板として、LED22から発せられる光に対して光反射率50%以上を有する基板、例えばAl、MgO、SiO、及びTiOのいずれかを主成分とするセラミックス基板を用いることもできる。 Further, as the light-transmitting substrate, a substrate having a light reflectance of 50% or more with respect to the light emitted from the LED 22, for example, a ceramic substrate mainly composed of any one of Al 2 O 3 , MgO, SiO, and TiO 2 is used. It can also be used.
 なお、基台21として、LED22から発せられる光に対して光透過率が低い基板、例えば全透過率が10%以下の白色アルミナ基板等の白色基板又は金属基板等を用いることもできる。このように、光透過率が低い基板を用いることにより、基台21を透過して第2主面ら光が出射することを抑制することができ、色ムラを抑制することができる。また、安価な白色基板を用いることができるので、低コスト化を実現することができる。 In addition, as the base 21, a substrate having a low light transmittance with respect to the light emitted from the LED 22, for example, a white substrate such as a white alumina substrate having a total transmittance of 10% or less, a metal substrate, or the like can be used. As described above, by using a substrate having a low light transmittance, it is possible to suppress light from being transmitted through the base 21 and emitted from the second main surface, and it is possible to suppress color unevenness. Further, since an inexpensive white substrate can be used, cost reduction can be realized.
 本実施の形態では、基台21として、可視光に対する全透過率が90%以上である焼結アルミナ(Al)からなる多結晶セラミックス基板を用いた。 In the present embodiment, a polycrystalline ceramic substrate made of sintered alumina (Al 2 O 3 ) having a total transmittance of 90% or more for visible light is used as the base 21.
 また、図4(b)に示すように、基台21には、当該基台21を貫通する貫通孔21a、21bが設けられている。 Further, as shown in FIG. 4B, the base 21 is provided with through holes 21 a and 21 b penetrating the base 21.
 貫通孔21aは、基台21とヒートシンク30(支柱31)の凸部30aとを嵌合させるために設けられている。ヒートシンク30の凸部30aが貫通孔21aに嵌合されることにより、LEDモジュール20はヒートシンク30に固定される。本実施の形態において、貫通孔21aは、基台21の中心において平面視形状が矩形状に設けられている。 The through-hole 21a is provided to fit the base 21 and the convex portion 30a of the heat sink 30 (support 31). The LED module 20 is fixed to the heat sink 30 by fitting the convex portion 30a of the heat sink 30 into the through hole 21a. In the present embodiment, the through hole 21 a is provided with a rectangular shape in plan view at the center of the base 21.
 一方、貫通孔21bは、2本のリード線40との電気的接続を行うために2つ設けられており、本実施の形態では、基台21の長手方向の両端部に設けられている。本実施の形態において、貫通孔21bは、平面視形状が円形状に設けられている。 On the other hand, two through holes 21b are provided for electrical connection with the two lead wires 40. In the present embodiment, the through holes 21b are provided at both ends of the base 21 in the longitudinal direction. In the present embodiment, the through hole 21b has a circular shape in plan view.
 [LED]
 LED22は、発光素子の一例であり、所定の電力により発光する半導体発光素子である。本実施の形態において、複数のLEDは全て同じものが用いられており、例えば通電されることで青色光を発する青色LEDチップである。青色LEDチップとしては、例えばInGaN系の材料によって構成された、中心波長が440nm~470nmの窒化ガリウム系の半導体発光素子を用いることができる。
[LED]
The LED 22 is an example of a light emitting element, and is a semiconductor light emitting element that emits light with a predetermined power. In the present embodiment, the same LED is used for all of the plurality of LEDs, for example, blue LED chips that emit blue light when energized. As the blue LED chip, for example, a gallium nitride based semiconductor light emitting device having a central wavelength of 440 nm to 470 nm, which is made of an InGaN based material, can be used.
 図4の(a)及び(d)に示すように、LED22は、基台21の第1主面(前方側の面)において、基台21の長辺方向に沿って複数の列をなすようにして複数個実装されている。本実施の形態において、複数のLED22は、並行する6本の素子列として構成されている。各素子列における複数のLED22は、直線状に同一ピッチで配列されており、直列接続されている。また、各素子列同士におけるLED22は並列接続となっている。一例として、8個のLED(ベアチップ)により1つの素子列を構成し、この素子列を6本設けることができる(総LED数48個)。 As shown in FIGS. 4A and 4D, the LEDs 22 form a plurality of rows along the long side direction of the base 21 on the first main surface (front side surface) of the base 21. A plurality of them are implemented. In the present embodiment, the plurality of LEDs 22 are configured as six element rows in parallel. The plurality of LEDs 22 in each element array are linearly arranged at the same pitch, and are connected in series. Moreover, LED22 in each element row | line | column is connected in parallel. As an example, one element row can be constituted by eight LEDs (bare chips), and six of this element row can be provided (total number of LEDs 48).
 ここで、本実施の形態で用いられるLED22について、図5を用いて説明する。図5は、本発明の実施の形態に係る電球形ランプ1のLEDモジュール20におけるLED(LEDチップ)周辺の拡大断面図である。 Here, the LED 22 used in the present embodiment will be described with reference to FIG. FIG. 5 is an enlarged cross-sectional view around the LED (LED chip) in the LED module 20 of the light bulb shaped lamp 1 according to the embodiment of the present invention.
 図5に示すように、LED22は、サファイア基板122aと、サファイア基板122a上に積層された、互いに異なる組成から構成される複数の窒化物半導体層122bとを有する。 As shown in FIG. 5, the LED 22 includes a sapphire substrate 122 a and a plurality of nitride semiconductor layers 122 b that are stacked on the sapphire substrate 122 a and have different compositions.
 窒化物半導体層122bの上面の両端部には、カソード電極122cとアノード電極122dとが設けられている。そして、カソード電極122cの上にはワイヤーボンド部122eが設けられ、アノード電極122dの上にはワイヤーボンド部122fが設けられている。例えば、隣り合うLED22において、一方のLED22のカソード電極122cと他方のLED22のアノード電極122dとは、ワイヤーボンド部122e及び122fを介して、ワイヤー25により接続されている。 A cathode electrode 122c and an anode electrode 122d are provided at both ends of the upper surface of the nitride semiconductor layer 122b. A wire bond portion 122e is provided on the cathode electrode 122c, and a wire bond portion 122f is provided on the anode electrode 122d. For example, in the adjacent LEDs 22, the cathode electrode 122c of one LED 22 and the anode electrode 122d of the other LED 22 are connected by a wire 25 via wire bond portions 122e and 122f.
 LED22は、サファイア基板122a側の面が基台21の第1主面と対向するように、透光性のチップボンディング材122gにより基台21の上に固定されている。チップボンディング材122gには、酸化金属から構成されるフィラーを含有したシリコーン樹脂等を用いることができる。チップボンディング材122gに透光性材料を使用することにより、LED22の側面から出る光の損失を低減することができ、チップボンディング材122gによる影の発生を抑制することができる。 The LED 22 is fixed on the base 21 with a translucent chip bonding material 122g so that the surface on the sapphire substrate 122a side faces the first main surface of the base 21. For the chip bonding material 122g, a silicone resin containing a filler composed of metal oxide can be used. By using a translucent material for the chip bonding material 122g, loss of light emitted from the side surface of the LED 22 can be reduced, and generation of shadows by the chip bonding material 122g can be suppressed.
 [封止部材]
 封止部材23は、樹脂からなり、LEDを覆うように構成されている。図4の(a)、(c)及び(d)に示すように、封止部材23は、複数のLED22で構成される各素子列を一括封止するとともに金属配線24を封止している。つまり、封止部材23は、6本並行して形成されている。6本の封止部材23の各々は、複数のLED22の並び方向(列方向)に沿って基台21の第1主面上に直線状に設けられている。
[Sealing member]
The sealing member 23 is made of a resin and configured to cover the LED. As shown in FIGS. 4A, 4 </ b> C, and 4 </ b> D, the sealing member 23 collectively seals each element row composed of the plurality of LEDs 22 and seals the metal wiring 24. . That is, six sealing members 23 are formed in parallel. Each of the six sealing members 23 is linearly provided on the first main surface of the base 21 along the arrangement direction (column direction) of the plurality of LEDs 22.
 また、封止部材23は、LEDが発する光の波長(色)を変換する波長変換部材である。本実施の形態において、封止部材23は、波長変換材として蛍光体粒子を含有する絶縁性の樹脂材料によって構成されている。封止部材23における蛍光体粒子は、LED22が発する光によって励起されて所望の色(波長)の光を放出する。 The sealing member 23 is a wavelength conversion member that converts the wavelength (color) of light emitted from the LED. In the present embodiment, the sealing member 23 is made of an insulating resin material containing phosphor particles as a wavelength conversion material. The phosphor particles in the sealing member 23 are excited by light emitted from the LED 22 and emit light of a desired color (wavelength).
 蛍光体粒子としては、LED22が青色光を発する青色LEDである場合、封止部材23から白色光を出射させるために、青色光を黄色光に波長変換する蛍光体粒子が用いられる。例えば、蛍光体粒子として、YAG(イットリウム・アルミニウム・ガーネット)系の黄色蛍光体粒子を用いることができる。これにより、LED22が発した青色光の一部は、封止部材23に含まれる黄色蛍光体粒子によって黄色光に波長変換される。つまり、黄色蛍光体粒子が青色光を励起光として蛍光発光する。そして、黄色蛍光体粒子に吸収されなかった(波長変換されなかった)青色光と、黄色蛍光体粒子によって波長変換された黄色光とは、封止部材23の中で拡散及び混合されることにより、封止部材23から白色光となって出射される。なお、演色性を高めるために、必要に応じて赤色蛍光体粒子等の黄色以外の他の色を蛍光発光する蛍光体粒子を含有させても構わない。 As the phosphor particles, when the LED 22 is a blue LED that emits blue light, phosphor particles that convert the wavelength of the blue light into yellow light are used in order to emit white light from the sealing member 23. For example, YAG (yttrium / aluminum / garnet) yellow phosphor particles can be used as the phosphor particles. Thereby, a part of the blue light emitted from the LED 22 is converted into yellow light by the yellow phosphor particles contained in the sealing member 23. That is, the yellow phosphor particles emit fluorescent light using blue light as excitation light. And the blue light which was not absorbed by the yellow phosphor particles (the wavelength was not converted) and the yellow light which was wavelength-converted by the yellow phosphor particles were diffused and mixed in the sealing member 23. The white light is emitted from the sealing member 23. In addition, in order to improve color rendering properties, phosphor particles that emit fluorescence other than yellow, such as red phosphor particles, may be included as necessary.
 また、各封止部材23の材料としては、シリコーン樹脂等の透明樹脂材料又はフッ素系樹脂等の有機材を用いることができる。本実施の形態において、封止部材23は、シリコーン樹脂に所定の蛍光体粒子を分散させた蛍光体含有樹脂としており、ディスペンサーによって基台21の表面に塗布することで形成することができる。この場合、封止部材23の長手方向に垂直な断面における形状は、略半円形となる。なお、本実施の形態において、基台21上に塗布する封止部材23の蛍光体含有樹脂量は、100mgとしている。 Further, as the material of each sealing member 23, a transparent resin material such as silicone resin or an organic material such as fluorine resin can be used. In the present embodiment, the sealing member 23 is made of a phosphor-containing resin in which predetermined phosphor particles are dispersed in a silicone resin, and can be formed by applying to the surface of the base 21 with a dispenser. In this case, the shape of the cross section perpendicular to the longitudinal direction of the sealing member 23 is substantially semicircular. In the present embodiment, the phosphor-containing resin amount of the sealing member 23 applied on the base 21 is 100 mg.
 なお、各封止部材23には、シリカ粒子等の光拡散材が分散されていてもよい。 Note that a light diffusing material such as silica particles may be dispersed in each sealing member 23.
 [金属配線]
 金属配線24は、LEDを発光させるための電流が流れる導電性配線であって、基台21の表面上に、所定形状にパターン形成される。図4の(a)及び(d)に示すように、金属配線24は、基台21の第1主面に形成される。
[Metal wiring]
The metal wiring 24 is a conductive wiring through which a current for causing the LED to emit light flows, and is patterned on the surface of the base 21 in a predetermined shape. As shown in FIGS. 4A and 4D, the metal wiring 24 is formed on the first main surface of the base 21.
 金属配線24は、各LED素子列における複数のLED同士を直列接続するために形成されている。例えば、金属配線24は、隣り合うLEDの間に島状に形成されている。また、金属配線24は、各素子列同士を並列接続するために形成されている。 The metal wiring 24 is formed to connect a plurality of LEDs in each LED element row in series. For example, the metal wiring 24 is formed in an island shape between adjacent LEDs. The metal wiring 24 is formed to connect the element rows in parallel.
 金属配線24は、例えば、金属材料からなる金属膜をパターニングしたり印刷したりすることによって形成することができる。金属配線24の金属材料としては、例えば、銀(Ag)、タングステン(W)又は銅(Cu)等を用いることができる。なお、金属配線24の表面に、ニッケル(Ni)/金(Au)等のメッキ処理を施しても構わない。 The metal wiring 24 can be formed, for example, by patterning or printing a metal film made of a metal material. As a metal material of the metal wiring 24, for example, silver (Ag), tungsten (W), copper (Cu), or the like can be used. The surface of the metal wiring 24 may be plated with nickel (Ni) / gold (Au) or the like.
 また、封止部材23から露出する金属配線24については、端子26を除いて、ガラス材によるガラス膜(ガラスコート膜)又は樹脂材による樹脂膜(樹脂コート膜)によって被覆することが好ましい。これにより、LEDモジュール20における絶縁性を向上させたり、基台21の表面の反射率を向上させたりすることができる。 The metal wiring 24 exposed from the sealing member 23 is preferably covered with a glass film (glass coat film) made of a glass material or a resin film (resin coat film) made of a resin material, except for the terminals 26. Thereby, the insulation in the LED module 20 can be improved, or the reflectance of the surface of the base 21 can be improved.
 [ワイヤー]
 ワイヤー25は、例えば金ワイヤー等の電線である。図4(d)に示すように、ワイヤー25は、LED22と金属配線24とを接続する。図5で説明したように、このワイヤー25により、LED22の上面に設けられたワイヤーボンド部122e(122f)とLED22の両側に隣接して形成された金属配線24とがワイヤボンディングされている。
[wire]
The wire 25 is an electric wire such as a gold wire. As shown in FIG. 4D, the wire 25 connects the LED 22 and the metal wiring 24. As described with reference to FIG. 5, the wire 25 bonds the wire bonding portion 122 e (122 f) provided on the upper surface of the LED 22 to the metal wiring 24 formed adjacent to both sides of the LED 22.
 なお、本実施の形態のように、ワイヤー25は、封止部材23から露出しないように、全体が封止部材23の中に埋め込まれていてもよい。 Note that the entire wire 25 may be embedded in the sealing member 23 so as not to be exposed from the sealing member 23 as in the present embodiment.
 [端子]
 端子26は、リード線40との半田付けが行われる外部接続電極(接続用ランド)である。図4(b)に示すように、端子26は、貫通孔21bを囲むように基台21の第1主面に所定形状で形成される。端子26は、金属配線24と連続して形成されており、金属配線24と電気的に接続されている。端子26は、金属配線24と同じ金属材料を用いて、金属配線24と同時にパターン形成される。
[Terminal]
The terminal 26 is an external connection electrode (connection land) that is soldered to the lead wire 40. As shown in FIG. 4B, the terminal 26 is formed in a predetermined shape on the first main surface of the base 21 so as to surround the through hole 21b. The terminal 26 is formed continuously with the metal wiring 24 and is electrically connected to the metal wiring 24. The terminal 26 is patterned simultaneously with the metal wiring 24 using the same metal material as the metal wiring 24.
 また、端子26は、LEDモジュール20の給電部であって、LED22を発光させるための電力をLEDモジュール20の外部から受ける。受けた電力は、金属配線24とワイヤー25とを介して各LED22に供給される。 Further, the terminal 26 is a power feeding unit of the LED module 20 and receives power for causing the LED 22 to emit light from the outside of the LED module 20. The received electric power is supplied to each LED 22 via the metal wiring 24 and the wire 25.
 [導電性接着部材]
 導電性接着部材27は、例えば、半田又は銀ペースト等の導電性接着剤である。図4(b)に示すように、導電性接着部材27は、端子26とリード線40とを電気的に接続する。このように、LEDモジュール20とリード線40とは、導電性接着部材27によって電気的及び物理的に接続されている。本実施の形態では、導電性接着部材27として半田を用い、端子26の1箇所につき半田量は25mg(内フラックス量は約0.75mg)としている。
[Conductive adhesive member]
The conductive adhesive member 27 is, for example, a conductive adhesive such as solder or silver paste. As shown in FIG. 4B, the conductive adhesive member 27 electrically connects the terminal 26 and the lead wire 40. Thus, the LED module 20 and the lead wire 40 are electrically and physically connected by the conductive adhesive member 27. In the present embodiment, solder is used as the conductive adhesive member 27, and the amount of solder per location of the terminal 26 is 25 mg (the amount of internal flux is about 0.75 mg).
 本実施の形態において、導電性接着部材27は、貫通孔21bを挿通させたリード線40に対して、リード線40の先端の側面を被覆するように端子26の表面上に形成される。また、導電性接着部材27は、貫通孔21bにおける基台21の第1主面側の開口を塞ぐように設けられている。 In the present embodiment, the conductive adhesive member 27 is formed on the surface of the terminal 26 so as to cover the side surface at the tip of the lead wire 40 with respect to the lead wire 40 inserted through the through hole 21b. The conductive adhesive member 27 is provided so as to close the opening on the first main surface side of the base 21 in the through hole 21b.
 なお、図4の(a)及び(b)に示すように、本実施の形態では、リード線40の先端が導電性接着部材27の表面から露出するように設けたが、リード線40の先端は導電性接着部材27によって完全に被覆されていてもよい。 As shown in FIGS. 4A and 4B, in this embodiment, the tip of the lead wire 40 is provided so as to be exposed from the surface of the conductive adhesive member 27. However, the tip of the lead wire 40 is provided. May be completely covered by the conductive adhesive member 27.
 [電球形ランプの製造方法]
 図1~図3に示される上記構成の電球形ランプ1は、例えば、次のようにして製造することができる。
[Method of manufacturing a bulb-type lamp]
The light bulb shaped lamp 1 having the above configuration shown in FIGS. 1 to 3 can be manufactured, for example, as follows.
 まず、ガラス細管が設けられた円板状のガラス板からなる封止部12に2本のリード線40と4本の金属支持棒41とを貫通させたものを用意する。 First, a sealing part 12 made of a disk-shaped glass plate provided with a glass capillary is prepared by passing two lead wires 40 and four metal support bars 41 therethrough.
 次に、リード線40とLEDモジュール20との電気的及び物理的な接続を行うとともに、ヒートシンク30と4本の金属支持棒との接続を行う。 Next, the lead wire 40 and the LED module 20 are electrically and physically connected, and the heat sink 30 and four metal support bars are connected.
 次に、LEDモジュール20及びヒートシンク30をグローブ本体部11内に挿入するようにして、上記のように構成される封止部12によってグローブ本体部11の開口11aを塞ぐ。そして、この状態で、封止部12の端縁とグローブ本体部11の開口11aの端縁とをガラス溶着させる。これにより、グローブ本体部11と封止部12とが接合され、グローブ10を得ることができる。 Next, the LED module 20 and the heat sink 30 are inserted into the globe body 11, and the opening 11 a of the globe body 11 is closed by the sealing portion 12 configured as described above. And in this state, the edge of the sealing part 12 and the edge of the opening 11a of the globe main-body part 11 are glass-welded. Thereby, the glove body part 11 and the sealing part 12 are joined, and the glove 10 can be obtained.
 次に、ガラス細管を利用してグローブ10内のガス(空気)を所定のガス(酸素、ヘリウム)に置換してグローブ10内に所定のガスを封入し、ガラス細管を封止する。これにより、ガラス封止によって気密封止されたグローブ10を得ることができる。このようにして得られるグローブ10内は、外部との気体の出入りができない密閉空間となっている。 Next, the glass (tubule) is used to replace the gas (air) in the globe 10 with a predetermined gas (oxygen, helium), and the globe 10 is filled with the predetermined gas to seal the glass tube. Thereby, the globe 10 hermetically sealed by glass sealing can be obtained. The inside of the globe 10 thus obtained is a sealed space where gas cannot enter and exit from the outside.
 その後、気密封止されたグローブ10と、点灯回路50、樹脂ケース60及び口金70等のその他の構成部品とを組み合わせることによって、電球形ランプ1を組み立てることができる。 Thereafter, the bulb-shaped lamp 1 can be assembled by combining the globe 10 hermetically sealed with the other components such as the lighting circuit 50, the resin case 60, and the base 70.
 [作用効果等]
 次に、本実施の形態に係る電球形ランプ1の作用効果について、本発明に至った経緯も含めて説明する。
[Effects]
Next, the effect of the light bulb shaped lamp 1 according to the present embodiment will be described including the background to the present invention.
 電球形LEDランプ等のLEDランプでは、LED自身が発生する熱によって、LEDの発光効率が低下するという問題がある。そこで、本願発明者らは、LEDの放熱性を向上させるために、グローブを気密封止して、その中に冷却効果の高いヘリウムガスを封入することを考えた。具体的には、図4に示すLEDモジュール20をグローブ10内に配置し、ヘリウムガスをグローブ本体部11に置換封入して、グローブ本体部11の開口11aをガラス封止した。この気密封止したグローブを用いて電球形ランプを作製した。なお、グローブ10内は、ヘリウムガス100%の不活性雰囲気である。 LED lamps such as light bulb-shaped LED lamps have a problem that the light emission efficiency of the LEDs decreases due to the heat generated by the LEDs themselves. Therefore, the inventors of the present application have considered that the globe is hermetically sealed in order to improve the heat dissipation of the LED, and helium gas having a high cooling effect is sealed therein. Specifically, the LED module 20 shown in FIG. 4 was placed in the globe 10, helium gas was replaced and sealed in the globe body 11, and the opening 11 a of the globe body 11 was glass sealed. A bulb-type lamp was produced using the hermetically sealed glove. Note that the inside of the globe 10 is an inert atmosphere of 100% helium gas.
 しかしながら、このようにして作製された電球形ランプを点灯し続けると、LEDモジュール20の光束が低下することが分かった。このLEDモジュール20の光束が低下する原因について、本願発明者らが鋭意検討した結果、LED22を覆う封止部材23の劣化が原因であることを突き止めた。 However, it has been found that the luminous flux of the LED module 20 decreases when the light bulb shaped lamp thus produced is kept on. As a result of intensive studies by the inventors of the present invention on the cause of the decrease in the luminous flux of the LED module 20, it has been found that the cause is the deterioration of the sealing member 23 covering the LED 22.
 以下、この点について、図6、図7、図8A及び図8Bを用いて詳細に説明する。まず、図6を用いて封止部材23が劣化する様子を説明する。図6は、比較例1(気密封止)の電球形ランプのLEDモジュールにおいて、封止部材の樹脂が劣化する様子を説明する図である。 Hereinafter, this point will be described in detail with reference to FIGS. 6, 7, 8A, and 8B. First, how the sealing member 23 deteriorates will be described with reference to FIG. FIG. 6 is a diagram for explaining how the resin of the sealing member deteriorates in the LED module of the light bulb shaped lamp of Comparative Example 1 (hermetic sealing).
 なお、この実験では、比較例1の電球形ランプとして、気密封止されたグローブ10内に、LEDモジュール20を配置するとともにヘリウムガスを封入したものを用意した。また、比較例2の電球形ランプとして、気密封止しないグローブ10内にLEDモジュール20を配置したものを用意した。なお、比較例1及び比較例2においては同じLEDモジュール20を用い、いずれも封止部材23として黄色蛍光体粒子を含有したシリコーン樹脂を用いた。 In this experiment, a light bulb shaped lamp of Comparative Example 1 was prepared in which the LED module 20 was placed in a hermetically sealed globe 10 and helium gas was sealed. Further, as the light bulb shaped lamp of Comparative Example 2, a lamp in which the LED module 20 was arranged in the globe 10 that was not hermetically sealed was prepared. In Comparative Example 1 and Comparative Example 2, the same LED module 20 was used, and a silicone resin containing yellow phosphor particles was used as the sealing member 23 in both cases.
 図6(a)に示すように、ヘリウムガスを気密封止した比較例1の電球形ランプは、初期状態(点灯前)では、封止部材23に特に変化は見られず、封止部材23の外観の色は黄色のままであった。 As shown in FIG. 6A, in the light bulb shaped lamp of Comparative Example 1 in which helium gas is hermetically sealed, there is no particular change in the sealing member 23 in the initial state (before lighting), and the sealing member 23 The appearance color remained yellow.
 しかし、この比較例1の電球形ランプ(LEDモジュール20)の点灯を継続すると、図6(b)に示すように、封止部材23が局所的に変色した。具体的には、封止部材23のLED周辺部(LED実装部分)23Xが茶色く着色した。なお、図6(b)において、LED22のジャンクション温度Tjは210℃であり、継続点灯時間は1000時間である。 However, when the lighting of the light bulb shaped lamp (LED module 20) of Comparative Example 1 was continued, as shown in FIG. 6B, the sealing member 23 was locally discolored. Specifically, the LED peripheral portion (LED mounting portion) 23X of the sealing member 23 is colored brown. In FIG. 6B, the junction temperature Tj of the LED 22 is 210 ° C., and the continuous lighting time is 1000 hours.
 一方、図示しないが、気密封止していない比較例2の電球形ランプでは、LEDモジュール20を1000時間点灯させても、封止部材23の外観の色は初期状態と同じ黄色のままであった。 On the other hand, although not shown, in the light bulb shaped lamp of Comparative Example 2 that is not hermetically sealed, the color of the appearance of the sealing member 23 remains the same as the initial state even when the LED module 20 is lit for 1000 hours. It was.
 この実験結果の原因を調べるために、図6(b)に示される封止部材23の成分分析を行った。その分析結果を図7に示す。図7は、図6(b)に示す封止部材23のLED周辺部23X(変色部分)のシロキサン成分の分析結果を示す図である。 In order to investigate the cause of this experimental result, component analysis of the sealing member 23 shown in FIG. 6B was performed. The analysis result is shown in FIG. FIG. 7 is a diagram showing an analysis result of the siloxane component in the LED peripheral portion 23X (discoloration portion) of the sealing member 23 shown in FIG. 6B.
 図7に示すように、図6(b)に示される1000時間継続点灯後の封止部材23のLED周辺部23X(変色部分)について、4つのシロキサン成分の組成変化を分析した結果、僅かにシルエチレン架橋が減少し、シロキサン架橋に変化していることが分かった。また、高温加熱すると揮散しやすいトリメチルシリル基が少し減少していることも分かった。しかしながら、いずれのシロキサン成分においても、通常この程度の変化は軽微の劣化に区分されることから、変色を伴う劣化とまではいえない。 As shown in FIG. 7, as a result of analyzing the composition change of the four siloxane components in the LED peripheral portion 23X (discolored portion) of the sealing member 23 after 1000 hours of continuous lighting shown in FIG. It was found that silethylene crosslinks decreased and changed to siloxane crosslinks. It was also found that trimethylsilyl groups, which are easily volatilized when heated at high temperatures, were slightly reduced. However, in any siloxane component, this level of change is usually classified as minor deterioration, so it cannot be said that deterioration is accompanied by discoloration.
 このように、比較例1(気密封止)における封止部材23を構成するシリコーン樹脂(シロキサン)の変化は軽微であることから、図6(b)の封止部材23の変色(着色)の原因は、封止部材23(シリコーン樹脂)自体の組成変化によるものではないと考えられる。 Thus, since the change of the silicone resin (siloxane) which comprises the sealing member 23 in the comparative example 1 (airtight sealing) is slight, discoloration (coloring) of the sealing member 23 of FIG. It is considered that the cause is not due to the composition change of the sealing member 23 (silicone resin) itself.
 そこで、本願発明者らは、別の観点から検討した結果、封止部材23内に不純物等が混入したことによって封止部材23が変色したのではないかと考え、図6の(a)及び(b)に示す封止部材23について、顕微Raman分析を行った。その分析結果を図8A及び図8Bに示す。図8Aは、図6(a)に示す初期状態のLED周辺部における封止部材23の顕微Raman分析の結果を示す図である。また、図8Bは、図6(b)に示す1000時間継続点灯後のLED周辺部23X(変色部分)における封止部材23の顕微Raman分析の結果を示す図である。 Therefore, as a result of examination from another viewpoint, the inventors of the present application considered that the sealing member 23 was discolored due to impurities or the like being mixed in the sealing member 23, and FIGS. Microscopic Raman analysis was performed on the sealing member 23 shown in b). The analysis results are shown in FIGS. 8A and 8B. FIG. 8A is a diagram showing the results of micro Raman analysis of the sealing member 23 in the peripheral portion of the LED in the initial state shown in FIG. Moreover, FIG. 8B is a figure which shows the result of the micro Raman analysis of the sealing member 23 in LED peripheral part 23X (color change part) after 1000-hour continuous lighting shown in FIG.6 (b).
 その結果、図8Aに示すように、比較例1(気密封止)の電球形ランプにおいて、初期状態(点灯前)の封止部材23については、波長633nmのHe-Neレーザ光を照射しても特に強い蛍光は見られなかった。 As a result, as shown in FIG. 8A, in the light bulb shaped lamp of Comparative Example 1 (hermetic sealing), the sealing member 23 in the initial state (before lighting) is irradiated with He—Ne laser light having a wavelength of 633 nm. However, no particularly strong fluorescence was observed.
 一方、図8Bに示すように、比較例1(気密封止)の電球形ランプにおいて、1000時間継続点灯後の封止部材23については、波長633nmのHe-Neレーザ光を照射すると、LED周辺部23X(変色部分)において強い蛍光が見られた。なお、レーザパワーを弱めて蛍光の分布を分析したところ、蛍光と変色との間には相関性があるということが分かった。 On the other hand, as shown in FIG. 8B, in the light bulb shaped lamp of Comparative Example 1 (hermetic sealing), the sealing member 23 after 1000 hours of continuous lighting is irradiated with He—Ne laser light having a wavelength of 633 nm. Strong fluorescence was observed in the portion 23X (discolored portion). When the distribution of fluorescence was analyzed with the laser power weakened, it was found that there was a correlation between fluorescence and discoloration.
 図8Aに示すように、初期状態の封止部材23(シリコーン樹脂)からは強い蛍光の発生が見られないことから、図8Bに示される蛍光の発生と図6(b)に見られる封止部材23の着色の発生とは、同じ原因であると推測される。 As shown in FIG. 8A, since no strong fluorescence is generated from the sealing member 23 (silicone resin) in the initial state, the generation of fluorescence shown in FIG. 8B and the sealing shown in FIG. The occurrence of coloring of the member 23 is assumed to be the same cause.
 そして、本願発明者らは、これらの分析結果を検討した結果、図8Bに見られる蛍光の発生は、不活性雰囲気において炭化劣化して茶色に変色しやすい物質が封止部材23の内部に混入したことが原因であることを突き止めた。つまり、不活性雰囲気において炭化劣化して茶色に変色しやすい物質が封止部材23の内部に混入して拡散し、点灯時におけるLED22の強い光によって茶色に着色してLED22の周辺に固着したとことが原因であることを突き止めた。具体的には、芳香族化合物又は半田付けの際のフラックス等の有機物が封止部材23の内部に混入し、LED22の強い光によってLED22の周辺において変色したと考えられる。 As a result of studying these analysis results, the inventors of the present application have found that the generation of fluorescence shown in FIG. I found out that this was the cause. That is, a substance that is easily deteriorated by carbonization in an inert atmosphere and is likely to turn brown is mixed and diffused inside the sealing member 23, and is colored brown by the strong light of the LED 22 during lighting and fixed around the LED 22. I found out that this was the cause. Specifically, it is considered that an organic compound such as an aromatic compound or a flux at the time of soldering is mixed in the sealing member 23 and discolored around the LED 22 by the strong light of the LED 22.
 ここで、変色の原因となる有機物としては、芳香族化合物又はフラックス等が考えられる。芳香族化合物は、LEDを実装するときのダイボンド剤やその他接着剤に含まれる芳香族エポキシが考えられる。あるいは、芳香族化合物として、LEDモジュール20の構成部材を作製する際の洗浄液や切削油に含まれるアセトン等も考えられる。また、フラックス(半田フラックス)は、LEDモジュール20の端子26とリード線40とを導電性接着部材27(半田)によって接続する際に用いられるものであり、当該接続部分に残留している。このような有機物は、LEDモジュール20を作製する際に、何らかの形でLEDモジュール20に残留してしまう。 Here, as an organic substance causing discoloration, an aromatic compound or a flux can be considered. The aromatic compound may be an aromatic epoxy contained in a die bond agent or other adhesive when mounting an LED. Or as an aromatic compound, the acetone etc. which are contained in the washing | cleaning liquid at the time of producing the structural member of the LED module 20, or cutting oil are also considered. The flux (solder flux) is used when the terminal 26 of the LED module 20 and the lead wire 40 are connected by the conductive adhesive member 27 (solder), and remains in the connection portion. Such organic matter remains in the LED module 20 in some form when the LED module 20 is manufactured.
 そして、LEDモジュール20に残留する有機物(有機ガス)は、例えば、封止部材23内に混入してLEDの熱によって熱分解されて拡散し、LEDの光によって劣化が促進する。この結果、封止部材23のLED周辺部23Xが変色すると考えられる。つまり、封止部材23内に混入したフラックス等の有機物が封止部材23内で変色する。なお、フラックス等の有機物は、封止部材23以外にも、例えば基台21や導電性接着部材27にも存在する場合がある。 And the organic substance (organic gas) remaining in the LED module 20 is mixed in the sealing member 23, for example, is thermally decomposed and diffused by the heat of the LED, and deterioration is promoted by the light of the LED. As a result, it is considered that the LED peripheral portion 23X of the sealing member 23 changes color. That is, the organic matter such as flux mixed in the sealing member 23 changes color in the sealing member 23. In addition to the sealing member 23, organic substances such as flux may be present in the base 21 and the conductive adhesive member 27, for example.
 本願発明者らは、封止部材の変色の要因を調べるために、さらに、次のような実験を行った。まず、0.2wt%のフラックスが含まれるシリコーン樹脂を用意した。そして、このフラックスに汚染されたシリコーン樹脂に対して、波長365nmの紫外線を30mJ/cmの照射量で72時間の照射を行ったところ、シリコーン樹脂が茶色に変色した。これは、フラックス内に含まれるアビエチン酸(有機物質)が紫外線照射によってブラウニング現象を引き起こして変色及び蛍光し、シリコーン樹脂内に変色物質が生成したと考えられる。このことは、シリコーン樹脂内に、共役系を持つ炭素系有機物質が存在することを意味する。 In order to investigate the cause of discoloration of the sealing member, the present inventors further conducted the following experiment. First, a silicone resin containing 0.2 wt% flux was prepared. When the silicone resin contaminated with the flux was irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 30 mJ / cm 2 for 72 hours, the silicone resin turned brown. This is presumably because abietic acid (organic substance) contained in the flux caused browning phenomenon due to ultraviolet irradiation, causing discoloration and fluorescence, and the discoloration substance was generated in the silicone resin. This means that a carbon-based organic substance having a conjugated system exists in the silicone resin.
 さらに、この変色したシリコーン樹脂に対して、引き続き、波長365nmの紫外線を110mJ/cmの照射量で24時間の照射を継続して行ったところ、脱色(漂白)して紫外線を照射する前の状態に戻った。 Further, the discolored silicone resin was continuously irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 110 mJ / cm 2 for 24 hours, before being decolored (bleached) and irradiated with ultraviolet rays. Returned to the state.
 このように、フラックス含有のシリコーン樹脂が一旦変色してその後脱色するのは、ブラウニング現象により生成した変色物質が、シリコーン樹脂周囲の酸素によって酸化分解(還元)されて、無色化したと考えられる。 As described above, the reason why the flux-containing silicone resin is once discolored and then decolorized is considered to be that the discolored substance produced by the browning phenomenon has been oxidatively decomposed (reduced) by oxygen around the silicone resin and has become colorless.
 なお、フラックスが含まれないシリコーン樹脂についても同様の実験を行ったところ、着色や脱色は見られず、初期状態のままであった。 In addition, when a similar experiment was performed on a silicone resin containing no flux, coloring and decoloring were not observed and the initial state was maintained.
 以上、図6からの一連の実験結果によると、比較例1の電球形ランプのように、グローブ10を気密封止すると、封止部材23に混入した有機物によって封止部材23のLED周辺部23Xが変色し、LEDモジュール20(LED)の光束が低下することが分かった。 As described above, according to a series of experimental results from FIG. 6, when the globe 10 is hermetically sealed as in the light bulb shaped lamp of the comparative example 1, the LED peripheral portion 23 </ b> X of the sealing member 23 is caused by the organic matter mixed in the sealing member 23. It turned out that discolored and the luminous flux of LED module 20 (LED) falls.
 一方、比較例2の電球形ランプのように、グローブが気密封止されていない場合は、酸素を含む空気がランプ外部からグローブ内に自由に入り込むことができ。このため、気密封止されていないグローブ内に配置されたLEDモジュールでは、LEDを封止する封止部材に有機物が混入したとしても、ランプ外部から入り込む酸素によって酸化分解され、長時間点灯しても封止部材が変色しないと考えられる。 On the other hand, when the globe is not hermetically sealed as in the light bulb shaped lamp of Comparative Example 2, air containing oxygen can freely enter the globe from outside the lamp. For this reason, in an LED module arranged in a glove that is not hermetically sealed, even if an organic substance is mixed in the sealing member that seals the LED, it is oxidatively decomposed by oxygen entering from the outside of the lamp and is lit for a long time. It is considered that the sealing member does not change color.
 本発明は、このような知見に基づいてなされたものである。すなわち、本願発明者らは、グローブを気密封止(密閉)することで封止部材が変色するという新たな課題を見出し、この課題を解決するために鋭意検討した結果、気密封止されたグローブ10内に酸素(O)ガスを封入するという着想を得ることができた。 The present invention has been made based on such knowledge. That is, the inventors of the present application have found a new problem that the sealing member is discolored by hermetically sealing (sealing) the globe, and as a result of intensive studies to solve this problem, the hermetically sealed globe The idea of enclosing oxygen (O 2 ) gas in 10 could be obtained.
 このように、気密封止されたグローブ10内に酸素ガスを封入することで、封止部材23の内部に混入した有機物を酸化分解することができる。これにより、封止部材23が変色することを抑制して、光束の低下を抑制することができる。 Thus, by sealing oxygen gas into the hermetically sealed globe 10, organic substances mixed in the sealing member 23 can be oxidatively decomposed. Thereby, it can suppress that the sealing member 23 discolors, and can suppress the fall of a light beam.
 本願発明者らはこの効果を確認する実験を行ったので、この実験結果について、図9A、図9B及び図10を用いて説明する。図9Aは、気密封止されたグローブ内に100%ヘリウムが封入された電球形ランプのライフ試験結果を示す図である。また、図9Bは、同電球形ランプの加速試験結果を示す図である。なお、図9Aは、ライフ条件がTj=125℃での通電評価である。また、図9Bは、ライフ条件がTj=210℃での加速試験評価である。また、グローブ内の体積は、56000mmであり、グローブ内の封入ガス圧は0.85atmとした。 The inventors of the present application conducted an experiment to confirm this effect, and the experimental result will be described with reference to FIGS. 9A, 9B, and 10. FIG. FIG. 9A is a diagram showing a life test result of a light bulb shaped lamp in which 100% helium is enclosed in a hermetically sealed globe. Moreover, FIG. 9B is a figure which shows the acceleration test result of the same bulb-type lamp. FIG. 9A shows an energization evaluation when the life condition is Tj = 125 ° C. FIG. 9B is an accelerated test evaluation when the life condition is Tj = 210 ° C. Moreover, the volume in the globe was 56000 mm 3 and the sealed gas pressure in the globe was 0.85 atm.
 図9Aの「□」に示すように、気密封止されたグローブ内に100%ヘリウムが封入された電球形ランプでは、光束が徐々に低下していくことが分かる。さらに、同図の「△」に示すように、LEDのジャンクション温度も上昇し、2000時間経過後は、初期値の125℃から5℃程度上昇していることが分かる。 As shown by “□” in FIG. 9A, it can be seen that the light flux gradually decreases in the light bulb shaped lamp in which 100% helium is sealed in a hermetically sealed globe. Further, as shown by “Δ” in the figure, the junction temperature of the LED also increases, and it can be seen that after 2000 hours, the initial value has increased from 125 ° C. by about 5 ° C.
 また、図9Bは、図9Aと同様の電球形ランプ(気密封止されたグローブ内に100%ヘリウムを封入)を用いて、温度負荷を上げて寿命劣化を早めた加速試験を行った結果を示しているが、同図の「□」に示すように、この実験結果からみても明らかに光束が低下するとともにLEDのジャンクション温度が上昇することが分かる。 FIG. 9B shows the result of an acceleration test using a bulb-type lamp similar to FIG. 9A (with 100% helium enclosed in a hermetically sealed glove) to increase the temperature load and accelerate the life deterioration. As shown by “□” in the figure, it can be seen from this experimental result that the luminous flux clearly decreases and the junction temperature of the LED increases.
 図10は、グローブが気密封止された電球形ランプにおいて、空気を100%封入した場合(△)、ヘリウムを100%封入した場合(○)、及び、20%の空気と80%のヘリウムとの混合ガスを封入した場合(□)についてのライフ試験結果を示す図である。なお、図10は、ライフ条件がTj=125℃での通電評価である。 FIG. 10 shows a bulb-type lamp in which a globe is hermetically sealed, in which 100% of air is enclosed (Δ), 100% of helium is enclosed (◯), and 20% air and 80% helium. It is a figure which shows the life test result about (□) when enclosing the mixed gas of. FIG. 10 shows an energization evaluation when the life condition is Tj = 125 ° C.
 図10に示すように、空気のみの場合(△)と混合ガス(空気/ヘリウム)の場合(□)とでは、300時間点灯してもほとんど光束が低下しないことが分かる。つまり、グローブ10内に少なくとも酸素が封入されていれば、光束の低下を抑制できることが分かる。なお、初期段階で光束が若干低下しているが、これは封止部材23に混入した有機物が一度変色して光束が低下し、その後、有機物が酸化分解して光束が元に戻ったと考えられる。 As shown in FIG. 10, it can be seen that the luminous flux hardly decreases even when the lamp is lit for 300 hours in the case of only air (Δ) and in the case of the mixed gas (air / helium) (□). That is, it can be seen that the decrease in the luminous flux can be suppressed if at least oxygen is enclosed in the globe 10. In addition, although the light beam is slightly decreased in the initial stage, it is considered that the organic matter mixed in the sealing member 23 is once discolored to decrease the light beam, and then the organic matter is oxidized and decomposed to return the light beam to the original state. .
 一方、ヘリウムのみの場合(○)、すなわち、酸素が封入されていない場合では、300時間点灯すると、大幅に光束が低下することが分かる。 On the other hand, in the case of only helium (O), that is, in the case where oxygen is not sealed, it is understood that the luminous flux is greatly reduced after 300 hours of lighting.
 このように、気密封止されたグローブ10内に酸素ガスを封入することによって、変色の原因となる封止部材23内に混入した有機物を酸化分解することができる。 Thus, by sealing oxygen gas in the hermetically sealed globe 10, the organic matter mixed in the sealing member 23 causing discoloration can be oxidatively decomposed.
 また、図10に示す結果から、グローブ10内の空気はグローブ10内に存在する全気体に対して少なくとも20%あればよい。また、空気中に含まれる酸素含有率が約20%であることを考えると、グローブ10内に封入される酸素としては、グローブ10内に存在する全気体に対して少なくとも4%程度あればよいということが分かる。 Further, from the results shown in FIG. 10, the air in the globe 10 may be at least 20% of the total gas existing in the globe 10. Moreover, considering that the oxygen content contained in the air is about 20%, the oxygen enclosed in the globe 10 may be at least about 4% with respect to the total gas present in the globe 10. I understand that.
 なお、グローブ10は気密封止されているので、一旦酸素を封入すると、グローブ10内には追加的に酸素(空気)が補充されることはない。これにもかかわらず、図10において、光束が低下しないのは、封止部材23に含まれる有機物が全て酸化分解されたからであると考えられる。つまり、LEDの光によって変色した有機物は酸素分解されて水と二酸化炭素とになり、変色する物質が存在しなくなるからである。 Since the globe 10 is hermetically sealed, once oxygen is sealed, the globe 10 is not additionally supplemented with oxygen (air). In spite of this, in FIG. 10, the light flux does not decrease because all the organic substances contained in the sealing member 23 are oxidized and decomposed. That is, the organic matter discolored by the light of the LED is decomposed into oxygen and becomes water and carbon dioxide, and there is no substance that changes color.
 また、図10に示すヘリウム100%の場合のサンプル(○)が、図9A及び図9Bに示すヘリウム100%のサンプルの場合よりも劣化が早いのは、図10のサンプルでは、フラックス等の有機物を洗浄する工程を行っていないからであると考えられる。 In addition, the sample (◯) in the case of 100% helium shown in FIG. 10 deteriorates faster than the sample of 100% helium shown in FIG. 9A and FIG. 9B. This is thought to be because the process of washing was not performed.
 以上説明したように、本実施の形態に係る電球形ランプ1によれば、気密封止されたグローブ10内に酸素ガスが封入されているので、封止部材23の内部に混入した有機物を酸化分解することができる。これにより、封止部材23が変色することを抑制することができるので、LEDモジュール20の光束が低下することを抑制することができる。 As described above, according to the light bulb shaped lamp 1 according to the present embodiment, oxygen gas is sealed in the hermetically sealed globe 10, so that the organic matter mixed in the sealing member 23 is oxidized. Can be disassembled. Thereby, since it can suppress that the sealing member 23 discolors, it can suppress that the light beam of the LED module 20 falls.
 しかも、封止部材23の内部に混入した有機物を酸化分解することで、LED22のジャンクション温度の上昇を抑制することもできる。 Moreover, an increase in the junction temperature of the LED 22 can also be suppressed by oxidizing and decomposing the organic matter mixed inside the sealing member 23.
 さらに、気密封止されたグローブ10を用いることで、グローブ10が密閉されてグローブ10内の気密性が保たれる。これにより、長期間にわたって、水あるいは水蒸気などが外部からグローブ10内に混入することを防ぐことができ、水分によってLEDモジュール20が劣化すること等を抑制することができる。 Furthermore, by using the hermetically sealed glove 10, the glove 10 is hermetically sealed and the hermeticity in the glove 10 is maintained. Thereby, it can prevent that water, water vapor | steam, etc. mix in the globe 10 from the outside over a long period of time, and can suppress that the LED module 20 deteriorates with a water | moisture content.
 また、本実施の形態に係る電球形ランプ1において、グローブ10内に、酸素ガスに加えてヘリウムガスを封入することが好ましい。ヘリウムは気体の中でも熱伝導率が比較的に高く、冷却効果に優れている。したがって、グローブ10内にヘリウムを封入すると、LEDモジュール20(LED22)で発生した熱は、グローブ10内のヘリウムを含む気体中に効率良く伝導及び輻射する。グローブ10の熱伝導率はヘリウムの熱伝導率よりも高いことから、LEDモジュール20(LED22)で発生した熱は、ヘリウムを含む気体を介してグローブ10に効率良く伝導して、グローブ10から電球形ランプ1の外部に放熱される。これにより、LEDモジュール20(LED22)で発生する熱を効率良く放熱させることができるので、熱によってLED22の発光効率が低下することを抑制できる。このように、酸素とヘリウムとの混合ガスを封入することによって、さらに、光束の低下を抑制することのできる電球形LEDランプを実現することができる。 In the light bulb shaped lamp 1 according to the present embodiment, it is preferable to enclose helium gas in the globe 10 in addition to oxygen gas. Helium has a relatively high thermal conductivity among gases and has an excellent cooling effect. Therefore, when helium is enclosed in the globe 10, the heat generated in the LED module 20 (LED 22) is efficiently conducted and radiated into the gas containing helium in the globe 10. Since the thermal conductivity of the globe 10 is higher than the thermal conductivity of helium, the heat generated in the LED module 20 (LED 22) is efficiently conducted to the globe 10 through a gas containing helium, and the bulb 10 emits light from the bulb 10. Heat is radiated to the outside of the shaped lamp 1. Thereby, since the heat which generate | occur | produces in LED module 20 (LED22) can be thermally radiated efficiently, it can suppress that the luminous efficiency of LED22 falls with heat. In this way, by enclosing a mixed gas of oxygen and helium, a light bulb-type LED lamp that can further suppress a decrease in luminous flux can be realized.
 また、本実施の形態に係る電球形ランプ1において、グローブ10内に、酸素ガスに加えて窒素(N)ガスを封入してもよい。窒素は、空気よりも絶縁破壊電圧が大きいので、グローブ10内に窒素ガスを封入することによって、絶縁性を向上させることができる。また、窒素ガスは、空気の平均分子量よりも分子量が小さいので、放熱性の向上も期待できる。窒素ガスは、ヘリウムガス及び酸素ガスとともに、グローブ10内に封入しても構わない。 Further, in the light bulb shaped lamp 1 according to the present embodiment, nitrogen (N 2 ) gas may be enclosed in the globe 10 in addition to oxygen gas. Nitrogen has a higher dielectric breakdown voltage than air, so that the insulation can be improved by enclosing nitrogen gas in the globe 10. Moreover, since the molecular weight of nitrogen gas is smaller than the average molecular weight of air, an improvement in heat dissipation can be expected. Nitrogen gas may be enclosed in the globe 10 together with helium gas and oxygen gas.
 なお、放熱性を向上することのできる気体としては、空気の平均分子量よりも分子量の小さい気体(ガス)であればよいので、ヘリウムガス及び窒素ガス以外に、水素ガスを用いることも可能である。 In addition, as gas which can improve heat dissipation, since gas (gas) whose molecular weight is smaller than the average molecular weight of air should just be sufficient, it is also possible to use hydrogen gas other than helium gas and nitrogen gas. .
 (変形例)
 以下、本発明の実施の形態に係る電球形ランプの変形例について、図面を用いて説明する。以下に示す各変形例においても、上記の実施の形態と同様の効果を奏することができる。
(Modification)
Hereinafter, modifications of the light bulb shaped lamp according to the embodiment of the present invention will be described with reference to the drawings. Also in each modification shown below, the same effect as the above-mentioned embodiment can be produced.
 (変形例1)
 まず、本実施の形態の変形例1について、図11及び図12を用いて説明する。図11は、本発明の実施の形態の変形例1に係る電球形ランプの外観斜視図である。図12は、本発明の実施の形態の変形例1に係る電球形ランプの分解斜視図である。
(Modification 1)
First, a first modification of the present embodiment will be described with reference to FIGS. FIG. 11 is an external perspective view of a light bulb shaped lamp according to Modification 1 of the embodiment of the present invention. FIG. 12 is an exploded perspective view of a light bulb shaped lamp according to Modification 1 of the embodiment of the present invention.
 図11及び図12に示すように、本変形例に係る電球形ランプ2は、グローブ10Aと、LEDモジュール20と、一対のリード線40Aと、点灯回路50と、口金70とを備える。なお、図12において、点灯回路50における回路素子は図示を省略している。 11 and 12, the light bulb shaped lamp 2 according to this modification includes a globe 10A, an LED module 20, a pair of lead wires 40A, a lighting circuit 50, and a base 70. In FIG. 12, circuit elements in the lighting circuit 50 are not shown.
 グローブ10Aは、グローブ本体部11と、封止部12Aとによって構成されている。グローブ本体部11は、上記の実施の形態と同様であり、開口11aを有する。 The globe 10A includes a globe body 11 and a sealing portion 12A. The glove body 11 is the same as the above embodiment and has an opening 11a.
 封止部12Aは、グローブ本体部11の開口11aからグローブ本体部11の内方に向かって延びるように設けられたステムである。本実施の形態における封止部12Aは、一般的な白熱電球に用いられるガラスステムと同等のものを用いることができる。例えば、封止部12Aは、可視光に対して透明な軟質ガラスを用いて構成することができる。これにより、LEDモジュール20で生じた光が、封止部12Aによって損失することを抑制することができるとともに、封止部12Aによって影が形成されることも防ぐことができる。 The sealing portion 12 </ b> A is a stem provided so as to extend from the opening 11 a of the globe body 11 toward the inside of the globe body 11. The sealing part 12A in the present embodiment can be the same as a glass stem used in a general incandescent bulb. For example, the sealing portion 12A can be configured using soft glass that is transparent to visible light. Thereby, it can suppress that the light which generate | occur | produced by LED module 20 is lost by 12 A of sealing parts, and it can also prevent that a shadow is formed by 12 A of sealing parts.
 また、図12に示すように、封止部12Aの口金側の端部であるフレア部12Aaは、グローブ本体部11の開口11aの形状と一致するようにフレア状に形成されており、グローブ本体部11の開口11aを塞ぐようにして開口11aに接合される。具体的には、封止部12Aのフレア部12Aaとグローブ本体部11の開口11aとを溶着することで接合することができる。これにより、グローブ10Aを気密封止することができる。なお、封止部12Aには、2本のリード線40Aの各々の一部が封着されている。 Further, as shown in FIG. 12, the flared portion 12Aa, which is the end of the sealing portion 12A on the base side, is formed in a flared shape so as to coincide with the shape of the opening 11a of the glove main body portion 11, and the glove main body. It joins to the opening 11a so that the opening 11a of the part 11 may be plugged up. Specifically, it can be joined by welding the flare portion 12Aa of the sealing portion 12A and the opening 11a of the globe main body portion 11. Thereby, the globe 10A can be hermetically sealed. A part of each of the two lead wires 40A is sealed to the sealing portion 12A.
 2本のリード線40Aは、保持用かつ給電用の電線であり、LEDモジュール20をグローブ10A内の一定の位置に保持するとともに、口金70から供給された電力をLEDモジュール20に供給する。 The two lead wires 40A are electric wires for holding and feeding, hold the LED module 20 at a fixed position in the globe 10A, and supply the power supplied from the base 70 to the LED module 20.
 各リード線40Aの一方の端部は、LEDモジュール20の端子26と半田等によって電気的に接続されている。また、各リード線40Aの他方の端部は、点灯回路50の電力出力部と電気的に接続されている。 One end of each lead wire 40A is electrically connected to the terminal 26 of the LED module 20 by solder or the like. The other end of each lead wire 40 </ b> A is electrically connected to the power output unit of the lighting circuit 50.
 各リード線40Aは、例えば、内部リード線、ジュメット線(銅被覆ニッケル鋼線)、及び外部リード線を、この順に接合した複合線よって構成される。なお、リード線40Aは、必ずしも複合線である必要はなく、上述のリード線40と同様に、同一の金属線からなる単線であってもよい。 Each lead wire 40A is constituted by, for example, a composite wire in which an internal lead wire, a dumet wire (copper-coated nickel steel wire), and an external lead wire are joined in this order. Note that the lead wire 40A is not necessarily a composite wire, and may be a single wire made of the same metal wire as the lead wire 40 described above.
 (変形例2)
 次に、本実施の形態の変形例2について、図13を用いて説明する。図13は、本発明の実施の形態の変形例2に係る電球形ランプの外観斜視図である。
(Modification 2)
Next, Modification 2 of the present embodiment will be described with reference to FIG. FIG. 13 is an external perspective view of a light bulb shaped lamp according to a second modification of the embodiment of the present invention.
 図13に示すように、本変形例に係る電球形ランプ3は、グローブ10と、LEDモジュール20Aと、ヒートシンク30Aと、点灯回路50(不図示)と、樹脂ケース60と、口金70と、導光柱80とを備える。 As shown in FIG. 13, the light bulb shaped lamp 3 according to this modification includes a globe 10, an LED module 20A, a heat sink 30A, a lighting circuit 50 (not shown), a resin case 60, a base 70, and a lead. And a light column 80.
 LEDモジュール20Aは、例えば、表面実装型(SMD:Surface Mount Device)のLEDモジュールであって、凹部を有する容器と、凹部の中に実装された1つ又は複数のLED(LEDチップ)と、凹部内に封入された封止部材(蛍光体含有樹脂)とによって構成されている。 The LED module 20A is, for example, a surface mount type (SMD) LED module, which includes a container having a recess, one or a plurality of LEDs (LED chips) mounted in the recess, and a recess. It is comprised with the sealing member (phosphor containing resin) enclosed in the inside.
 LEDモジュール20Aは、ヒートシンク30Aの上に配置されており、LEDモジュール20Aから放射される光が導光柱80に入射するように構成されている。ヒートシンク30Aは、例えば、上述の実施の形態における支持台32のみによって構成することができる。 The LED module 20A is disposed on the heat sink 30A, and is configured such that light emitted from the LED module 20A enters the light guide column 80. The heat sink 30A can be configured by only the support base 32 in the above-described embodiment, for example.
 導光柱80は、例えば、アクリル樹脂等の光透過性の高い樹脂からなる導光体であり、グローブ10の内方に向かって延びるように構成されている。本実施の形態における導光柱80は、長尺状の四角柱である。導光柱80は、LEDモジュール20Aから入射した光を内部で反射及び散乱等して当該導光柱80の表面全体から放射する。なお、光取り出し効率を高めるために、導光柱80の表面を加工して凹凸部を形成しても構わない。 The light guide column 80 is, for example, a light guide body made of a highly light-transmitting resin such as an acrylic resin, and is configured to extend inward of the globe 10. The light guide column 80 in the present embodiment is a long rectangular column. The light guide column 80 radiates light incident from the LED module 20 </ b> A from the entire surface of the light guide column 80 by internally reflecting and scattering the light. In order to increase the light extraction efficiency, the surface of the light guide column 80 may be processed to form an uneven portion.
 なお、本変形例において、LEDモジュール20Aとして、COB型のLEDモジュールを用いても構わない。 In this modification, a COB type LED module may be used as the LED module 20A.
 (変形例3)
 次に、本実施の形態の変形例3について、図14を用いて説明する。図14は、本発明の実施の形態の変形例3に係る電球形ランプにおけるLEDモジュールの断面図である。
(Modification 3)
Next, Modification 3 of the present embodiment will be described with reference to FIG. FIG. 14 is a cross-sectional view of the LED module in the light bulb shaped lamp according to the third modification of the embodiment of the present invention.
 図14に示すように、本変形例におけるLEDモジュール20Bは、基台21の両面にLED22が設けられている。具体的に、LEDモジュール20Bは、図4に示すLEDモジュール20に対して、基台21の第2主面(裏側面)にも、LED22、封止部材23、金属配線24、ワイヤー25、端子(不図示)及び導電性接着部材(不図示)が設けられている。 As shown in FIG. 14, the LED module 20 </ b> B in the present modification is provided with LEDs 22 on both surfaces of a base 21. Specifically, the LED module 20B has the LED 22, the sealing member 23, the metal wiring 24, the wire 25, and the terminal also on the second main surface (back side surface) of the base 21 with respect to the LED module 20 shown in FIG. (Not shown) and a conductive adhesive member (not shown) are provided.
 したがって、本変形例によれば、グローブ頂部側だけではなく口金側にも積極的に光を放出することができるので、広配光角の配光特性を容易に実現することができる。したがって、より白熱電球に近似した配光特性を有する電球形ランプを実現することができる。 Therefore, according to the present modification, light can be actively emitted not only to the globe top side but also to the base side, so that light distribution characteristics with a wide light distribution angle can be easily realized. Therefore, it is possible to realize a light bulb shaped lamp having a light distribution characteristic more similar to an incandescent light bulb.
 (変形例4)
 次に、本実施の形態の変形例4について、図15を用いて説明する。図15は、本発明の実施の形態の変形例4に係る電球形ランプにおけるLEDモジュールの断面図である。
(Modification 4)
Next, Modification 4 of the present embodiment will be described with reference to FIG. FIG. 15 is a cross-sectional view of an LED module in a light bulb shaped lamp according to Modification 4 of the embodiment of the present invention.
 図15に示すように、本変形例におけるLEDモジュール20Cは、表面のみにLED22が設けられた基台を2つ用意し、この2つの基台の裏面同士を貼り合わせることによって構成されている。具体的に、LEDモジュール20Cは、図14に示すLEDモジュール20Bに対して、基台21が2つの基台、すなわち、第1の基台21Xと第2の基台21Yとによって構成されているとともに、第1の基台21Xと第2の基台21Yとの間に接着剤28が設けられている。つまり、本変形例におけるLEDモジュール20Cは、図4に示すLEDモジュール20の基台21の裏面同士を接着剤28によって接着させることで構成することができる。 As shown in FIG. 15, the LED module 20 </ b> C in the present modification is configured by preparing two bases on which the LEDs 22 are provided only on the front surface and bonding the back surfaces of the two bases together. Specifically, in the LED module 20C, the base 21 is composed of two bases, that is, a first base 21X and a second base 21Y, with respect to the LED module 20B shown in FIG. In addition, an adhesive 28 is provided between the first base 21X and the second base 21Y. That is, the LED module 20 </ b> C in this modification can be configured by bonding the back surfaces of the bases 21 of the LED module 20 shown in FIG. 4 with the adhesive 28.
 本変形例によれば、変形例4と同様に、グローブ頂部側だけではなく口金側にも積極的に光を放出することができるので、広配光角の配光特性を容易に実現することができる。したがって、より白熱電球に近似した配光特性を有する電球形ランプを実現することができる。 According to this modification, light can be actively emitted not only to the top of the globe but also to the base as in the modification 4, so that light distribution characteristics with a wide light distribution angle can be easily realized. Can do. Therefore, it is possible to realize a light bulb shaped lamp having a light distribution characteristic more similar to an incandescent light bulb.
 また、接着剤28としては、例えばシリコーン樹脂等の樹脂又はAgペースト等の金属ペースト等により構成されている。金属ペーストの場合、第1の基台21Xと第2の基台21Yとの間での熱伝導率を高めて基台21としての熱伝導率が高められるので、基台21の放熱効率を高めることができる。その結果、温度上昇によるLEDの発光効率の低下を一層抑制することができる。また、金属ペーストの接着剤28(金属層)を用いることにより、基台21の遮光性を高めることができる。これにより、第1の基台21X及び第2の基台21Yの表面から裏面に向かう光を反射させることができるので、色ムラも抑制することができる。 The adhesive 28 is made of, for example, a resin such as a silicone resin or a metal paste such as an Ag paste. In the case of a metal paste, the thermal conductivity between the first base 21X and the second base 21Y is increased to increase the thermal conductivity as the base 21, so the heat dissipation efficiency of the base 21 is increased. be able to. As a result, it is possible to further suppress a decrease in the luminous efficiency of the LED due to a temperature rise. Moreover, the light-shielding property of the base 21 can be improved by using the adhesive agent 28 (metal layer) of a metal paste. Thereby, since the light which goes to the back surface from the surface of the 1st base 21X and the 2nd base 21Y can be reflected, a color nonuniformity can also be suppressed.
 なお、第1の基台21X及び第2の基台21Yは板状の基板としたが、これに限らない。例えば、第1の基台21X及び第2の基台21Yを絶縁層とし、その間に金属板を挟んだ構成のものを基台21としても構わない。つまり、基台21として、金属板の両面に絶縁層が被覆されたメタルベース基板を用いることができる。 The first base 21X and the second base 21Y are plate-like substrates, but are not limited thereto. For example, the first base 21 </ b> X and the second base 21 </ b> Y may be used as the base 21 with an insulating layer and a metal plate sandwiched therebetween. That is, as the base 21, a metal base substrate in which an insulating layer is coated on both surfaces of a metal plate can be used.
 (変形例5)
 次に、本実施の形態の変形例5について説明する。
(Modification 5)
Next, Modification 5 of the present embodiment will be described.
 上記の実施の形態及び各変形例では、気密封止された筐体として、ガラス封止されたガラスバルブ(グローブ10)を用いたが、ガラス封止以外の方法によって気密封止構造を実現しても構わない。 In the above embodiment and each modification, the glass sealed glass bulb (globe 10) is used as the hermetically sealed casing, but an airtight sealing structure is realized by a method other than glass sealing. It doesn't matter.
 例えば、グローブ本体部11の開口11aを塞ぐ閉塞部材と樹脂製又は金属製のOリング等の密封部材とを用いて機械的に密閉することで、気密封止された筐体を実現することができる。この場合、閉塞部材としては口金70としてもよく、グローブ本体部11と口金70とを密封部材によって密封することによって気密封止された筐体を実現することもできる。 For example, a hermetically sealed housing can be realized by mechanically sealing using a closing member that closes the opening 11a of the globe body 11 and a sealing member such as a resin or metal O-ring. it can. In this case, the closing member may be the base 70, and a hermetically sealed housing may be realized by sealing the globe main body 11 and the base 70 with a sealing member.
 なお、Oリング等の密封部材を用いずに、グローブ本体部11の開口11aと閉塞部材とをシリコーン樹脂によって接着することで開口11aを塞ぐ方法も考えられるが、シリコーン樹脂だけでは、グローブ本体部11を気密封止することは難しい。すなわち、シリコーン樹脂はガスバリア性が低く、シリコーン樹脂だけではグローブ内外の気体を通してしまう。但し、ガスバリア性が高く、グローブ内外の気体を通さないような接着剤を用いることにより、グローブ本体部11の開口11aと閉塞部材とを接着し、気密封止された筐体を実現することも可能である。 A method of closing the opening 11a by adhering the opening 11a of the globe body 11 and the closing member with a silicone resin without using a sealing member such as an O-ring is also conceivable. It is difficult to hermetically seal 11. That is, the silicone resin has a low gas barrier property, and the silicone resin alone allows gas inside and outside the globe to pass through. However, by using an adhesive that has a high gas barrier property and does not allow gas inside and outside the globe to pass therethrough, it is possible to bond the opening 11a of the glove body 11 and the closing member to realize a hermetically sealed casing. Is possible.
 (その他)
 以上、本発明に係る電球形ランプについて、実施の形態及びその変形例に基づいて説明したが、本発明は、これらの実施の形態及び変形例に限定されるものではない。
(Other)
Although the light bulb shaped lamp according to the present invention has been described based on the embodiments and the modifications thereof, the present invention is not limited to these embodiments and modifications.
 例えば、上記の実施の形態及び変形例において、グローブ10内には酸素とともにヘリウムを封入したが、酸素とともに封入する気体はヘリウムに限るものではない。つまり、グローブ10内の酸素封入は、変色物質の酸化による漂白を目的としたものであるので、必要十分の酸素以外はどのような気体を封入してもよい。例えば、酸素とともに、ヘリウム以外の希ガス(アルゴン等)を封入することができる。 For example, in the above-described embodiment and modification, helium is enclosed with oxygen in the globe 10, but the gas enclosed with oxygen is not limited to helium. In other words, since the oxygen sealing in the globe 10 is intended for bleaching by oxidation of the discolored substance, any gas other than the necessary and sufficient oxygen may be sealed. For example, a rare gas (such as argon) other than helium can be enclosed together with oxygen.
 また、上記の実施の形態及び変形例において、グローブ10内にはヒートシンク30を配置したが、ヒートシンク30は必ずしも配置する必要はない。この場合、LEDモジュール20は、リード線40又は金属支持棒41によって支持すればよい。このように、ヒートシンク30を用いないことによって、後方側(口金側)に放射する光がヒートシンク30によって遮光されてしまうことを防止することができる。したがって、広配光角の配光特性を容易に実現することができる。 Further, in the above-described embodiment and modification, the heat sink 30 is disposed in the globe 10, but the heat sink 30 is not necessarily disposed. In this case, the LED module 20 may be supported by the lead wire 40 or the metal support bar 41. Thus, by not using the heat sink 30, it is possible to prevent the light radiated to the rear side (the base side) from being blocked by the heat sink 30. Therefore, a light distribution characteristic with a wide light distribution angle can be easily realized.
 また、上記の実施の形態及び変形例において、ヒートシンク30は金属支持棒41によって支持したが、リード線40のみでLEDモジュール20及びヒートシンク30を支持できる場合、金属支持棒41は必ずしも設ける必要はない。さらに、この場合、ヒートシンク30も配置しないように構成してもよい。 In the above embodiment and modification, the heat sink 30 is supported by the metal support bar 41. However, when the LED module 20 and the heat sink 30 can be supported only by the lead wires 40, the metal support bar 41 is not necessarily provided. . Further, in this case, the heat sink 30 may not be arranged.
 また、上記の実施の形態では、支柱31の後方側の端部に支持台32を設けたが、支持台32は必ずしも設ける必要はない。この場合、支柱31の後方側の端部に金属支持棒41を直接取り付ければよい。 In the above-described embodiment, the support base 32 is provided at the rear end of the column 31, but the support base 32 is not necessarily provided. In this case, the metal support bar 41 may be directly attached to the rear end of the column 31.
 また、上記の本実施の形態では、気密封止された筐体として、ガラス封止して完全密閉されたものを用いたが、気体を一切通さないような完全気密封止された構造でなくても構わない。例えば、変形例5のように、密封部材やガスバリア性の高い接着剤を用いて気密封止された筐体を構成する場合、所定のガス圧で封入したガス(酸素、ヘリウム、窒素等)が時間の経過とともにランプ外部に多少漏れるような構成であっても構わない。この場合、大気圧との比較においてグローブ内のガス圧を調整したり大気中の酸素濃度との比較においてグローブ内の酸素濃度を調整したりすることにより、ランプ外部の気体(大気中の酸素)がグローブ内に入り込まないように構成することが好ましい。 Further, in the above-described embodiment, as the hermetically sealed casing, a glass sealed and completely sealed casing is used, but it is not a completely hermetically sealed structure that does not allow any gas to pass. It doesn't matter. For example, when a case hermetically sealed using a sealing member or an adhesive having a high gas barrier property is configured as in Modification 5, gas (oxygen, helium, nitrogen, etc.) sealed at a predetermined gas pressure is used. It may be configured such that it leaks to the outside of the lamp as time passes. In this case, the gas outside the lamp (oxygen in the atmosphere) is adjusted by adjusting the gas pressure in the globe in comparison with the atmospheric pressure, or by adjusting the oxygen concentration in the globe in comparison with the oxygen concentration in the atmosphere. It is preferable to configure so that does not enter the glove.
 また、上記の実施の形態及び変形例において、LEDモジュールは、青色LEDと黄色蛍光体とによって白色光を放出するように構成したが、これに限らない。例えば、赤色蛍光体及び緑色蛍光体を含有する蛍光体含有樹脂を用いて、これと青色LEDと組み合わせることによりに白色光を放出するように構成しても構わない。 Further, in the above-described embodiments and modifications, the LED module is configured to emit white light by the blue LED and the yellow phosphor, but is not limited thereto. For example, a phosphor-containing resin containing a red phosphor and a green phosphor may be used so that white light is emitted by combining this with a blue LED.
 また、LEDは、青色以外の色を発光するLEDを用いても構わない。例えば、LEDとして紫外線発光のLEDチップを用いる場合、蛍光体粒子としては、三原色(赤色、緑色、青色)に発光する各色蛍光体粒子を組み合わせたものを用いることができる。さらに、蛍光体粒子以外の波長変換材を用いてもよく、例えば、波長変換材として、半導体、金属錯体、有機染料、顔料など、ある波長の光を吸収し、吸収した光とは異なる波長の光を発する物質を含んでいる材料を用いてもよい。 Also, the LED may be an LED that emits a color other than blue. For example, when an ultraviolet light emitting LED chip is used as the LED, a combination of phosphor particles that emit light in three primary colors (red, green, and blue) can be used as the phosphor particles. Furthermore, a wavelength conversion material other than the phosphor particles may be used. For example, the wavelength conversion material absorbs light of a certain wavelength such as a semiconductor, a metal complex, an organic dye, or a pigment, and has a wavelength different from the absorbed light. A material containing a substance that emits light may be used.
 また、上記の実施の形態及び変形例において、発光素子としてLEDを例示したが、半導体レーザ等の半導体発光素子、又は、有機EL(Electro Luminescence)や無機EL等のEL素子、その他の固体発光素子を用いてもよい。 In the above embodiments and modifications, the LED is exemplified as the light emitting element. However, a semiconductor light emitting element such as a semiconductor laser, an EL element such as an organic EL (Electro Luminescence) or an inorganic EL, or other solid state light emitting element. May be used.
 また、上記の実施の形態及び変形例において、LEDモジュールは基板上にLEDチップを直接実装したCOB型の構成としたが、これに限らない。例えば、樹脂製の容器の凹部(キャビティ)の中にLEDチップ(発光素子)を実装して当該凹部内に封止部材(蛍光体含有樹脂)を封入したパッケージ型のLED素子(SMD型LED素子)を用いて、このLED素子を金属配線が形成された基板上に複数個実装することで構成されたSMD型のLEDモジュールを用いても構わない。SMD型LED素子は、基台21上にリフロー半田等によって実装されるので、COB型の場合と同様に、半田フラックス等の有機物が封止部材内に混入する。なお、SMD型LED素子を用いる場合、基台21としては、特にフレキシブル基板を用いることが好ましい。 Further, in the above-described embodiments and modifications, the LED module has a COB type configuration in which the LED chip is directly mounted on the substrate, but is not limited thereto. For example, a package type LED element (SMD type LED element) in which an LED chip (light emitting element) is mounted in a recess (cavity) of a resin container and a sealing member (phosphor-containing resin) is enclosed in the recess ), An SMD type LED module configured by mounting a plurality of LED elements on a substrate on which a metal wiring is formed may be used. Since the SMD type LED element is mounted on the base 21 by reflow solder or the like, an organic substance such as solder flux is mixed in the sealing member as in the case of the COB type. In addition, when using a SMD type LED element, as the base 21, it is preferable to use a flexible substrate especially.
 また、上記の実施の形態及び変形例では、照明用光源として電球形ランプを例にとって説明したが、気密封止された筐体を有するものであれば、直管形ランプ、丸形ランプ、ライトエンジン等の扁平形(円盤形)のランプ、又は、HIDランプ等にも適用することができる。また、ハロゲン電球形ランプ、高天井用電球形ランプ又はキャンドル形ランプ等にも適用することができる。この場合、LEDを実装する基台やグローブ、筐体の形状は、各ランプの形状に従って形成すればよい。 In the above-described embodiments and modifications, a light bulb-type lamp has been described as an example of an illumination light source. However, a straight tube lamp, a round lamp, a light can be used as long as it has a hermetically sealed casing. The present invention can also be applied to a flat (disk-shaped) lamp such as an engine or an HID lamp. The present invention can also be applied to a halogen bulb lamp, a high ceiling bulb lamp, a candle lamp, or the like. In this case, the shape of the base on which the LED is mounted, the globe, and the housing may be formed according to the shape of each lamp.
 また、本発明は、上記の電球形ランプを備える照明装置として実現することもできる。例えば、図16に示すように、本発明に係る照明装置100として、上記の電球形ランプ1と、当該電球形ランプ1が取り付けられる点灯器具(照明器具)200とを備える照明装置として構成することができる。この場合、点灯器具200は、電球形ランプ1の消灯及び点灯を行うものであり、例えば、天井に取り付けられる器具本体210と、電球形ランプ1を覆うランプカバー220とを備える。このうち、器具本体210は、電球形ランプ1の口金が装着されるとともに電球形ランプ1に給電を行うソケット211を有する。なお、ランプカバー220の開口部に透光性プレートを設けてもよい。 Moreover, the present invention can also be realized as an illumination device including the above-described light bulb shaped lamp. For example, as shown in FIG. 16, the lighting device 100 according to the present invention is configured as a lighting device including the above-described light bulb shaped lamp 1 and a lighting fixture (lighting fixture) 200 to which the light bulb shaped lamp 1 is attached. Can do. In this case, the lighting device 200 is for turning off and lighting the light bulb shaped lamp 1 and includes, for example, a device main body 210 attached to the ceiling and a lamp cover 220 covering the light bulb shaped lamp 1. Among these, the appliance main body 210 has a socket 211 to which the cap of the light bulb shaped lamp 1 is attached and which supplies power to the light bulb shaped lamp 1. A translucent plate may be provided in the opening of the lamp cover 220.
 その他、本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態及び変形例に施したもの、又は、実施の形態及び変形例における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 In addition, as long as it does not deviate from the gist of the present invention, various modifications conceived by those skilled in the art are applied to the present embodiment and the modified examples, or a form constructed by combining the constituent elements in the embodiments and modified examples, It is included within the scope of the present invention.
 本発明は、LED等の発光素子を有する照明用光源、特に、従来の白熱電球等を代替する電球形ランプ等のランプとして有用であり、その他照明装置等の種々の機器の光源として広く利用することができる。 INDUSTRIAL APPLICABILITY The present invention is useful as an illumination light source having a light emitting element such as an LED, in particular, a lamp such as a light bulb shaped lamp that replaces a conventional incandescent bulb, etc. be able to.
 1、2、3 電球形ランプ
 10、10A グローブ
 11 グローブ本体部
 11a 開口
 12、12A 封止部
 12Aa フレア部
 20、20A、20B、20C LEDモジュール
 21 基台
 21a、21b 貫通孔
 21X 第1の基台
 21Y 第2の基台
 22 LED
 23 封止部材
 23X LED周辺部
 24 金属配線
 25 ワイヤー
 26 端子
 27 導電性接着部材
 28 接着剤
 30、30A ヒートシンク
 30a 凸部
 31 支柱
 32 支持台
 40、40A リード線
 41 金属支持棒
 42 チューブ
 50 点灯回路
 51 回路基板
 52 回路素子
 60 樹脂ケース
 61 第1ケース部
 62 第2ケース部
 70 口金
 80 導光柱
 100 照明装置
 122a サファイア基板
 122b 窒化物半導体層
 122c カソード電極
 122d アノード電極
 122e、122f ワイヤーボンド部
 122g チップボンディング材
 200 点灯器具
 210 器具本体
 211 ソケット
 220 ランプカバー
1, 2, 3 Light bulb shaped lamp 10, 10A Globe 11 Globe main body 11a Opening 12, 12A Sealing part 12Aa Flare part 20, 20A, 20B, 20C LED module 21 Base 21a, 21b Through hole 21X First base 21Y 2nd base 22 LED
23 Sealing member 23X LED peripheral portion 24 Metal wiring 25 Wire 26 Terminal 27 Conductive adhesive member 28 Adhesive 30, 30A Heat sink 30a Protruding portion 31 Support column 32 Support base 40, 40A Lead wire 41 Metal support rod 42 Tube 50 Lighting circuit 51 Circuit board 52 Circuit element 60 Resin case 61 First case part 62 Second case part 70 Base 80 Light guide column 100 Illuminating device 122a Sapphire substrate 122b Nitride semiconductor layer 122c Cathode electrode 122d Anode electrode 122e, 122f Wire bond part 122g Chip bonding material 200 lighting fixture 210 fixture main body 211 socket 220 lamp cover

Claims (14)

  1.  気密封止された筐体と、
     前記筐体内に配置された基台と、
     前記基台に配置された発光素子とを備え、
     前記筐体内に、酸素が封入されている
     照明用光源。
    A hermetically sealed housing;
    A base disposed in the housing;
    A light emitting device disposed on the base,
    An illumination light source in which oxygen is enclosed in the housing.
  2.  前記筐体内に、さらに、ヘリウムが封入されている
     請求項1に記載の照明用光源。
    The illumination light source according to claim 1, wherein helium is further enclosed in the housing.
  3.  前記筐体内に、さらに、窒素が封入されている
     請求項1又は2に記載の照明用光源。
    The illumination light source according to claim 1, wherein nitrogen is further enclosed in the housing.
  4.  さらに、前記発光素子を覆う封止部材を備える
     請求項1~3のいずれか1項に記載の照明用光源。
    The illumination light source according to any one of claims 1 to 3, further comprising a sealing member that covers the light emitting element.
  5.  前記封止部材は、前記発光素子が発する光の波長を所定の波長に変換する波長変換材を含む
     請求項4に記載の照明用光源。
    The illumination light source according to claim 4, wherein the sealing member includes a wavelength conversion material that converts a wavelength of light emitted from the light emitting element into a predetermined wavelength.
  6.  前記封止部材は、樹脂である
     請求項4又は5に記載の照明用光源。
    The illumination light source according to claim 4, wherein the sealing member is a resin.
  7.  前記樹脂は、シリコーン樹脂である
     請求項6に記載の照明用光源。
    The illumination light source according to claim 6, wherein the resin is a silicone resin.
  8.  さらに、前記発光素子と電気的に接続される導電性接着部材を備える
     請求項1~7のいずれか1項に記載の照明用光源。
    The illumination light source according to any one of claims 1 to 7, further comprising a conductive adhesive member electrically connected to the light emitting element.
  9.  さらに、気密封止を保ったまま前記筐体の外部から内部に挿通され、前記基台に接続されたリード線を備える
     請求項8に記載の照明用光源。
    The illumination light source according to claim 8, further comprising a lead wire that is inserted from the outside to the inside of the housing while being hermetically sealed and connected to the base.
  10.  さらに、前記基台の上に形成された金属配線を備え、
     前記金属配線と前記リード線とは、前記導電性接着部材によって電気的に接続されている
     請求項9に記載の照明用光源。
    Furthermore, a metal wiring formed on the base is provided,
    The illumination light source according to claim 9, wherein the metal wiring and the lead wire are electrically connected by the conductive adhesive member.
  11.  前記筐体は、ガラス封止されたガラスバルブである
     請求項1~10のいずれか1項に記載の照明用光源。
    The illumination light source according to any one of claims 1 to 10, wherein the casing is a glass bulb sealed with glass.
  12.  前記発光素子は、前記基台の上に直接実装されている
     請求項1~11のいずれか1項に記載の照明用光源。
    The illumination light source according to any one of claims 1 to 11, wherein the light emitting element is directly mounted on the base.
  13.  さらに、凹部を有する容器を備え、
     前記発光素子は、前記凹部に実装され、
     前記凹部には封止部材が封入されている
     請求項1~11のいずれか1項に記載の照明用光源。
    And a container having a recess,
    The light emitting element is mounted in the recess.
    The illumination light source according to any one of claims 1 to 11, wherein a sealing member is enclosed in the recess.
  14.  請求項1~13のいずれか1項に記載の照明用光源を備える
     照明装置。
    An illumination device comprising the illumination light source according to any one of claims 1 to 13.
PCT/JP2013/002841 2012-09-21 2013-04-26 Illumination light source and illumination device WO2014045489A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208750 2012-09-21
JP2012208750 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014045489A1 true WO2014045489A1 (en) 2014-03-27

Family

ID=50340832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002841 WO2014045489A1 (en) 2012-09-21 2013-04-26 Illumination light source and illumination device

Country Status (1)

Country Link
WO (1) WO2014045489A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053076A1 (en) * 2013-10-11 2015-04-16 岩崎電気株式会社 Hermetically sealed led lamp
WO2015196963A1 (en) * 2014-06-24 2015-12-30 厦门萤火虫节能科技有限公司 Rapid heat dissipation luminous decay-proof mixed gas and integrated heat dissipation led lamp
JP2016012467A (en) * 2014-06-28 2016-01-21 岩崎電気株式会社 Hermetically sealed type led lamp
US10663116B2 (en) 2015-02-26 2020-05-26 Signify Holding B.V. Lighting device with dispenser for a reactive substance
EP3892913A1 (en) * 2020-04-08 2021-10-13 Xiamen Eco Lighting Co., Ltd. Led filament lamp and manufacturing method therefor
WO2023046210A1 (en) * 2021-09-27 2023-03-30 嘉兴山蒲照明电器有限公司 Led lamp

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314136A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Semiconductor light emitting device
JP2010153761A (en) * 2008-11-19 2010-07-08 Rohm Co Ltd Led lamp
WO2011098358A1 (en) * 2010-02-15 2011-08-18 Osram Gesellschaft mit beschränkter Haftung Lamp having gas filling
WO2012095931A1 (en) * 2011-01-14 2012-07-19 パナソニック株式会社 Lamp and illumination device
JP2012146468A (en) * 2011-01-11 2012-08-02 Panasonic Corp Lamp and lighting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314136A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Semiconductor light emitting device
JP2010153761A (en) * 2008-11-19 2010-07-08 Rohm Co Ltd Led lamp
WO2011098358A1 (en) * 2010-02-15 2011-08-18 Osram Gesellschaft mit beschränkter Haftung Lamp having gas filling
JP2012146468A (en) * 2011-01-11 2012-08-02 Panasonic Corp Lamp and lighting system
WO2012095931A1 (en) * 2011-01-14 2012-07-19 パナソニック株式会社 Lamp and illumination device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053076A1 (en) * 2013-10-11 2015-04-16 岩崎電気株式会社 Hermetically sealed led lamp
JP5999458B2 (en) * 2013-10-11 2016-09-28 岩崎電気株式会社 Hermetically sealed LED lamp
WO2015196963A1 (en) * 2014-06-24 2015-12-30 厦门萤火虫节能科技有限公司 Rapid heat dissipation luminous decay-proof mixed gas and integrated heat dissipation led lamp
JP2016012467A (en) * 2014-06-28 2016-01-21 岩崎電気株式会社 Hermetically sealed type led lamp
US10663116B2 (en) 2015-02-26 2020-05-26 Signify Holding B.V. Lighting device with dispenser for a reactive substance
EP3892913A1 (en) * 2020-04-08 2021-10-13 Xiamen Eco Lighting Co., Ltd. Led filament lamp and manufacturing method therefor
WO2023046210A1 (en) * 2021-09-27 2023-03-30 嘉兴山蒲照明电器有限公司 Led lamp

Similar Documents

Publication Publication Date Title
WO2012053134A1 (en) Mounting board, light emitting device and lamp
JP5830668B2 (en) Light emitting device and light source for illumination
WO2014045489A1 (en) Illumination light source and illumination device
JP5374003B1 (en) Illumination light source and illumination device
JP5351365B1 (en) Light emitting device and lamp
JP5838309B2 (en) Light emitting device, illumination light source, and illumination device
JP5681963B2 (en) Light emitting device and lamp
WO2014013671A1 (en) Bulb-type lamp and illumination device
JP2014157691A (en) Light emitting device and light source for lighting
WO2014030276A1 (en) Bulb lamp and illumination device
JP5948666B2 (en) Illumination light source and illumination device
JP6206789B2 (en) Illumination light source and illumination device
JP5420124B1 (en) Light bulb shaped lamp, lighting device, and method of manufacturing light bulb shaped lamp
JP5793721B2 (en) Illumination light source and illumination device
JP5417556B1 (en) Light bulb shaped lamp and lighting device
JP5493058B1 (en) Light bulb shaped lamp and lighting device
JP5563730B1 (en) Illumination light source and illumination device
JP6225397B2 (en) Illumination light source and illumination device
JP5465364B1 (en) Light bulb shaped lamp and lighting device
WO2014041721A1 (en) Light source for illumination and illumination device
WO2014030275A1 (en) Light bulb-shaped lamp and lighting device
JP5433818B1 (en) Light bulb shaped lamp and lighting device
WO2014006790A1 (en) Bulb-shaped lamp, illumination device, and bulb-shaped lamp manufacturing method
JP2014146510A (en) Light source for lighting and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP