WO2014045477A1 - エンジンの制御装置及び制御方法 - Google Patents

エンジンの制御装置及び制御方法 Download PDF

Info

Publication number
WO2014045477A1
WO2014045477A1 PCT/JP2013/001905 JP2013001905W WO2014045477A1 WO 2014045477 A1 WO2014045477 A1 WO 2014045477A1 JP 2013001905 W JP2013001905 W JP 2013001905W WO 2014045477 A1 WO2014045477 A1 WO 2014045477A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
capacitor
learning
power consumption
engine
Prior art date
Application number
PCT/JP2013/001905
Other languages
English (en)
French (fr)
Inventor
千典 平林
直哉 三石
信吾 岡本
昌宏 立石
敏浩 上村
一生 大磯
義彰 煙石
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US14/429,307 priority Critical patent/US9567933B2/en
Priority to DE112013004647.4T priority patent/DE112013004647T5/de
Priority to CN201380048575.4A priority patent/CN104641091B/zh
Publication of WO2014045477A1 publication Critical patent/WO2014045477A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control apparatus and control method, and more particularly to an engine control apparatus and control method for learning characteristics of engine control-related components such as fuel injection valves used for engine control such as fuel injection control.
  • fuel injection control such as fuel injection amount control and fuel injection timing control is performed by an electronic control system centered on a microprocessor.
  • the characteristics of the fuel injection valve used for the fuel injection control (the relationship between the command injection time for the fuel injection valve and the actual injection amount) vary depending on, for example, individual differences of the fuel injection valves and changes with time. Therefore, it is known to learn the characteristics of the fuel injection valve as described in Patent Document 1 in order to grasp such variations and contribute to improving the reliability of engine control.
  • Patent Document 2 describes a technique for detecting a rough idle state in which the engine speed during idling of an internal combustion engine fluctuates in an unstable manner with respect to a target speed.
  • the engine is provided with an alternator as power generation means driven by rotation of the crankshaft.
  • the alternator has a large driving resistance (load), and the load fluctuates unpredictably depending on the amount of power generation. Therefore, it is desirable not to operate the alternator during learning.
  • the alternator may be activated during learning for the following reasons. That is, electric power is required to drive the fuel injection valve that is the learning object. Also, the microprocessor that performs the learning itself consumes power. Since these electric powers are supplied by discharging the battery as a power source during the execution of learning, the state of charge (SOC) of the battery is lowered during the execution of learning.
  • SOC state of charge
  • control is performed to generate power by the alternator during the execution of the learning and replenish the battery with the generated power.
  • the alternator operates during the execution of learning.
  • the present invention ensures that the engine is kept in a no-load state while learning the characteristics of the engine control-related parts used for engine control, and that the engine is kept in a stable state to improve learning accuracy. For the purpose.
  • the present invention provides an engine control device that learns the characteristics of engine control-related components used for engine control, the power generation means for generating power by obtaining power from the engine, and the power generation Calculated by the capacitor for storing the power generated by the means, the power consumption calculating means for calculating the power consumption required by the vehicle during the learning, the power stored in the capacitor and the power consumption calculating means Comparing means for comparing power consumption, and if the power stored in the capacitor is less than or equal to the power consumption as a result of the comparison by the comparing means, the power stored in the capacitor exceeds the power consumption As a result of comparison by the necessary power securing means for causing the power generation means to generate power until it becomes large, and the comparison by the comparison means, When the power to be stored is larger than the power consumption, or when the power stored in the capacitor by the required power securing means is larger than the power consumption, the power stored in the capacitor is An engine control device comprising learning execution means for executing the learning in a state where power generation
  • the present invention provides an engine control method for learning characteristics of engine control-related components used for engine control, and the power consumption required by a vehicle during the execution of the learning.
  • a power consumption calculating step for calculating the power a comparison step for comparing the calculated power consumption with the power stored in the capacitor for storing the power generated by the power generation means for generating power by obtaining power from the engine, and the comparison
  • the engine while learning the characteristics of engine control-related parts used for engine control, the engine is reliably maintained in a no-load state, the engine is kept in a stable state, and learning accuracy is improved. be able to.
  • FIG. 1 is a block configuration diagram of an engine 1 and a power supply device 100 according to an embodiment of the present invention.
  • a vehicle according to the present embodiment includes an engine (diesel engine in the present embodiment) 1 that is a power source for traveling, and an alternator 2 that generates power by obtaining power from the engine 1 (power generation according to the present invention).
  • a capacitor 3 that is electrically connected to the alternator 2 and stores electric power generated by the alternator 2, an electric load 4, a DC / DC converter 5, a battery 6 that is a power source, and an engine 1 And a starter motor 7 for applying a rotational force to the engine 1 when starting the engine.
  • the electric load 4 includes, for example, an air conditioner 21 (see FIG.
  • the DC / DC converter 5 is interposed between the electric load 4 and the capacitor 3.
  • the battery 6 is electrically connected to the DC / DC converter 5.
  • the starter motor 7 is electrically connected to the DC / DC converter 5 via a starter relay 8.
  • the starter relay 8 is turned on when the engine 1 is started, and is turned off otherwise.
  • the starter relay 8 is turned on, the electric power charged in the battery 6 is supplied to the starter motor 7 via the DC / DC converter 5 (see the broken line arrow in FIG. 1).
  • the starter motor 7 forcibly rotates the ring gear 1 b that is integrally attached to the output shaft (crankshaft) 1 a of the engine 1, and applies a rotational force to the engine 1.
  • the vehicle according to the present embodiment is a vehicle with a so-called idle stop function that automatically stops the engine 1 under a predetermined condition even when the ignition is ON. Therefore, the starter motor 7 is driven not only when the ignition is turned from OFF to ON, but also when the engine 1 that has been automatically stopped is restarted. Therefore, the power of the battery 6 is frequently used.
  • the transmission 10 is connected to the engine 1.
  • a drive shaft 11 and wheels 12 are provided on the output side of the transmission 10.
  • the output torque of the engine 1 is transmitted to the drive shaft 11 and the wheels 12 via the transmission 10, and the wheels 12 are rotated.
  • the engine 1 is rotated by the wheels 12 and the drive shaft 11 that rotate by inertia.
  • the alternator 2 is connected to the output shaft 1a of the engine 1 via a winding transmission member 1c such as a belt in order to obtain power from the engine 1, and is driven by the rotation of the output shaft 1a.
  • the alternator 2 includes a rotor (not shown) that rotates in conjunction with the output shaft 1a of the engine 1 and a stator coil (not shown) arranged around the rotor.
  • a field coil for generating a magnetic field is wound around the rotor.
  • a current is applied to the field coil, and an induced current is generated in the stator coil by rotating the rotor in the magnetic field generated thereby.
  • the alternator 2 includes a rectifier 2a that converts the generated AC power into DC power.
  • the electric power generated by the alternator 2 is converted into direct current by the rectifier 2 a and then supplied to the capacitor 3.
  • the capacitor 3 is a variable voltage electric double layer capacitor (EDLC: electric double layer capacitor) that can be charged from 12V to a maximum of 25V. Unlike the secondary battery such as the battery 6, the capacitor 3 stores electricity by physical adsorption of electrolyte ions. Therefore, the capacitor 3 has a low internal resistance and can be charged and discharged relatively quickly. is there.
  • EDLC electric double layer capacitor
  • the battery 6 is a secondary battery made of a general lead battery or the like as a vehicle battery. Since such a battery 6 stores electric energy by a chemical reaction, it is unsuitable for rapid charge / discharge, but has a characteristic that the charge capacity is large.
  • the power generation by the alternator 2 is concentrated when the vehicle is decelerated, and the electric power (regenerative power) generated at that time is once charged in the capacitor 3.
  • the maximum 25V electric power charged in the capacitor 3 is stepped down to 12V by the DC / DC converter 5 and then supplied to the electric load 4 and the battery 6 (see the black arrow in FIG. 1).
  • the alternator 2 When the state of charge (SOC: state of charge) becomes too low, the battery 6 is promoted to deteriorate. Therefore, in order to prevent the battery 6 from deteriorating, when the SOC of the battery 6 becomes lower than a predetermined value, power is replenished from the capacitor 3 to the battery 6. Along with this, the alternator 2 generates power and supplies power to the capacitor 3. That is, the alternator 2 generates power at a high frequency in order to protect the battery 6 from deterioration by maintaining the SOC of the battery 6 at a predetermined value or higher. As described above, since the power of the battery 6 is frequently used by the idle stop function, the alternator 2 generates power more and more frequently.
  • SOC state of charge
  • the alternator 2 When the vehicle is decelerating frequently, the alternator 2 frequently generates electric power, and the capacitor 3 is charged during a limited deceleration time. Be covered. For example, when the vehicle is traveling in an urban area, acceleration / deceleration of the vehicle is frequently repeated. In many cases, the vehicle decelerates again before the electric power charged in the capacitor 3 significantly decreases, and regenerative power is generated. Is supplied to the capacitor 3. Therefore, it is almost unnecessary to supply electric power to the electric load 4 by discharging the battery 6.
  • the reason for this is that, as described above, when the voltage of the capacitor 3 (from 12 V to the maximum 25 V) is higher than the voltage of the battery 6 (the minimum 12 V), the power supply 100 according to the present embodiment This is because the electric load 4 is used in preference to the electric power 6 (the electric power is not supplied from the battery 6 to the electric load 4). For example, the capacitor 3 is almost fully charged by power generation within 10 seconds (several seconds) of the alternator 2.
  • the power supply apparatus 100 is a dual storage type power supply apparatus that utilizes the capacitor 3 and the battery 6 having different characteristics.
  • FIG. 2 is a configuration diagram of a vehicle electronic control system according to the present embodiment, centering on a PCM (power-train control module) 200.
  • the PCM 200 is a microprocessor including a CPU, a ROM, a RAM, and the like, and corresponds to a power consumption calculation unit, a comparison unit, a necessary power securing unit, and a learning execution unit according to the present invention.
  • the PCM 200 receives various information from a plurality of sensors provided in the vehicle. That is, the vehicle includes a vehicle speed sensor SW1 for detecting the traveling speed (vehicle speed) of the vehicle, a brake sensor SW2 for detecting an operation force (brake operation force) of a brake pedal (not shown), and an accelerator pedal (not shown).
  • a vehicle speed sensor SW1 for detecting the traveling speed (vehicle speed) of the vehicle
  • a brake sensor SW2 for detecting an operation force (brake operation force) of a brake pedal (not shown)
  • an accelerator pedal not shown
  • it is injected from the capacitor voltage sensor SW5 for detecting the capacitor power (power stored in the capacitor 3)
  • the fuel temperature sensor SW7 for detecting the temperature of the fuel to be detected, the pressure of the fuel injected from the fuel injection valve 20 (fuel pressure)
  • a fuel pressure sensor SW8 for taking out an intake air temperature sensor SW9 for detecting the temperature (outside air temperature) of the intake air, an atmospheric pressure sensor SW10 for detecting the atmospheric pressure, and a battery SOC for detecting the SOC of the battery 6
  • a sensor SW11 is provided. These sensors SW1 to SW11 and the PCM 200 are electrically connected.
  • the PCM 200 is electrically connected to the field coil of the alternator 2, the DC / DC converter 5, the starter relay 8, the fuel supply pump 9, and the fuel injection valve 20, and a drive control signal is supplied to these devices. Is output. An air conditioner on / off signal is input from the air conditioner 21 to the PCM 200.
  • the PCM 200 controls the combustion of the engine 1 based on various information input from the sensors SW1 to SW11 so as to obtain an appropriate torque according to the traveling state of the vehicle, or according to the traveling state of the vehicle.
  • the power generation amount of the alternator 2 is controlled, and the supply of electric power generated by the alternator 2 to the electric load 4 and the battery 6 is controlled.
  • the PCM 200 automatically stops the engine 1 under a predetermined condition and restarts the stopped engine 1. It has a function to make it.
  • the PCM 200 has a function of learning characteristics of the fuel injection valve 20 used for fuel injection control of the engine 1 (a relationship between an instruction injection time for the fuel injection valve 20 and an actual injection amount). Have.
  • the PCM 200 determines that the engine water temperature specified by the information from the water temperature sensor SW6 is constant within a predetermined range, and the fuel temperature specified by the information from the fuel temperature sensor SW7 is constant within a predetermined range.
  • the outside air temperature specified by the information from the intake air temperature sensor SW9 is constant within a predetermined range, and the SOC of the battery 6 specified by the information from the battery SOC sensor SW11 is greater than or equal to a predetermined value.
  • the travel distance exceeds a predetermined value, or the deviation between the average value of the actual rotational speeds of all the cylinders and the target idle rotational speed described later (see FIG. 5) becomes a predetermined value. When it exceeds, it is determined that the learning execution request has been established.
  • the PCM 200 calculates the power consumption required by the vehicle during the execution of learning in step S4 described later based on the amount of electricity used by the vehicle (operation as power consumption calculation means, that is, power consumption calculation step).
  • the power consumption necessary for the vehicle during the execution of learning includes the electric power necessary for executing the learning (for example, the electric power necessary for driving the fuel injection valve 20 that is the learning object, and learning.
  • the PCM 200 compares the capacitor power (power stored in the capacitor 3) specified by the information from the capacitor voltage sensor SW5 with the calculated power consumption (operation as a comparison means, that is, a comparison step). As a result, when the capacitor power (Qc) is larger than the power consumption (Qo) (Qc> Qo), the PCM 200 determines that the capacitor power condition is satisfied, and proceeds to step S3. On the other hand, when the capacitor power (Qc) is less than or equal to the power consumption (Qo) (Qc ⁇ Qo), the PCM 200 determines that the capacitor power condition is not satisfied, and proceeds to step S2.
  • step S2 the PCM 200 determines that the capacitor power (the power stored in the capacitor 3) specified by the information from the capacitor voltage sensor SW5 is determined until it is determined in step S1 that the capacitor power condition is satisfied.
  • the alternator 2 generates power and charges the capacitor 3 until the power consumption exceeds the power consumption (operation as necessary power securing means, that is, necessary power securing step).
  • the power generation by the alternator 2 is preferably performed when the vehicle is decelerated, but may be performed when the vehicle is accelerated depending on the situation.
  • the capacitor 3 can be charged and discharged relatively rapidly, the capacitor 3 is fully charged by power generation in a short time (for example, several seconds), and the capacitor power exceeds the power consumption.
  • the capacitor power is larger than the power consumption means that the power consumption necessary for the vehicle is secured in the capacitor 3 during the execution of the learning in step S4. Therefore, even if the power consumption necessary for the vehicle is all covered only by the capacitor power during the execution of the learning in step S4, the voltage of the capacitor 3 does not fall below 12V, and the voltage of the capacitor 3 is the minimum voltage 12V of the battery 6. Means no lower.
  • step S3 the PCM 200 determines whether or not a learning execution condition is satisfied.
  • the PCM 200 determines that, for example, the engine water temperature is constant within a predetermined range, the fuel temperature is constant within a predetermined range, and the outside air temperature is within a predetermined range, similar to the determination of establishment of the learning execution request. That the vehicle speed is constant, the SOC of the battery 6 is greater than or equal to a predetermined value, and the vehicle speed specified by the information from the vehicle speed sensor SW1 is zero, the brake sensor SW2 The brake operating force specified by the information from the vehicle is greater than or equal to a predetermined value, the accelerator opening specified by the information from the accelerator opening sensor SW3 is zero, and the information from the crank angle sensor SW4 is specified.
  • the engine speed is stable at a predetermined idle speed, the air conditioner 21 is off, and the alternator 2 is not operating (alternator) Various conditions) such that the power generation is not performed by the like when it is satisfied all, it is determined that the learning execution condition is satisfied.
  • the PCM 200 executes learning using the capacitor power in step S4 (operation as learning execution means, that is, a learning execution step).
  • the power supply device 100 has a configuration in which electricity flows from the capacitor 3 side to the electric load 4 side and the battery 6 side when the voltage of the capacitor 3 is higher than the voltage of the battery 6, that is, In this configuration, the electric power of the capacitor 3 is used by the electric load 4 with priority over the electric power of the battery 6 (the electric power is not supplied from the battery 6 to the electric load 4). In other words, if the power of the capacitor 3 is preferentially used and the voltage of the capacitor 3 is lower than the voltage of the battery 6, the power of the battery 6 starts to be used. Then, in order to maintain the SOC of the battery 6 at a predetermined value or more and protect the battery 6 from deterioration, the alternator 2 starts power generation. If the alternator 2 generates power during the execution of learning in step S4, the load applied to the engine 1 increases due to the operation of the alternator 2, and the load fluctuates unpredictably, so the engine 1 does not become stable. Learning accuracy is reduced.
  • step S4 in order to prevent the alternator 2 from generating power during the execution of learning in step S4, whether or not the capacitor power condition is satisfied is determined in step S1, and the vehicle is in operation during the execution of learning in step S4. It is confirmed that the power stored in the capacitor 3 is larger than the necessary power consumption (that is, the power consumption necessary for the vehicle is secured in the capacitor 3 during the execution of the learning in step S4). . As a result, even if only the power of the capacitor 3 is used during execution of learning, the voltage of the capacitor 3 does not exceed the minimum voltage 12V of the battery 6. Therefore, learning in step S4 is performed in a state where power generation by the alternator 2 is not performed (avoided).
  • step S4 the learning operation performed in step S4 will be outlined with reference to FIGS.
  • the PCM 200 learns the characteristics of the fuel injection valve 20 used for fuel injection control of the engine 1 (relationship between the command injection time for the fuel injection valve 20 and the actual injection amount).
  • the learning performed in step S4 is referred to as “multistage micro injection amount learning”.
  • the engine 1 performs multistage injection (for example, pre-injection and main injection) for the purpose of combustion control.
  • the amount of injection at one time is as small as, for example, about 1 to 5 mm 3 / st. Therefore, it is important to achieve such minute injection with high accuracy.
  • the minute injection amount varies due to individual differences of the fuel injection valves 20 and changes with time.
  • the injection amount is controlled by increasing / decreasing the command injection time (for example, pulse width) to the fuel injection valve 20, but even if the same command injection time is given, the actual injection amount varies.
  • the solid line indicates the relationship between the command injection time of a predetermined reference fuel injection valve and the injection amount that were determined during vehicle development. Even if the same injection time is instructed with respect to the characteristics of the reference fuel injection valve, depending on the fuel injection valve 20, more fuel is injected as shown by a broken line or less fuel is injected as shown by a chain line. Such variations appear prominently when the injection amount is very small, as indicated by a circle in the figure.
  • the purpose is to learn the characteristics of the fuel injection valve 20 and to ensure the accuracy of the multistage micro injection amount. .
  • a learning-specific injection pattern set (a predetermined number of injection stages, injection amount, injection timing, and fuel pressure) is performed while the engine 1 is in an idle state and no load. .
  • the required injection amount is divided by the number of injection stages and injected (for example, the same injection amount is used for pre-injection, main injection, and after-injection).
  • learning is performed in an environment where engine water temperature, fuel temperature, intake air temperature, electric load / mechanical load, atmospheric pressure, and the like are constant.
  • the learning in step S4 is performed when the vehicle is stopped and the engine 1 is in the idle state.
  • a reference injection time of a reference fuel injection valve set in advance for obtaining a target idle rotation speed is given to the fuel injection valve 20 of each cylinder, and the actual engine rotation speed (actual rotation speed) obtained at that time is given for each cylinder.
  • the difference between the actual rotational speed and the target idle rotational speed depends on the characteristics of each fuel injection valve 20 (the relationship between the command injection time for the fuel injection valve 20 and the actual injection amount).
  • the command injection time is increased or decreased for each fuel injection valve 20 so that the actual rotation speed becomes the target idle rotation speed.
  • the adjustment amount of the command injection time is a learned value.
  • the learning value is obtained for each fuel injection valve 20 (that is, for each cylinder) and for each of a plurality of fuel pressures.
  • Converting the injection amount into the injection time means that the injection time can be calculated from the injection amount and the fuel pressure. As shown in FIG. 6, at a certain fuel pressure, the command injection amount (QREAL) is converted into a command injection time (TQREAL), and the reference fuel injection amount (QTRUE) of the reference fuel injection valve is the reference injection time (TQTRUE) of the reference fuel injection valve. ).
  • the above learning is performed at multiple fuel pressures from low pressure to high pressure. Then, a learning value is obtained for each cylinder and for each fuel pressure.
  • step S3 If the learning execution conditions in step S3 are not satisfied by the end of all learning (for example, when the vehicle starts), the PCM 200 temporarily stops learning, and then in step S3. When the learning execution condition is satisfied, the subsequent learning is executed.
  • the control device for the engine 1 has characteristics of the fuel injection valve 20 used for fuel injection control of the engine 1 (indicated injection time (ms) for the fuel injection valve 20 and actual (In relation to the injection amount (mm 3 / st)), and has the following characteristic configuration.
  • an alternator 2 that generates power by obtaining power from the engine 1 and a capacitor 3 that stores electric power generated by the alternator 2 are provided.
  • the PCM 200 of the electronic control system mounted on the vehicle calculates the power consumption (Qo) necessary for the vehicle during the learning execution in step S4, and the electric power (Qc) stored in the capacitor 3 And the power consumption are compared (step S1). As a result of this comparison, when the capacitor power is equal to or lower than the power consumption (Qc ⁇ Qo), the PCM 200 causes the alternator 2 to generate power until the capacitor power exceeds the power consumption (step S2).
  • the PCM 200 Based on the premise that the learning execution condition is satisfied (YES in step S3), the characteristics of the fuel injection valve 20 are learned while the power is not generated by the alternator 2 while using the capacitor power (Qc) (step S4). .
  • the power consumption (Qo) necessary for the vehicle is secured in the capacitor 3 during the execution of the learning. Even if only is used, the voltage of the capacitor 3 (from 12 V to a maximum of 25 V) does not become lower than the minimum voltage 12 V of the battery 6. Therefore, learning in step S4 is performed in a state where power generation by the alternator 2 is not performed, so that the engine 1 is reliably maintained in an unloaded state during the execution of the learning. Therefore, during learning, the engine 1 is secured in a stable state, and learning accuracy is reliably improved.
  • the power supply device 100 is provided in which the capacitor 3, the electric load 4 that consumes power during the execution of the learning in step S4, and the battery 6 that is a power source are electrically connected to each other. ing.
  • the power supply device 100 is configured such that the electric power of the capacitor 3 is used by the electric load 4 with priority over the electric power of the battery 6. In other words, when power is supplied from the capacitor 3 to the electric load 4, power is not supplied from the battery 6 to the electric load 4. Therefore, it is avoided that the battery 6 is discharged during learning together with the fact that a large amount of power (Qc) exceeding the power consumption (Qo) required by the vehicle is secured in the capacitor 3 during learning.
  • the SOC of the battery 6 does not decrease during learning, and the promotion of deterioration of the battery 6 is suppressed. Furthermore, the battery 6 is not discharged during learning, and the SOC of the battery 6 does not decrease, thereby realizing a state in which power generation by the alternator 2 is not performed.
  • the characteristics of the fuel injection valve 20 used for the fuel injection control of the engine 1 are accurately learned in a stable state of the engine 1, so that emission, fuel consumption, drivability, NVH (noise, vibration) , Harshness) and the like greatly improves engine performance.
  • the alternator 2 is used as power generation means for generating power by obtaining power from the engine 1, but not only power generation but also torque assist of the engine 1 (torque for the output shaft 1a of the engine 1)
  • a motor generator that can also perform an operation for providing the power may be used as the power generation means. That is, the present invention can be applied not only to a general vehicle having only an engine as a power source, but also to a hybrid vehicle using both an engine and a motor (motor generator).
  • the electric double layer capacitor (EDLC) is used as the capacitor 3 for storing the power generated by the alternator 2 (power generation means).
  • the capacitor 3 can be repeatedly charged and discharged, and can be charged and discharged relatively quickly.
  • Any capacitor capable of discharging can be used, and is not necessarily limited to an electric double layer capacitor.
  • a rechargeable ion capacitor can be used as the capacitor 3 other than the electric double layer capacitor.
  • the lithium ion capacitor is obtained by further improving the energy density by using a carbon-based material capable of electrochemically occluding lithium ions (the same material as the negative electrode of the lithium ion battery) as the negative electrode.
  • the lithium ion capacitor having such a configuration is also called a hybrid capacitor because the principle of charging and discharging is different between the positive electrode and the negative electrode (a chemical reaction is used in combination).
  • Both of the hybrid capacitor using the lithium ion capacitor as an example and the electric double layer capacitor have high energy density and linear charge / discharge characteristics, and therefore can be suitably used as the capacitor 3 according to the present invention. .
  • the learning object (engine control-related component used for engine control) is the fuel injection valve 20, but is not limited thereto.
  • learning the characteristics (individual differences and mounting variations) of the crank angle sensor SW4 also contributes to improving the reliability of engine control. Also in this case, it is preferable to keep the engine 1 in an unloaded state during learning because the twist of the crankshaft 1a is suppressed and learning accuracy is improved.
  • the present invention is an engine control device that learns the characteristics of engine control-related components used for engine control, and that generates power by generating power from the engine, and stores the power generated by the power generation means.
  • a capacitor power consumption calculating means for calculating power consumption required by the vehicle during execution of the learning, and comparing means for comparing the power stored in the capacitor with the power consumption calculated by the power consumption calculating means If the power stored in the capacitor is equal to or lower than the power consumption as a result of the comparison by the comparing means, the power generating means generates power until the power stored in the capacitor exceeds the power consumption.
  • the power generating means uses the power stored in the capacitor.
  • An engine control device comprising learning execution means for executing the learning in a state where power generation is not performed.
  • a capacitor capable of relatively rapid charging / discharging is provided, and the electric power generated by the power generation means is stored in the capacitor.
  • the power consumption required by the vehicle is calculated while learning the characteristics of the engine control-related components used for engine control.
  • the power stored in the capacitor is larger than the power consumption, the power is stored in the capacitor.
  • the learning is performed while using the electric power.
  • the power generation means is allowed to generate power until the power stored in the capacitor exceeds the power consumption and then stored in the capacitor. The learning is performed while using the electric power.
  • learning is executed in a state where power generation by the power generation means is not performed because a large amount of power exceeding the power consumption required by the vehicle is secured in the capacitor during learning. Therefore, during execution of learning, the engine is reliably maintained in a no-load state, the engine is ensured in a stable state, and learning accuracy is reliably improved.
  • the capacitor, an electric load that consumes electric power during execution of the learning, and a battery that is a power source are electrically connected to each other, and electric power is supplied from the capacitor to the electric load.
  • power is not supplied from the battery to the electric load.
  • the engine control-related component is a fuel injection valve.
  • the characteristics of the fuel injection valve used for fuel injection control can be learned with high accuracy while the engine is stable. Therefore, engine performance such as emission, fuel consumption, drivability, NVH (noise, vibration, harshness) is greatly improved.
  • the present invention also relates to an engine control method for learning characteristics of engine control-related components used for engine control, the power consumption calculating step for calculating the power consumption required by the vehicle during the execution of the learning, and the engine A comparison step of comparing the calculated power consumption with the power stored in the capacitor that stores the power generated by the power generation means that generates power by generating power from the power, and is stored in the capacitor as a result of the comparison
  • the power is less than or equal to the power consumption
  • the stored power is larger than the power consumption, or as a result of power generation by the power generation means, stored in the capacitor
  • the present invention has industrial applicability in the technical field of engine control devices and control methods for learning the characteristics of engine control-related components used for engine control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 エンジン(1)から動力を得て発電するオルタネータ(2)と、オルタネータ(2)で発電された電力を蓄えるキャパシタ(3)とを備える。学習中に必要な消費電力を算出し、キャパシタ(3)の電力と前記消費電力とを比較し、キャパシタ(3)の電力が前記消費電力以下のときは、キャパシタ(3)の電力が前記消費電力を超えて大きくなるまでオルタネータ(2)に発電を行わせ、キャパシタ(3)の電力が前記消費電力を超えて大きいとき、又は、オルタネータ(2)による発電によりキャパシタ(3)の電力が前記消費電力を超えて大きくなったときは、キャパシタ(3)の電力を使用しつつオルタネータ(2)による発電が行われない状態で学習を実行する。

Description

エンジンの制御装置及び制御方法
 本発明は、エンジンの制御装置及び制御方法に関し、詳しくは、燃料噴射制御等のエンジン制御に用いられる燃料噴射弁等のエンジン制御関連部品の特性を学習するエンジンの制御装置及び制御方法に関する。
 従来、カーエレクトロニクスの進展に伴い、例えば燃料噴射量制御や燃料噴射時期制御等の燃料噴射制御は、マイクロプロセッサを中心とした電子制御システムによって行われる。燃料噴射制御に用いられる燃料噴射弁の特性(燃料噴射弁に対する指示噴射時間と実際の噴射量との関係)は、例えば燃料噴射弁の個体差や経時変化等によってバラツキがある。そこで、そのようなバラツキを把握してエンジン制御の信頼性向上に資するために、特許文献1に記載されるように、燃料噴射弁の特性を学習することが知られている。また、特許文献2には、内燃機関のアイドル運転時のエンジン回転数が目標回転数に対し不安定に変動するラフアイドル状態を検出する技術が記載されている。
 燃料噴射弁の特性を学習するときは、エンジンを無負荷の状態に維持することが好ましい。エンジンに負荷がかかると、その分、燃料噴射量が増量されたり、クランク軸のねじれが大きくなって学習精度の低下を招いたりするからである。
 ところで、エンジンにはクランク軸の回転で駆動される発電手段としてのオルタネータが備えられている。オルタネータは駆動抵抗(負荷)が大きく、また発電量によって負荷が予測不能に変動する。したがって、学習の実行中はオルタネータを作動させないようにすることが望ましい。しかしながら、次のような理由から、学習の実行中にオルタネータが作動することがある。すなわち、学習対象物である燃料噴射弁を駆動するために電力が必要である。また、学習を行うマイクロプロセッサ自身も電力を消費する。これらの電力は、学習の実行中、電力源であるバッテリの放電によって供給されるから、学習の実行中にバッテリの充電状態(SOC:state of charge)が低下する。バッテリはSOCが低くなり過ぎると劣化が促進されるので、バッテリの劣化を防止するために、学習の実行中にオルタネータによる発電を行い、発電した電力をバッテリに補充する制御が働く。以上により、学習の実行中にオルタネータが作動する。
 そして、学習の実行中にオルタネータが作動すると、このオルタネータの作動によってエンジンにかかる負荷が増大し、しかもその負荷が予測不能に変動する。その結果、学習精度が低下する。
特開2003-254139号公報 特開2010-144533号公報
 そこで、本発明は、エンジン制御に用いられるエンジン制御関連部品の特性を学習中は、エンジンを確実に無負荷の状態に維持し、エンジンを安定した状態に確保して、学習精度の向上を図ることを目的とする。
 前記課題を解決するためのものとして、本発明は、エンジン制御に用いられるエンジン制御関連部品の特性を学習するエンジンの制御装置であって、エンジンから動力を得て発電する発電手段と、前記発電手段により発電された電力を蓄えるキャパシタと、前記学習の実行中に車両で必要な消費電力を算出する消費電力算出手段と、前記キャパシタに蓄えられている電力と前記消費電力算出手段で算出された消費電力とを比較する比較手段と、前記比較手段による比較の結果、前記キャパシタに蓄えられている電力が前記消費電力以下のときは、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなるまで前記発電手段に発電を行わせる必要電力確保手段と、前記比較手段による比較の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きいとき、又は、前記必要電力確保手段により前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなったときは、前記キャパシタに蓄えられている電力を使用しつつ、前記発電手段による発電が行われない状態で、前記学習を実行する学習実行手段とを有することを特徴とするエンジンの制御装置である。
 また、前記課題を解決するためのものとして、本発明は、エンジン制御に用いられるエンジン制御関連部品の特性を学習するエンジンの制御方法であって、前記学習の実行中に車両で必要な消費電力を算出する消費電力算出ステップと、エンジンから動力を得て発電する発電手段により発電された電力を蓄えるキャパシタに蓄えられている電力と前記算出された消費電力とを比較する比較ステップと、前記比較の結果、前記キャパシタに蓄えられている電力が前記消費電力以下のときは、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなるまで前記発電手段に発電を行わせる必要電力確保ステップと、前記比較の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きいとき、又は、前記発電手段による発電の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなったときは、前記キャパシタに蓄えられている電力を使用しつつ、前記発電手段による発電が行われない状態で、前記学習を実行する学習実行ステップとを有することを特徴とするエンジンの制御方法である。
 本発明によれば、エンジン制御に用いられるエンジン制御関連部品の特性を学習中は、エンジンを確実に無負荷の状態に維持し、エンジンを安定した状態に確保して、学習精度の向上を図ることができる。
 前記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面とから明らかになる。
本発明の実施形態に係るエンジン及び電源装置のブロック構成図である。 PCMを中心とした前記車両の電子制御システムの構成図である。 前記PCMが行う学習実行制御のフローチャートである。 前記学習実行制御で行われる学習動作の説明図である。 同じく学習動作の説明図である。 同じく学習動作の説明図である。
 以下、発明の実施形態を通して本発明を詳しく説明する。
 (1)全体構成
 図1は、本発明の実施形態に係るエンジン1及び電源装置100のブロック構成図である。図1に示すように、本実施形態に係る車両は、走行用の動力源であるエンジン(本実施形態ではディーゼルエンジン)1と、エンジン1から動力を得て発電するオルタネータ2(本発明の発電手段に相当)と、オルタネータ2に電気的に接続され、オルタネータ2により発電された電力を蓄えるキャパシタ3と、電気負荷4と、DC/DCコンバータ5と、電力源であるバッテリ6と、エンジン1を始動する際にエンジン1に回転力を付与するスタータモータ7とを備えている。電気負荷4は、例えば、エアコン21(図2参照)、オーディオ、ヘッドライト等の他、燃料噴射弁20や燃料噴射弁20に燃料を供給する燃料供給ポンプ9(図2参照)等を含む。DC/DCコンバータ5は、電気負荷4とキャパシタ3との間に介設されている。バッテリ6は、DC/DCコンバータ5に電気的に接続されている。
 前記スタータモータ7は、DC/DCコンバータ5にスタータリレー8を介して電気的に接続されている。スタータリレー8は、エンジン1を始動する際にONにされ、それ以外のときはOFFにされる。スタータリレー8がONにされると、バッテリ6に充電されている電力がDC/DCコンバータ5を経由してスタータモータ7に供給され(図1の破線矢印参照)、その電力によってスタータモータ7が駆動される。スタータモータ7は、エンジン1の出力軸(クランク軸)1aに一体に取り付けられたリングギヤ1bを強制的に回転させ、エンジン1に回転力を付与する。
 本実施形態に係る車両は、イグニッションがONであっても所定の条件下でエンジン1を自動的に停止させる、いわゆるアイドルストップ機能付きの車両である。そのため、前記スタータモータ7は、イグニッションがOFFからONにされたときだけでなく、自動的に停止されたエンジン1を再始動させる際にも駆動される。そのため、バッテリ6の電力は頻繁に使用される。
 前記エンジン1に変速機10が連結している。変速機10の出力側に駆動軸11及び車輪12が設けられている。車両が加速しているときは、エンジン1の出力トルクが変速機10を経由して駆動軸11及び車輪12に伝達され、車輪12が回転される。一方、車両が減速しているときは、惰性で回転する車輪12及び駆動軸11によってエンジン1が回転される。
 前記オルタネータ2は、エンジン1から動力を得るためにエンジン1の出力軸1aにベルト等の巻掛伝動部材1cを介して連結され、前記出力軸1aの回転で駆動される。具体的に、オルタネータ2は、エンジン1の出力軸1aと連動して回転するロータ(図示省略)と、ロータの周囲に配置されたステータコイル(図示省略)とを有している。前記ロータには磁界を発生させるためのフィールドコイルが巻装されている。オルタネータ2による発電時には、前記フィールドコイルに電流が印加され、それによって生成された磁界中をロータが回転することにより、ステータコイルに誘導電流が発生する。
 前記オルタネータ2は、発電した交流電力を直流電力に変換する整流器2aを内蔵する。オルタネータ2で発電された電力は、前記整流器2aで直流に変換された後、キャパシタ3に供給される。
 前記キャパシタ3は、12Vから最大25Vまで充電可能な可変電圧式の電気二重層キャパシタ(EDLC:electric double layer capacitor)である。このようなキャパシタ3は、バッテリ6のような二次電池と異なり、電解質イオンの物理的な吸着によって電気を蓄えるものであるため、内部抵抗が少なく、比較的急速な充放電が可能という特性がある。
 前記バッテリ6は、車両用バッテリとして一般的な鉛電池等からなる二次電池である。このようなバッテリ6は、化学反応によって電気エネルギーを蓄えるものであるため、急速な充放電には不向きであるが、充電容量が大きいという特性がある。
 前記オルタネータ2による発電は、車両の減速時に集中的に行われ、そのとき発電された電力(回生電力)は一旦キャパシタ3に充電される。キャパシタ3に充電された最大25Vの電力は、DC/DCコンバータ5によって12Vまで降圧された後、電気負荷4やバッテリ6に供給される(図1の黒矢印参照)。
 図1に示す電源装置100は、キャパシタ3の電圧(12Vから最大25V)がバッテリ6の電圧(最小12V)よりも高いときは、キャパシタ3側から電気負荷4側及びバッテリ6側に電気が流れる構成になっている。
 バッテリ6は、充電状態(SOC:state of charge)が低くなり過ぎると、劣化が促進される。そのため、バッテリ6の劣化を防止するために、バッテリ6のSOCが所定値よりも低くなったときは、キャパシタ3からバッテリ6に電力が補充される。また、これに伴い、オルタネータ2が発電を行い、キャパシタ3に電力を供給する。つまり、バッテリ6のSOCを所定値以上に維持してバッテリ6を劣化から保護するために、オルタネータ2は高い頻度で発電を行う。そして、前述のように、アイドルストップ機能によってバッテリ6の電力は頻繁に使用されるから、オルタネータ2は益々高い頻度で発電を行うことになる。
 車両の減速頻度が高いときは、オルタネータ2が頻繁に電力を発電し、それをキャパシタ3が限られた減速時間の間で充電するので、車両の走行中に必要な電力はほぼ全て回生電力によって賄われる。例えば、車両が市街地走行をしているときは、頻繁に車両の加減速が繰り返されるため、多くの場合、キャパシタ3に充電された電力が大幅に低下する前に再び車両が減速して回生電力がキャパシタ3に供給される。そのため、バッテリ6の放電によって電気負荷4に電力を供給する必要がほとんどなくなる。その理由は、前述のように、本実施形態に係る電源装置100は、キャパシタ3の電圧(12Vから最大25V)がバッテリ6の電圧(最小12V)よりも高いときは、キャパシタ3の電力がバッテリ6の電力よりも優先して電気負荷4で使用される構成(バッテリ6から電気負荷4に電力が供給されない構成)になっているからである。キャパシタ3は、例えばオルタネータ2の10秒以内(数秒)の発電でほぼ満充電となる。
 一方、車両の加速時は、オルタネータ2によってエンジン1に作用する駆動抵抗(負荷)を低減するために、基本的にオルタネータ2による発電は行われない。このとき、電気負荷4の消費電力は、キャパシタ3に充電されている電力と、必要に応じて(DC/DCコンバータ5により)バッテリ6から放電される電力とによって賄われる(図1の白矢印参照)。
 このように、本実施形態に係る電源装置100は、特性が相違するキャパシタ3とバッテリ6とを活用するデュアルストレージ式の電源装置である。
 (2)電子制御システム
 図2は、PCM(power-train control module)200を中心とした本実施形態に係る車両の電子制御システムの構成図である。PCM200は、周知のとおり、CPU、ROM、RAM等から構成されるマイクロプロセッサであり、本発明に係る消費電力算出手段、比較手段、必要電力確保手段、及び学習実行手段に相当する。
 前記PCM200には、車両に設けられた複数のセンサから種々の情報が入力される。すなわち、車両には、車両の走行速度(車速)を検出するための車速センサSW1、図外のブレーキペダルの操作力(ブレーキ操作力)を検出するためのブレーキセンサSW2、図外のアクセルペダルの操作量(アクセル開度)を検出するためのアクセル開度センサSW3、エンジン1の出力軸1aの回転速度(エンジン回転数)を検出するためのクランク角センサSW4、キャパシタ3の電圧(端子間電圧)ひいてはキャパシタ電力(キャパシタ3に蓄えられている電力)を検出するためのキャパシタ電圧センサSW5、エンジン水温を検出するためのエンジン水温センサSW6、各気筒毎に備えられた燃料噴射弁20から噴射される燃料の温度を検出するための燃料温センサSW7、燃料噴射弁20から噴射される燃料の圧力(燃圧)を検出するための燃圧センサSW8、吸入空気の温度(外気温)を検出するための吸気温センサSW9、大気圧を検出するための大気圧センサSW10、及びバッテリ6のSOCを検出するためのバッテリSOCセンサSW11が設けられている。これらのセンサSW1~SW11と前記PCM200とが電気的に接続されている。
 また、前記PCM200は、オルタネータ2のフィールドコイル、DC/DCコンバータ5、スタータリレー8、燃料供給ポンプ9、及び燃料噴射弁20と電気的に接続されており、これらの機器に駆動用の制御信号を出力する。なお、エアコン21からPCM200にエアコン21のオン・オフ信号が入力されるようになっている。
 PCM200は、前記センサSW1~SW11から入力される種々の情報に基いて、車両の走行状態に応じた適切なトルクが得られるようにエンジン1の燃焼を制御したり、車両の走行状態に応じてオルタネータ2の発電量を制御したり、オルタネータ2で発電された電力の電気負荷4やバッテリ6への供給を制御する。
 また、本実施形態に係る車両は、前述のように、アイドルストップ機能付きの車両であるから、PCM200は、所定の条件下でエンジン1を自動的に停止させ、停止させたエンジン1を再始動させる機能を有している。
 また、PCM200は、次に説明するように、エンジン1の燃料噴射制御に用いられる燃料噴射弁20の特性(燃料噴射弁20に対する指示噴射時間と実際の噴射量との関係)を学習する機能を有している。
 (3)具体的制御
 図3のフローチャートを参照して、PCM200が行う学習実行制御の動作を説明する。
 <学習実行要求の成立>
 この学習実行制御は、所定の学習実行要求が成立することによりスタートする。
 具体的に、PCM200は、例えば、水温センサSW6からの情報で特定されるエンジン水温が所定範囲内で一定であること、燃料温センサSW7からの情報で特定される燃料温度が所定範囲内で一定であること、吸気温センサSW9からの情報で特定される外気温が所定範囲内で一定であること、及びバッテリSOCセンサSW11からの情報で特定されるバッテリ6のSOCが所定値以上であること等の諸条件が全て満足され、且つ、走行距離が所定値を超えたとき、又は後述する(図5参照)全気筒の実回転数の平均値と目標アイドル回転数との偏差が所定値を超えたとき等に、学習実行要求が成立したと判定する。
 <キャパシタ電力条件の成立>
 学習実行要求が成立したと判定され、学習実行制御がスタートすると、PCM200は、ステップS1で、キャパシタ電力条件が成立しているか否かを判定する。
 具体的に、PCM200は、車両の電気使用量に基き、後述するステップS4の学習実行中に車両で必要な消費電力を算出する(消費電力算出手段としての動作、すなわち消費電力算出ステップ)。ここで、学習実行中に車両で必要な消費電力には、学習を実行するために必要な電力(例えば、学習対象物である燃料噴射弁20を駆動するために必要な電力や、学習を行うPCM200自身が消費する電力や、クランク角センサSW4が学習用のデータを検出するために必要な電力等)と、その他の一般の電気負荷4で使用される電力(例えば、オーディオやヘッドライトで使用される電力s等)とが含まれる。
 次いで、PCM200は、キャパシタ電圧センサSW5からの情報で特定されるキャパシタ電力(キャパシタ3に蓄えられている電力)と、算出した消費電力とを比較する(比較手段としての動作、すなわち比較ステップ)。その結果、キャパシタ電力(Qc)が前記消費電力(Qo)を超えて大きいとき(Qc>Qo)、PCM200は、キャパシタ電力条件が成立していると判定し、ステップS3に進む。一方、キャパシタ電力(Qc)が前記消費電力(Qo)以下のとき(Qc≦Qo)、PCM200は、キャパシタ電力条件が成立していないと判定し、ステップS2に進む。
 ステップS2では、PCM200は、ステップS1でキャパシタ電力条件が成立していると判定されるまで、つまりキャパシタ電圧センサSW5からの情報で特定されるキャパシタ電力(キャパシタ3に蓄えられている電力)が前記消費電力を超えて大きくなるまで、オルタネータ2に発電を行わせてキャパシタ3を充電する(必要電力確保手段としての動作、すなわち必要電力確保ステップ)。このオルタネータ2による発電は、車両の減速時に行われるのが好ましいが、状況に応じて、車両の加速時に行われてもよい。
 キャパシタ3は、比較的急速な充放電が可能なので、短時間(例えば数秒)の発電でキャパシタ3は満充電となり、キャパシタ電力が前記消費電力を超えて大きくなる。
 キャパシタ電力が前記消費電力を超えて大きいということは、ステップS4の学習実行中に車両で必要な消費電力がキャパシタ3に確保されているということである。そのため、たとえステップS4の学習実行中に車両で必要な消費電力を全てキャパシタ電力のみで賄ったとしても、キャパシタ3の電圧が12Vを下回ることがなく、キャパシタ3の電圧がバッテリ6の最小電圧12Vよりも低くなることがないことを意味する。
 <学習実行条件の成立>
 ステップS3では、PCM200は、学習実行条件が成立しているか否かを判定する。
 具体的に、PCM200は、例えば、前記学習実行要求の成立判定のときと同様、エンジン水温が所定範囲内で一定であること、燃料温度が所定範囲内で一定であること、外気温が所定範囲内で一定であること、及びバッテリ6のSOCが所定値以上であること等の諸条件が全て満足され、且つ、車速センサSW1からの情報で特定される車速がゼロであること、ブレーキセンサSW2からの情報で特定されるブレーキ操作力が所定値以上であること、アクセル開度センサSW3からの情報で特定されるアクセル開度がゼロであること、クランク角センサSW4からの情報で特定されるエンジン回転数が所定のアイドル回転数で安定していること、エアコン21がオフであること、及びオルタネータ2が作動していないこと(オルタネータ2による発電が行われていないこと)等の諸条件が全て満足されたとき等に、学習実行条件が成立していると判定する。
 その結果、学習実行条件が成立していると判定されたときは、PCM200は、ステップS4で、キャパシタ電力を使用した学習を実行する(学習実行手段としての動作、すなわち学習実行ステップ)。
 前述のように、本実施形態に係る電源装置100は、キャパシタ3の電圧がバッテリ6の電圧よりも高いときは、キャパシタ3側から電気負荷4側及びバッテリ6側に電気が流れる構成、すなわち、キャパシタ3の電力がバッテリ6の電力よりも優先して電気負荷4で使用される構成(バッテリ6から電気負荷4に電力が供給されない構成)になっている。逆に言えば、キャパシタ3の電力が優先使用された結果、キャパシタ3の電圧がバッテリ6の電圧よりも低下すると、バッテリ6の電力が使用され始める。そして、バッテリ6のSOCを所定値以上に維持してバッテリ6を劣化から保護するために、オルタネータ2が発電を開始することになる。ステップS4の学習実行中にオルタネータ2が発電を行うと、このオルタネータ2の作動によってエンジン1にかかる負荷が増大し、しかもその負荷が予測不能に変動するので、エンジン1が安定した状態にならず、学習精度が低下する。
 そこで、本実施形態では、ステップS4の学習実行中にオルタネータ2が発電を行うことを回避するために、前記ステップS1でキャパシタ電力条件の成立・不成立を判定し、ステップS4の学習実行中に車両で必要な消費電力を超えてキャパシタ3に蓄えられている電力が大きいことを確認している(つまりステップS4の学習実行中に車両で必要な消費電力をキャパシタ3に確保している)のである。この結果、たとえ学習実行中にキャパシタ3の電力のみが使用されても、キャパシタ3の電圧がバッテリ6の最小電圧12Vを超えて低くなることがない。そのため、オルタネータ2による発電が行われない(回避される)状態でステップS4の学習が実行される。
 <学習の実行>
 次に、図4~図6を参照して、ステップS4で行われる学習動作を概説する。このステップS4では、PCM200は、エンジン1の燃料噴射制御に用いられる燃料噴射弁20の特性(燃料噴射弁20に対する指示噴射時間と実際の噴射量との関係)を学習する。このステップS4で行われる学習を「多段式微少噴射量学習」と称する。
 [A]目的
 エミッション、燃費、ドライバビリティ、NVH(noise,vibration,harshness)を高レベルで実現するため、本実施形態に係るエンジン1では、燃焼制御を目的とした多段噴射(例えばプレ噴射とメイン噴射とアフター噴射とを含む燃料噴射)が行われる。このような多段噴射では、1回の噴射量が例えば1~5mm/st程度と微小となるため、そのような微少噴射を精度よく達成することが重要である。しかし、燃料噴射弁20の個体差や経時変化等によって微少噴射量にバラツキが生じる。
 つまり、図4に示すように、燃料噴射弁20に対する指示噴射時間(例えばパルス幅)を増減することにより噴射量をコントロールするが、同じ指示噴射時間を与えても実際の噴射量にはバラツキが生じる。図4において、実線は、車両の開発時に定めた所定の基準燃料噴射弁の指示噴射時間と噴射量との関係を示している。この基準燃料噴射弁の特性に対し、同じ噴射時間を指示しても、燃料噴射弁20によっては、破線のように燃料が多く噴射されたり、鎖線のように燃料が少なく噴射される。そして、このようなバラツキは、図中、円で囲ったように、噴射量が微少な場合に顕著に現れる。
 そこで、そのようなバラツキを把握して燃料噴射制御ひいてはエンジン制御の信頼性向上に資するために、燃料噴射弁20の特性を学習し、多段式微少噴射量の精度を確保することが目的である。
 [B]学習の方法
 多段式微少噴射量学習では、エンジン1がアイドル状態且つ無負荷の状態で、学習専用の噴射パターンセット(所定の噴射段数、噴射量、噴射時期、燃圧のセット)を行う。なお、この学習では、要求噴射量を噴射段数で当分割して噴射する(例えばプレ噴射とメイン噴射とアフター噴射とで噴射量を同じにする)。また、学習精度を確保するために、エンジン水温、燃料温度、吸気温度、電気負荷・機械負荷、大気圧等が一定の環境下で学習を行う。なお、ステップS3の学習実行条件からわかるように、このステップS4の学習は、車両が停止し、エンジン1がアイドル状態のときに行われる。
 目標アイドル回転数が得られるものとして予め設定された基準燃料噴射弁の基準噴射時間を各気筒の燃料噴射弁20に与え、そのとき得られる実際のエンジン回転数(実回転数)を各気筒毎に検出する。ここで、実回転数と目標アイドル回転数との差は、各燃料噴射弁20の特性(燃料噴射弁20に対する指示噴射時間と実際の噴射量との関係)に依存する。そして、実回転数が目標アイドル回転数になるように指示噴射時間を各燃料噴射弁20毎に増減調節する。この指示噴射時間の調節量が学習値である。そして、各燃料噴射弁20毎(つまり各気筒毎)に、また複数の燃圧毎に、前記学習値を得る。
 図5に、各燃料噴射弁20から燃料噴射したときの各気筒の実回転数を実線で示し、全気筒の実回転数の平均値を鎖線で示し、目標アイドル回転数を破線で示す。
 噴射量を噴射時間に換算するとは、噴射量と燃圧とから噴射時間が算出できるということである。図6に示すように、ある燃圧において、指示噴射量(QREAL)は指示噴射時間(TQREAL)に換算され、基準燃料噴射弁の基準噴射量(QTRUE)は基準燃料噴射弁の基準噴射時間(TQTRUE)に換算される。
 以上の学習を低圧から高圧まで複数の燃圧で行う。そして、各気筒毎、各燃圧毎に、学習値を得る。
 なお、全ての学習が終了するまでに、ステップS3の学習実行条件が満足されなくなった場合(例えば車両が発進した場合等)は、PCM200は、そこで学習を一旦中断し、次に、ステップS3の学習実行条件が成立したときに、続きの学習を実行する。
 (4)作用
 以上のように、本実施形態に係るエンジン1の制御装置は、エンジン1の燃料噴射制御に用いられる燃料噴射弁20の特性(燃料噴射弁20に対する指示噴射時間(ms)と実際の噴射量(mm/st)との関係)を学習するものであって、次のような特徴的構成を備えている。
 まず、エンジン1から動力を得て発電するオルタネータ2と、オルタネータ2により発電された電力を蓄えるキャパシタ3とが備えられている。車両に搭載された電子制御システムのPCM200は、学習実行要求が成立すると、ステップS4の学習実行中に車両で必要な消費電力(Qo)を算出し、キャパシタ3に蓄えられている電力(Qc)と前記消費電力とを比較する(ステップS1)。PCM200は、この比較の結果、キャパシタ電力が前記消費電力以下のとき(Qc≦Qo)は、キャパシタ電力が前記消費電力を超えて大きくなるまでオルタネータ2に発電を行わせる(ステップS2)。一方、キャパシタ電力が前記消費電力を超えて大きいとき(Qc>Qo)、又は、前記ステップS2でのオルタネータ2による発電の結果、キャパシタ電力が前記消費電力を超えて大きくなったときは、PCM200は、学習実行条件の成立(ステップS3でYES)を前提に、キャパシタ電力(Qc)を使用しつつ、オルタネータ2による発電が行われない状態で、燃料噴射弁20の特性を学習する(ステップS4)。
 本実施形態によれば、ステップS4の学習が実行される前に、その学習実行中に車両で必要な消費電力(Qo)がキャパシタ3に確保されるので、たとえ学習実行中にキャパシタ3の電力のみが使用されても、キャパシタ3の電圧(12Vから最大25V)がバッテリ6の最小電圧12Vを超えて低くなることがない。そのため、オルタネータ2による発電が行われない状態でステップS4の学習が実行されるので、前記学習の実行中は、エンジン1は確実に無負荷の状態に維持される。そのため、学習中は、エンジン1が安定した状態に確保されて、学習精度が確実に向上する。
 また、本実施形態では、キャパシタ3と、ステップS4の学習の実行中に電力を消費する電気負荷4と、電力源であるバッテリ6とが相互に電気的に接続された電源装置100が備えられている。この電源装置100は、キャパシタ3の電力がバッテリ6の電力よりも優先して電気負荷4で使用されるように構成されている。すなわち、キャパシタ3から電気負荷4に電力が供給されているときは、バッテリ6から電気負荷4に電力が供給されないように構成されている。そのため、学習中に車両で必要な消費電力(Qo)を超えて大きい電力(Qc)がキャパシタ3に確保されていることと併せて、学習中にバッテリ6が放電することが回避される。そのため、学習中にバッテリ6のSOCが低下することがなく、バッテリ6の劣化促進が抑制される。さらに、学習中にバッテリ6が放電せず、バッテリ6のSOCが低下しないことにより、オルタネータ2による発電が行われない状態が実現する。
 また、本実施形態では、エンジン1の燃料噴射制御に用いられる燃料噴射弁20の特性が、エンジン1が安定した状態で精度よく学習されるため、エミッション、燃費、ドライバビリティ、NVH(noise,vibration,harshness)等のエンジン性能が大幅に向上する。
 (5)変形例
 前記実施形態では、エンジン1から動力を得て発電する発電手段としてオルタネータ2を用いたが、発電だけでなくエンジン1のトルクアシスト(エンジン1の出力軸1aにアシスト用のトルクを付与する動作)も行うことが可能なモータジェネレータを前記発電手段として用いてもよい。つまり、本発明は、動力源としてエンジンのみを備える一般の車両だけでなく、エンジンとモータ(モータジェネレータ)とを併用したハイブリッド車両にも適用可能である。
 また、前記実施形態では、オルタネータ2(発電手段)により発電された電力を蓄えるキャパシタ3として電気二重層キャパシタ(EDLC)を用いたが、キャパシタ3は、繰り返し充放電が可能、比較的急速な充放電が可能なものであればよく、必ずしも電気二重層キャパシタに限られない。例えば、電気二重層キャパシタ以外のキャパシタ3として、リチイムイオンキャパシタを用いることができる。リチウムイオンキャパシタとは、リチウムイオンを電気化学的に吸蔵可能な炭素系材料(リチイムイオン電池の負極と同じ材料)を負極として用いることでエネルギー密度をさらに向上させたものである。このような構成のリチウムイオンキャパシタは、キャパシタ3として一般的な電気二重層キャパシタとは異なり、正極と負極とで充放電の原理が異なる(化学反応を併用する)ことから、ハイブリッドキャパシタとも呼ばれる。このリチウムイオンキャパシタを一例とするハイブリッドキャパシタ、及び前記電気二重層キャパシタのいずれについても、エネルギー密度が高く、しかもリニアな充放電特性をもつので、本発明に係るキャパシタ3として好適に用いることができる。
 また、前記実施形態では、学習対象物(エンジン制御に用いられるエンジン制御関連部品)は燃料噴射弁20であったが、これに限られない。例えば、クランク角センサSW4の特性(個体差や取付けバラツキ)を学習することもエンジン制御の信頼性向上に資することになる。そして、その場合も、学習中はエンジン1を無負荷の状態に維持することが、クランク軸1aのねじれが抑制されて学習精度の向上が図られるので好ましい。
 以上説明した本発明をまとめると以下の通りである。
 すなわち、本発明は、エンジン制御に用いられるエンジン制御関連部品の特性を学習するエンジンの制御装置であって、エンジンから動力を得て発電する発電手段と、前記発電手段により発電された電力を蓄えるキャパシタと、前記学習の実行中に車両で必要な消費電力を算出する消費電力算出手段と、前記キャパシタに蓄えられている電力と前記消費電力算出手段で算出された消費電力とを比較する比較手段と、前記比較手段による比較の結果、前記キャパシタに蓄えられている電力が前記消費電力以下のときは、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなるまで前記発電手段に発電を行わせる必要電力確保手段と、前記比較手段による比較の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きいとき、又は、前記必要電力確保手段により前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなったときは、前記キャパシタに蓄えられている電力を使用しつつ、前記発電手段による発電が行われない状態で、前記学習を実行する学習実行手段とを有することを特徴とするエンジンの制御装置である。
 本発明によれば、比較的急速な充放電が可能なキャパシタが備えられ、発電手段により発電された電力はキャパシタに蓄えられる。そして、エンジン制御に用いられるエンジン制御関連部品の特性を学習中に車両で必要な消費電力が算出され、キャパシタに蓄えられている電力が前記消費電力を超えて大きいときは、前記キャパシタに蓄えられている電力を使用しつつ、前記学習が実行される。また、キャパシタに蓄えられている電力が前記消費電力以下のときは、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなるまで発電手段に発電を行わせた後、前記キャパシタに蓄えられている電力を使用しつつ、前記学習が実行される。そして、いずれの場合も、学習中に車両で必要な消費電力を超えて大きい電力がキャパシタに確保されているから、発電手段による発電が行われない状態で学習が実行される。そのため、学習の実行中は、エンジンは確実に無負荷の状態に維持され、エンジンが安定した状態に確保されて、学習精度が確実に向上する。
 本発明において、好ましくは、前記キャパシタと、前記学習の実行中に電力を消費する電気負荷と、電力源であるバッテリとが相互に電気的に接続され、前記キャパシタから前記電気負荷に電力が供給されているときは、前記バッテリから前記電気負荷に電力が供給されないように構成されている。
 この構成によれば、キャパシタから電気負荷に電力が供給されているときはバッテリから電気負荷に電力が供給されないため、キャパシタには、学習中に車両で必要な消費電力を超えて大きい電力が確保されていることと併せて、学習中にバッテリが放電することが回避される。そのため、学習中にバッテリのSOCが低下することがなく、バッテリの劣化促進が抑制される。さらに、学習中にバッテリが放電せず、バッテリのSOCが低下しないことにより、発電手段による発電が行われない状態が実現する。
 本発明において、好ましくは、前記エンジン制御関連部品は燃料噴射弁である。
 この構成によれば、燃料噴射制御に用いられる燃料噴射弁の特性をエンジンが安定した状態で精度よく学習できる。そのため、エミッション、燃費、ドライバビリティ、NVH(noise,vibration,harshness)等のエンジン性能が大幅に向上する。
 また、本発明は、エンジン制御に用いられるエンジン制御関連部品の特性を学習するエンジンの制御方法であって、前記学習の実行中に車両で必要な消費電力を算出する消費電力算出ステップと、エンジンから動力を得て発電する発電手段により発電された電力を蓄えるキャパシタに蓄えられている電力と前記算出された消費電力とを比較する比較ステップと、前記比較の結果、前記キャパシタに蓄えられている電力が前記消費電力以下のときは、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなるまで前記発電手段に発電を行わせる必要電力確保ステップと、前記比較の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きいとき、又は、前記発電手段による発電の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなったときは、前記キャパシタに蓄えられている電力を使用しつつ、前記発電手段による発電が行われない状態で、前記学習を実行する学習実行ステップとを有することを特徴とするエンジンの制御方法である。
 本発明によっても、前述したエンジンの制御装置と同様の作用が得られる。
 この出願は、2012年9月24日に出願された日本国特許出願特願2012-209784を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ充分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、そのような変更形態又は改良形態は、請求の範囲に記載された請求項の権利範囲に包括されると解釈される。
 以上説明したように、本発明は、エンジン制御に用いられるエンジン制御関連部品の特性を学習するエンジンの制御装置及び制御方法の技術分野において、産業上の利用可能性がある。

Claims (4)

  1.  エンジン制御に用いられるエンジン制御関連部品の特性を学習するエンジンの制御装置であって、
     エンジンから動力を得て発電する発電手段と、
     前記発電手段により発電された電力を蓄えるキャパシタと、
     前記学習の実行中に車両で必要な消費電力を算出する消費電力算出手段と、
     前記キャパシタに蓄えられている電力と前記消費電力算出手段で算出された消費電力とを比較する比較手段と、
     前記比較手段による比較の結果、前記キャパシタに蓄えられている電力が前記消費電力以下のときは、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなるまで前記発電手段に発電を行わせる必要電力確保手段と、
     前記比較手段による比較の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きいとき、又は、前記必要電力確保手段により前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなったときは、前記キャパシタに蓄えられている電力を使用しつつ、前記発電手段による発電が行われない状態で、前記学習を実行する学習実行手段とを有することを特徴とするエンジンの制御装置。
  2.  請求項1に記載のエンジンの制御装置において、
     前記キャパシタと、前記学習の実行中に電力を消費する電気負荷と、電力源であるバッテリとが相互に電気的に接続され、
     前記キャパシタから前記電気負荷に電力が供給されているときは、前記バッテリから前記電気負荷に電力が供給されないように構成されていることを特徴とするエンジンの制御装置。
  3.  請求項1又は2に記載のエンジンの制御装置において、
     前記エンジン制御関連部品は燃料噴射弁であることを特徴とするエンジンの制御装置。
  4.  エンジン制御に用いられるエンジン制御関連部品の特性を学習するエンジンの制御方法であって、
     前記学習の実行中に車両で必要な消費電力を算出する消費電力算出ステップと、
     エンジンから動力を得て発電する発電手段により発電された電力を蓄えるキャパシタに蓄えられている電力と前記算出された消費電力とを比較する比較ステップと、
     前記比較の結果、前記キャパシタに蓄えられている電力が前記消費電力以下のときは、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなるまで前記発電手段に発電を行わせる必要電力確保ステップと、
     前記比較の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きいとき、又は、前記発電手段による発電の結果、前記キャパシタに蓄えられている電力が前記消費電力を超えて大きくなったときは、前記キャパシタに蓄えられている電力を使用しつつ、前記発電手段による発電が行われない状態で、前記学習を実行する学習実行ステップとを有することを特徴とするエンジンの制御方法。
PCT/JP2013/001905 2012-09-24 2013-03-21 エンジンの制御装置及び制御方法 WO2014045477A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/429,307 US9567933B2 (en) 2012-09-24 2013-03-21 Controller and control method for engines
DE112013004647.4T DE112013004647T5 (de) 2012-09-24 2013-03-21 Steuergerät und Steuerverfahren für Brennkraftmaschine
CN201380048575.4A CN104641091B (zh) 2012-09-24 2013-03-21 发动机的控制装置及控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012209784A JP2014066136A (ja) 2012-09-24 2012-09-24 エンジンの制御装置
JP2012-209784 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014045477A1 true WO2014045477A1 (ja) 2014-03-27

Family

ID=50340820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001905 WO2014045477A1 (ja) 2012-09-24 2013-03-21 エンジンの制御装置及び制御方法

Country Status (5)

Country Link
US (1) US9567933B2 (ja)
JP (1) JP2014066136A (ja)
CN (1) CN104641091B (ja)
DE (1) DE112013004647T5 (ja)
WO (1) WO2014045477A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066136A (ja) * 2012-09-24 2014-04-17 Mazda Motor Corp エンジンの制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767702B1 (en) * 2013-02-14 2015-11-25 Volvo Car Corporation Enhanced drivability for a hybrid vehcile in cold climate
KR101500406B1 (ko) * 2013-12-31 2015-03-18 현대자동차 주식회사 하이브리드 전기 차량용 인젝터 보정 장치 및 방법
JP6642459B2 (ja) * 2017-01-13 2020-02-05 トヨタ自動車株式会社 車両の制御装置
DE102017207661B4 (de) * 2017-05-08 2021-10-07 Audi Ag Verfahren zum Betreiben eines Verbrennungsmotors
TWI642259B (zh) * 2017-09-08 2018-11-21 王士榮 自給發電系統
CN108412655A (zh) * 2018-03-20 2018-08-17 中电科芜湖钻石飞机制造有限公司 转子发动机启发一体化装置及其控制方法
US11015566B2 (en) * 2018-08-31 2021-05-25 N4 Innovations, Llc System for controlling power supplied to a starter motor
CN110212625A (zh) * 2019-05-30 2019-09-06 广东思诺伟智能技术有限公司 适用于bms的针对电机回馈电流的电池保护电路及方法
JP7298633B2 (ja) * 2020-06-18 2023-06-27 トヨタ自動車株式会社 機械学習装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371903A (ja) * 2001-06-15 2002-12-26 Toyota Motor Corp 内燃機関制御装置
JP2009280033A (ja) * 2008-05-21 2009-12-03 Toyota Motor Corp 車両及び車両の制御方法
JP2012166618A (ja) * 2011-02-10 2012-09-06 Toyota Motor Corp 車両用学習制御装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768382B2 (ja) 2000-05-22 2006-04-19 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2002256921A (ja) * 2001-02-28 2002-09-11 Toyota Motor Corp 車両の制御装置
JP4089244B2 (ja) 2002-03-01 2008-05-28 株式会社デンソー 内燃機関用噴射量制御装置
US6898512B1 (en) * 2004-01-06 2005-05-24 Detroit Diesel Corporation Overspeed shut down test for electronically controlled engine
ITRM20050055U1 (it) * 2005-05-02 2006-11-03 Enea Ente Nuove Tec Sistema di accumulo energetico integrato.
US7111611B1 (en) * 2005-09-21 2006-09-26 Daimlerchrysler Corporation Torque sensor-based engine and powertrain control system
DE102005051701A1 (de) 2005-10-28 2007-05-03 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
TW200847580A (en) * 2007-04-04 2008-12-01 Cooper Technologies Co System and method for boosting battery output
JP4872789B2 (ja) * 2007-05-10 2012-02-08 トヨタ自動車株式会社 車両駆動ユニットの制御装置
JP2008297121A (ja) * 2007-06-04 2008-12-11 Toyota Industries Corp フォークリフト
JP2009062110A (ja) * 2007-09-04 2009-03-26 Toyota Industries Corp フォークリフト及びフォークリフトにおけるキャパシタの充電制御方法
JP5027062B2 (ja) * 2008-06-18 2012-09-19 トヨタ自動車株式会社 車両およびその制御方法
JP2010001759A (ja) * 2008-06-18 2010-01-07 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2010144533A (ja) 2008-12-16 2010-07-01 Toyota Motor Corp 内燃機関のラフアイドル検出装置
DE102009046747A1 (de) * 2009-11-17 2011-05-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs
JP2012125049A (ja) * 2010-12-08 2012-06-28 Daimler Ag 電気自動車の電源制御装置
JP5632271B2 (ja) * 2010-12-08 2014-11-26 ダイムラー・アクチェンゲゼルシャフトDaimler AG 電気自動車の電源制御装置
JP2012179955A (ja) 2011-02-28 2012-09-20 Toyota Motor Corp ハイブリッド車両の制御装置
US8857412B2 (en) * 2011-07-06 2014-10-14 General Electric Company Methods and systems for common rail fuel system dynamic health assessment
JP2014066136A (ja) 2012-09-24 2014-04-17 Mazda Motor Corp エンジンの制御装置
US9174525B2 (en) * 2013-02-25 2015-11-03 Fairfield Manufacturing Company, Inc. Hybrid electric vehicle
JP6011447B2 (ja) * 2013-05-10 2016-10-19 トヨタ自動車株式会社 燃料噴射弁の制御装置
JP5772884B2 (ja) * 2013-06-24 2015-09-02 トヨタ自動車株式会社 燃料噴射弁駆動システム
CN104619564B (zh) * 2013-07-23 2017-02-22 株式会社小松制作所 混合动力工程机械及混合动力工程机械的信息通知控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371903A (ja) * 2001-06-15 2002-12-26 Toyota Motor Corp 内燃機関制御装置
JP2009280033A (ja) * 2008-05-21 2009-12-03 Toyota Motor Corp 車両及び車両の制御方法
JP2012166618A (ja) * 2011-02-10 2012-09-06 Toyota Motor Corp 車両用学習制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066136A (ja) * 2012-09-24 2014-04-17 Mazda Motor Corp エンジンの制御装置
US9567933B2 (en) 2012-09-24 2017-02-14 Mazda Motor Corporation Controller and control method for engines

Also Published As

Publication number Publication date
CN104641091A (zh) 2015-05-20
US9567933B2 (en) 2017-02-14
DE112013004647T5 (de) 2015-06-18
JP2014066136A (ja) 2014-04-17
CN104641091B (zh) 2017-03-15
US20150226147A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2014045477A1 (ja) エンジンの制御装置及び制御方法
US8570000B2 (en) Vehicle power-generation control apparatus
US8418789B2 (en) Cooling system, vehicle equipped with the cooling system, and method for controlling the cooling system
EP2851255B1 (en) Control device for hybrid vehicle
US9156467B2 (en) Vehicle power generating device and power generation control method
JP5505509B2 (ja) パワートレーン、内燃機関の制御方法および制御装置
US20190283730A1 (en) Control system for hybrid vehicle
US20140067241A1 (en) Power-source apparatus for vehicle and control method of the same
US10082121B2 (en) Control apparatus for power supply system
US10910972B2 (en) Control apparatus and onboard system
CN108437969B (zh) 车辆用控制装置
JP4064398B2 (ja) 電動機用バッテリの充放電制御装置
US9296384B2 (en) Vehicle and vehicle control method
US9026344B2 (en) In-vehicle internal combustion engine control device, and control method for internal combustion engine
US10195944B2 (en) Control apparatus for power supply system
US8922036B2 (en) Vehicular power generation system and power generation control method for the same
US11519375B2 (en) Hybrid vehicle and method for controlling hybrid vehicle
JP5423047B2 (ja) ハイブリッド車両の制御装置
KR100440121B1 (ko) 하이브리드 차량의 출발 제어방법
JP2005312128A (ja) ハイブリッド車両の制御装置
JP2017140972A (ja) ハイブリッド車両及びその制御方法
JP2023127757A (ja) ハイブリッド車両
JP2016101081A (ja) 車両の制御装置
JP5729258B2 (ja) 車両の制御装置
KR101405745B1 (ko) 차량의 엔진 토크 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838334

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14429307

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013004647

Country of ref document: DE

Ref document number: 1120130046474

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838334

Country of ref document: EP

Kind code of ref document: A1