WO2014044463A1 - Vorrichtung mit mindestens zwei wafern zum detektieren von elektromagnetischer strahlung und verfahren zum herstellen der vorrichtung - Google Patents

Vorrichtung mit mindestens zwei wafern zum detektieren von elektromagnetischer strahlung und verfahren zum herstellen der vorrichtung Download PDF

Info

Publication number
WO2014044463A1
WO2014044463A1 PCT/EP2013/066635 EP2013066635W WO2014044463A1 WO 2014044463 A1 WO2014044463 A1 WO 2014044463A1 EP 2013066635 W EP2013066635 W EP 2013066635W WO 2014044463 A1 WO2014044463 A1 WO 2014044463A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
arrangement
electromagnetic radiation
sensor array
wafers
Prior art date
Application number
PCT/EP2013/066635
Other languages
English (en)
French (fr)
Inventor
Ingo Herrmann
Karl-Franz Reinhart
Tjalf Pirk
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020157006747A priority Critical patent/KR20150058214A/ko
Priority to CN201380048226.2A priority patent/CN104620086A/zh
Priority to US14/428,736 priority patent/US10270001B2/en
Priority to JP2015532345A priority patent/JP6195929B2/ja
Publication of WO2014044463A1 publication Critical patent/WO2014044463A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00238Joining a substrate with an electronic processing unit and a substrate with a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/26Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device including materials for absorbing or reacting with moisture or other undesired substances, e.g. getters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0207Bolometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/097Interconnects arranged on the substrate or the lid, and covered by the package seal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0785Transfer and j oin technology, i.e. forming the electronic processing unit and the micromechanical structure on separate substrates and joining the substrates
    • B81C2203/0792Forming interconnections between the electronic processing unit and the micromechanical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/05609Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • H01L2224/2745Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10252Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10335Indium phosphide [InP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12043Photo diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Definitions

  • the invention relates to an arrangement of at least two wafers for detecting electromagnetic radiation and to a method for producing the arrangement.
  • the method described therein comprises applying a first bonding material on a first wafer, wherein aluminum or an aluminum alloy is selected as the first bonding material. Further, the method describes applying a second bonding material to a second wafer, wherein gold is selected as the second bonding material. Subsequently, in the method described there, a bonding process is carried out, the first and the second bonding material being connected to one another and thereby producing a wafer-to-wafer bonding connection between the first wafer and the second wafer.
  • EP 1071 126 B1 describes the bonding together of two wafers, wherein different bonding materials are described as suitable for the bond pads of the two wafers and bonding pads made of gold are used. Furthermore, there are described as bonding materials silicon, indium, aluminum, copper, silver, alloys of these elements.
  • FIG. 4 shows an exemplary arrangement 1 of two wafers 10, 20.
  • a first wafer 10 is used as a cap wafer of the assembly.
  • a second wafer has a MEMS region 15 and an ASIC region 5.
  • metallic bond pads 21, 22, 23 are provided for contacting the second wafer.
  • the MEMS region 15 comprises a MEMS structure with a freestanding tongue structure 18, which has a
  • the present invention provides an arrangement of at least two wafers for detecting electromagnetic radiation, in particular far infrared radiation, having the features of patent claim 1 and a method for producing the arrangement according to patent claim 14.
  • the idea of the invention is to avoid a lateral integration of the evaluation circuit and the vertical combination of ASIC and MEMS structures on a wafer, since a common processing of both structures over very many mask levels increases the reject probability for the entire wafer.
  • the core of the invention is the separation of ASIC and MEMS structures and to integrate the ASIC and MEMS structures in each case on one of two wafers, wherein the two wafers are connected in a final step on formed on the two wafers metallic wafer contacts.
  • the evaluation circuit is formed as a circuit array.
  • the sensor array is formed as an array of at least one diode element. This allows a simple production of the sensor array. Furthermore, this allows a safe operation of the sensor array, which advantageously takes advantage of the fact that the voltage on the Diode element changes so as to be due to radiation
  • the circuit array and the sensor array are designed to be similar in shape. As a result, the path lengths between a diode element of the sensor array and the evaluation circuit can be minimized.
  • the at least one diode element is coupled to at least one evaluation unit of the evaluation circuit. This can be reduced from the outside acting on the arrangement disturbing influences.
  • the at least one diode element is formed from a plurality of diodes connected in series.
  • the radiation-induced effect of a change in the voltage drop across the diode element can advantageously be increased.
  • Circuit is designed as an application-specific integrated circuit. This allows an efficient implementation of the sensor array.
  • the arrangement further comprises a third wafer, which is formed as a cap wafer for the sensor array.
  • the sensor array is designed as a Mikrobolometerarray for detecting the electromagnetic radiation, in particular far infrared radiation. This advantageously makes it possible to detect a change in an electrical resistance due to the electromagnetic radiation absorbed on the sensor array and leading to a temperature change in the sensor array.
  • Circuit has a heat shield.
  • the integrated circuit of the arrangement can be protected against overheating caused by the electromagnetic radiation, in particular far infrared radiation.
  • the microsystem has a getter device.
  • an underpressure required by the sensor array can advantageously be maintained continuously during the operation of the arrangement.
  • the first wafer has a plated-through hole. This allows a simple and secure contacting of the first wafer.
  • the second wafer has a plated-through hole. This allows a simple and secure contacting of the second wafer.
  • the invention also does not explicitly include combinations of features of the invention described above or below with regard to the exemplary embodiments.
  • Fig. 1 is a schematic representation of an arrangement of two wafers for
  • Infrared radiation shows a schematic illustration of an arrangement of three wafers for detecting electromagnetic radiation, in particular far infrared radiation, according to a further embodiment of the invention
  • 3 is a schematic representation of a flowchart of a method for producing an arrangement of at least two wafers for
  • FIG. 4 shows an exemplary representation of an arrangement of two wafers.
  • FIG. 1 shows a schematic representation of an arrangement of two wafers for detecting electromagnetic radiation, in particular far infrared radiation, according to an embodiment of the invention
  • the wafers may include single or polycrystalline semiconductor materials and typically serve as a substrate for electronic systems.
  • semiconductor materials silicon, germanium, gallium arsenide, silicon carbide or
  • Indium phosphide can be used.
  • An arrangement 100 comprises two wafers 120, 110 for detecting
  • electromagnetic radiation in particular far infrared radiation.
  • a first wafer 120 has a microsystem 1 15, which is designed as a sensor array and which is designed to detect the electromagnetic radiation, in particular far infrared radiation, and to provide a corresponding sensor signal.
  • a second wafer 1 10 has an integrated circuit 105, which is designed as an evaluation circuit coupled to the sensor array and which is designed to use the provided sensor signal, the electromagnetic radiation, in particular far infrared radiation, detected by the provided
  • the evaluation circuit may be designed to be that
  • the sensor array may be formed as an array of sensor elements 15a having one or more diode elements 16 each.
  • the evaluation circuit may also be formed as a circuit array, which is formed as an array of evaluation units, wherein one or more diode elements 1 16 of the sensor array is coupled to one evaluation unit of the evaluation circuit.
  • an evaluation unit of the evaluation circuit can be designed as a measuring transducer, which converts an electrical sensor signal of the diode element 16 formed as a measuring sensor into a normalized electrical signal.
  • the diode element 1 16 may be formed of a plurality of diodes connected in series or of a series circuit of diodes and other electrical components, such as resistors.
  • the diodes used may be semiconductor diodes which have either a p-n-doped semiconductor crystal, silicon, but also germanium, germanium diode, gallium arsenide, or a metal-semiconductor junction.
  • Bonding material 180 may further be applied to the first wafer 120 and to the second wafer 110; 130 can be vapor-deposited using gold or indium or aluminum or another metal suitable for wafer bonding as the bonding material.
  • bonding pads 121, 122, 123 which are also made of gold or of indium or of aluminum or of another metal suitable for contact bonding.
  • 10 contacts 125 are provided on the second wafer 1, which connect the integrated circuit 105 with contact pads, not shown, which are formed on the first wafer 120 facing side of the second wafer 1 10 ,
  • Electrodes are for electrical contacting metal and for fixing the
  • Diode elements 1 16 Bars of oxide or other non-conductive materials 127 intended.
  • the diode elements 1 16 are applied in or on otherwise freestanding material areas.
  • the first wafer 120 has, for example
  • the sensor element 1 15a comprises a cavity 126 for thermal insulation of the thermal sensors relative to the first wafer 120, which serves as a substrate for the
  • cavern 126 can be used under each sensor element 15a, or caverns 126 can be formed which comprise a plurality of cavities 126
  • a large cavern may be formed under the entire sensor array.
  • the caverns can be produced, for example, by etching a sacrificial layer, possibly assisted by a specific anchoring of individual caverns by interpolation points, but also by anodic etching of the substrate, wherein porous silicon, for example, is produced in the substrate. Furthermore, deep silicon etching methods can be performed with similar effect.
  • FIG. 2 shows a schematic representation of an arrangement of three wafers for detecting electromagnetic radiation according to a further embodiment of the invention.
  • the arrangement 100 furthermore has a third wafer 140, which is designed as a cap wafer for the sensor array.
  • the integrated circuit 105 comprises a heat shield 108 and the microsystem 1 15 comprises a getter device 18
  • Heat shield 108 is formed, for example, as a layer reflecting the electromagnetic radiation or far infrared radiation.
  • the getter device 1 18 is designed, for example, as a getter, ie as a chemically reactive material which serves to maintain a vacuum as long as possible.
  • gas molecules enter into a direct chemical connection with the atoms of the getter material, or the gas molecules are retained by sorption. In this way, gas molecules are trapped and the internal pressure of the cavern is lowered.
  • FIG. 3 shows a schematic representation of a flowchart of a method for producing an arrangement of at least two wafers for detecting electromagnetic radiation, in particular far infrared radiation, according to yet another
  • provision S1 of a first wafer 120 with a microsystem 15 and a second wafer 110 takes place; 130 with an integrated
  • Bonding S3 of the first wafer 120 provided with bonding material 180 and of the second wafer 110 provided with bonding material 180 takes place as a third method step. 130 for making the arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Micromachines (AREA)

Abstract

Die Erfindung betrifft eine Anordnung von mindestens zwei Wafern (120, 110; 120, 130) zum Detektieren von elektromagnetischer Strahlung (FIR), wobei ein erster Wafer (120) ein Mikrosystem (115) aufweist, welches als ein Sensorarray ausgebildet ist und welches dazu ausgelegt ist, die elektromagnetische Strahlung (FIR) zu erfassen und ein entsprechendes Sensorsignal bereitzustellen; und wobei ein zweiter Wafer (110; 130) eine integrierte Schaltung (105) aufweist, welche als eine mit dem Sensorarray gekoppelte Auswerteschaltung ausgebildet ist und welche dazu ausgelegt ist, anhand des bereitgestellten Sensorsignals die elektromagnetische Strahlung (FIR) zu detektieren.

Description

Beschreibung Titel
VORRICHTUNG MIT MINDESTENS ZWEI WAFERN ZUM DETEKTIEREN VON ELEKTROMAGNETISCHER|STRAHLUNG UND VERFAHREN ZUM HERSTELLEN DER
VORRICHTUNG Die Erfindung betrifft eine Anordnung von mindestens zwei Wafern zum Detektieren von elektromagnetischer Strahlung und ein Verfahren zum Herstellen der Anordnung.
Stand der Technik Die DE 10 2008 043 735 A1 beschreibt ein Verfahren zur Herstellung einer
Bondverbindung zwischen mindestens zwei Wafern. Das dort beschriebene Verfahren umfasst ein Aufbringen eines ersten Bondmaterials auf einem ersten Wafer, wobei als das erste Bondmaterial Aluminium oder eine Aluminiumlegierung ausgewählt wird. Ferner beschreibt das Verfahren ein Aufbringen eines zweiten Bondmaterials auf einem zweiten Wafer, wobei als das zweite Bondmaterial Gold ausgewählt wird. Anschließend erfolgt bei dem dort beschriebenen Verfahren ein Durchführen eines Bondprozesses, wobei das erste und das zweite Bondmaterial miteinander verbunden werden und hierdurch ein Herstellen einer Wafer-to-Wafer Bondverbindung zwischen dem ersten Wafer und dem zweiten Wafer erfolgt.
Weiter ist in der EP 1071 126 B1 das Zusammenbonden zweier Wafer beschrieben, wobei für die Bondpads der beiden Wafer verschiedene Bondmaterialien als geeignet beschrieben werden und Bondpads aus Gold verwendet werden. Ferner sind dort als Bondmaterialien Silizium, Indium, Aluminium, Kupfer, Silber, Legierungen aus diesen Elementen beschrieben.
Die Figur 4 zeigt eine beispielhafte Anordnung 1 von zwei Wafern 10, 20. Ein erster Wafer 10 wird als ein Kappenwafer der Anordnung verwendet. Ein zweiter Wafer weist einen MEMS-Bereich 15 und einen ASIC-Bereich 5 auf. Zur Kontaktierung des zweiten Wafers sind metallische Bondpads 21 , 22, 23 vorgesehen. Der MEMS-Bereich 15 umfasst eine MEMS-Struktur mit einer freistehenden Zungenstruktur 18, welche einen
Dehnungsmessstreifen 16 aufweist. Offenbarung der Erfindung
Die vorliegende Erfindung schafft eine Anordnung von mindestens zwei Wafern zum De- tektieren von elektromagnetischer Strahlung, insbesondere ferne Infrarotstrahlung, mit den Merkmalen des Patentanspruchs 1 und ein Verfahren zum Herstellen der Anordnung gemäß Patentanspruch 14.
Vorteile der Erfindung
Die Idee der Erfindung liegt darin, eine laterale Integration der Auswerteschaltung und die vertikale Kombination von ASIC- und MEMS-Strukturen auf einem Wafer zu vermeiden, da ein gemeinsames Prozessieren beider Strukturen über sehr viele Maskenebenen die Ausschusswahrscheinlichkeit für den gesamten Wafer erhöht.
Kern der Erfindung ist die Trennung von ASIC- und MEMS-Strukturen und die ASIC- und MEMS-Strukturen jeweils auf einen von zwei Wafern zu integrieren, wobei die zwei Wafer in einem abschließenden Schritt über auf den beiden Wafern ausgebildete metallische Waferkontakte verbunden werden.
Dies erlaubt vorteilhaft, bestimmte und für ASIC- und MEMS-Strukturen optimierte Prozesse für jeden einzelnen Wafer zu verwenden. Ferner schafft die Erfindung
Kostenvorteile durch einen minimierten Flächenverbrauch auf den jeweiligen optimierten Wafer-Strukturen. Ferner erlaubt die vorliegende Erfindung ein Einhalten der
erforderlichen geringen Abstände zwischen einem Sensorpixel der MEMS-Struktur und der Auswertungsschaltung der AS IC-Struktur.
Vorteilhafte Ausführungsformen und Weiterbildungen ergeben sich aus den
Unteransprüchen sowie aus der Beschreibung unter Bezugnahme auf die Figuren.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass die Auswerteschaltung als ein Schaltungsarray ausgebildet ist.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass das Sensorarray als ein Array von mindestens einem Diodenelement ausgebildet ist. Dies erlaubt eine einfache Herstellung des Sensorarrays. Ferner erlaubt dies einen sicheren Betrieb des Sensorarrays, wobei vorteilhaft ausgenutzt wird, dass sich die Spannung an dem Diodenelement ändert, um so auf die durch Strahlung hervorgerufene
Temperaturänderung des Sensorarrays zu schließen.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass das Schaltungsarray und das Sensorarray formähnlich ausgebildet sind. Dadurch können die Weglängen zwischen einem Diodenelement des Sensorarrays und der Auswerteschaltung minimiert werden.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass das mindestens eine Diodenelement mit mindestens einer Auswertungseinheit der Auswerteschaltung gekoppelt ist. Dadurch können von außen auf die Anordnung einwirkende Störeinflüsse verringert werden.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass das mindestens einem Diodenelement aus einer Mehrzahl von in Reihe geschalteten Dioden ausgebildet ist. Dadurch kann der strahlungsinduzierte Effekt einer Änderung des Spannungsabfalls an dem Diodenelement vorteilhaft vergrößert werden.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass die integrierte
Schaltung als eine anwendungsspezifische integrierte Schaltung ausgebildet ist. Dies erlaubt eine effiziente Umsetzung des Sensorarrays.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass die Anordnung ferner einen dritten Wafer aufweist, der als ein Kappenwafer für das Sensorarray ausgebildet ist. Dadurch kann ein von dem Sensorarray benötigter Unterdruck im Betrieb aufrechterhalten werden.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass das Sensorarray als ein Mikrobolometerarray zum Erfassen der elektromagnetischen Strahlung, insbesondere ferne Infrarotstrahlung, ausgebildet ist. Dadurch kann vorteilhaft eine Änderung eines elektrischen Widerstandes aufgrund der am Sensorarray absorbierten und im Sensorarray zu einer Temperaturänderung führenden elektromagnetischen Strahlung erfasst werden.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass die integrierte
Schaltung ein Hitzeschild aufweist. Dadurch kann die integrierte Schaltung der Anordnung vor einer durch die elektromagnetische Strahlung, insbesondere ferne Infrarotstrahlung, verursachten Überhitzung geschützt werden. Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass das Mikrosystem eine Gettereinrichtung aufweist. Dadurch kann in vorteilhafter Weise ein von dem Sensorarray benötigter Unterdruck während des Betriebs der Anordnung fortlaufend aufrechterhalten werden.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass der erste Wafer eine Durchkontaktierung aufweist. Dies erlaubt eine einfache und sichere Kontaktierung des ersten Wafers. Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass der zweite Wafer eine Durchkontaktierung aufweist. Dies erlaubt eine einfache und sichere Kontaktierung des zweiten Wafers.
Die beschriebenen Ausgestaltungen und Weiterbildungen lassen sich beliebig
miteinander kombinieren.
Weitere mögliche Ausgestaltungen, Weiterbildungen und Implementierungen der
Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmale der Erfindung.
Kurze Beschreibung der Zeichnungen
Die beiliegenden Zeichnungen sollen ein weiteres Verständnis der Ausführungsformen der Erfindung vermitteln. Sie veranschaulichen Ausführungsformen und dienen im
Zusammenhang mit der Beschreibung der Erklärung von Prinzipien und Konzepten der Erfindung.
Andere Ausführungsformen und viele der genannten Vorteile ergeben sich im Hinblick auf die Zeichnungen. Die dargestellten Elemente der Zeichnungen sind nicht notwendiger- weise maßstabsgetreu zueinander gezeigt.
Es zeigen:
Fig. 1 eine schematische Darstellung einer Anordnung von zwei Wafern zum
Detektieren von elektromagnetischer Strahlung, insbesondere ferne
Infrarotstrahlung, gemäß einer Ausführungsform der Erfindung; Fig. 2 eine schematische Darstellung einer Anordnung von drei Wafern zum Detektieren von elektromagnetischer Strahlung, insbesondere ferne Infrarotstrahlung, gemäß einer weiteren Ausführungsform der Erfindung; Fig. 3 eine schematische Darstellung eines Flussdiagramms eines Verfahrens zum Herstellen einer Anordnung von mindestens zwei Wafern zum
Detektieren von elektromagnetischer Strahlung, insbesondere ferne Infrarotstrahlung, gemäß noch einer weiteren Ausführungsform der Erfindung; und
Fig. 4 eine beispielhafte Darstellung einer Anordnung von zwei Wafern.
In den Figuren der Zeichnung bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Elemente, Bauteile, Komponenten oder Verfahrensschritte, soweit nichts Gegenteiliges angegeben ist.
Die Figur 1 zeigt eine schematische Darstellung einer Anordnung von zwei Wafern zum Detektieren von elektromagnetischer Strahlung, insbesondere ferne Infrarotstrahlung, gemäß einer Ausführungsform der
Erfindung.
Als Wafer werden hierbei kreisrunde oder quadratische, etwa ein Millimeter dicke Scheiben bezeichnet. Die Wafer können ein- oder polykristallinen Halbleiter-Materialien aufweisen und dienen in der Regel als Substrat für elektronische Systeme. Als Halbleiter- Materialien können Silicium, Germanium, Galliumarsenid, Siliciumcarbid oder
Indiumphosphid verwendet werden.
Eine Anordnung 100 umfasst zwei Wafern 120, 1 10 zum Detektieren von
elektromagnetischer Strahlung, insbesondere ferne Infrarotstrahlung.
Ein erster Wafer 120 weist ein Mikrosystem 1 15 auf, welches als ein Sensorarray ausgebildet ist und welches dazu ausgelegt ist, die elektromagnetische Strahlung, insbesondere ferne Infrarotstrahlung, zu erfassen und ein entsprechendes Sensorsignal bereitzustellen.
Ein zweiter Wafer 1 10 weist eine integrierte Schaltung 105 auf, welche als eine mit dem Sensorarray gekoppelte Auswerteschaltung ausgebildet ist und welche dazu ausgelegt ist, anhand des bereitgestellten Sensorsignals die elektromagnetische Strahlung, insbesondere ferne Infrarotstrahlung, zu detektieren, indem das bereitgestellte
Sensorsignal ausgewertet wird.
Beispielsweise kann die Auswerteschaltung dazu ausgebildet sein, dasjenige
Sensorelement 1 15a zu bestimmen, welches die elektromagnetische Strahlung, insbesondere ferne Infrarotstrahlung, erfasst hat. Das Sensorarray kann als ein Array von Sensorelementen 1 15a mit jeweils einem oder mehreren Diodenelementen 1 16 ausgebildet sein. Die Auswerteschaltung kann ferner als ein Schaltungsarray ausgebildet sein, welches als ein Array von Auswertungseinheiten ausgebildet ist, wobei ein oder mehrere Diodenelemente 1 16 des Sensorarrays mit jeweils einer Auswertungseinheit der Auswerteschaltung gekoppelt ist.
Dabei kann eine Auswertungseinheit der Auswerteschaltung als ein Messumformer ausgebildet sein, welcher ein elektrisches Sensorsignal der als Messaufnehmer ausgebildeten Diodenelementes 1 16 in ein normiertes elektrisches Signal umwandelt.
Das Diodenelement 1 16 kann aus einer Mehrzahl von in Reihe geschalteten Dioden ausgebildet sein oder auch aus einer Reihenschaltung von Dioden und anderen elektrischen Bauelementen, wie etwa Widerständen. Dabei können als Dioden Halbleiter- Diode zum Einsatz kommen, die entweder ein p-n-dotierter Halbleiterkristall, Silizium, aber auch Germanium, Germaniumdiode, Galliumarsenid, oder ein Metall-Halbleiter- Übergang aufweisen.
Bondmaterial 180 kann ferner auf den ersten Wafer 120 und auf den zweiten Wafer 1 10; 130 aufgedampft werden, wobei als Bondmaterial Gold oder Indium oder Aluminium oder ein sonstiges zum Waferbonden geeignetes Metall verwendet wird.
Zur Kontaktierung des ersten Wafers 120 sind Bondpads 121 ,122, 123 vorgesehen, welche ebenfalls aus Gold oder aus Indium oder aus Aluminium oder aus einem sonstigen zum Kontaktbonden geeignetem Metall gefertigt sind.
Zur Kontaktierung des ersten Wafers 120 mit dem zweiten Wafer 1 10 sind auf dem zweiten Wafer 1 10 Kontaktierungen 125 vorgesehen, die die integrierte Schaltung 105 mit nicht dargestellten Kontaktpads verbinden, welche auf der dem ersten Wafer 120 zugewandten Seite des zweiten Wafers 1 10 ausgebildet sind.
Als Elektroden sind zur elektrischen Kontaktierung Metall- und zur Fixierung der
Diodenelemente 1 16 Stege aus Oxid oder anderen nichtleitenden Materialien 127 vorgesehen. Die Diodenelemente 1 16 sind dabei in oder auf ansonsten freistehenden Materialbereichen aufgebracht. Der erste Wafer 120 weist beispielsweise eine
Durchkontaktierung 124 auf. Ferner umfasst das Sensorelement 1 15a eine Kaverne 126 zur thermischen Isolierung der Thermosensoren gegenüber ersten Wafer 120, welcher als Substrat für die
Sensorelemente 1 15a verwendet wird.
Dabei kann eine individuelle Kaverne 126 unter jedem Sensorelement 1 15a zum Einsatz kommen oder es können Kavernen 126 ausgebildet werden, welche mehrere
Sensorelemente 1 15a beinhalten und einen Pixelcluster bilden.
Ebenso kann eine große Kaverne unter dem gesamten Sensorarray ausgebildet sein. Bei mehreren Sensorelementen 1 15a pro Kaverne 126 ist es vorteilhaft, insbesondere für die Stabilität und die Performance der Sensorelemente 1 15a, Stützstellen vorzusehen, um die aufgenommene Wärme möglichst gut in das Reservoir des Substrats abzuführen.
Diese können beispielsweise als Wälle oder auch als Säulen ausgeführt werden. Die Herstellung der Kavernen kann beispielsweise durch ein Ätzen einer Opferschicht vorgenommen werden, gegebenenfalls unterstützt durch eine gezielte Verankerung einzelner Kavernen durch Stützstellen, aber auch durch ein anodisches Ätzen des Substrats, wobei im Substrat beispielsweise poröses Silizium erzeugt wird. Ferner können Silizium-Tiefenätzen-Verfahren mit ähnlicher Wirkung durchgeführt werden.
Die Figur 2 zeigt eine schematische Darstellung einer Anordnung von drei Wafern zum Detektieren von elektromagnetischer Strahlung gemäß einer weiteren Ausführungsform der Erfindung. Abweichend von der in der Figur 1 gezeigten Ausführungsform weist bei der in der Figur 2 gezeigten Ausführungsform die Anordnung 100 ferner einen dritten Wafer 140 auf, der als ein Kappenwafer für das Sensorarray ausgebildet ist.
Ferner umfasst bei der in der Figur 2 gezeigten Ausführungsform die integrierte Schaltung 105 ein Hitzeschild 108 und das Mikrosystem 1 15 eine Gettereinrichtung 1 18. Das
Hitzeschild 108 ist beispielsweise als eine die elektromagnetische Strahlung bzw. ferne Infrarotstrahlung reflektierende Schicht ausgebildet. Die Gettereinrichtung 1 18 ist beispielsweise als ein Getter ausgebildet, d. h. als ein chemisch reaktives Material, das dazu dient, einen Unterdruck möglichst lange zu erhalten. An der Oberfläche Gettereinrichtung 1 18 gehen Gasmoleküle mit den Atomen des Gettermaterials eine direkte chemische Verbindung ein, oder die Gasmoleküle werden durch Sorption festgehalten. Auf diese Weise werden Gasmoleküle eingefangen und der Innendruck der Kaverne wird abgesenkt.
Die weiteren in der Figur 2 dargestellten Bezugszeichen sind bereits in der zu der Figur 1 zugehörigen Figurenbeschreibung beschrieben und werden daher nicht weiter erläutert.
Die Figur 3 zeigt eine schematische Darstellung eines Flussdiagramms eines Verfahrens zum Herstellen einer Anordnung von mindestens zwei Wafern zum Detektieren von elektromagnetischer Strahlung, insbesondere ferne Infrarotstrahlung, gemäß noch einer weiteren
Ausführungsform der Erfindung.
Als ein erster Verfahrensschritt erfolgt ein Bereitstellen S1 eines ersten Wafers 120 mit einem Mikrosystem 1 15 und eines zweiten Wafern 1 10; 130 mit einer integrierten
Schaltung 105.
Als ein zweiter Verfahrensschritt erfolgt ein Aufbringen S2 von Bondmaterial 180 auf den ersten Wafer 120 und auf den zweiten Wafer 1 10; 130.
Als ein dritter Verfahrensschritt erfolgt ein Bonden S3 des mit Bondmaterial 180 versehenen ersten Wafers 120 und des mit Bondmaterial 180 versehenen zweiten Wafers 1 10; 130 zum Herstellen der Anordnung.
Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele vorstehend beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Art und Weise modifizierbar. Insbesondere lässt sich die Erfindung in mannigfaltiger Weise verändern oder modifizieren, ohne vom Kern der Erfindung abzuweichen.

Claims

Patentansprüche
1 . Anordnung von mindestens zwei Wafern (120, 1 10; 120, 130) zum Detektieren von elektromagnetischer Strahlung, insbesondere ferne Infrarotstrahlung, wobei
- ein erster Wafer (120) ein Mikrosystem (1 15) aufweist, welches als ein Sensorarray ausgebildet ist und welches dazu ausgelegt ist, die elektromagnetische Strahlung, insbesondere ferne Infrarotstrahlung, zu erfassen und ein entsprechendes Sensorsignal bereitzustellen; und wobei
- ein zweiter Wafer (1 10; 130) eine integrierte Schaltung (105) aufweist, welche als eine mit dem Sensorarray gekoppelte Auswerteschaltung ausgebildet ist und welche dazu ausgelegt ist, anhand des bereitgestellten Sensorsignals die elektromagnetische Strahlung, insbesondere ferne Infrarotstrahlung, zu detektieren.
2. Anordnung (100) nach Anspruch 1 , wobei die Auswerteschaltung als ein Schaltungsarray ausgebildet ist.
3. Anordnung (100) nach einem der Ansprüche 1 und 2, wobei das Sensorarray als ein Array von mindestens einem Diodenelement (1 16) ausgebildet ist.
4. Anordnung (100) nach Anspruch 3, wobei das Schaltungsarray und das Sensorarray formähnlich ausgebildet sind.
5. Anordnung (100) nach einem der vorhergehenden Ansprüche 3 und 4, wobei das mindestens eine Diodenelement (1 16) mit mindestens einer Auswertungseinheit der Auswerteschaltung gekoppelt ist.
6. Anordnung (100) nach einem der vorhergehenden Ansprüche 3 bis 5, wobei das mindestens einem Diodenelement (1 16) aus einer Mehrzahl von in Reihe geschalteten Dioden ausgebildet ist.
7. Anordnung (100) nach einem der vorhergehenden Ansprüche, wobei die integrierte Schaltung (105) als eine anwendungsspezifische integrierte Schaltung ausgebildet ist.
8. Anordnung (100) nach einem der vorhergehenden Ansprüche, wobei die Anordnung (100) ferner einen dritten Wafer (140) aufweist, der als ein Kappenwafer für das Sensorarray ausgebildet ist.
9. Anordnung (100) nach einem der vorhergehenden Ansprüche, wobei das Sensorarray als ein Mikrobolometerarray zum Erfassen der elektromagnetischen Strahlung, insbesondere ferne Infrarotstrahlung, ausgebildet ist.
10. Anordnung (100) nach einem der vorhergehenden Ansprüche, wobei die integrierte Schaltung (105) ein Hitzeschild (108) aufweist.
1 1 . Anordnung (100) nach einem der vorhergehenden Ansprüche, wobei das Mikrosys- tem (1 15) eine Gettereinrichtung (1 18) aufweist.
12. Anordnung (100) nach einem der vorhergehenden Ansprüche, wobei der erste Wafer (120) eine Durchkontaktierung (124) aufweist.
13. Anordnung (100) nach einem der vorhergehenden Ansprüche, wobei der zweite Wafer (1 10; 130) eine Durchkontaktierung aufweist.
14. Verfahren zum Herstellen einer Anordnung von mindestens zwei Wafern gemäß den Ansprüchen 1 bis 13, mit folgenden Verfahrensschritten:
Bereitstellen (S1 ) eines ersten Wafers (120) mit einem Mikrosystem (1 15) und eines zweiten Wafers (1 10; 130) mit einer integrierten Schaltung (105);
Aufbringen (S2) von Bondmaterial (180) auf den ersten Wafer (12) und auf den zweiten Wafer (1 10; 130); und
Bonden (S3) des mit Bondmaterial (180) versehenen ersten Wafers (120) und des mit Bondmaterial (180) versehenen zweiten Wafers (1 10; 130) zum Herstellen der Anordnung.
PCT/EP2013/066635 2012-09-18 2013-08-08 Vorrichtung mit mindestens zwei wafern zum detektieren von elektromagnetischer strahlung und verfahren zum herstellen der vorrichtung WO2014044463A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157006747A KR20150058214A (ko) 2012-09-18 2013-08-08 전자기 복사를 검출하기 위한 적어도 2개의 웨이퍼를 구비한 장치 및 상기 장치의 제조 방법
CN201380048226.2A CN104620086A (zh) 2012-09-18 2013-08-08 具有至少两个用于探测电磁辐射的晶片的装置及用于制造该装置的方法
US14/428,736 US10270001B2 (en) 2012-09-18 2013-08-08 Device having at least two wafers for detecting electromagnetic radiation and method for producing said device
JP2015532345A JP6195929B2 (ja) 2012-09-18 2013-08-08 電磁波を検出するための少なくとも2つのウェハを有する装置、および、当該装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012216618.1A DE102012216618A1 (de) 2012-09-18 2012-09-18 Anordnung von mindestens zwei Wafern zum Detektieren von elektromagnetischer Strahlung und Verfahren zum Herstellen der Anordnung
DE102012216618.1 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014044463A1 true WO2014044463A1 (de) 2014-03-27

Family

ID=49035531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/066635 WO2014044463A1 (de) 2012-09-18 2013-08-08 Vorrichtung mit mindestens zwei wafern zum detektieren von elektromagnetischer strahlung und verfahren zum herstellen der vorrichtung

Country Status (7)

Country Link
US (1) US10270001B2 (de)
JP (1) JP6195929B2 (de)
KR (1) KR20150058214A (de)
CN (1) CN104620086A (de)
DE (1) DE102012216618A1 (de)
FR (1) FR2995724B1 (de)
WO (1) WO2014044463A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560812B (en) * 2014-07-16 2016-12-01 Chiang Chung I Wafer level packaging structure for temperatrue sensing element
EP3441734A1 (de) * 2017-08-08 2019-02-13 Commissariat à l'énergie atomique et aux énergies alternatives Herstellungsverfahren einer detektionsvorrichtung mit zwei substraten, und eine solche detektionsvorrichtung
CN109791920A (zh) * 2016-08-18 2019-05-21 原子能和替代能源委员会 以最佳密度连接交叉部件的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015214586A1 (de) 2015-07-31 2017-02-02 Robert Bosch Gmbh Strahlungssensor, Verfahren zur Detektion von Strahlung
DE102015220271A1 (de) 2015-10-19 2017-04-20 Robert Bosch Gmbh Magnetischer Temperatursensor, Verfahren zur Bestimmung einer Temperatur
DE102017206388A1 (de) * 2017-04-13 2018-10-18 Robert Bosch Gmbh Verfahren zum Schutz einer MEMS-Einheit vor Infrarot-Untersuchungen sowie MEMS-Einheit
US10923525B2 (en) 2017-07-12 2021-02-16 Meridian Innovation Pte Ltd CMOS cap for MEMS devices
US10403674B2 (en) 2017-07-12 2019-09-03 Meridian Innovation Pte Ltd Scalable thermoelectric-based infrared detector
US11199455B2 (en) 2017-08-31 2021-12-14 Teknologian Tutkimuskeskus Vtt Oy Thermal detector and thermal detector array
CN113767063A (zh) 2019-04-01 2021-12-07 迈瑞迪创新科技有限公司 互补金属氧化物-半导体和mems传感器的异质集成
US11988561B2 (en) 2019-07-09 2024-05-21 Heimann Sensor Gmbh Method for producing a thermal infrared sensor array in a vacuum-filled wafer-level housing
FR3099953B1 (fr) * 2019-08-14 2021-07-30 Elichens Procédé de fabrication collective d'un détecteur pyroélectrique
EP3875424A1 (de) * 2020-03-05 2021-09-08 Meridian Innovation Pte Ltd Cmos-kappe für mems-vorrichtungen
DE102020210130A1 (de) 2020-08-11 2022-02-17 Robert Bosch Gesellschaft mit beschränkter Haftung Chip-Anordnung; Verfahren zur Herstellung einer Chip-Anordnung; Verfahren zum Betreiben einer Chip-Anordnung
CN113184796A (zh) * 2021-03-22 2021-07-30 北京大学(天津滨海)新一代信息技术研究院 一种微机电系统器件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024903A1 (de) * 2007-05-29 2008-12-11 Pyreos Ltd. Vorrichtung mit Sandwichstruktur zur Detektion von Wärmestrahlung, Verfahren zum Herstellen und Verwendung der Vorrichtung
DE102008043735A1 (de) * 2008-11-14 2010-05-20 Robert Bosch Gmbh Anordnung von mindestens zwei Wafern mit einer Bondverbindung und Verfahren zur Herstellung einer solchen Anordnung
US20110024860A1 (en) * 2005-06-27 2011-02-03 Hl-Planar Technik Gmbh Device For The Detection Of Electromagnetic Waves And Method For Producing Such A Device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US42404A (en) * 1864-04-19 Improvement in apparatus for making fluted ruffles
US4532424A (en) 1983-04-25 1985-07-30 Rockwell International Corporation Pyroelectric thermal detector array
JP3031926B2 (ja) 1989-09-28 2000-04-10 株式会社ロゼフテクノロジー ゴム製品などのワークの傷検査方法
JPH09113352A (ja) * 1995-10-18 1997-05-02 Nissan Motor Co Ltd マイクロレンズ付赤外線検出素子およびその製造方法
US6228675B1 (en) 1999-07-23 2001-05-08 Agilent Technologies, Inc. Microcap wafer-level package with vias
JP4158830B2 (ja) 2005-11-25 2008-10-01 松下電工株式会社 熱型赤外線検出装置の製造方法
EP1994384B1 (de) * 2006-03-14 2010-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. B0l0meter mit organischer halbleiterschichtanordnung
US7651880B2 (en) 2006-11-04 2010-01-26 Sharp Laboratories Of America, Inc. Ge short wavelength infrared imager
DE102007024902B8 (de) 2007-05-29 2010-12-30 Pyreos Ltd. Vorrichtung mit Membranstruktur zur Detektion von Wärmestrahlung, Verfahren zum Herstellen und Verwendung der Vorrichtung
EP2230497A1 (de) * 2008-06-09 2010-09-22 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Diodenbolometer und ein Verfahren zur Herstellung eines Diodenbolometers
DE102008060796B4 (de) 2008-11-18 2014-01-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Ausbilden einer Mikro-Oberflächenstruktur sowie zum Herstellen eines mikroelektromechanischen Bauelements, Mikro-Oberflächenstruktur sowie mikroelektromechanisches Bauelement mit einer solchen Struktur
US7820525B2 (en) 2009-03-25 2010-10-26 E-Phocus Method for manufacturing hybrid image sensors
JP5786273B2 (ja) * 2009-12-28 2015-09-30 オムロン株式会社 赤外線センサ及び赤外線センサモジュール
EP2599297A1 (de) 2010-07-27 2013-06-05 Flir System, Inc. Systeme und verfahren für infrarotkameraarchitektur
DE102011081641B4 (de) 2011-08-26 2014-11-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor und Verfahren zum Herstellen eines Sensors
US8564125B2 (en) * 2011-09-02 2013-10-22 Stats Chippac Ltd. Integrated circuit packaging system with embedded thermal heat shield and method of manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110024860A1 (en) * 2005-06-27 2011-02-03 Hl-Planar Technik Gmbh Device For The Detection Of Electromagnetic Waves And Method For Producing Such A Device
DE102007024903A1 (de) * 2007-05-29 2008-12-11 Pyreos Ltd. Vorrichtung mit Sandwichstruktur zur Detektion von Wärmestrahlung, Verfahren zum Herstellen und Verwendung der Vorrichtung
DE102008043735A1 (de) * 2008-11-14 2010-05-20 Robert Bosch Gmbh Anordnung von mindestens zwei Wafern mit einer Bondverbindung und Verfahren zur Herstellung einer solchen Anordnung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560812B (en) * 2014-07-16 2016-12-01 Chiang Chung I Wafer level packaging structure for temperatrue sensing element
CN109791920A (zh) * 2016-08-18 2019-05-21 原子能和替代能源委员会 以最佳密度连接交叉部件的方法
EP3441734A1 (de) * 2017-08-08 2019-02-13 Commissariat à l'énergie atomique et aux énergies alternatives Herstellungsverfahren einer detektionsvorrichtung mit zwei substraten, und eine solche detektionsvorrichtung
FR3070096A1 (fr) * 2017-08-08 2019-02-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'un dispositif de detection a deux substrats et un tel dispositif de detection
US10461210B2 (en) 2017-08-08 2019-10-29 Commissariat à l'énergie atomique et aux énergies alternatives Method for manufacturing a detection device with two substrates and such a detection device

Also Published As

Publication number Publication date
KR20150058214A (ko) 2015-05-28
US20150243823A1 (en) 2015-08-27
FR2995724B1 (fr) 2019-08-23
CN104620086A (zh) 2015-05-13
JP6195929B2 (ja) 2017-09-13
DE102012216618A1 (de) 2014-03-20
US10270001B2 (en) 2019-04-23
JP2015534642A (ja) 2015-12-03
FR2995724A1 (fr) 2014-03-21

Similar Documents

Publication Publication Date Title
WO2014044463A1 (de) Vorrichtung mit mindestens zwei wafern zum detektieren von elektromagnetischer strahlung und verfahren zum herstellen der vorrichtung
EP2035326B1 (de) Sensor mit diodenpixeln und verfahren zu seiner herstellung
DE102015103059B4 (de) Sensorstruktur zum abfühlen von druckwellen und umgebungsdruck
EP2152627B1 (de) Mikromechanischer Membransensor und entsprechendes Herstellungsverfahren
DE4309207C2 (de) Halbleitervorrichtung mit einem piezoresistiven Drucksensor
DE10238265B4 (de) Halbleiterbauelement und Verfahren zu dessen Herstellung
DE102011085084B4 (de) Verfahren zum Herstellen einer elektrischen Durchkontaktierung in einem Substrat sowie Substrat mit einer elektrischen Durchkontaktierung
EP3970210A1 (de) Verfahren zur herstellung eines ein trägersubstrat aufweisenden displays, ein nach diesem verfahren hergestelltes trägersubstrat sowie ein für ein flexibles display bestimmtes deckglas
DE102006045900A1 (de) Halbleitermodul und Verfahren zu dessen Herstellung
DE102012213566A1 (de) Verfahren zum Herstellen eines Bondpads zum Thermokompressionsbonden und Bondpad
EP3526158B1 (de) Verfahren zum herstellen eines stressentkoppelten mikromechanischen drucksensors
DE102010029709B4 (de) Mikromechanisches Bauelement und Verfahren zum Herstellen eines mikromechanischen Bauelements
DE102006007729A1 (de) Verfahren zur Herstellung eines MEMS-Substrats, entsprechendes MEMS-Substrat und MEMS-Prozess unter Verwendung des MEMS-Substrats
DE102015214228A1 (de) Verfahren zur Herstellung eines Bauelements und ein Bauelement
EP2019812B1 (de) Verfahren zur herstellung eines mikromechanischen bauelements mit membran und mikromechanisches bauelement
DE102009005458B4 (de) Halbleiterbauelement mit Durchkontaktierung und Verfahren zu dessen Herstellung
DE102005029803A1 (de) Verfahren zur Herstellung eines mikromechanischen Bauelements sowie mikromechanisches Bauelement
EP2285733B1 (de) Verfahren zur herstellung von chips
DE10058864B4 (de) Mikromechanikstruktur für integrierte Sensoranordnungen und Verfahren zur Herstellung einer Mikromechanikstruktur
DE102015121056A1 (de) Verfahren zur Herstellung einer Mehrzahl von Bauelementen und Bauelement
DE102011017462A1 (de) Vorrichtung zum Messen einer Druckdifferenz, insbesondere kapazitiver Differenzdrucksensor
WO2018162188A1 (de) Verfahren zum herstellen einer mems-einrichtung für einen mikromechanischen drucksensor
DE19845537A1 (de) Sensor und Verfahren zu seiner Herstellung
WO2007093279A2 (de) Verfahren zur herstellung von elektronischen bauelementen und drucksensor
DE19710375C2 (de) Verfahren zum Herstellen von räumlich strukturierten Bauteilen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006747

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428736

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015532345

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13753113

Country of ref document: EP

Kind code of ref document: A1