WO2014043982A1 - 内置式电容触摸面板、显示器及制造方法 - Google Patents

内置式电容触摸面板、显示器及制造方法 Download PDF

Info

Publication number
WO2014043982A1
WO2014043982A1 PCT/CN2012/084252 CN2012084252W WO2014043982A1 WO 2014043982 A1 WO2014043982 A1 WO 2014043982A1 CN 2012084252 W CN2012084252 W CN 2012084252W WO 2014043982 A1 WO2014043982 A1 WO 2014043982A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
capacitive touch
touch panel
conductive layer
transparent conductive
Prior art date
Application number
PCT/CN2012/084252
Other languages
English (en)
French (fr)
Inventor
周星耀
姚绮君
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to EP12877082.3A priority Critical patent/EP2738595A4/en
Priority to US14/092,160 priority patent/US9097928B2/en
Publication of WO2014043982A1 publication Critical patent/WO2014043982A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Definitions

  • the present invention relates to the field of touch display technologies, and in particular, to a built-in capacitive touch panel, a display, and a method of fabricating the same. Background technique
  • the in-cell touch panel includes a color filter (CF substrate) 10, a black matrix 11, and a touch layer 12 (including a metal mesh 121, a transparent conductive layer 122, a first insulating layer 123, and a metal).
  • the black matrix 11 is located on the CF substrate 10, and the black matrix (BM) 11 is provided with a plurality of light transmissive regions on the TFT substrate 20.
  • the touch layer 12 is provided with a driving line and a sensing line. The driving line and the sensing line are arranged in a crisscross manner, and the touch signal is generated when the finger touches the intersection of the driving line and the sensing line.
  • the color resist 13 is located on the touch layer 12 and covers the light transmissive area of the black matrix 11, and the second insulating layer 14 is located on the color resist 13.
  • the in-cell touch panel of the above structure is composed of a metal grid 121 and a transparent conductive layer 122 because the driving traces and the touch traces of the touch layer are blocked by the BM by design. It is invisible, and the slit of the pattern of the transparent conductive layer 122 may be observed by the human eye because the slit of the pattern of the transparent conductive layer 122 is opened in the region where the pixel is located (that is, the light-transmitting region). Since the transmittance of light passing through the transparent conductive layer 122 and the non-transparent conductive layer 122 is different, the human eye can perceive it. Moreover, for different wavelengths, the transmittance is different (Fig. 3), so the three-color images of 1, G, and B see that the transparent conductive layer 122 has a remarkable degree of incision. Summary of the invention
  • An object of the present invention is to provide a built-in capacitive touch panel, a display and a manufacturing method thereof, which are provided with a slit of a transparent conductive layer at a reasonable position to realize sewn hiding and improve display effect.
  • the present invention provides an in-cell capacitive touch panel including a substrate and a black matrix, a transparent conductive layer, and a color resist sequentially formed on the substrate, wherein the black matrix is provided with a plurality of light transmissive regions, The color resistance is covered over the light-transmitting region of the black matrix according to a certain arrangement rule, wherein the slit of the transparent conductive layer is disposed above the black matrix opaque region and/or disposed under the same color resist.
  • the arranging rule includes: arranging three color resists of R, G, and B in the horizontal direction, and arranging the same color resists in the vertical direction.
  • the line width of the opaque region of the black matrix in the longitudinal direction is 7.0 ⁇ m to 8.0 ⁇ m.
  • the line width of the opaque region of the black matrix in the lateral direction is 24.5 ⁇ m to 26.5 ⁇ m.
  • the lateral slit of the transparent conductive layer is disposed above the opaque region of the black matrix, and the longitudinal slit is disposed under the same color resist.
  • the transversely-separated line width of the transparent conductive layer is 0.1 to 0.9 times the line width of the black matrix opaque region in the lateral direction. Further, the transparent conductive layer has a lateral slit line width of 3 ⁇ m to 22 ⁇ m.
  • the longitudinal slit line width of the transparent conductive layer is the size of one pixel minus the line width of the black matrix opaque region in the longitudinal direction to a pixel size plus the black matrix opaque in the longitudinal direction.
  • the line width of the area is the size of one pixel minus the line width of the black matrix opaque region in the longitudinal direction to a pixel size plus the black matrix opaque in the longitudinal direction.
  • the transparent conductive layer has a longitudinal slit line width of 33.5 ⁇ m to 38.5 ⁇ m.
  • the in-cell capacitive touch panel further includes: a metal mesh between the black matrix and the transparent conductive layer.
  • the in-cell capacitive touch panel further includes: a first insulating layer and a metal bridge between the transparent conductive layer and the color resistance.
  • the in-cell capacitive touch panel further includes: sequentially formed on the color resistance a second insulating layer and a lithographic spacer.
  • the transparent conductive layer is made of indium tin oxide, indium zinc oxide, carbon nanotubes or aluminum-doped co-doped zinc oxide.
  • the present invention also provides an in-cell capacitive touch display comprising the above-described in-cell capacitive touch panel.
  • the present invention also provides a method of manufacturing the above-described in-cell capacitive touch panel, comprising: providing a substrate;
  • the black matrix is provided with a plurality of light transmissive regions, and the color resists are covered over the light transmissive region of the black matrix according to a certain arrangement rule.
  • the slit of the transparent conductive layer is disposed above the black matrix opaque region and/or under the same color resist.
  • the in-cell capacitive touch panel, the display and the manufacturing method provided by the invention hide the slit of the transparent conductive layer above the opaque area of the black matrix and/or under the same color resist. Improve the consistency of penetration rate, realize the hidden seam, avoid the image display of the seam, and improve the display effect.
  • FIG. 1 is a schematic cross-sectional view of a built-in capacitive touch display in the prior art
  • FIG. 2 is a schematic view of a built-in capacitive touch panel when ITO is used as a transparent conductive layer in the prior art
  • FIG. 3 is a transparent ITO in the prior art.
  • FIG. 4 is a schematic diagram of a built-in capacitive touch panel according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a built-in capacitive touch panel according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a built-in capacitive touch panel according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of a built-in capacitive touch panel according to a fourth embodiment of the present invention.
  • the embodiment provides an in-cell capacitive touch panel, including a substrate 20, a black matrix 21 sequentially formed on the substrate 20, a transparent conductive layer 22, and a color resistor 23.
  • the black matrix 21 is provided. a plurality of light-transmitting regions, the color resists 23 are covered over the light-transmitting region of the black matrix 21 according to a certain arrangement rule, wherein the slit of the transparent conductive layer 23 is disposed above the black matrix opaque region .
  • the color resists include three color resists of R, G, and B, and three color resists are sequentially arranged in the row direction (lateral direction), and the same color resist is arranged in the column direction (longitudinal direction).
  • the opaque regions of the black matrix can be considered as a lateral black matrix and a vertical black matrix.
  • the line width of the vertical black matrix ie, the line width of the black matrix opaque region in the longitudinal direction
  • the line width of the horizontal black matrix ie, the black matrix opaque region in the lateral direction
  • the line width is 24.5 ⁇ m to 26.5 ⁇ m.
  • the transparent conductive layer 23 is made of indium tin oxide, indium zinc oxide, carbon nanotubes or aluminum-titanium co-doped zinc oxide, and the black matrix is provided with a slit between two rows of color resists.
  • the opaque region, the slit line width of the transparent conductive layer, that is, the lateral slit line width may be set to 0.1 to 0.9 times the width of the horizontal black matrix line, or may be directly set to 3 ⁇ m to 22 ⁇ m.
  • the transparent conductive layer 23 of the present embodiment forms a plurality of laterally parallel conductive lines by lateral slitting, and can be used as a sensing line of the touch screen.
  • the in-cell capacitive touch panel further includes: a metal mesh (not shown) between the black matrix 21 and the transparent conductive layer 22; located in the transparent conductive layer 22 and the color resist 23 a first insulating layer (not shown) and a metal bridge (not shown), and a second insulating layer (not shown) and a lithographic spacer (not shown) sequentially formed on the color resist 23 ).
  • a metal mesh (not shown) between the black matrix 21 and the transparent conductive layer 22; located in the transparent conductive layer 22 and the color resist 23 a first insulating layer (not shown) and a metal bridge (not shown), and a second insulating layer (not shown) and a lithographic spacer (not shown) sequentially formed on the color resist 23 ).
  • the embodiment further provides an in-cell capacitive touch display comprising the above-described in-cell capacitive touch panel.
  • the embodiment further provides a method for manufacturing the above-mentioned in-cell capacitive touch panel, comprising: providing a substrate; Forming a black matrix, a transparent conductive layer, and a color resistance on the substrate, the black matrix is provided with a plurality of light transmissive regions, and the color resists are covered over the light transmissive region of the black matrix according to a certain arrangement rule.
  • the slit of the transparent conductive layer is disposed laterally above the opaque region of the black matrix.
  • the in-cell capacitive touch panel, the display and the manufacturing method provided by the embodiment prevent the slit of the transparent conductive layer from being hidden above the opaque region of the black matrix, thereby avoiding the light transmittance when the slit is disposed in different transparent regions. Inconsistency, the seam is hidden, avoiding the display of the image, and improving the display.
  • Embodiment 2
  • the embodiment provides an in-cell capacitive touch panel, including a substrate 20, a black matrix 21 sequentially formed on the substrate 20, a transparent conductive layer 22, and a color resistor 23.
  • the black matrix 21 is provided. a plurality of light-transmitting regions, the color resists 23 are covered over the light-transmitting region of the black matrix 21 according to a certain arrangement rule, wherein the slit of the transparent conductive layer 23 is disposed above the black matrix opaque region .
  • the color resists include three color resists of R, G, and B, and three color resists are sequentially arranged in the row direction (lateral direction), and the same color resist is arranged in the column direction (longitudinal direction).
  • the opaque regions of the black matrix can be considered as a lateral black matrix and a vertical black matrix.
  • the line width of the vertical black matrix ie, the line width of the black matrix opaque region in the longitudinal direction
  • the line width of the horizontal black matrix ie, the black matrix opaque region in the lateral direction
  • the line width is 24.5 ⁇ m to 26.5 ⁇ m.
  • the transparent conductive layer 23 is made of indium tin oxide, indium zinc oxide, carbon nanotubes or aluminum-titanium co-doped zinc oxide, and the black matrix is provided with a slit between two columns of color resists.
  • the opaque region (ie, disposed on the vertical black matrix), the slit line width of the transparent conductive layer, that is, the longitudinal slit line width, is 2 ⁇ m to 6 ⁇ m.
  • the transparent conductive layer 23 of the present embodiment forms a plurality of longitudinally parallel conductive wires by longitudinal slitting, and can be used as a driving line of the touch panel.
  • the in-cell capacitive touch panel further includes: a metal mesh between the black matrix 21 and the transparent conductive layer 22; a first insulation between the transparent conductive layer 22 and the color resist 23 A layer and a metal bridge and a second insulating layer and a photolithography spacer sequentially formed on the color resist 23.
  • the embodiment further provides an in-cell capacitive touch display comprising the above-described in-cell capacitive touch panel.
  • the embodiment further provides a method for manufacturing the above-mentioned in-cell capacitive touch panel, comprising: providing a substrate;
  • the black matrix is provided with a plurality of light transmissive regions, and the color resists are covered over the light transmissive region of the black matrix according to a certain arrangement rule.
  • the slit of the transparent conductive layer is longitudinally disposed above the black matrix opaque region.
  • the in-cell capacitive touch panel, the display and the manufacturing method provided by the embodiment prevent the slit of the transparent conductive layer from being hidden above the opaque area of the longitudinal direction of the black matrix, thereby avoiding light penetration when the slit is disposed in different transparent regions.
  • the infiltration rate is inconsistent, the seam is hidden, the image display is avoided, and the display effect is improved.
  • the setting of the slit has little influence on other performances of the panel, but the requirement for process precision is improved.
  • the embodiment provides an in-cell capacitive touch panel, including a substrate 20 and a black matrix 21, a transparent conductive layer 22 and a color resistor 23 sequentially formed on the substrate 20, wherein the black matrix 21 is provided. a plurality of light-transmissive regions, the color resists 23 are disposed over the light-transmitting region of the black matrix 21 according to a certain arrangement rule, wherein the slits of the transparent conductive layer 23 are disposed under the same color resist, that is, the same species Under the color resistance column.
  • the color resists include three color resists of R, G, and B, and three color resists are sequentially arranged in the row direction (lateral direction), and the same color resist is arranged in the column direction (longitudinal direction).
  • the opaque regions of the black matrix can be considered as a lateral black matrix and a vertical black matrix.
  • the line width of the vertical black matrix ie, the line width of the black matrix opaque region in the longitudinal direction
  • the line width of the horizontal black matrix ie, the black matrix opaque region in the lateral direction
  • the line width is 24.5 ⁇ m to 26.5 ⁇ m.
  • the material of the transparent conductive layer 23 is indium tin oxide, indium zinc oxide, carbon nanotube or aluminum titanium co-doped zinc oxide, and the slit is disposed on the same color resisting column, the transparent conductive Layer of stitching Width (longitudinal slit line width), that is, the lateral width of the color resist, that is, the size of one pixel minus the line width of the black matrix opaque region in the longitudinal direction to a pixel size plus the black in the longitudinal direction
  • the line width of the opaque region of the matrix is, for example, 33.5 ⁇ m to 38.5 ⁇ m.
  • the transparent conductive layer 23 of the present embodiment forms a plurality of longitudinally parallel conductive lines by longitudinal slitting, and can be used as a driving line of the touch screen.
  • the in-cell capacitive touch panel further includes: a metal mesh between the black matrix 21 and the transparent conductive layer 22; a first insulation between the transparent conductive layer 22 and the color resist 23 A layer and a metal bridge and a second insulating layer and a photolithography spacer sequentially formed on the color resist 23.
  • the embodiment further provides an in-cell capacitive touch display comprising the above-described in-cell capacitive touch panel.
  • the embodiment further provides a method for manufacturing the above-mentioned in-cell capacitive touch panel, comprising: providing a substrate;
  • the black matrix is provided with a plurality of light transmissive regions, and the color resists are covered over the light transmissive region of the black matrix according to a certain arrangement rule.
  • the slit of the transparent conductive layer is disposed longitudinally below the same color resist.
  • the in-cell capacitive touch panel, the display and the manufacturing method provided by the embodiment avoid the problem of the appearance of the engraved image caused by the inconsistent light transmittance by engraving the transparent conductive layer under the same color resist. Hide the seams and improve the display.
  • Embodiment 4
  • the embodiment provides an in-cell capacitive touch panel, including a substrate 20 and a black matrix 21, a transparent conductive layer 22 and a color resistor 23 sequentially formed on the substrate 20, wherein the black matrix 21 is provided. a plurality of light-transmissive regions, the color resists 23 are covered over the light-transmitting region of the black matrix 21 according to a certain arrangement rule, wherein the slits of the transparent conductive layer 23 are respectively disposed in the
  • the black matrix is above the opaque area and below the same color resist, that is, under the same color resistance column.
  • the color resist includes three color resists of R, G, and B, and three color resists are sequentially arranged in the row direction (lateral direction), and the same color resist is arranged in the column direction (longitudinal direction).
  • the line width of the longitudinal black matrix ie, the line width of the black matrix opaque region in the longitudinal direction
  • the line width of the lateral black matrix (ie, the line width of the opaque region of the black matrix in the lateral direction) is 24 ⁇ 5 ⁇ 26 ⁇ 5 ⁇ .
  • the material of the transparent conductive layer 23 is indium tin oxide, indium zinc oxide, carbon nanotube or aluminum titanium co-doped zinc oxide, and the slit is disposed above the black matrix opaque region and the same
  • the color resisting column, that is, the slit of the transparent conductive layer has a longitudinal slit and a lateral slit, which are essentially a combination of the slits of the first, second and third embodiments.
  • the in-cell capacitive touch panel further includes: a metal mesh between the black matrix 21 and the transparent conductive layer 22; a first insulation between the transparent conductive layer 22 and the color resist 23 A layer and a metal bridge and a second insulating layer and a photolithography spacer sequentially formed on the color resist 23.
  • the embodiment further provides an in-cell capacitive touch display comprising the above-described in-cell capacitive touch panel.
  • the embodiment further provides a method for manufacturing the above-mentioned in-cell capacitive touch panel, comprising: providing a substrate;
  • the black matrix is provided with a plurality of light transmissive regions, and the color resists are covered over the light transmissive region of the black matrix according to a certain arrangement rule.
  • the slit of the transparent conductive layer is longitudinally disposed above the opaque region of the black matrix and under the same color resist.
  • the in-cell capacitive touch panel, the display and the manufacturing method provided by the embodiment avoid the inconsistency of the light transmittance by setting the slit of the transparent conductive layer above the opaque area of the black matrix and under the same color resist
  • the resulting engraved image shows a problem, which realizes the hidden seam and improves the display effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)
  • Optical Filters (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明提供一种内嵌式电容触摸面板、显示器及制造方法,通过将透明导电层的刻缝隐藏在黑矩阵的不透光区域上方和/或同种色阻下方,提高了穿透率一致性,实现刻缝隐藏,避免刻缝图像显示,提高显示效果。

Description

内置式电容触摸面板、 显示器及制造方法 技术领域 本发明涉及触摸显示技术领域, 尤其涉及一种内置式电容触摸面板、 显示 器及制造方法。 背景技术
内嵌在液晶显示器 (LCD)内部的触摸屏因为可以和彩色滤光片(CF基板)集 成在一起, 有效的减少了整个显示装置的厚度及筒化工艺, 因而很受厂商欢 迎。 如图 1和图 2所示, 内嵌式触摸屏包括彩色滤光片 (CF基板) 10、 黑矩阵 11、 触摸层 12 (包括金属网格 121、 透明导电层 122、 第一绝缘层 123和金属跨 桥 124 )、 色阻(R、 G、 B ) 13、 第二绝缘层 14、 薄膜晶体管基板 ( TFT基板) 20、 TFT基板 20上的电路电极 21以及液晶层 30。 黑矩阵 11位于 CF基板 10 上, 黑矩阵(BM ) 11上设置有若干可透光区域, 与 TFT基板 20上的。 触摸层 12上设置有驱动线和感应线, 驱动线和感应线纵横交错设置, 手指触摸在驱动 线和感应线的交点处时产生触控信号。 色阻 13位于触摸层 12上且覆盖黑矩阵 11的可透光区域, 第二绝缘层 14位于色阻 13上。
如图 2所示, 上述结构的内嵌式触摸屏, 由于触摸层的驱动走线和触控走 线由金属网格 121和透明导电层 122组成, 其中金属网格 121可以通过设计被 BM遮挡至不可见, 而透明导电层 122 图形的刻缝可能会被人眼观察到, 这是 由于透明导电层 122 图形的刻缝开在了像素的所在区域(即可透光区域) 。 由 于光透过有透明导电层 122处和无透明导电层 122处穿透率不一, 导致人眼能 觉察。 而且对于不同波长, 穿透率不一(图 3 ) , 故1 、 G、 B三色画面看到透 明导电层 122刻缝明显程度还不一。 发明内容
本发明的目的在于提供一种内置式电容触摸面板、 显示器及制造方法, 将 透明导电层的刻缝设置在合理位置, 实现刻缝隐藏, 提高显示效果。
为解决上述问题, 本发明提供一种内嵌式电容触摸面板, 包括基板以及依 次形成在基板上的黑矩阵、 透明导电层以及色阻, 所述黑矩阵设有多个透光区 域, 所述色阻按照一定排列规律覆盖在所述黑矩阵的透光区域上方, 其中, 所 述透明导电层的刻缝设置在所述黑矩阵不透光区域上方和 /或设置在同种色阻下 方。
进一步的, 所述排列规律包括: 在横向上依次排列 R、 G、 B三种色阻, 纵 向上排列同种色阻。
进一步的, 所纵向上的述黑矩阵不透光区域的线宽为 7.0μιη~8.0μιη。
进一步的,所述横向上的黑矩阵不透光区域的线宽为 24.5μιη~26.5μιη。进一 步的, 所述透明导电层的横向刻缝设置在所述黑矩阵不透光区域上方, 纵向刻 缝设置在同种色阻下方。
进一步的, 所述透明导电层的横向刻缝线宽为所述横向上的黑矩阵不透光 区域的线宽的 0.1 至 0.9 倍。 进一步的, 所述透明导电层横向刻缝线宽为 3μηι~22μηι 。
进一步的, 所述透明导电层纵向刻缝线宽为一个像素的大小减去所述纵向 上的黑矩阵不透光区域的线宽至一个像素大小加上所述纵向上的黑矩阵不透光 区域的线宽。
进一步的, 所述透明导电层纵向刻缝线宽为 33.5μιη~38.5μιη。
进一步的, 所述的内嵌式电容触摸面板还包括: 位于所述黑矩阵和透明导 电层之间的金属网格。
进一步的, 所述的内嵌式电容触摸面板还包括: 位于所述透明导电层和色 阻之间的第一绝缘层和金属跨桥。
进一步的, 所述的内嵌式电容触摸面板还包括: 依次形成于所述色阻上的 第二绝缘层和光刻隔垫物。
进一步的, 所述透明导电层的材料为氧化铟锡、 氧化铟锌、 碳纳米管或铝 饮共掺杂氧化锌。 本发明还提供一种内嵌式电容触摸显示器, 包括上述的内嵌式电容触摸面 板。
本发明还提供一种制造上述的内嵌式电容触摸面板的方法, 包括: 提供基板;
在所述基板上依次形成黑矩阵、 透明导电层以及色阻, 所述黑矩阵设有多 个透光区域, 所述色阻按照一定排列规律覆盖在所述黑矩阵的透光区域上方, 所述透明导电层的刻缝设置在所述黑矩阵不透光区域上方和 /或设置在同种色阻 下方。
与现有技术相比, 本发明提供的内嵌式电容触摸面板、 显示器及制造方法, 通过将透明导电层的刻缝隐藏在黑矩阵的不透光区域上方和 /或同种色阻下方, 提高了穿透率一致性, 实现刻缝隐藏, 避免刻缝图像显示, 提高显示效果。 附图说明
图 1是现有技术中一种内置式电容触摸显示器的剖面结构示意图; 图 2是现有技术中 ITO作透明导电层时的内置式电容触摸面板示意图; 图 3是现有技术中 ITO作透明导电层时的对各波长的光的透过率; 图 4是本发明实施例一的内置式电容触摸面板示意图;
图 5是本发明实施例二的内置式电容触摸面板示意图;
图 6是本发明实施例三的内置式电容触摸面板示意图;
图 7是本发明实施例四的内置式电容触摸面板示意图。
具体实施方式
为使本发明的目的、 特征更明显易懂, 下面结合附图对本发明的具体实施 方式作进一步的说明, 然而, 本发明可以用不同的形式实现, 不应认为只是局 限在所述的实施例。
实施例一
如图 4所示, 本实施例提供一种内嵌式电容触摸面板, 包括基板 20 以及 依次形成在基板 20上的黑矩阵 21、透明导电层 22以及色阻 23 , 所述黑矩阵 21 设有多个透光区域, 所述色阻 23按照一定排列规律覆盖在所述黑矩阵 21 的透 光区域上方, 其中, 所述透明导电层 23的刻缝设置在所述黑矩阵不透光区域上 方。
本实施例中色阻包括 R、 G、 B三种色阻, 并且在行方向 (横向)上依次排 列三种色阻, 列方向 (纵向)上排列同种色阻。 所述黑矩阵的不透光区域可以 视作横向黑矩阵和纵向黑矩阵。 优选的, 所述纵向黑矩阵的线宽 (即纵向上黑 矩阵不透光区域的线宽)为 7.0μιη~8.0μιη; 所述横向黑矩阵的线宽(即横向上黑 矩阵不透光区域的线宽 )为 24.5μιη~26.5μιη。
本实施例中, 所述透明导电层 23的材料为氧化铟锡、 氧化铟锌、 碳纳米管 或铝钛共掺杂氧化锌, 其刻缝设置在两行色阻之间的所述黑矩阵的不透光区域, 所述透明导电层的刻缝线宽, 即横向刻缝线宽, 可以设定为横向黑矩阵线宽的 0.1至 0.9倍, 也可以直接设定为 3μιη~22μιη。 本实施例的所述透明导电层 23通 过横向刻缝形成多条横向平行的导电线, 可以作为触摸屏的感应线。
优选的, 所述的内嵌式电容触摸面板还包括: 位于所述黑矩阵 21和透明导 电层 22之间的金属网格(未图示); 位于所述透明导电层 22和色阻 23之间的 第一绝缘层(未图示)和金属跨桥(未图示) 以及依次形成于所述色阻 23上的 第二绝缘层(未图示)和光刻隔垫物 (未图示)。
本实施例明还提供一种内嵌式电容触摸显示器, 包括上述的内嵌式电容触 摸面板。
本实施例还提供一种制造上述的内嵌式电容触摸面板的方法, 包括: 提供基板; 在所述基板上依次形成黑矩阵、 透明导电层以及色阻, 所述黑矩阵设有多 个透光区域, 所述色阻按照一定排列规律覆盖在所述黑矩阵的透光区域上方, 所述透明导电层的刻缝横向设置在所述黑矩阵不透光区域上方。
本实施例提供的内嵌式电容触摸面板、 显示器及制造方法, 通过将透明导 电层的刻缝隐藏在黑矩阵的不透光区域上方, 避免了刻缝设置在不同透光区域 时光穿透率不一致性, 实现刻缝隐藏, 避免刻缝图像显示, 提高显示效果。 实施例二
如图 5所示, 本实施例提供一种内嵌式电容触摸面板, 包括基板 20 以及 依次形成在基板 20上的黑矩阵 21、透明导电层 22以及色阻 23 , 所述黑矩阵 21 设有多个透光区域, 所述色阻 23按照一定排列规律覆盖在所述黑矩阵 21 的透 光区域上方, 其中, 所述透明导电层 23的刻缝设置在所述黑矩阵不透光区域上 方。
本实施例中色阻包括 R、 G、 B三种色阻, 并且在行方向 (横向)上依次排 列三种色阻, 列方向 (纵向)上排列同种色阻。
所述黑矩阵的不透光区域可以视作横向黑矩阵和纵向黑矩阵。 优选的, 所 述纵向黑矩阵的线宽(即纵向上黑矩阵不透光区域的线宽)为 7.0μιη~8.0μιη; 所 述横向黑矩阵的线宽 (即横向上黑矩阵不透光区域的线宽)为 24.5μιη~26.5μιη。
本实施例中, 所述透明导电层 23的材料为氧化铟锡、 氧化铟锌、 碳纳米管 或铝钛共掺杂氧化锌, 其刻缝设置在两列色阻之间的所述黑矩阵的不透光区域 (即设置在纵向黑矩阵上), 所述透明导电层的刻缝线宽, 即纵向刻缝线宽, 为 2μιη~6μιη。本实施例的所述透明导电层 23通过纵向刻缝形成多条纵向平行的导 电线, 可以作为触摸屏的驱动线。
优选的, 所述的内嵌式电容触摸面板还包括: 位于所述黑矩阵 21和透明导 电层 22之间的金属网格; 位于所述透明导电层 22和色阻 23之间的第一绝缘层 和金属跨桥以及依次形成于所述色阻 23上的第二绝缘层和光刻隔垫物。 本实施例明还提供一种内嵌式电容触摸显示器, 包括上述的内嵌式电容触 摸面板。
本实施例还提供一种制造上述的内嵌式电容触摸面板的方法, 包括: 提供基板;
在所述基板上依次形成黑矩阵、 透明导电层以及色阻, 所述黑矩阵设有多 个透光区域, 所述色阻按照一定排列规律覆盖在所述黑矩阵的透光区域上方, 所述透明导电层的刻缝纵向设置在所述黑矩阵不透光区域上方。
本实施例提供的内嵌式电容触摸面板、 显示器及制造方法, 通过将透明导 电层的刻缝隐藏在黑矩阵的纵向上不透光区域上方, 避免了刻缝设置在不同透 光区域时光穿透率不一致性, 实现刻缝隐藏, 避免刻缝图像显示, 提高显示效 果。 本实施例与实施例相比, 由于横向上相邻两色阻之间的距离较小, 刻缝的 设置对面板其他性能的影响较小, 但是提高了对工艺精度的要求。 实施例三
如图 6所示, 本实施例提供一种内嵌式电容触摸面板, 包括基板 20 以及 依次形成在基板 20上的黑矩阵 21、透明导电层 22以及色阻 23 , 所述黑矩阵 21 设有多个透光区域, 所述色阻 23按照一定排列规律覆盖在所述黑矩阵 21 的透 光区域上方, 其中, 所述透明导电层 23的刻缝设置在同种色阻下方, 即同种色 阻列下。
本实施例中色阻包括 R、 G、 B三种色阻, 并且在行方向 (横向)上依次排 列三种色阻, 列方向 (纵向)上排列同种色阻。
所述黑矩阵的不透光区域可以视作横向黑矩阵和纵向黑矩阵。 优选的, 所 述纵向黑矩阵的线宽(即纵向上黑矩阵不透光区域的线宽)为 7.0μιη~8.0μιη; 所 述横向黑矩阵的线宽 (即横向上黑矩阵不透光区域的线宽)为 24.5μιη~26.5μιη。
本实施例中, 所述透明导电层 23的材料为氧化铟锡、 氧化铟锌、 碳纳米管 或铝钛共掺杂氧化锌, 其刻缝设置在同种色阻列上, 所述透明导电层的刻缝线 宽(纵向刻缝线宽), 即色阻的横向宽度, 即为一个像素的大小减去所述纵向上 的黑矩阵不透光区域的线宽至一个像素大小加上所述纵向上的黑矩阵不透光区 域的线宽, 例如是 33.5μιη~38.5μιη。 本实施例的所述透明导电层 23通过纵向刻 缝形成多条纵向平行的导电线, 可以作为触摸屏的驱动线。
优选的, 所述的内嵌式电容触摸面板还包括: 位于所述黑矩阵 21和透明导 电层 22之间的金属网格; 位于所述透明导电层 22和色阻 23之间的第一绝缘层 和金属跨桥以及依次形成于所述色阻 23上的第二绝缘层和光刻隔垫物。
本实施例明还提供一种内嵌式电容触摸显示器, 包括上述的内嵌式电容触 摸面板。
本实施例还提供一种制造上述的内嵌式电容触摸面板的方法, 包括: 提供基板;
在所述基板上依次形成黑矩阵、 透明导电层以及色阻, 所述黑矩阵设有多 个透光区域, 所述色阻按照一定排列规律覆盖在所述黑矩阵的透光区域上方, 所述透明导电层的刻缝纵向设置在同种色阻下方。
本实施例提供的内嵌式电容触摸面板、 显示器及制造方法, 通过将透明导 电层的刻缝在同种色阻下方, 避免了光穿透率不一致而引起的刻缝图像显现问 题, 实现刻缝隐藏, 提高显示效果。 实施例四
如图 7所示, 本实施例提供一种内嵌式电容触摸面板, 包括基板 20 以及 依次形成在基板 20上的黑矩阵 21、透明导电层 22以及色阻 23 , 所述黑矩阵 21 设有多个透光区域, 所述色阻 23按照一定排列规律覆盖在所述黑矩阵 21 的透 光区域上方, 其中, 所述透明导电层 23的刻缝根据 ΙΤΟ图像的设计, 分别设置 在所述黑矩阵不透光区域上方和同种色阻下方, 即同种色阻列下。
本实施例中色阻包括 R、 G、 B三种色阻, 并且在行方向 (横向)上依次排 列三种色阻, 列方向 (纵向)上排列同种色阻。 所述纵向黑矩阵的线宽 (即纵向上黑矩阵不透光区域的线宽) 为
7.0μιη~8.0μιη; 所述横向黑矩阵的线宽(即横向上黑矩阵不透光区域的线宽)为 24·5μηι~26·5μιη。
本实施例中, 所述透明导电层 23的材料为氧化铟锡、 氧化铟锌、 碳纳米管 或铝钛共掺杂氧化锌, 其刻缝设置在所述黑矩阵不透光区域上方和同种色阻列 上, 即所述透明导电层的刻缝有纵向刻缝和横向刻缝, 其本质上是实施例一、 二、 三的刻缝的组合。
优选的, 所述的内嵌式电容触摸面板还包括: 位于所述黑矩阵 21和透明导 电层 22之间的金属网格; 位于所述透明导电层 22和色阻 23之间的第一绝缘层 和金属跨桥以及依次形成于所述色阻 23上的第二绝缘层和光刻隔垫物。
本实施例明还提供一种内嵌式电容触摸显示器, 包括上述的内嵌式电容触 摸面板。
本实施例还提供一种制造上述的内嵌式电容触摸面板的方法, 包括: 提供基板;
在所述基板上依次形成黑矩阵、 透明导电层以及色阻, 所述黑矩阵设有多 个透光区域, 所述色阻按照一定排列规律覆盖在所述黑矩阵的透光区域上方, 所述透明导电层的刻缝纵向设置在所述黑矩阵不透光区域上方和同种色阻下 方。
本实施例提供的内嵌式电容触摸面板、 显示器及制造方法, 通过将透明导 电层的刻缝设置在所述黑矩阵不透光区域上方和同种色阻下方, 避免了光穿透 率不一致而引起的刻缝图像显现问题, 实现刻缝隐藏, 提高显示效果。 显然, 本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明 的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书
1、 一种内嵌式电容触摸面板, 包括基板以及依次形成在基板上的黑矩阵、 透明导电层以及色阻, 所述黑矩阵设有多个透光区域, 所述色阻按照一定排列 规律覆盖在所述黑矩阵的透光区域上方, 其特征在于, 所述透明导电层的刻缝 设置在所述黑矩阵不透光区域上方和 /或设置在同种色阻下方。
2、 如权利要求 1所述的内嵌式电容触摸面板, 其特征在于, 所述排列规律 包括: 在横向上依次排列 R、 G、 B三种色阻, 纵向上排列同种色阻。
3、 如权利要求 2所述的内嵌式电容触摸面板, 其特征在于, 所述纵向上的 黑矩阵不透光区域的线宽为 7.0μιη~8.0μιη。
4、 如权利要求 3所述的内嵌式电容触摸面板, 其特征在于, 所述横向上的 黑矩阵不透光区域的线宽为 24.5μιη~26.5μιη。
5、 如权利要求 2所述的内嵌式电容触摸面板, 其特征在于, 所述透明导电 层的横向刻缝设置在所述黑矩阵不透光区域上方, 纵向刻缝设置在同种色阻下 方。
6、 如权利要求 2至 5中任一项所述的内嵌式电容触摸面板, 其特征在于, 所述透明导电层的横向刻缝线宽为所述横向上的黑矩阵不透光区域的线宽的 0.1 至 0.9倍。
7、 如权利要求 2至 5中任一项所述的内嵌式电容触摸面板, 其特征在于, 所述透明导电层横向刻缝线宽为 3μιη~22μιη。
8、 如权利要求 2至 5中任一项所述的内嵌式电容触摸面板, 其特征在于, 所述透明导电层纵向刻缝线宽为一个像素的大小减去所述纵向上的黑矩阵不透 光区域的线宽至一个像素大小加上所述纵向上的黑矩阵不透光区域的线宽。
9、 如权利要求 2至 5中任一项所述的内嵌式电容触摸面板, 其特征在于, 所述透明导电层纵向刻缝线宽为 33.5μιη~38.5μιη 。
10、 如权利要求 1 所述的内嵌式电容触摸面板, 其特征在于, 还包括: 位 于所述黑矩阵和透明导电层之间的金属网格。
11、如权利要求 1或 10所述的内嵌式电容触摸面板, 其特征在于,还包括: 位于所述透明导电层和色阻之间的第一绝缘层和金属跨桥。
12、 如权利要求 1 所述的内嵌式电容触摸面板, 其特征在于, 还包括: 依 次形成于所述色阻上的第二绝缘层和光刻隔垫物。
13、 如权利要求 1 所述的内嵌式电容触摸面板, 其特征在于, 所述透明导 电层的材料为氧化铟锡、 氧化铟锌、 碳纳米管或铝钛共掺杂氧化锌。
14、 一种内嵌式电容触摸显示器, 其特征在于, 包括如权利要求 1至 13中 任一项所述的内嵌式电容触摸面板。
15、一种制造权利要求 1至 13中任一项所述的内嵌式电容触摸面板的方法, 其特征在于, 包括:
提供基板;
在所述基板上依次形成黑矩阵、 透明导电层以及色阻, 所述黑矩阵设有多 个透光区域, 所述色阻按照一定排列规律覆盖在所述黑矩阵的透光区域上方, 所述透明导电层的刻缝设置在所述黑矩阵不透光区域上方和 /或设置在同种色阻 下方。
PCT/CN2012/084252 2012-09-19 2012-11-07 内置式电容触摸面板、显示器及制造方法 WO2014043982A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12877082.3A EP2738595A4 (en) 2012-09-19 2012-11-07 INCORPORATED CAPACITIVE TOUCH PANEL, DISPLAY, AND MANUFACTURING METHOD
US14/092,160 US9097928B2 (en) 2012-09-19 2013-11-27 Capacitive touch panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210350298XA CN103294296A (zh) 2012-09-19 2012-09-19 内置式电容触摸面板、显示器及制造方法
CN201210350298.X 2012-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/092,160 Continuation-In-Part US9097928B2 (en) 2012-09-19 2013-11-27 Capacitive touch panel and display device

Publications (1)

Publication Number Publication Date
WO2014043982A1 true WO2014043982A1 (zh) 2014-03-27

Family

ID=49095292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084252 WO2014043982A1 (zh) 2012-09-19 2012-11-07 内置式电容触摸面板、显示器及制造方法

Country Status (4)

Country Link
US (1) US9097928B2 (zh)
EP (1) EP2738595A4 (zh)
CN (2) CN103294296A (zh)
WO (1) WO2014043982A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293785B (zh) * 2012-12-24 2016-05-18 上海天马微电子有限公司 Tn型液晶显示装置及其触控方法
CN103257769B (zh) * 2013-03-25 2016-01-27 合肥京东方光电科技有限公司 一种电容内嵌式触摸屏和显示装置
KR101696511B1 (ko) 2014-05-19 2017-01-16 엘지디스플레이 주식회사 터치센서 내장형 액정 표시장치
CN104020906B (zh) * 2014-05-30 2016-09-07 京东方科技集团股份有限公司 一种内嵌式触摸屏以及显示装置
CN104216596B (zh) * 2014-09-29 2017-09-22 上海天马微电子有限公司 内嵌式触摸显示装置及其制作方法
CN107024792B (zh) * 2014-11-25 2020-04-24 上海天马微电子有限公司 一种触控显示装置及电子设备
CN104516611A (zh) * 2014-12-23 2015-04-15 深圳市华星光电技术有限公司 电容式内嵌触摸屏以及显示装置
CN104570447B (zh) * 2015-01-27 2018-01-16 昆山龙腾光电有限公司 触控式液晶显示面板及装置
CN104898890B (zh) * 2015-06-30 2017-09-12 上海天马微电子有限公司 一种用于触控装置的金属网格、触控装置及触控显示装置
CN105573549B (zh) * 2015-12-08 2018-12-25 上海天马微电子有限公司 阵列基板、触控屏和触控显示装置及其制作方法
CN105652496B (zh) * 2016-01-25 2018-03-09 武汉华星光电技术有限公司 一种阵列基板及触摸屏
CN107976846A (zh) * 2016-10-21 2018-05-01 苏州今园科技创业孵化管理有限公司 触控显示基板的制作方法
CN107122077B (zh) * 2017-05-02 2020-06-02 上海天马微电子有限公司 一种触控显示装置
CN107340928B (zh) * 2017-07-27 2021-01-26 京东方科技集团股份有限公司 触控显示面板及其制造方法、触控显示装置
CN110221473A (zh) * 2019-05-06 2019-09-10 惠科股份有限公司 彩膜基板及其制作方法和显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207644A (zh) * 2010-03-30 2011-10-05 乐金显示有限公司 滤色器阵列基板及其制造方法、包括其的液晶显示装置
US20120062486A1 (en) * 2010-09-14 2012-03-15 Soo-Guy Rho Display device with integrated touch screen panel and fabricating method thereof
CN102466907A (zh) * 2010-10-29 2012-05-23 三星移动显示器株式会社 具有内置式触摸屏面板的液晶显示器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125465B2 (en) * 2007-10-19 2012-02-28 Chimei Innolux Corporation Image displaying systems
TW201015407A (en) * 2008-10-01 2010-04-16 Emerging Display Tech Corp Color capacitive touch panel
JP5513308B2 (ja) * 2010-08-19 2014-06-04 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置、および電子機器
TWI456321B (zh) * 2011-12-08 2014-10-11 Au Optronics Corp 觸控顯示面板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207644A (zh) * 2010-03-30 2011-10-05 乐金显示有限公司 滤色器阵列基板及其制造方法、包括其的液晶显示装置
US20120062486A1 (en) * 2010-09-14 2012-03-15 Soo-Guy Rho Display device with integrated touch screen panel and fabricating method thereof
CN102466907A (zh) * 2010-10-29 2012-05-23 三星移动显示器株式会社 具有内置式触摸屏面板的液晶显示器

Also Published As

Publication number Publication date
CN103677465A (zh) 2014-03-26
CN103294296A (zh) 2013-09-11
US9097928B2 (en) 2015-08-04
CN103677465B (zh) 2017-02-22
US20140092326A1 (en) 2014-04-03
EP2738595A4 (en) 2015-05-27
EP2738595A1 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2014043982A1 (zh) 内置式电容触摸面板、显示器及制造方法
KR102415044B1 (ko) 터치 스크린 패널, 이의 제조 방법 및 터치 스크린 패널을 포함하는 터치 표시 장치
TWI492115B (zh) 內嵌式觸控面板
US9459481B2 (en) In-cell touch display panel structure
KR102384252B1 (ko) 터치 센서 인셀 타입 표시장치용 어레이 기판 및 그의 제조방법
KR102303214B1 (ko) 터치 스크린 패널 및 그의 제조방법
WO2011013279A1 (ja) 電極基板、電極基板の製造方法、および画像表示装置
US9207483B2 (en) In-cell touch display panel structure with metal layer on lower substrate for sensing
KR20160029268A (ko) 터치 스크린 패널 및 터치 스크린 일체형 표시 장치
WO2013189140A1 (zh) 触控显示面板和显示器
TWM454587U (zh) 具使用金屬線連接觸控感應層電極之內嵌式觸控顯示面板系統
US20150219971A1 (en) Liquid crystal display
CN103376942A (zh) 显示设备及其制造方法
WO2016173340A1 (zh) 触控显示面板及其制备方法、触摸检测方法
KR102250847B1 (ko) 터치 스크린 패널 일체형 표시장치
TWI485599B (zh) 觸控元件以及平面顯示裝置
US9946420B2 (en) Touch screen panel and method for manufacturing the same
WO2015180288A1 (zh) 内嵌式触控面板及显示装置
TWM470323U (zh) 以導電線連接感應電極之內嵌式觸控顯示面板結構
TWI703474B (zh) 觸控感測器面板及其製造方法
JP5036913B1 (ja) 入力装置
JP2014232338A (ja) タッチパネルおよびタッチパネル付き表示装置
TWI545479B (zh) 觸控面板
JP2015206829A5 (zh)
WO2016169191A1 (zh) 触摸屏及触摸显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE