WO2014038147A1 - ズームレンズおよび撮像装置 - Google Patents

ズームレンズおよび撮像装置 Download PDF

Info

Publication number
WO2014038147A1
WO2014038147A1 PCT/JP2013/004897 JP2013004897W WO2014038147A1 WO 2014038147 A1 WO2014038147 A1 WO 2014038147A1 JP 2013004897 W JP2013004897 W JP 2013004897W WO 2014038147 A1 WO2014038147 A1 WO 2014038147A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
focal length
refractive power
positive
Prior art date
Application number
PCT/JP2013/004897
Other languages
English (en)
French (fr)
Inventor
小里 哲也
長 倫生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2014534169A priority Critical patent/JP5755816B2/ja
Priority to DE112013004361.0T priority patent/DE112013004361B4/de
Priority to CN201380045148.0A priority patent/CN104583836B/zh
Publication of WO2014038147A1 publication Critical patent/WO2014038147A1/ja
Priority to US14/635,195 priority patent/US9810889B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Definitions

  • the present invention relates to a zoom lens and an imaging apparatus, and more particularly to a zoom lens used in an electronic camera such as a digital camera, a broadcast camera, a surveillance camera, and a movie shooting camera, and an imaging apparatus including the zoom lens. It is.
  • Patent Documents 1 to 4 describe zoom lenses used in imaging devices such as video cameras and electronic still cameras using an imaging device such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) as a recording medium. Have been proposed.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the zoom lens described in Patent Document 1 is FNo. However, it was not bright enough from 4.6 to 7.2.
  • the zoom lens described in Example 7 of Patent Document 2 has an FNo. Is sufficiently bright as 2.83, but the FNo. was not bright enough to be 5.64. Note that neither of Patent Documents 1 and 2 mentions camera shake correction.
  • the zoom lens described in Patent Document 3 refers to camera shake correction, and FNo. Is 1.8, FNo. Is sufficiently bright as 3.5, but the total angle of view at the wide-angle end is as narrow as 60 degrees, which is not suitable for use as a standard zoom lens of a digital camera.
  • the zoom lens described in Patent Document 4 also refers to camera shake correction, and the FNo. Is sufficiently bright as 2.76, but the FNo. Was not bright enough to be 5.17.
  • the total length is longer than the focal length at the wide-angle end.
  • the refractive power of the lens group used for camera shake correction is weak and the amount of movement during camera shake correction is large.
  • the present invention has been made in view of the above circumstances, and has an image stabilization function, while FNo.
  • An object of the present invention is to provide a zoom lens in which the aberration is small, various aberrations are favorably corrected, the total length is short, and the wide angle of view at the wide angle end is wide, and an image pickup apparatus including the lens.
  • the zoom lens of the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens
  • the fourth lens group having a refractive power and the fifth lens group having a positive refractive power, and the third lens group, in order from the object side, are a 3-1 lens group having a positive refractive power and a negative lens group.
  • Each lens has a third lens group having a refractive power of ## EQU2 ## and the third lens group is moved in the direction perpendicular to the optical axis to correct camera shake, and the fifth lens group is fixed.
  • the zooming is performed by changing the interval between groups.
  • the 3-1 lens group includes a positive lens, a negative lens, and a positive lens in order from the object side.
  • the third-second lens unit includes a cemented lens in which a positive lens and a negative lens having a convex surface facing the image side are cemented with each other in order from the object side.
  • the 3-2 lens group satisfies the following conditional expression.
  • Np refractive index of the positive lens constituting the 3-2 lens group
  • Nn refractive index of the negative lens constituting the 3-2 lens group
  • ⁇ p positive lens constituting the 3-2 lens group
  • Abbe number Abbe number of the negative lens constituting the 3-2 lens group.
  • the fourth lens group includes, in order from the object side, a 4-1 lens group having a positive refractive power and a 4-2 lens group having a negative refractive power. It is preferable to perform focusing by moving in the optical axis direction.
  • the 4-2 lens group includes a cemented lens in which a negative lens having a concave surface facing the image side and a positive lens are cemented with each other in order from the object side.
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expression is satisfied.
  • f1 the focal length of the first lens group
  • fw the focal length of the entire system at the wide-angle end
  • ft the focal length of the entire system at the telephoto end.
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expression is satisfied.
  • f3-2 focal length of the 3-2 lens group
  • fw focal length of the entire system at the wide-angle end
  • ft focal length of the entire system at the telephoto end
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expression is satisfied.
  • f4-2 is the focal length of the 4-2 lens group
  • fw is the focal length of the entire system at the wide-angle end
  • ft is the focal length of the entire system at the telephoto end.
  • the first lens group includes, in order from the object side, a negative lens having a concave surface facing the image side and a positive lens having a convex surface facing the object side, and satisfies the following conditional expression.
  • R1f is the radius of curvature of the object side surface of the negative lens in the first lens group
  • R1r is the radius of curvature of the image side surface of the positive lens in the first lens group.
  • the negative lens and the positive lens in the first lens group are cemented with each other.
  • a stop is provided on the object side of the third lens group.
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expression is satisfied.
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expression is satisfied.
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expression is satisfied.
  • the first lens group includes, in order from the object side, a negative lens having a concave surface facing the image side and a positive lens having a convex surface facing the object side, and preferably satisfies the following conditional expression.
  • An image pickup apparatus includes the zoom lens according to the present invention described above.
  • the zoom lens of the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens
  • the fourth lens group having a refractive power and the fifth lens group having a positive refractive power, and the third lens group, in order from the object side, are a 3-1 lens group having a positive refractive power and a negative lens group.
  • Each lens has a third lens group having a refractive power of ## EQU2 ## and the third lens group is moved in the direction perpendicular to the optical axis to correct camera shake, and the fifth lens group is fixed. Since the zooming is performed by changing the interval between the groups, the FNo. Is small, various aberrations are corrected well, the entire length is short, and the zoom lens has a wide angle of view at the wide-angle end.
  • the imaging apparatus of the present invention includes the zoom lens of the present invention, it is possible to obtain a bright and high-quality image and to reduce the size of the apparatus.
  • Each aberration diagram (A to L) of the zoom lens of Example 1 of the present invention Aberration diagrams (A to L) of the zoom lens according to the second embodiment of the present invention.
  • Aberration diagrams (A to L) of the zoom lens according to the fourth exemplary embodiment of the present invention is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a lens configuration of a zoom lens according to an embodiment of the present invention.
  • the configuration example shown in FIG. 1 is the same as the configuration of the zoom lens of Example 1 described later.
  • the left side is the object side
  • the right side is the image side.
  • the zoom lens includes, in order from the object side along the optical axis Z, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop St, and a positive lens.
  • the zooming is performed by changing the interval between the lens groups. In zooming from the wide-angle end to the telephoto end, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens.
  • the aperture stop St shown in FIG. 1 does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • FIG. 1 shows an example in which a parallel plane plate-like optical member PP that assumes these is arranged between the fifth lens group G5 and the image plane Sim.
  • the third lens group G3 includes, in order from the object side, a third lens group G3-1 having a positive refractive power and a third lens group G3-2 having a negative refractive power.
  • -Camera shake correction is performed by moving the lens group G3-2 in the direction perpendicular to the optical axis Z.
  • the positive refractive power after the third lens group G3 can be dispersed by adopting positive, negative, positive and positive lens group configurations in order from the object side. It is advantageous to reduce the size.
  • the fifth lens group G5 is fixed without having a moving mechanism, so that dust can be prevented from entering from the image side when used as an interchangeable lens. It is possible to prevent external force from being directly applied to the mechanism.
  • the third lens group G3 includes, in order from the object side, the 3-1 lens group G3-1 having a positive refractive power and the 3-2 lens group having a negative refractive power.
  • the amount of movement of the lens group during camera shake correction is reduced by performing camera shake correction by moving the third-second lens group G3-2 in the direction perpendicular to the optical axis Z. This is effective in reducing the size, saving power, and improving the response of camera shake correction.
  • the 3-1 lens group G3-1 has a positive refractive power, the width of the light beam incident on the 3-2 lens group G3-2 is narrowed. Therefore, the 3-2 lens group G3-2 The lens diameter of the lens constituting the lens is small, which is advantageous for reducing the weight of the camera shake correction group.
  • the third-first lens group G3-1 includes a positive lens, a negative lens, and a positive lens in order from the object side.
  • the divergent light beam that has passed through the second lens group G2 is incident on the 3-1 lens group G3-1, a relatively strong refractive power is required. In particular, FNo. In order to reduce this, the burden on this lens group increases. Further, in order not to increase the thickness on the optical axis, it is necessary to configure with a small number of sheets.
  • the three lens configurations of the positive lens, the negative lens, and the positive lens can appropriately control various aberrations generated in this lens group with the minimum number of lenses.
  • both surfaces of the positive lens closest to the object side in the third-first lens group G3-1 are aspherical. This makes it possible to balance aberrations with the 3-2 lens group G3-2 even better.
  • the third-second lens group G3-2 is preferably composed of a cemented lens in which a positive lens and a negative lens having a convex surface directed toward the image side are cemented together in order from the object side.
  • the lens group used for camera shake correction is required to be light, but with this configuration, the aberration generated in the third-second lens group G3-2 can be suppressed without increasing the weight, and at the time of camera shake correction. Occurrence of aberration can be suppressed.
  • the third-second lens group G3-2 satisfies the following conditional expressions (1) and (2).
  • conditional expression (1) it is possible to suppress the spherical aberration and the curvature of field that occur in the third-second lens group G3-2, and it is possible to suppress the occurrence of aberrations during camera shake correction.
  • conditional expression (2) it is possible to suppress chromatic aberration that occurs in the third-second lens group G3-2, and it is possible to suppress the occurrence of chromatic aberration during camera shake correction.
  • Np refractive index of the positive lens constituting the 3-2 lens group
  • Nn refractive index of the negative lens constituting the 3-2 lens group
  • ⁇ p positive lens constituting the 3-2 lens group
  • Abbe number Abbe number of the negative lens constituting the 3-2 lens group.
  • the fourth lens group G4 includes, in order from the object side, a 4-1 lens group G4-1 having a positive refractive power and a 4-2 lens group G4-2 having a negative refractive power. It is preferable to perform focusing by moving the 4-2 lens group G4-2 in the optical axis direction. In this case, at the time of focusing from infinity to the close side, the 4-2 lens group G4-2 moves from the object side to the image side. By configuring in this way, the amount of movement at the time of focusing can be suppressed, and at the telephoto end where the amount of movement at the time of focusing becomes large, there is a margin in the distance from the fifth lens G5 on the closest side. It is possible to reduce the distance.
  • the 4-2th lens group G4-2 includes a cemented lens in which a negative lens having a concave surface directed toward the image side and a positive lens are cemented together in order from the object side.
  • a cemented lens in which a negative lens having a concave surface directed toward the image side and a positive lens are cemented together in order from the object side.
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expressions (3) and (4) are satisfied. If the lower limit of conditional expressions (3) and (4) is not reached, the refractive power of the first lens G1 becomes excessive, and the spherical aberration particularly at the telephoto end is deteriorated. Conversely, if the upper limit of conditional expressions (3) and (4) is exceeded, it will be difficult to reduce the thickness. If the following conditional expressions (3-1) and (4-1) are satisfied, better characteristics can be obtained.
  • f1 the focal length of the first lens group
  • fw the focal length of the entire system at the wide-angle end
  • ft the focal length of the entire system at the telephoto end.
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expressions (5) and (6) are satisfied. If the lower limit of conditional expressions (5) and (6) is not reached, the refractive power of the third-second lens group G3-2 will become weak, and the amount of movement during camera shake correction will increase, resulting in smaller size, power saving, and camera shake correction. It becomes difficult to improve the response. On the other hand, if the upper limit of conditional expressions (5) and (6) is exceeded, the variation in aberration during camera shake correction increases. If the following conditional expressions (5-1) and (6-1) are satisfied, better characteristics can be obtained.
  • the total angle of view at the wide-angle end is 70 degrees or more and the following conditional expressions (7) and (8) are satisfied. If the lower limit of conditional expressions (7) and (8) is exceeded, the amount of movement at the time of focusing increases, making it difficult to reduce the size, save power, and improve the focusing speed. On the other hand, if the upper limit of conditional expressions (7) and (8) is exceeded, the variation in aberration during focusing increases. If the following conditional expressions (7-1) and (8-1) are satisfied, better characteristics can be obtained.
  • f4-2 is the focal length of the 4-2 lens group
  • fw is the focal length of the entire system at the wide-angle end
  • ft is the focal length of the entire system at the telephoto end.
  • the first lens group G1 is composed of, in order from the object side, a negative lens having a concave surface facing the image side and a positive lens having a convex surface facing the object side, and preferably satisfies the following conditional expression (9). . If the lower limit of conditional expression (9) is not reached, it will be difficult to correct chromatic aberration. On the other hand, when the upper limit of conditional expression (9) is exceeded, spherical aberration particularly at the telephoto end deteriorates. If the following conditional expression (9-1) is satisfied, better characteristics can be obtained.
  • R1f is the radius of curvature of the object side surface of the negative lens in the first lens group
  • R1r is the radius of curvature of the image side surface of the positive lens in the first lens group.
  • the negative lens and the positive lens in the first lens group G1 are cemented with each other. As a result, the density of ghosts that are likely to occur at the boundary surface can be reduced.
  • a stop is provided on the object side of the third lens group G3. As a result, interference between the aperture mechanism and the camera shake correction mechanism can be prevented.
  • the material disposed closest to the object side specifically, glass is preferably used, or transparent ceramics may be used.
  • the zoom lens when used in a harsh environment, it is preferable to provide a protective multilayer coating. Further, in addition to the protective coat, an antireflection coat for reducing ghost light during use may be applied.
  • the optical member PP is disposed between the lens system and the image plane Sim.
  • a low-pass filter various filters that cut a specific wavelength range, and the like are used as the lens system.
  • These various filters may be arranged between the lenses instead of being arranged between the image plane Sim, or the lens surface of any lens is coated with a coating having the same action as the various filters. May be.
  • FIG. 1 is a sectional view showing the lens configuration of the zoom lens of Example 1.
  • the optical member PP is also shown, the left side is the object side, the right side is the image side, and the aperture stop shown in the drawing St does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • the zoom lens of Example 1 has an FNo. It is important to downsize.
  • Each of the first lens group G1, the 3-2 lens group G3-2, and the 4-2 lens group G4-2 is composed of a cemented lens of a positive lens and a negative lens.
  • Table 1 shows basic lens data of the zoom lens of Example 1
  • Table 2 shows data on specifications
  • Table 3 shows data on the distance between moving surfaces
  • Table 4 shows data on aspheric coefficients.
  • Ri column indicates the radius of curvature of the i-th surface
  • Di column indicates the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the column of ⁇ dj the Abbe number for the d-line (wavelength 587.6 nm) of the j-th optical element is also shown.
  • the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the basic lens data includes the aperture stop St and the optical member PP. In the surface number column of the surface corresponding to the aperture stop St, the phrase (aperture) is written together with the surface number.
  • DD [i] is written in the column of the surface interval in which the interval changes at the time of zooming.
  • the surface number of the aspheric surface is marked with *, and the paraxial radius of curvature is shown as the radius of curvature of the aspheric surface.
  • the data relating to the aspheric coefficients in Table 4 shows the surface numbers Si of the aspheric surfaces and the aspheric coefficients related to these aspheric surfaces.
  • Zd C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Am ⁇ h m (B)
  • Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (distance from the optical axis)
  • C Reciprocal KA of paraxial radius of curvature
  • FIGS. 6A to 6L show aberration diagrams of the zoom lens of Example 1.
  • FIG. 6A to 6D show wide-angle spherical aberration, astigmatism, distortion, and lateral chromatic aberration, respectively.
  • FIGS. 6E to 6H show intermediate spherical aberration, astigmatism, and distortion, respectively.
  • FIGS. 6 (I) to 6 (L) show telephoto spherical aberration, astigmatism, distortion, and lateral chromatic aberration, respectively.
  • Each aberration diagram representing spherical aberration, astigmatism, and distortion shows aberrations with the d-line (wavelength 587.6 nm) as the reference wavelength.
  • aberrations for the d-line (wavelength 587.6 nm), the C-line (wavelength 656.3 nm), the F-line (wavelength 486.1 nm), and the g-line (wavelength 435.8 nm) are shown as a solid line, a long broken line, Shown with short dashed lines and dotted lines.
  • the sagittal and tangential aberrations are indicated by a solid line and a broken line, respectively.
  • aberrations for the C line (wavelength 656.3 nm), the F line (wavelength 486.1 nm), and the g line (wavelength 435.8 nm) are indicated by a long broken line, a short broken line, and a dotted line, respectively.
  • Means F value, and ⁇ in other aberration diagrams means half angle of view.
  • FIG. 2 is a sectional view showing the lens configuration of the zoom lens of Example 2. As shown in FIG. 2
  • the zoom lens of Example 2 has the same shape as the zoom lens of Example 1.
  • Table 5 shows basic lens data of the zoom lens of Example 2
  • Table 6 shows data on specifications
  • Table 7 shows data on the distance between moving surfaces
  • Table 8 shows data on aspheric coefficients
  • FIG. Are shown in FIGS. 7A to 7L.
  • FIG. 3 is a cross-sectional view showing the lens configuration of the zoom lens of Example 3.
  • the zoom lens of Example 3 has the same shape as the zoom lens of Example 1.
  • Table 9 shows basic lens data of the zoom lens of Example 3
  • Table 10 shows data on specifications
  • Table 11 shows data on distances of moving surfaces
  • Table 12 shows data on aspheric coefficients
  • FIG. Are shown in FIGS. 8A to 8L.
  • FIG. 4 is a cross-sectional view showing the lens configuration of the zoom lens of Example 4.
  • the zoom lens of Example 4 has the same shape as the zoom lens of Example 1.
  • Table 13 shows basic lens data of the zoom lens of Example 4
  • Table 14 shows data on specifications
  • Table 15 shows data on the distance between moving surfaces
  • Table 16 shows data on aspheric coefficients
  • FIG. Are shown in FIGS. 9A to 9L.
  • FIG. 5 is a sectional view showing the lens configuration of the zoom lens of Example 5. As shown in FIG. 5
  • each of the first lens group G1 and the 4-2th lens group G4-2 includes two positive lenses and one negative lens.
  • Table 17 shows basic lens data of the zoom lens of Example 5
  • Table 18 shows data on specifications
  • Table 19 shows data on the distance between moving surfaces
  • Table 20 shows data on aspheric coefficients
  • FIG. Are shown in FIGS. 10 (A) to (L).
  • Table 21 shows values corresponding to the conditional expressions (3) to (9) of the zoom lenses of Examples 1 to 5.
  • the d-line is used as the reference wavelength, and the values shown in Table 21 below are at this reference wavelength.
  • FIG. 11 is a schematic configuration diagram of an imaging apparatus using the zoom lens according to the embodiment of the present invention as an example of the imaging apparatus according to the embodiment of the present invention.
  • FIG. 11 schematically shows each lens group.
  • the imaging apparatus include a video camera and an electronic still camera that use a solid-state imaging device such as a CCD or CMOS as a recording medium.
  • An imaging apparatus 10 illustrated in FIG. 11 includes a zoom lens 1, a filter 6 having a function such as a low-pass filter disposed on the image side of the zoom lens 1, an image sensor 7 disposed on the image side of the filter 6, and a signal. And a processing circuit 8.
  • the image sensor 7 converts an optical image formed by the zoom lens 1 into an electrical signal.
  • a CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the image sensor 7 is arranged so that its image plane coincides with the image plane of the zoom lens 1.
  • An image picked up by the zoom lens 1 is formed on the image pickup surface of the image pickup device 7, an output signal from the image pickup device 7 relating to the image is subjected to arithmetic processing by the signal processing circuit 8, and the image is displayed on the display device 9.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface spacing, the refractive index, the Abbe number, etc. of each lens component are not limited to the values shown in the above numerical examples, but can take other values.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

 手振れ補正機能を有しながら、FNo.が小さく、諸収差が良好に補正され、全長が短く、広角端での画角が広いズームレンズとする。 物体側から順に、正の屈折力を有する第1レンズ群(G1)と、負の屈折力を有する第2レンズ群(G2)と、正の屈折力を有する第3レンズ群(G3)と、正の屈折力を有する第4レンズ群(G4)と、正の屈折力を有する第5レンズ群(G5)とからなり、第3レンズ群(G3)は、物体側から順に、正の屈折力を有する第3-1レンズ群(G3-1)と、負の屈折力を有する第3-2レンズ群(G3-2)とからなり、第3-2レンズ群(G3-2)を光軸Zと垂直方向に移動させることで手ぶれ補正を行い、第5レンズ群(G5)が固定された状態で、各レンズ群の間隔を変化させることで変倍を行なうものとする。

Description

ズームレンズおよび撮像装置
 本発明は、ズームレンズおよび撮像装置に関し、より詳しくは、デジタルカメラ、放送用カメラ、監視用カメラ、映画撮影用カメラ等の電子カメラに用いられるズームレンズおよび該ズームレンズを備えた撮像装置に関するものである。
 CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を記録媒体とするビデオカメラや電子スチルカメラ等の撮像装置に用いられるズームレンズとしては、例えば特許文献1~4に記載されたものが提案されている。
特開平9-218352号公報 特開2009-86437号公報 特開2010-185942号公報 特開2007-17532号公報
 近年デジタルカメラや映画撮影用カメラの高精細化にともない、諸収差が良好に補正されたズームレンズが求められている。また、FNo.の小さい、いわゆる明るいズームレンズの要望が高まっている。なお、FNo.についての要望はさらに大別して、広角端のFNo.が小さいことを望む場合、望遠端のFNo.が小さいことを望む場合、広角端から望遠端まで十分に明るく、FNo.が変化しないことを求める場合がある。また、標準ズームレンズとして用いるには広角端で70度程度以上の全画角を有することが求められている。さらに、最近では手振れ補正機能が付いていることも望まれている。
 しかしながら、特許文献1に記載のズームレンズは、FNo.が4.6から7.2と十分に明るいものではなかった。また、特許文献2の実施例7に記載のズームレンズは、広角端のFNo.は2.83と十分に明るいものの、望遠端のFNo.は5.64と十分に明るいものではなかった。なお、特許文献1、2ともに手振れ補正については触れられていない。
 また、特許文献3に記載のズームレンズは手振れ補正に言及したものであり、広角端のFNo.が1.8、望遠端のFNo.が3.5と十分に明るいが、広角端の全画角が60度と狭く、デジタルカメラの標準ズームレンズとして用いるには不適であった。
 また、特許文献4に記載のズームレンズも手振れ補正に言及したものであり、広角端のFNo.は2.76と十分明るいが、望遠端のFNo.は5.17と十分に明るいものではなかった。また広角端の焦点距離に比して、全長が長いという問題があった。また手振れ補正に用いるレンズ群の屈折力が弱く、手振れ補正時の移動量が大きいという問題があった。
 本発明は、上記事情に鑑みてなされたもので、手振れ補正機能を有しながら、FNo.が小さく、諸収差が良好に補正され、全長が短く、広角端での全画角が広いズームレンズおよび該レンズを備えた撮像装置を提供することを目的とするものである。
 本発明のズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とからなり、第3レンズ群は、物体側から順に、正の屈折力を有する第3-1レンズ群と、負の屈折力を有する第3-2レンズ群とからなり、第3-2レンズ群を光軸と垂直方向に移動させることで手ぶれ補正を行い、第5レンズ群が固定された状態で、各レンズ群の間隔を変化させることで変倍を行なうことを特徴とする。
 本発明のズームレンズにおいて、第3-1レンズ群は、物体側から順に、正レンズと、負レンズと、正レンズとからなることが好ましい。
 また、第3-2レンズ群は、物体側から順に像側に凸面を向けた正レンズと負レンズとが互いに接合された接合レンズからなることが好ましい。
 この場合、第3-2レンズ群は、下記条件式を満足することが好ましい。
  Np>Nn …(1)
  νp<νn …(2)
 ただし、Np:第3-2レンズ群を構成する正レンズの屈折率、Nn:第3-2レンズ群を構成する負レンズの屈折率、νp:第3-2レンズ群を構成する正レンズのアッベ数、νn:第3-2レンズ群を構成する負レンズのアッベ数とする。
 また、第4レンズ群は、物体側から順に、正の屈折力を有する第4-1レンズ群と、負の屈折力を有する第4-2レンズ群とからなり、第4-2レンズ群を光軸方向に移動させることで合焦を行うことが好ましい。
 この場合、第4-2レンズ群は、物体側から順に像側に凹面を向けた負レンズと正レンズとが互いに接合された接合レンズを含むことが好ましい。
 また、広角端の全画角が70度以上であり、下記条件式を満足することが好ましい。
  4.0<f1/fw<6.0 …(3)
  1.1<f1/ft<2.2 …(4)
 ただし、f1:第1レンズ群の焦点距離、fw:広角端における全系の焦点距離、ft:望遠端における全系の焦点距離とする。
 また、広角端の全画角が70度以上であり、下記条件式を満足することが好ましい。
  -3.0<f3-2/fw<-1.0 …(5)
  -1.2<f3-2/ft<-0.3 …(6)
 ただし、f3-2:第3-2レンズ群の焦点距離、fw:広角端における全系の焦点距離、ft:望遠端における全系の焦点距離とする。
 また、広角端の全画角が70度以上であり、下記条件式を満足することが好ましい。
  ―3.0<f4-2/fw<―1.0 …(7)
  ―1.2<f4-2/ft<―0.3 …(8)
 ただし、f4-2:第4-2レンズ群の焦点距離、fw:広角端における全系の焦点距離、ft:望遠端における全系の焦点距離とする。
 また、第1レンズ群は、物体側から順に、像側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズとからなり、下記条件式を満足することが好ましい。
  -3.0<(R1f+R1r)/(R1f-R1r)<-1.1 …(9)
 ただし、R1f:第1レンズ群内の負レンズの物体側面の曲率半径、R1r:第1レンズ群内の正レンズの像側面の曲率半径とする。
 また、第1レンズ群内の負レンズと正レンズとは互いに接合されていることが好ましい。
 また、第3レンズ群の物体側に絞りが設けられていることが好ましい。
 また、広角端の全画角が70度以上であり、下記条件式を満足することが好ましい。
  4.2<f1/fw<5.8 …(3-1)
  1.4<f1/ft<2.1 …(4-1)
 また、広角端の全画角が70度以上であり、下記条件式を満足することが好ましい。
  -2.7<f3-2/fw<-1.3 …(5-1)
  -1.0<f3-2/ft<-0.4 …(6-1)
 また、広角端の全画角が70度以上であり、下記条件式を満足することが好ましい。
  ―2.7<f4-2/fw<―1.3 …(7-1)
  ―1.0<f4-2/ft<―0.4 …(8-1)
 また、第1レンズ群は、物体側から順に、像側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズとからなり、下記条件式を満足することが好ましい。
  -2.7<(R1f+R1r)/(R1f-R1r)<-1.3 …(9-1)
 本発明の撮像装置は、上記記載の本発明のズームレンズを備えたことを特徴とするものである。
 本発明のズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とからなり、第3レンズ群は、物体側から順に、正の屈折力を有する第3-1レンズ群と、負の屈折力を有する第3-2レンズ群とからなり、第3-2レンズ群を光軸と垂直方向に移動させることで手ぶれ補正を行い、第5レンズ群が固定された状態で、各レンズ群の間隔を変化させることで変倍を行なうものとしたので、手振れ補正機能を有しながら、FNo.が小さく、諸収差が良好に補正され、全長が短く、広角端での画角が広いズームレンズとすることが可能となる。
 また、本発明の撮像装置は、本発明のズームレンズを備えているため、明るく高画質の映像を得ることができるとともに、装置の小型化も可能となる。
本発明の一実施形態にかかるズームレンズ(実施例1と共通)のレンズ構成を示す断面図 本発明の実施例2のズームレンズのレンズ構成を示す断面図 本発明の実施例3のズームレンズのレンズ構成を示す断面図 本発明の実施例4のズームレンズのレンズ構成を示す断面図 本発明の実施例5のズームレンズのレンズ構成を示す断面図 本発明の実施例1のズームレンズの各収差図(A~L) 本発明の実施例2のズームレンズの各収差図(A~L) 本発明の実施例3のズームレンズの各収差図(A~L) 本発明の実施例4のズームレンズの各収差図(A~L) 本発明の実施例5のズームレンズの各収差図(A~L) 本発明の実施形態にかかる撮像装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1は本発明の一実施形態にかかるズームレンズのレンズ構成を示す断面図である。図1に示す構成例は、後述の実施例1のズームレンズの構成と共通である。図1においては、左側が物体側、右側が像側である。
 このズームレンズは、光軸Zに沿って、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなり、第5レンズ群G5が固定された状態で、各レンズ群の間隔を変化させることで変倍を行なうものである。なお、広角端から望遠端への変倍に際し、第1レンズ群G1と第2レンズ群G2の間隔は増大し、第2レンズ群G2と第3レンズ群G3の間隔は縮小し、第3レンズ群G3と第4レンズ群G4の間隔は変化し、第4レンズ群G4と第5レンズ群G5の間隔は増大する。ここで、図1に示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 このズームレンズを撮像装置に適用する際には、レンズを装着するカメラ側の構成に応じて、光学系と像面Simの間にカバーガラス、プリズム、赤外線カットフィルタやローパスフィルタなどの各種フィルタを配置することが好ましいため、図1では、これらを想定した平行平面板状の光学部材PPを第5レンズ群G5と像面Simとの間に配置した例を示している。
 第3レンズ群G3は、物体側から順に、正の屈折力を有する第3-1レンズ群G3-1と、負の屈折力を有する第3-2レンズ群G3-2とからなり、第3-2レンズ群G3-2を光軸Zと垂直方向に移動させることで手ぶれ補正を行う。
 このように、物体側から順に正負正正正のレンズ群構成とすることで、第3レンズ群G3以降の正の屈折力を分散できるため、FNo.を小さくするのに有利である。
 なお、第5レンズ群G5については、移動機構を持たせず固定とすることで、交換レンズとして用いた場合に像側からのゴミの進入を防ぐことができ、また、変倍機構や合焦機構に直接外力が加わるのを防ぐことができる。
 また、手振れ補正を特許文献3のように像面に近いレンズで行うと、手振れ補正時のレンズ群の移動量が大きくなる傾向にある。第3レンズ群全体で行う場合は、第3レンズ群は一般的に屈折力が大きいため、手振れ補正時の収差の変動が大きくなる傾向にある。特許文献4のように第3レンズ群を2つの正の屈折力を有するレンズ群に分け、物体側のレンズ群によって手振れ補正を行うと、手振れ補正群の屈折力が弱くなり過ぎ、移動量が大きくなる傾向にある。
 従って、本実施形態のように、第3レンズ群G3は、物体側から順に、正の屈折力を有する第3-1レンズ群G3-1と、負の屈折力を有する第3-2レンズ群G3-2とからなるものとし、第3-2レンズ群G3-2を光軸Zと垂直方向に移動させることで手ぶれ補正を行うことで、手振れ補正時のレンズ群の移動量を小さくすることができ、小型化、省電力、手振れ補正のレスポンスの向上に効果がある。また、第3レンズ群G3全体を移動する場合に較べて、手振れ補正時の収差変動を小さくすることができる。さらに、第3-1レンズ群G3-1が正の屈折力を有することにより、第3-2レンズ群G3-2へ入射する光束の幅が狭くなるため、第3-2レンズ群G3-2を構成するレンズのレンズ径が小さく済み、手振れ補正群の軽量化にも有利である。
 本実施形態のズームレンズにおいて、第3-1レンズ群G3-1は、物体側から順に、正レンズと、負レンズと、正レンズとからなることが好ましい。
 第3-1レンズ群G3-1は、第2レンズ群G2を通過した発散光束が入射するため、比較的強い屈折力が必要である。特に、FNo.を小さくするためにはこのレンズ群の負担が大きくなる。また、光軸上の厚みを増さないためには、少ない枚数で構成することも必要となる。
 従って、物体側から順に、正レンズ、負レンズ、正レンズの3枚のレンズ構成とすることにより、最小限の枚数で、このレンズ群で発生する諸収差を適切にコントロールすることができ、第3-2レンズ群G3-2と収差のバランスを取ることで、手振れ補正時の収差の発生量を少なくすることができる。
 なお、第3-1レンズ群G3-1の最も物体側の正レンズは、両面を非球面とすることが好ましい。これにより、さらに良好に第3-2レンズ群G3-2との収差バランスを取ることが可能となる。
 また、第3-2レンズ群G3-2は、物体側から順に像側に凸面を向けた正レンズと負レンズとが互いに接合された接合レンズからなることが好ましい。
 手振れ補正に用いるレンズ群は軽量であることが求められるが、このように構成することで、重量を増さずに第3-2レンズ群G3-2で発生する収差を抑え、手振れ補正時の収差の発生を抑えることができる。
 この場合、第3-2レンズ群G3-2は、下記条件式(1)、(2)を満足することが好ましい。条件式(1)を満足することにより、第3-2レンズ群G3-2で発生する球面収差、像面湾曲を押さえることができ、手振れ補正時の収差の発生を抑えることができる。条件式(2)を満足することにより、第3-2レンズ群G3-2で発生する色収差を押さえることができ、手振れ補正時の色収差の発生を抑えることができる。
  Np>Nn …(1)
  νp<νn …(2)
 ただし、Np:第3-2レンズ群を構成する正レンズの屈折率、Nn:第3-2レンズ群を構成する負レンズの屈折率、νp:第3-2レンズ群を構成する正レンズのアッベ数、νn:第3-2レンズ群を構成する負レンズのアッベ数とする。
 また、第4レンズ群G4は、物体側から順に、正の屈折力を有する第4-1レンズ群G4-1と、負の屈折力を有する第4-2レンズ群G4-2とからなり、第4-2レンズ群G4-2を光軸方向に移動させることで合焦を行うことが好ましい。この場合、無限遠から至近側への合焦時には、第4-2レンズ群G4-2は物体側から像側へ移動する。このように構成することで、合焦時の移動量を抑えられるとともに、合焦時の移動量が大きくなる望遠端において、至近側で第5レンズG5との間隔に余裕が出ることから、至近距離を近くすることが可能となる。
 この場合、第4-2レンズ群G4-2は、物体側から順に像側に凹面を向けた負レンズと正レンズとが互いに接合された接合レンズを含むことが好ましい。このように構成することで、第4-2レンズ群G4-2での収差の発生を小さくすることができ、合焦時の収差の変動を押さえることができる。なお、合焦レンズ群を軽量化するためには、第4-2レンズ群G4-2をこの接合レンズのみで構成することが好ましい。
 また、広角端の全画角が70度以上であり、下記条件式(3)、(4)を満足することが好ましい。条件式(3)、(4)の下限を下回ると第1レンズG1の屈折力が過大となり、特に望遠端での球面収差の悪化を招く。逆に、条件式(3)、(4)の上限を上回ると、薄型化が困難となる。なお、下記条件式(3-1)、(4-1)を満足するものとすれば、より良好な特性とすることができる。
  4.0<f1/fw<6.0 …(3)
  1.1<f1/ft<2.2 …(4)
  4.2<f1/fw<5.8 …(3-1)
  1.4<f1/ft<2.1 …(4-1)
 ただし、f1:第1レンズ群の焦点距離、fw:広角端における全系の焦点距離、ft:望遠端における全系の焦点距離とする。
 また、広角端の全画角が70度以上であり、下記条件式(5)、(6)を満足することが好ましい。条件式(5)、(6)の下限を下回ると、第3-2レンズ群G3-2の屈折力が弱くなり、手振れ補正時の移動量が大きくなるため、小型化、省電力、手振れ補正のレスポンスの向上が難しくなる。逆に、条件式(5)、(6)の上限を上回ると、手振れ補正時の収差の変動が大きくなる。なお、下記条件式(5-1)、(6-1)を満足するものとすれば、より良好な特性とすることができる。
  -3.0<f3-2/fw<-1.0 …(5)
  -1.2<f3-2/ft<-0.3 …(6)
  -2.7<f3-2/fw<-1.3 …(5-1)
  -1.0<f3-2/ft<-0.4 …(6-1)
 ただし、f3-2:第3-2レンズ群の焦点距離、fw:広角端における全系の焦点距離、ft:望遠端における全系の焦点距離とする。
 また、広角端の全画角が70度以上であり、下記条件式(7)、(8)を満足することが好ましい。条件式(7)、(8)の下限を下回ると、合焦時の移動量が大きくなり、小型化、省電力、合焦速度の向上が難しくなる。逆に、条件式(7)、(8)の上限を上回ると、合焦時の収差の変動が大きくなる。なお、下記条件式(7-1)、(8-1)を満足するものとすれば、より良好な特性とすることができる。
  ―3.0<f4-2/fw<―1.0 …(7)
  ―1.2<f4-2/ft<―0.3 …(8)
  ―2.7<f4-2/fw<―1.3 …(7-1)
  ―1.0<f4-2/ft<―0.4 …(8-1)
 ただし、f4-2:第4-2レンズ群の焦点距離、fw:広角端における全系の焦点距離、ft:望遠端における全系の焦点距離とする。
 また、第1レンズ群G1は、物体側から順に、像側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズとからなり、下記条件式(9)を満足することが好ましい。条件式(9)の下限を下回ると、色収差の補正が困難となる。逆に、条件式(9)の上限を上回ると、特に望遠端での球面収差が悪化する。なお、下記条件式(9-1)を満足するものとすれば、より良好な特性とすることができる。
  -3.0<(R1f+R1r)/(R1f-R1r)<-1.1 …(9)
  -2.7<(R1f+R1r)/(R1f-R1r)<-1.3 …(9-1)
 ただし、R1f:第1レンズ群内の負レンズの物体側面の曲率半径、R1r:第1レンズ群内の正レンズの像側面の曲率半径とする。
 この場合、第1レンズ群G1内の負レンズと正レンズとは互いに接合されていることが好ましい。これにより、境界面で発生しやすいゴーストの濃度を下げることができる。
 また、第3レンズ群G3の物体側に絞りが設けられていることが好ましい。これにより、絞り機構と手振れ補正機構の干渉を防ぐことができる。
 本ズームレンズにおいて、最も物体側に配置される材料としては、具体的にはガラスを用いることが好ましく、あるいは透明なセラミックスを用いてもよい。
 また、本ズームレンズが厳しい環境において使用される場合には、保護用の多層膜コートが施されることが好ましい。さらに、保護用コート以外にも、使用時のゴースト光低減等のための反射防止コートを施すようにしてもよい。
 また、図1に示す例では、レンズ系と像面Simとの間に光学部材PPを配置した例を示したが、ローパスフィルタや特定の波長域をカットするような各種フィルタ等をレンズ系と像面Simとの間に配置する代わりに、各レンズの間にこれらの各種フィルタを配置してもよく、あるいは、いずれかのレンズのレンズ面に、各種フィルタと同様の作用を有するコートを施してもよい。
 次に、本発明のズームレンズの数値実施例について説明する。
 まず、実施例1のズームレンズについて説明する。実施例1のズームレンズのレンズ構成を示す断面図を図1に示す。なお、図1および後述の実施例2~5に対応した図2~5においては、光学部材PPも合わせて示しており、左側が物体側、右側が像側であり、図示されている開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 実施例1のズームレンズは、広角端のFNo.と小型化を重視したものである。第1レンズ群G1、第3-2レンズ群G3-2、第4-2レンズ群G4-2は、いずれも正レンズと負レンズの接合レンズにより構成される。
 実施例1のズームレンズの基本レンズデータを表1に、諸元に関するデータを表2に、移動面の間隔に関するデータを表3に、非球面係数に関するデータを表4に示す。以下では、表中の記号の意味について、実施例1のものを例にとり説明するが、実施例2~5についても基本的に同様である。
 表1のレンズデータにおいて、Siの欄には最も物体側の構成要素の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示す。また、Ndjの欄には最も物体側の光学要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の光学要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄には同じくj番目の光学要素のd線(波長587.6nm)に対するアッベ数を示す。
 なお、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。基本レンズデータには、開口絞りSt、光学部材PPも含めて示している。開口絞りStに相当する面の面番号の欄には面番号とともに(絞り)という語句を記載している。
 また、表1のレンズデータにおいて、変倍時に間隔が変化する面間隔の欄にはそれぞれDD[i]と記載している。
 表2の諸元に関するデータに、広角・中間・望遠の各々の、ズーム倍率、焦点距離f´、F値FNo.および全画角2ωの値を示す。
 基本レンズデータ、諸元に関するデータ、および移動面の間隔に関するデータにおいて、角度の単位としては度を用い、長さの単位としてはmmを用いているが、光学系は比例拡大又は比例縮小しても使用可能なため他の適当な単位を用いることもできる。
 表1のレンズデータでは、非球面の面番号に*印を付しており、非球面の曲率半径として近軸の曲率半径の数値を示している。表4の非球面係数に関するデータには、非球面の面番号Siと、これら非球面に関する非球面係数を示す。非球面係数は、以下の式(A)で表される非球面式における各係数KA、Am(m=3、4、5、…20)の値である。
   Zd=C・h/{1+(1-KA・C・h1/2}+ΣAm・h …(B)
   ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からの距離)
C:近軸曲率半径の逆数
KA、Am:非球面係数(m=3、4、5、…20)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1のズームレンズの各収差図を図6(A)~(L)に示す。図6(A)~(D)はそれぞれ広角の球面収差、非点収差、歪曲収差、倍率色収差を示し、図6(E)~(H)はそれぞれ中間の球面収差、非点収差、歪曲収差、倍率色収差を示し、図6(I)~(L)はそれぞれ望遠の球面収差、非点収差、歪曲収差、倍率色収差を示す。
 球面収差、非点収差、歪曲収差を表す各収差図には、d線(波長587.6nm)を基準波長とした収差を示す。球面収差図にはd線(波長587.6nm)、C線(波長656.3nm)、F線(波長486.1nm)、g線(波長435.8nm)についての収差をそれぞれ実線、長破線、短破線、点線で示す。非点収差図にはサジタル方向、タンジェンシャル方向の収差をそれぞれ実線と破線で示す。倍率色収差図にはC線(波長656.3nm)、F線(波長486.1nm)、g線(波長435.8nm)についての収差をそれぞれ長破線、短破線、点線で示す。なお、球面収差図のFno.はF値、その他の収差図のωは半画角を意味する。
 次に、実施例2のズームレンズについて説明する。実施例2のズームレンズのレンズ構成を示す断面図を図2に示す。
 実施例2のズームレンズは、実施例1のズームレンズと同様の形状である。
 また、実施例2のズームレンズの基本レンズデータを表5に、諸元に関するデータを表6に、移動面の間隔に関するデータを表7に、非球面係数に関するデータを表8に、各収差図を図7(A)~(L)に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 次に、実施例3のズームレンズについて説明する。実施例3のズームレンズのレンズ構成を示す断面図を図3に示す。
 実施例3のズームレンズも、実施例1のズームレンズと同様の形状である。
 また、実施例3のズームレンズの基本レンズデータを表9に、諸元に関するデータを表10に、移動面の間隔に関するデータを表11に、非球面係数に関するデータを表12に、各収差図を図8(A)~(L)に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 次に、実施例4のズームレンズについて説明する。実施例4のズームレンズのレンズ構成を示す断面図を図4に示す。
 実施例4のズームレンズも、実施例1のズームレンズと同様の形状である。
 また、実施例4のズームレンズの基本レンズデータを表13に、諸元に関するデータを表14に、移動面の間隔に関するデータを表15に、非球面係数に関するデータを表16に、各収差図を図9(A)~(L)に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 次に、実施例5のズームレンズについて説明する。実施例5のズームレンズのレンズ構成を示す断面図を図5に示す。
 実施例5のズームレンズは、広角端から望遠端までのFNo.を略一定としつつ、望遠端のFNo.を重視したものである。望遠端のFNo.を小さくするために、第1レンズ群G1、第4-2レンズ群G4-2は、いずれも正レンズ2枚と負レンズ1枚により構成される。
 また、実施例5のズームレンズの基本レンズデータを表17に、諸元に関するデータを表18に、移動面の間隔に関するデータを表19に、非球面係数に関するデータを表20に、各収差図を図10(A)~(L)に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 実施例1~5のズームレンズの条件式(3)~(9)に対応する値を表21に示す。なお、全実施例ともd線を基準波長としており、下記の表21に示す値はこの基準波長におけるものである。
Figure JPOXMLDOC01-appb-T000021
 以上のデータから、実施例1~5のズームレンズは全て、条件式(1)~(8)を満たしており、条件式(9)に該当する実施例1~4のズームレンズは全て条件式(9)を満たしており、手振れ補正機能を有しながら、FNo.が小さく、諸収差が良好に補正され、全長が短く、広角端での画角が広いズームレンズであることが分かる。
 次に、本発明の実施形態にかかる撮像装置について説明する。図11に、本発明の実施形態の撮像装置の一例として、本発明の実施形態のズームレンズを用いた撮像装置の概略構成図を示す。なお、図11では各レンズ群を概略的に示している。この撮像装置としては、例えば、CCDやCMOS等の固体撮像素子を記録媒体とするビデオカメラや電子スチルカメラ等を挙げることができる。
 図11に示す撮像装置10は、ズームレンズ1と、ズームレンズ1の像側に配置されたローパスフィルタ等の機能を有するフィルタ6と、フィルタ6の像側に配置された撮像素子7と、信号処理回路8とを備えている。撮像素子7はズームレンズ1により形成される光学像を電気信号に変換するものであり、例えば、撮像素子7としては、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等を用いることができる。撮像素子7は、その撮像面がズームレンズ1の像面に一致するように配置される。
 ズームレンズ1により撮像された像は撮像素子7の撮像面上に結像し、その像に関する撮像素子7からの出力信号が信号処理回路8にて演算処理され、表示装置9に像が表示される。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。

Claims (17)

  1.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とからなり、
     前記第3レンズ群は、物体側から順に、正の屈折力を有する第3-1レンズ群と、負の屈折力を有する第3-2レンズ群とからなり、
     前記第3-2レンズ群を光軸と垂直方向に移動させることで手ぶれ補正を行い、
     前記第5レンズ群が固定された状態で、各レンズ群の間隔を変化させることで変倍を行なう
     ことを特徴とするズームレンズ。
  2.  前記第3-1レンズ群は、物体側から順に、正レンズと、負レンズと、正レンズとからなる
     ことを特徴とする請求項1記載のズームレンズ。
  3.  前記第3-2レンズ群は、物体側から順に像側に凸面を向けた正レンズと負レンズとが互いに接合された接合レンズからなる
     ことを特徴とする請求項1または2記載のズームレンズ。
  4.  前記第3-2レンズ群は、下記条件式を満足する
     ことを特徴とする請求項3に記載のズームレンズ。
      Np>Nn …(1)
      νp<νn …(2)
    ただし、
     Np:前記第3-2レンズ群を構成する正レンズの屈折率
     Nn:前記第3-2レンズ群を構成する負レンズの屈折率
     νp:前記第3-2レンズ群を構成する正レンズのアッベ数
     νn:前記第3-2レンズ群を構成する負レンズのアッベ数
    とする。
  5.  前記第4レンズ群は、物体側から順に、正の屈折力を有する第4-1レンズ群と、負の屈折力を有する第4-2レンズ群とからなり、
     前記第4-2レンズ群を光軸方向に移動させることで合焦を行う
     ことを特徴とする請求項1から4のいずれか1項記載のズームレンズ。
  6.  前記第4-2レンズ群は、物体側から順に像側に凹面を向けた負レンズと正レンズとが互いに接合された接合レンズを含む
     ことを特徴とする請求項5記載のズームレンズ。
  7.  広角端の全画角が70度以上であり、下記条件式を満足する
     ことを特徴とする請求項1から6のいずれか1項記載のズームレンズ。
      4.0<f1/fw<6.0 …(3)
      1.1<f1/ft<2.2 …(4)
    ただし、
     f1:前記第1レンズ群の焦点距離
     fw:広角端における全系の焦点距離
     ft:望遠端における全系の焦点距離
    とする。
  8.  広角端の全画角が70度以上であり、下記条件式を満足する
     ことを特徴とする請求項1から7のいずれか1項記載のズームレンズ。
      -3.0<f3-2/fw<-1.0 …(5)
      -1.2<f3-2/ft<-0.3 …(6)
    ただし、
     f3-2:前記第3-2レンズ群の焦点距離
     fw:広角端における全系の焦点距離
     ft:望遠端における全系の焦点距離
    とする。
  9.  広角端の全画角が70度以上であり、下記条件式を満足する
     ことを特徴とする請求項5または6記載のズームレンズ。
      ―3.0<f4-2/fw<―1.0 …(7)
      ―1.2<f4-2/ft<―0.3 …(8)
    ただし、
     f4-2:前記第4-2レンズ群の焦点距離
     fw:広角端における全系の焦点距離
     ft:望遠端における全系の焦点距離
    とする。
  10.  前記第1レンズ群は、物体側から順に、像側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズとからなり、
     下記条件式を満足する
     ことを特徴とする請求項1から9のいずれか1項記載のズームレンズ。
      -3.0<(R1f+R1r)/(R1f-R1r)<-1.1 …(9)
    ただし、
     R1f:前記第1レンズ群内の負レンズの物体側面の曲率半径
     R1r:前記第1レンズ群内の正レンズの像側面の曲率半径
    とする。
  11.  前記第1レンズ群内の負レンズと正レンズとは互いに接合されている
     ことを特徴とする請求項10記載のズームレンズ。
  12.  前記第3レンズ群の物体側に絞りが設けられている
     こと特徴とする請求項1から11のいずれか1項記載のズームレンズ。
  13.  広角端の全画角が70度以上であり、下記条件式を満足する
     ことを特徴とする請求項1から12のいずれか1項記載のズームレンズ。
      4.2<f1/fw<5.8 …(3-1)
      1.4<f1/ft<2.1 …(4-1)
    ただし、
     f1:前記第1レンズ群の焦点距離
     fw:広角端における全系の焦点距離
     ft:望遠端における全系の焦点距離
    とする。
  14.  広角端の全画角が70度以上であり、下記条件式を満足する
     ことを特徴とする請求項1から13のいずれか1項記載のズームレンズ。
      -2.7<f3-2/fw<-1.3 …(5-1)
      -1.0<f3-2/ft<-0.4 …(6-1)
    ただし、
     f3-2:前記第3-2レンズ群の焦点距離
     fw:広角端における全系の焦点距離
     ft:望遠端における全系の焦点距離
    とする。
  15.  広角端の全画角が70度以上であり、下記条件式を満足する
     ことを特徴とする請求項5または6記載のズームレンズ。
      ―2.7<f4-2/fw<―1.3 …(7-1)
      ―1.0<f4-2/ft<―0.4 …(8-1)
    ただし、
     f4-2:前記第4-2レンズ群の焦点距離
     fw:広角端における全系の焦点距離
     ft:望遠端における全系の焦点距離
    とする。
  16.  前記第1レンズ群は、物体側から順に、像側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズとからなり、
     下記条件式を満足する
     ことを特徴とする請求項1から15のいずれか1項記載のズームレンズ。
      -2.7<(R1f+R1r)/(R1f-R1r)<-1.3 …(9-1)
    ただし、
     R1f:前記第1レンズ群内の負レンズの物体側面の曲率半径
     R1r:前記第1レンズ群内の正レンズの像側面の曲率半径
    とする。
  17.  請求項1記載のズームレンズを備えたことを特徴とする撮像装置。
PCT/JP2013/004897 2012-09-05 2013-08-19 ズームレンズおよび撮像装置 WO2014038147A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014534169A JP5755816B2 (ja) 2012-09-05 2013-08-19 ズームレンズおよび撮像装置
DE112013004361.0T DE112013004361B4 (de) 2012-09-05 2013-08-19 Zoomobjektiv und Abbildungsvorrichtung
CN201380045148.0A CN104583836B (zh) 2012-09-05 2013-08-19 变焦透镜和摄像装置
US14/635,195 US9810889B2 (en) 2012-09-05 2015-03-02 Zoom lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-194735 2012-09-05
JP2012194735 2012-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/635,195 Continuation US9810889B2 (en) 2012-09-05 2015-03-02 Zoom lens and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2014038147A1 true WO2014038147A1 (ja) 2014-03-13

Family

ID=50236782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004897 WO2014038147A1 (ja) 2012-09-05 2013-08-19 ズームレンズおよび撮像装置

Country Status (5)

Country Link
US (1) US9810889B2 (ja)
JP (1) JP5755816B2 (ja)
CN (1) CN104583836B (ja)
DE (1) DE112013004361B4 (ja)
WO (1) WO2014038147A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199421A (ja) * 2013-03-13 2014-10-23 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2019008012A (ja) * 2017-06-21 2019-01-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020071439A (ja) * 2018-11-02 2020-05-07 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP2020129065A (ja) * 2019-02-08 2020-08-27 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置、撮像システム
JP2021071677A (ja) * 2019-11-01 2021-05-06 株式会社シグマ 大口径ズームレンズ及びこれを備える撮像装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057662A1 (ja) * 2015-09-30 2017-04-06 株式会社ニコン ズームレンズ、光学機器及びズームレンズの製造方法
JP6797770B2 (ja) * 2017-09-14 2020-12-09 富士フイルム株式会社 撮像レンズおよび撮像装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177318A (ja) * 2001-12-12 2003-06-27 Nikon Corp 可変焦点距離レンズ
JP2006106091A (ja) * 2004-09-30 2006-04-20 Nikon Corp ズームレンズ
JP2006195068A (ja) * 2005-01-12 2006-07-27 Fujinon Corp 防振機能付き変倍光学系および該変倍光学系を搭載した撮像装置
JP2007212962A (ja) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd ズームレンズ系、レンズ鏡筒、撮像装置及びカメラ
JP2007212963A (ja) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd ズームレンズ系、レンズ鏡筒、撮像装置及びカメラ
JP2009047903A (ja) * 2007-08-20 2009-03-05 Sony Corp ズームレンズ及び撮像装置
JP2009169264A (ja) * 2008-01-18 2009-07-30 Sony Corp ズームレンズ及び撮像装置
JP2013037063A (ja) * 2011-08-04 2013-02-21 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2013044815A (ja) * 2011-08-22 2013-03-04 Nikon Corp ズームレンズ、撮像装置、およびズームレンズの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918115B2 (ja) * 1988-09-30 1999-07-12 キヤノン株式会社 防振機能を有した変倍光学系
JPH09218352A (ja) * 1996-02-08 1997-08-19 Minolta Co Ltd ズームレンズ
US6721105B2 (en) 2001-12-12 2004-04-13 Nikon Corporation Zoom lens system
KR100604310B1 (ko) * 2004-04-23 2006-07-25 삼성테크윈 주식회사 고배율 줌 렌즈
JP4876460B2 (ja) * 2005-07-05 2012-02-15 株式会社ニコン 像シフト可能なズームレンズ
JP2006133582A (ja) * 2004-11-08 2006-05-25 Sony Corp ズームレンズ及び撮像装置
JP5126492B2 (ja) * 2007-10-01 2013-01-23 株式会社ニコン ズームレンズ及びこのズームレンズを備えた光学機器
JP2009212962A (ja) * 2008-03-05 2009-09-17 Canon Inc 通信システム、通信システムの電源供給方法、及びプログラム
JP5178322B2 (ja) * 2008-05-26 2013-04-10 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5241377B2 (ja) * 2008-08-19 2013-07-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP4706940B2 (ja) 2009-02-10 2011-06-22 ソニー株式会社 ズームレンズ及び撮像装置
WO2012176435A1 (ja) * 2011-06-21 2012-12-27 富士フイルム株式会社 ズームレンズおよび撮像装置
US8995064B2 (en) 2011-08-22 2015-03-31 Nikon Corporation Zoom lens, imaging apparatus, and method for manufacturing zoom lens
JP6045442B2 (ja) * 2013-06-13 2016-12-14 富士フイルム株式会社 ズームレンズおよび撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177318A (ja) * 2001-12-12 2003-06-27 Nikon Corp 可変焦点距離レンズ
JP2006106091A (ja) * 2004-09-30 2006-04-20 Nikon Corp ズームレンズ
JP2006195068A (ja) * 2005-01-12 2006-07-27 Fujinon Corp 防振機能付き変倍光学系および該変倍光学系を搭載した撮像装置
JP2007212962A (ja) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd ズームレンズ系、レンズ鏡筒、撮像装置及びカメラ
JP2007212963A (ja) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd ズームレンズ系、レンズ鏡筒、撮像装置及びカメラ
JP2009047903A (ja) * 2007-08-20 2009-03-05 Sony Corp ズームレンズ及び撮像装置
JP2009169264A (ja) * 2008-01-18 2009-07-30 Sony Corp ズームレンズ及び撮像装置
JP2013037063A (ja) * 2011-08-04 2013-02-21 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2013044815A (ja) * 2011-08-22 2013-03-04 Nikon Corp ズームレンズ、撮像装置、およびズームレンズの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199421A (ja) * 2013-03-13 2014-10-23 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2019008012A (ja) * 2017-06-21 2019-01-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020071439A (ja) * 2018-11-02 2020-05-07 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP7218153B2 (ja) 2018-11-02 2023-02-06 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP2020129065A (ja) * 2019-02-08 2020-08-27 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置、撮像システム
JP7292892B2 (ja) 2019-02-08 2023-06-19 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置、撮像システム
JP2021071677A (ja) * 2019-11-01 2021-05-06 株式会社シグマ 大口径ズームレンズ及びこれを備える撮像装置
JP7325813B2 (ja) 2019-11-01 2023-08-15 株式会社シグマ 大口径ズームレンズ及びこれを備える撮像装置

Also Published As

Publication number Publication date
CN104583836B (zh) 2017-03-01
US9810889B2 (en) 2017-11-07
US20150177500A1 (en) 2015-06-25
DE112013004361B4 (de) 2016-11-03
JPWO2014038147A1 (ja) 2016-08-08
JP5755816B2 (ja) 2015-07-29
CN104583836A (zh) 2015-04-29
DE112013004361T5 (de) 2015-05-28

Similar Documents

Publication Publication Date Title
JP5785338B2 (ja) 撮像レンズおよび撮像装置
JP6128387B2 (ja) ズームレンズおよび撮像装置
JP5755816B2 (ja) ズームレンズおよび撮像装置
JP6230933B2 (ja) マクロレンズおよび撮像装置
JP6204852B2 (ja) ズームレンズおよび撮像装置
JP5798255B2 (ja) ズームレンズおよび撮像装置
JP6165692B2 (ja) ズームレンズおよび撮像装置
JP6219198B2 (ja) マクロレンズおよび撮像装置
JP5592159B2 (ja) 変倍光学系および撮像装置
JP6234784B2 (ja) ズームレンズおよび撮像装置
JP5745188B2 (ja) ズームレンズおよび撮像装置
WO2014141348A1 (ja) ズームレンズおよび撮像装置
WO2013031203A1 (ja) 変倍光学系および撮像装置
JP6173975B2 (ja) ズームレンズおよび撮像装置
WO2013031180A1 (ja) ズームレンズおよび撮像装置
JP6066419B2 (ja) ズームレンズおよび撮像装置
US7933072B2 (en) Zoom lens and imaging apparatus
JP2011075613A (ja) 変倍光学系および撮像装置
WO2014147689A1 (ja) ズームレンズおよび撮像装置
JP6164894B2 (ja) ズームレンズ及びそれを有する撮像装置
WO2014068860A1 (ja) 撮像レンズおよび撮像装置
WO2012176389A1 (ja) ズームレンズおよび撮像装置
JP2014202806A5 (ja)
JP6559103B2 (ja) 撮像レンズおよび撮像装置
WO2012176469A1 (ja) ズームレンズおよび撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534169

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013004361

Country of ref document: DE

Ref document number: 1120130043610

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835523

Country of ref document: EP

Kind code of ref document: A1