WO2014037994A1 - インピーダンス整合装置及び方法、並びにコンピュータプログラム - Google Patents

インピーダンス整合装置及び方法、並びにコンピュータプログラム Download PDF

Info

Publication number
WO2014037994A1
WO2014037994A1 PCT/JP2012/072473 JP2012072473W WO2014037994A1 WO 2014037994 A1 WO2014037994 A1 WO 2014037994A1 JP 2012072473 W JP2012072473 W JP 2012072473W WO 2014037994 A1 WO2014037994 A1 WO 2014037994A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
reflected signal
variable
circuit
impedance matching
Prior art date
Application number
PCT/JP2012/072473
Other languages
English (en)
French (fr)
Inventor
雅美 鈴木
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US14/425,938 priority Critical patent/US9520905B2/en
Priority to PCT/JP2012/072473 priority patent/WO2014037994A1/ja
Priority to JP2014534063A priority patent/JP5856305B2/ja
Publication of WO2014037994A1 publication Critical patent/WO2014037994A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • H04B5/26
    • H04B5/79

Definitions

  • the present invention relates to an impedance matching apparatus and method for performing impedance matching related to an electric signal path, and a technical field of a computer program.
  • Patent Document 1 a device that detects the resistance and conductance of a transmission line and adjusts the impedance variable element based on the detected resistance and conductance has been proposed (see Patent Document 1). .
  • Patent Documents 2 and 3 an apparatus that performs impedance matching by repetitive processing using a recursive technique such as the steepest descent method has been proposed (see Patent Documents 2 and 3).
  • Patent Documents 2 and 3 have a technical problem that the time required for impedance matching varies depending on the selection of the initial value.
  • the present invention has been made in view of the above problems, for example, and an impedance matching apparatus and method that can perform impedance matching appropriately in a short time even when there is an influence caused by a wiring pattern, and a computer program It is an issue to provide.
  • an impedance matching device of the present invention includes a transmission antenna, a power supply capable of supplying power to the transmission antenna, an input impedance of the transmission antenna of a transmission circuit, and An impedance matching device that performs impedance matching with an output impedance, comprising: a matching circuit that is electrically disposed between the power source and the transmitting antenna and includes a plurality of variable reactance elements; and the power source and the matching circuit.
  • An incident signal / reflected signal that is electrically disposed between and extracts an incident signal that is power propagating from the power source toward the transmitting antenna and a reflected signal that is power propagating from the transmitting antenna toward the power source
  • An input circuit for estimating the input impedance based on the extracted incident signal and reflected signal; Based on the estimation means and the estimated input impedance, after setting a value related to a part of the plurality of variable reactance elements so that the output impedance and the input impedance are theoretically matched, And setting means for adjusting a value related to at least one of the plurality of variable reactance elements.
  • an impedance matching method of the present invention is provided between a power supply and a transmission antenna on a transmission circuit including a transmission antenna and a power supply capable of supplying power to the transmission antenna. And a matching circuit having a plurality of variable reactance elements, and an incident signal that is electrically disposed between the power source and the matching circuit and propagates from the power source toward the transmitting antenna.
  • an impedance matching device comprising: an incident signal / reflected signal extraction circuit that extracts a reflected signal that is power propagating from the transmitting antenna toward the power source; and an input impedance of the transmitting antenna and an output impedance of the power source Impedance matching method for performing impedance matching with the extracted incident signal and reflection
  • a setting step of adjusting a value related to at least one of the plurality of variable reactance elements in accordance with the reflected signal after setting the value.
  • a computer program provides a transmission antenna comprising a transmission antenna and a power supply capable of supplying power to the transmission antenna, the transmission circuit including the power supply and the transmission antenna.
  • a matching circuit that is electrically disposed and having a plurality of variable reactance elements; and an incident signal that is electrically disposed between the power source and the matching circuit and that propagates from the power source toward the transmitting antenna; and
  • An incident signal / reflected signal extraction circuit for extracting a reflected signal that is power propagating from the transmitting antenna toward the power source, and impedance matching between the input impedance of the transmitting antenna and the output impedance of the power source Based on the extracted incident signal and reflected signal, the computer mounted on the impedance matching device to perform
  • the estimation means for estimating the input impedance, and based on the estimated input impedance, a value related to a part of the plurality of variable reactance elements is set so that the output impedance and the input impedance are theoretically matched Later, it functions
  • An impedance matching device performs impedance matching between an input impedance of the transmission antenna of a transmission circuit including a transmission antenna and a power source capable of supplying power to the transmission antenna, and an output impedance of the power source.
  • An impedance matching device that performs electrical matching between the power source and the transmitting antenna, and is electrically disposed between a matching circuit having a plurality of variable reactance elements and the power source and the matching circuit.
  • An incident signal / reflected signal extraction circuit for extracting an incident signal that is power propagating from the power source toward the transmitting antenna and a reflected signal that is power propagating from the transmitting antenna toward the power source; Estimating means for estimating the input impedance based on the incident signal and the reflected signal, and the estimation Based on the extracted input impedance, after setting a value related to a part of the plurality of variable reactance elements so that the output impedance and the input impedance are theoretically matched, according to the extracted reflected signal Setting means for adjusting a value related to at least one of the plurality of variable reactance elements.
  • the impedance matching device includes a transmission antenna, a power source capable of supplying power to the transmission antenna, an input impedance of the transmission antenna of the transmission circuit, and an output of the power source. Impedance matching with impedance.
  • the impedance matching device includes a matching circuit, an incident signal / reflected signal extraction circuit, an estimation unit, and a setting unit.
  • the matching circuit is electrically disposed between the power source and the transmission antenna and has a plurality of variable reactance elements. “Electrically disposed between the power source and the transmitting antenna” means disposed on the electrical flow path (on the circuit diagram) and between the power source and the transmitting antenna. Between the transmission antenna and the transmission antenna.
  • the incident signal / reflected signal extraction circuit is electrically arranged between the power source and the matching circuit, and is an incident signal that is power propagating from the power source toward the transmission antenna and power that propagates from the transmission antenna toward the power source. A reflection signal is extracted.
  • the incident signal / reflected signal extraction circuit is, for example, a directional coupler, a circuit combining a circulator and an attenuator, or the like.
  • the estimating means including a memory, a processor, etc. estimates the input impedance of the transmitting antenna based on the incident signal and the reflected signal extracted by the incident signal / reflected signal extraction circuit.
  • the input impedance is estimated from an amplitude ratio, a phase difference, or the like between the incident signal and the reflected signal.
  • the setting means comprising a memory, a processor, etc., first, based on the estimated input impedance, a plurality of variable reactances of the matching circuit so that the output impedance of the power supply and the input impedance of the transmission antenna are theoretically matched. A value related to a part of the element is set. Thereafter, the setting means adjusts a value related to at least one of the plurality of variable reactance elements according to the extracted reflected signal.
  • the impedance matching process adjusts the values of the variable inductor and variable capacitor that constitute the matching circuit, for example, and changes the input impedance value to a theoretical circle such as an equal resistance circle or an equal reactance circle on the Smith chart. It is often changed along the line and finally moved to the alignment point.
  • this method may take time for impedance matching.
  • the impedance point corresponding to the input impedance is along a theoretical circle on the Smith chart due to the influence of, for example, the parasitic capacitance between the wiring patterns of the electric circuit or the inductance component of the wiring pattern itself. There is also a risk of no change. Further, in the method using a recursive technique such as the steepest descent method for the impedance matching process, there is a possibility that the time required for impedance matching becomes long depending on the selection of the initial value.
  • a plurality of variable reactance elements of the matching circuit are theoretically matched so that the output impedance of the power source and the input impedance of the transmission antenna are matched based on the input impedance estimated by the setting means.
  • a value related to a part of is set.
  • the setting unit adjusts a value related to at least one of the plurality of variable reactance elements according to the extracted reflected signal.
  • the impedance point corresponding to the input impedance can be moved to the vicinity of the matching point on the Smith chart. Thereafter, the value related to at least one of the plurality of variable reactance elements is adjusted according to the reflected signal (that is, in the state including the influence of the parasitic capacitance between the wiring patterns), and thus adjusted according to the reflected signal. Time can be significantly reduced.
  • impedance matching device According to the impedance matching device according to the present embodiment, even if there is an influence due to the wiring pattern of the electric circuit, impedance matching can be performed appropriately in a short time.
  • the matching circuit includes, as the plurality of variable reactance elements, a variable inductor, a first variable capacitor electrically connected to one end of the variable inductor, and the variable A second variable capacitor electrically connected to the other end of the inductor, and the setting means theoretically matches the output impedance and the input impedance based on the estimated input impedance.
  • the value related to the variable inductor and the value related to the first variable capacitor or the second variable capacitor are set as values related to a part of the plurality of variable reactance elements.
  • the matching circuit includes the variable inductor, the first variable capacitor electrically connected to one end of the variable inductor, and the second variable electrically connected to the other end of the variable inductor. And a so-called ⁇ -type matching circuit.
  • the setting means is based on the input impedance estimated by the estimation means, and the value related to the variable inductor and the first variable capacitor or the second variable capacitor so that the output impedance and the input impedance are theoretically matched. Set the value. If comprised in this way, the impedance point corresponding to input impedance can be moved to the vicinity of the matching point on a Smith chart comparatively easily.
  • the setting means sets a value related to at least one of the plurality of variable reactance elements until a magnitude of the extracted reflected signal becomes a first threshold value or less. adjust.
  • the “first threshold value” is a value that determines whether or not to continue the adjustment of the value related to at least one of the plurality of variable reactance elements, and is a fixed value in advance or a variable value corresponding to some physical quantity or parameter Is set as
  • the “first threshold value” is obtained, for example, by calculating the relationship between the magnitude of the reflected signal and the effect of the reflected signal on the transmission circuit, experimentally, empirically, or by simulation. What is necessary is just to set as the magnitude
  • the setting means when the magnitude of the extracted reflected signal becomes less than or equal to the first threshold value and then becomes larger than the first threshold value, the setting means again determines the magnitude of the extracted reflected signal.
  • a value related to at least one of the plurality of variable reactance elements may be adjusted until the first threshold value or less is reached.
  • the estimation unit sequentially estimates a reflection coefficient based on the extracted incident signal and reflection signal, and the setting unit calculates the extracted reflection. Instead of a signal, a value related to at least one of the plurality of variable reactance elements is adjusted until the estimated reflection coefficient is equal to or smaller than a second threshold value.
  • the “second threshold value” is a value that determines whether or not to continue adjustment of a value related to at least one of the plurality of variable reactance elements, and is a fixed value in advance or a variable value according to some physical quantity or parameter Is set as
  • the “second threshold value” is obtained, for example, by calculating the relationship between the magnitude of the reflection coefficient and the effect of the reflection coefficient on the transmission circuit, experimentally, empirically, or by simulation. What is necessary is just to set as a magnitude
  • the setting means when the estimated reflection coefficient magnitude becomes equal to or smaller than the second threshold value and then becomes larger than the second threshold value, the estimated reflection coefficient magnitude again.
  • a value related to at least one of the plurality of variable reactance elements may be adjusted until the second threshold value is reached.
  • the transmission circuit is a circuit capable of transmitting power in a non-contact manner to a reception circuit including a reception antenna disposed to face the transmission antenna.
  • the setting means adjusts a value related to at least one of the plurality of variable reactance elements according to the extracted reflected signal when power is transmitted from the transmission circuit to the reception circuit.
  • the transmission circuit is configured to be able to transmit electric power in a non-contact manner with respect to the reception circuit including the reception antenna disposed opposite to the transmission antenna of the transmission circuit.
  • the impedance matching of the transmission circuit may be lost due to a change in the load value on the reception circuit side such as a battery. It has been found by research.
  • the impedance matching method is electrically disposed between the power supply and the transmission antenna on a transmission circuit including a transmission antenna and a power supply capable of supplying power to the transmission antenna.
  • a matching circuit having a plurality of variable reactance elements; and an incident signal that is electrically disposed between the power source and the matching circuit and propagates from the power source toward the transmitting antenna; and
  • an impedance matching device comprising an incident signal / reflected signal extraction circuit that extracts a reflected signal that is power propagating toward a power source, an impedance that performs impedance matching between the input impedance of the transmitting antenna and the output impedance of the power source
  • a matching method wherein the input is based on the extracted incident and reflected signals Based on the estimation step of estimating impedance and the estimated input impedance, after setting a value related to a part of the plurality of variable reactance elements so that the output impedance and the input impedance are theoretically matched,
  • the impedance matching method as in the impedance matching device according to the above-described embodiment, even if there is an influence caused by the wiring pattern of the electric circuit, the impedance matching can be appropriately performed in a short time. it can.
  • a computer program is electrically arranged between a power supply and the transmission antenna on a transmission circuit including a transmission antenna and a power supply capable of supplying power to the transmission antenna.
  • a matching circuit having a variable reactance element, an incident signal that is electrically disposed between the power source and the matching circuit and propagates from the power source toward the transmitting antenna, and from the transmitting antenna to the power source
  • an incident signal / reflected signal extraction circuit that extracts a reflected signal that is power propagating toward the antenna, and is mounted on an impedance matching device that performs impedance matching between the input impedance of the transmitting antenna and the output impedance of the power source. The input impedance based on the extracted incident signal and reflected signal.
  • the extraction And setting means for adjusting a value related to at least one of the plurality of variable reactance elements in accordance with the reflected signal.
  • the computer is stored in a storage medium such as a RAM (Random Access Memory), a CD-ROM (Compact Disc Only Memory), a DVD-ROM (DVD Read Only Memory) or the like for storing the computer program.
  • a storage medium such as a RAM (Random Access Memory), a CD-ROM (Compact Disc Only Memory), a DVD-ROM (DVD Read Only Memory) or the like for storing the computer program.
  • FIG. 1 is a block diagram showing the configuration of the impedance matching apparatus according to the first embodiment.
  • the transmission circuit 10 includes a transmission antenna 11 and a transmission side circuit unit 12.
  • the transmission side circuit unit 12 includes an amplification unit 13 and a transmission signal source 14.
  • the reception circuit 20 includes a reception antenna 21 and a reception side circuit unit 22.
  • the receiving side circuit unit 22 includes a rectifier circuit 23 and a load device 24.
  • the transmission antenna 11 transmits to the reception antenna 21.
  • electric power is transmitted in a non-contact manner by an electromagnetic resonance method or the like.
  • the power received via the receiving antenna 21 is supplied to a load device 24 such as a battery.
  • the impedance matching device 100 includes a variable matching circuit 110 that is electrically disposed between the transmission antenna 11 and the transmission side circuit unit 12, and is electrically disposed between the variable matching circuit 110 and the transmission side circuit unit 12.
  • the directional coupler 120, the input impedance estimation unit 130, and the matching circuit setting value calculation unit 140 are configured.
  • the variable matching circuit 110 includes a variable inductor L, a variable capacitor C1 electrically connected to one end of the variable inductor L, and a variable capacitor C2 electrically connected to the other end of the variable inductor L. Configured. That is, the variable matching circuit 110 is a ⁇ -type matching circuit.
  • the variable matching circuit 110 is not limited to the ⁇ -type matching circuit, and can take various forms such as an L-type, an inverted L-type, and a T-type.
  • variable inductor L and the variable capacitors C1 and C2 are not limited to a variable inductor element or a variable capacitor element.
  • a plurality of fixed capacitance inductors and capacitors having different values can be used as mechanical relays, semiconductor relays, or MEMS (MICOR). It may be realized by electrically connecting in series or in parallel with an electronic mechanical system switch or the like.
  • the variable capacitors C1 and C2 may be configured such that a desired capacitance value can be obtained by rotating a rotating shaft of a variable capacitor (so-called variable capacitor) with a stepping motor or the like.
  • the directional coupler 120 includes an incident signal that is a signal propagating from the transmission-side circuit unit 12 toward the transmission antenna 11, and a reflected signal that is a signal that propagates from the transmission antenna 11 toward the transmission-side circuit unit 12. Extract.
  • a circuit combining a circulator and an attenuator may be used.
  • the input impedance estimation unit 130 estimates the input impedance of the transmission antenna 11 based on the incident signal and the reflected signal extracted by the directional coupler 120.
  • the input impedance may be estimated from, for example, the amplitude ratio or phase difference between the incident signal and the reflected signal.
  • the matching circuit set value calculation unit 140 Based on the estimated input impedance, the matching circuit set value calculation unit 140 includes the variable inductor L and the variable capacitors C1 and C2 included in the variable matching circuit 110 so that the output impedance and the input impedance are theoretically matched. Set some values. Thereafter, the matching circuit set value calculation unit 140 adjusts a value related to at least one of the variable inductor L and the variable capacitors C1 and C2 according to the reflected signal extracted by the directional coupler 120.
  • the input impedance estimation unit 130 also calculates a complex reflection coefficient based on the incident signal and the reflected signal.
  • the matching circuit set value calculation unit 140 may be configured to adjust a value related to at least one of the variable inductor L and the variable capacitors C1 and C2 in accordance with the calculated complex reflection coefficient instead of the reflection signal. Good.
  • the “transmission signal source 14”, “directional coupler 120”, “input impedance estimation unit 130”, and “matching circuit set value calculation unit 140” according to the present embodiment are respectively referred to as “power source”, “ It is an example of an “incident signal / reflected signal extraction unit”, “estimating unit”, and “setting unit”.
  • the “variable inductor L and variable capacitors C1 and C2” according to the present embodiment is an example of “a plurality of variable reactance elements” according to the present invention.
  • FIG. 2 is a conceptual diagram showing the concept of the impedance matching process according to the first embodiment. Circles in FIG. 2 indicate Smith charts.
  • the matching circuit set value calculation unit 140 first outputs the output impedance and the input based on the input impedance estimated by the input impedance estimation unit 130 (see “Zin” in FIG. 2). Values relating to a part of the variable inductor L and the variable capacitors C1 and C2 constituting the variable matching circuit 110 are set so that the impedance is theoretically matched (in FIG. 2, the variable inductor L and the variable capacitor C2 are set). ), The process of step 1 is performed.
  • the matching circuit set value calculation unit 140 adjusts a value related to at least one of the variable inductor L and the variable capacitors C1 and C2 in accordance with the reflected signal extracted by the directional coupler 120.
  • the process is implemented.
  • the processing in step 2 is continued until the magnitude of the reflection signal (the value of the reflection coefficient when a reflection coefficient is used instead of the reflection signal) becomes equal to or less than a predetermined threshold value.
  • step 1 of the impedance matching process will be described with reference to the flowchart of FIG.
  • a circuit not shown
  • a weak power that is, a power weaker than the rated power
  • the input impedance estimation unit 130 acquires the incident signal and the reflected signal extracted by the directional coupler 120 (step S101).
  • the input impedance estimation unit 130 calculates a complex reflection coefficient based on the acquired incident signal and reflected signal (step S102). It should be noted that various known modes can be applied to the method for calculating the complex reflection coefficient, and thus the description thereof is omitted.
  • the input impedance estimation unit 130 calculates an input impedance based on the calculated complex reflection coefficient (step S103).
  • the matching circuit set value calculation unit 140 is based on the calculated input impedance, and the theoretical values related to the variable inductor L and a part of the variable capacitors C1 and C2 for matching the output impedance and the input impedance. Is calculated (step S104).
  • the matching circuit set value calculation unit 140 sets values related to a part of the variable inductor L and the variable capacitors C1 and C2 so as to be a value corresponding to the calculated theoretical value (step S105).
  • variable matching circuit 110 for which the theoretical value is calculated in the process of step S104 will be described.
  • variable matching circuit 110 When the impedance point Zin on the Smith chart corresponding to the input impedance calculated in the process of step S103 is included in the area A surrounded by a thick line as shown in FIG. 4A, the variable matching circuit 110 The theoretical values relating to the variable inductor L and the variable capacitor C1 (see FIG. 4B) are calculated.
  • the obtained correction amounts A1 and A2 become theoretical values related to the variable capacitor C1 and the variable inductor L, respectively.
  • the obtained correction amounts B1 and B2 become theoretical values relating to the variable inductor L and the variable capacitor C2, respectively.
  • step 2 of the impedance matching process will be described with reference to the flowcharts of FIGS.
  • the threshold values in FIGS. 6 and 7 are all the same value.
  • the matching circuit set value calculation unit 140 first determines whether or not the absolute value “
  • step S201 When it is determined that the absolute value of the reflected signal is larger than the threshold value (step S201: No), the matching circuit setting value calculation unit 140 temporarily sets the values of the variable inductor L and the variable capacitor C2 to “L + ⁇ L” and It is changed to “C2 + ⁇ C2” (step S202). Subsequently, the matching circuit set value calculation unit 140 determines whether or not the absolute value of the reflected signal after the temporary change is equal to or less than a threshold value (step S203).
  • the matching circuit setting value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C2 to “L + ⁇ L” and It is changed to “C2 + ⁇ C2” (step S204). At this time, the value of the variable capacitor C1 is not changed (that is, the initial value is maintained).
  • the matching circuit setting value calculation unit 140 stores the absolute value of the reflected signal after provisional change in, for example, a memory (not shown). The value is stored as the value of the parameter Gamma1 (step S205).
  • step S206 the matching circuit set value calculation unit 140 tentatively changes the values of the variable inductor L and the variable capacitor C2 to “L + ⁇ L” and “C2 ⁇ C2” (step S206).
  • step S206 the value after the change in the process of step S202 is not further changed, but is changed after being temporarily returned to the initial value before the process of step S206 (hereinafter, referred to as “step S206”). the same).
  • the matching circuit set value calculation unit 140 determines whether or not the absolute value of the reflected signal after the temporary change is equal to or less than a threshold value (step S207). When it is determined that the absolute value of the reflected signal is equal to or less than the threshold (step S207: Yes), the matching circuit setting value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C2 to “L + ⁇ L” and It is changed to “C2 ⁇ C2” (step S208).
  • the matching circuit setting value calculation unit 140 stores the absolute value of the reflected signal after the temporary change in the parameter Gamma2 in, for example, a memory or the like. (Step S209). Next, the matching circuit set value calculation unit 140 tentatively changes the values of the variable inductor L and the variable capacitor C2 to “L ⁇ L” and “C2 + ⁇ C2” (step S210).
  • the matching circuit set value calculation unit 140 determines whether or not the absolute value of the reflected signal after the temporary change is equal to or less than a threshold value (step S211). When it is determined that the absolute value of the reflected signal is equal to or smaller than the threshold value (step S211: Yes), the matching circuit setting value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C2 to “L ⁇ L”. And “C2 + ⁇ C2” (step S212).
  • the matching circuit setting value calculation unit 140 sets the absolute value of the reflected signal after provisional change in the parameter Gamma3, for example, in a memory or the like. (Step S213).
  • the matching circuit set value calculation unit 140 tentatively changes the values of the variable inductor L and the variable capacitor C2 to “L ⁇ L” and “C2 ⁇ C2” (step S214).
  • the matching circuit set value calculation unit 140 determines whether or not the absolute value of the reflected signal after the temporary change is equal to or less than a threshold value (step S215). When it is determined that the absolute value of the reflected signal is equal to or smaller than the threshold (step S215: Yes), the matching circuit setting value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C2 to “L ⁇ L”. "And" C2- ⁇ C2 "(step S216).
  • the matching circuit setting value calculation unit 140 sets the absolute value of the reflected signal after the temporary change to the parameter Gamma4 in, for example, a memory or the like. (Step S217). Next, the matching circuit set value calculation unit 140 tentatively changes the values of the variable inductor L and the variable capacitor C1 to “L + ⁇ L” and “C1 + ⁇ C1” (step S218) (see FIG. 7).
  • the matching circuit set value calculation unit 140 determines whether or not the absolute value of the reflected signal after the temporary change is equal to or less than a threshold value (step S219). When it is determined that the absolute value of the reflected signal is equal to or smaller than the threshold value (step S219: Yes), the matching circuit setting value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C1 to “L + ⁇ L” and It is changed to “C1 + ⁇ C1” (step S220). At this time, the value of the variable capacitor C2 is not changed (that is, the initial value is maintained).
  • the matching circuit setting value calculation unit 140 stores the absolute value of the reflected signal after provisional change in the parameter Gamma5, for example, in a memory or the like. (Step S221). Next, the matching circuit set value calculation unit 140 tentatively changes the values of the variable inductor L and the variable capacitor C1 to “L + ⁇ L” and “C1 ⁇ C1” (step S222).
  • the matching circuit set value calculation unit 140 determines whether or not the absolute value of the reflected signal after the provisional change is equal to or less than a threshold value (step S223). When it is determined that the absolute value of the reflected signal is equal to or smaller than the threshold value (step S223: Yes), the matching circuit setting value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C1 to “L + ⁇ L” and It is changed to “C1 ⁇ C1” (step S224).
  • the matching circuit setting value calculation unit 140 stores the absolute value of the reflected signal after provisional change in the parameter Gamma6, for example, in a memory or the like. (Step S225). Next, the matching circuit setting value calculation unit 140 temporarily changes the values of the variable inductor L and the variable capacitor C1 to “L ⁇ L” and “C1 + ⁇ C1” (step S226).
  • the matching circuit set value calculation unit 140 determines whether or not the absolute value of the reflected signal after the provisional change is equal to or less than a threshold value (step S227). When it is determined that the absolute value of the reflected signal is equal to or smaller than the threshold (step S227: Yes), the matching circuit setting value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C1 to “L ⁇ L”. "And” C1 + ⁇ C1 "(step S228).
  • the matching circuit setting value calculation unit 140 stores the absolute value of the reflected signal after the temporary change in the parameter Gamma7, for example, in a memory or the like. (Step S229). Next, the matching circuit set value calculation unit 140 tentatively changes the values of the variable inductor L and the variable capacitor C1 to “L ⁇ L” and “C1 ⁇ C1” (step S230).
  • the matching circuit set value calculation unit 140 determines whether or not the absolute value of the reflected signal after the temporary change is equal to or less than a threshold value (step S231). When it is determined that the absolute value of the reflected signal is equal to or less than the threshold (step S231: Yes), the matching circuit setting value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C1 to “L ⁇ L”. "And" C1- ⁇ C1 "(step S232).
  • the matching circuit setting value calculation unit 140 stores the absolute value of the reflected signal after provisional change in the parameter Gamma8, for example, in a memory or the like. Is stored as a value (step S232).
  • the matching circuit set value calculation unit 140 searches for the minimum value of each of the stored parameters Gamma1 to Gamma8 (step S234). Subsequently, the matching circuit set value calculation unit 140 formally sets the values of the variable inductor L and the variable capacitor C1 or the values of the variable inductor L and the variable capacitor C2 corresponding to the searched minimum value ( That is, the initial value is updated) (step S235). Thereafter, the matching circuit set value calculation unit 140 performs the process of step S202 described above (see FIG. 6).
  • FIG. 8 is a state transition diagram showing the process of step 2 in the impedance matching process according to the first embodiment.
  • FIG. 9 is a diagram illustrating an example of the result of the impedance matching process according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of the result of the impedance matching process according to the comparative example.
  • FIG. 11 is a diagram illustrating another example of the result of the impedance matching process according to the first embodiment.
  • FIG. 12 is a diagram illustrating another example of the result of the impedance matching process according to the comparative example.
  • the time required until the impedance related to the transmission circuit 10 is matched by the impedance matching processing according to the present embodiment is 1.0 second.
  • the impedance matching process according to the present embodiment can match the impedance in a period of about one-third as compared with the impedance matching process according to the comparative example.
  • the time required for matching the impedance related to the transmission circuit 10 by the impedance matching processing according to the present embodiment is 3.4 seconds.
  • the time required until the impedance related to the transmission circuit 10 is matched by the impedance matching processing according to the comparative example is 7.8 seconds.
  • the impedance matching process according to the present embodiment can match the impedance in a period of about one half as compared with the impedance matching process according to the comparative example.
  • step 2 of the impedance matching process is “absolute value of reflected signal”.
  • the “absolute value of the reflected signal” may be read as “the absolute value of the complex reflection coefficient”.
  • step 2 of the impedance matching process according to the second embodiment will be described with reference to the flowchart of FIG.
  • impedance matching using the steepest descent method is performed.
  • the process of step 1 of the impedance matching process is the same as the process of step 1 of the impedance matching process according to the first embodiment described above, and a description thereof will be omitted.
  • the matching circuit set value calculation unit 140 sets initial values for variables L (m), C1 (m), and C2 (m) corresponding to the variable inductor L, variable capacitor C1, and variable capacitor C2, respectively.
  • Set (step S301) The initial values of the variables L (m), C1 (m), and C2 (m) are values obtained as a result of the process of step 1 of the impedance matching process.
  • the matching circuit set value calculation unit 140 sets each of the variable inductor L, the variable capacitor C1, and the variable capacitor C2 so as to correspond to the initial values of the variables L (m), C1 (m), and C2 (m).
  • the reflected power value Pr is acquired based on the reflected signal extracted by the directional coupler 120 (step S302).
  • the matching circuit set value calculation unit 140 calculates the values of the variable inductor L, the variable capacitor C1, and the variable capacitor C2 so as to correspond to the variable L (m + 1), the variable C1 (m + 1), and the variable C2 (m + 1).
  • the reflected power value Pr is set based on the reflected signal extracted by the directional coupler 120 (step S316).
  • the matching circuit set value calculation unit 140 determines whether or not the acquired reflected power value Pr is smaller than the threshold value Prthr (step S317). When it is determined that the acquired reflected power value Pr is smaller than the threshold value Prthr (step S317: Yes), the matching circuit setting value calculation unit 140 ends the process. On the other hand, when it is determined that the acquired reflected power value Pr is equal to or greater than the threshold value Prthr (step S317: No), the matching circuit set value calculation unit 140 performs the process of step S303 described above.
  • the present invention is not limited to the technical field of non-contact power transmission described in the above embodiment, but can be applied to, for example, the technical field of communication.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • a method and a computer program are also included in the technical scope of the present invention.
  • SYMBOLS 10 ... Transmission circuit, 11 ... Transmission antenna, 12 ... Transmission side circuit part, 13 ... Amplification part, 14 ... Transmission signal source 14, 20 ... Reception circuit, 21 ... Reception antenna, 22 ... Reception side circuit part, 23 ... Rectification circuit , 24 ... load device, 100 ... impedance matching device, 110 ... variable matching circuit, 120 ... directional coupler, 130 ... input impedance estimation unit, 140 ... matching circuit set value calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Networks Using Active Elements (AREA)
  • Amplifiers (AREA)

Abstract

 インピーダンス整合装置(100)は、送信アンテナ(11)と、該送信アンテナに対して電力を供給可能な電源(14)と、を備える送信回路(10)の送信アンテナの入力インピーダンスと、電源の出力インピーダンスとのインピーダンス整合を行う。インピーダンス整合装置は、複数の可変リアクタンス素子を有する整合回路(110)と、入射信号及び反射信号を抽出する入射信号・反射信号抽出回路(120)と、抽出された入射信号及び反射信号に基づいて入力インピーダンスを推定する推定手段(130)と、推定された入力インピーダンスに基づいて、出力インピーダンスと入力インピーダンスとが理論上整合するように複数の可変リアクタンス素子の一部に係る値を設定した後に、抽出された反射信号に応じて複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定手段(140)と、を備える。

Description

インピーダンス整合装置及び方法、並びにコンピュータプログラム
 本発明は、電気信号路に係るインピーダンス整合を行うインピーダンス整合装置及び方法、並びにコンピュータプログラムの技術分野に関する。
 この種の装置として、例えば、伝送線路の抵抗分及びコンダクタンスを検出して、該検出された抵抗分及びコンダクタンスに基づいて、インピーダンス可変要素を調整する装置が提案されている(特許文献1参照)。或いは、最急降下法等の再帰的な手法を用いた反復処理によりインピーダンス整合を行う装置が提案されている(特許文献2及び3参照)。
特開2001-274651号公報 特開2003-318636号公報 国際公開第2004/040693号
 特許文献1に記載の技術では、複素インピーダンスを示す円形の図表(所謂、スミスチャート)上の、例えば等レジスタンス円、等リアクタンス円、等コンダクタンス円、等サセプタンス円などに沿って、インピーダンス可変要素としての可変インダクタの値及び可変キャパシタの値を調整しているため、インピーダンス整合に比較的時間がかかるという技術的問題点がある。更に、実際の装置では、例えば電気回路の配線パターン間の寄生容量や配線パターン自身のインダクタンス成分等の影響がある。このため、適切にインピーダンス整合を行えない可能性があるという技術的問題点がある。
 特許文献2及び3に記載の技術では、初期値の選択によってインピーダンス整合にかかる時間が変化するという技術的問題点がある。
 本発明は、例えば上記問題点に鑑みてなされたものであり、配線パターンに起因する影響が存在しても、短時間で適切にインピーダンス整合を行うことができるインピーダンス整合装置及び方法、並びにコンピュータプログラムを提供することを課題とする。
 本発明のインピーダンス整合装置は、上記課題を解決するために、送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路の前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合装置であって、前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定手段と、前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定手段と、を備える。
 本発明のインピーダンス整合方法は、上記課題を解決するために、送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路上の、前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、を備えるインピーダンス整合装置において、前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合方法であって、前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定工程と、前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定工程と、を備える。
 本発明のコンピュータプログラムは、上記課題を解決するために、送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路上の、前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、を備え、前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合装置に搭載されたコンピュータを、前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定手段と、前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定手段と、として機能させる。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
第1実施例に係るインピーダンス整合装置の構成を示すブロック図である。 第1実施例に係るインピーダンス整合処理の概念を示す概念図である。 第1実施例に係るインピーダンス整合処理におけるステップ1の処理を示すフローチャートである。 第1実施例に係るインピーダンス整合処理におけるステップ1の処理の一具体例を説明する図である。 第1実施例に係るインピーダンス整合処理におけるステップ1の処理の他の具体例を説明する図である。 第1実施例に係るインピーダンス整合処理におけるステップ2の処理の一部を示すフローチャートである。 第1実施例に係るインピーダンス整合処理におけるステップ2の処理の他の部分を示すフローチャートである。 第1実施例に係るインピーダンス整合処理におけるステップ2の処理を示す状態遷移図である。 第1実施例に係るインピーダンス整合処理の結果の一例を示す図である。 比較例に係るインピーダンス整合処理の結果の一例を示す図である。 第1実施例に係るインピーダンス整合処理の結果の他の例を示す図である。 比較例に係るインピーダンス整合処理の結果の他の例を示す図である。 第2実施例に係るインピーダンス整合処理におけるステップ2の処理を示すフローチャートである。
 以下、本発明のインピーダンス整合装置及び方法、並びにコンピュータプログラムの各実施形態について説明する。
 (インピーダンス整合装置)
 実施形態に係るインピーダンス整合装置は、送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路の前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合装置であって、前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定手段と、前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記抽出された反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定手段と、を備える。
 実施形態に係るインピーダンス整合装置によれば、当該インピーダンス整合装置は、送信アンテナと、該送信アンテナに対して電力を供給可能な電源と、を備える送信回路の送信アンテナの入力インピーダンスと、電源の出力インピーダンスとのインピーダンス整合を行う。
 当該インピーダンス整合装置は、整合回路、入射信号・反射信号抽出回路、推定手段及び設定手段を備えて構成されている。
 整合回路は、電源と送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する。「電源と送信アンテナとの間に電気的に配置」とは、電気の流路上(回路図上)、電源と送信アンテナとの間に配置されることを意味し、物理的な配置は、電源と送信アンテナとの間でなくてもよい。
 入射信号・反射信号抽出回路は、電源と整合回路との間に電気的に配置され、電源から送信アンテナに向かって伝搬する電力である入射信号及び、送信アンテナから電源に向かって伝搬する電力である反射信号を抽出する。入射信号・反射信号抽出回路は、具体的には例えば、方向性結合器や、サーキュレータとアッテネータとを組み合わせた回路等である。
 例えばメモリ、プロセッサ等を備えてなる推定手段は、入射信号・反射信号抽出回路により抽出された入射信号及び反射信号に基づいて、送信アンテナの入力インピーダンスを推定する。尚、入力インピーダンスの推定には、公知の各種態様を適用可能である。一具体例としては、入力インピーダンスは、入射信号と反射信号との振幅比率や位相差等から推定される。
 例えばメモリ、プロセッサ等を備えてなる設定手段は、先ず、推定された入力インピーダンスに基づいて、電源の出力インピーダンスと送信アンテナの入力インピーダンスとが理論上整合するように、整合回路の複数の可変リアクタンス素子の一部に係る値を設定する。その後、設定手段は、抽出された反射信号に応じて複数の可変リアクタンス素子の少なくとも一つに係る値を調整する。
 ここで、本願発明者の研究によれば、以下の事項が判明している。即ち、インピーダンス整合処理は、整合回路を構成する、例えば可変インダクタや可変キャパシタの値を調整して、入力インピーダンスの値を、スミスチャート上の等レジスタンス円、等リアクタンス円などの理論的な円に沿って変化させ、最終的に整合ポイントまで移動させることが多い。しかしながら、この方法では、インピーダンス整合に時間がかかるおそれがある。
 加えて、実際の装置では、例えば電気回路の配線パターン間の寄生容量や配線パターン自身のインダクタンス成分等の影響により、入力インピーダンスに対応するインピーダンス点が、スミスチャート上の理論的な円に沿って変化しないおそれもある。また、インピーダンス整合処理に、最急降下法等の再帰的な手法を用いる方法では、初期値の選択によってインピーダンス整合にかかる時間が長くなるおそれがある。
 しかるに本実施形態では、上述の如く、設定手段により、推定された入力インピーダンスに基づいて、電源の出力インピーダンスと送信アンテナの入力インピーダンスとが理論上整合するように、整合回路の複数の可変リアクタンス素子の一部に係る値が設定される。その後、設定手段により、抽出された反射信号に応じて複数の可変リアクタンス素子の少なくとも一つに係る値が調整される。
 理論上インピーダンス整合がとれるように、複数の可変リアクタンス素子の一部に係る値が設定されることにより、入力インピーダンスに対応するインピーダンス点を、スミスチャート上の整合点付近まで移動させることができる。その後、反射信号に応じて(即ち、配線パターン間の寄生容量等の影響を含んだ状態で)複数の可変リアクタンス素子の少なくとも一つに係る値が調整されるので、反射信号に応じて調整する時間を大幅に短縮することができる。
 以上の結果、本実施形態に係るインピーダンス整合装置によれば、電気回路の配線パターンに起因する影響が存在しても、短時間で適切にインピーダンス整合を行うことができる。
 実施形態に係るインピーダンス整合装置の一態様では、前記整合回路は、前記複数の可変リアクタンス素子として、可変インダクタと、前記可変インダクタの一端に電気的に接続された第1の可変キャパシタと、前記可変インダクタの他端に電気的に接続された第2の可変キャパシタと、を有し、前記設定手段は、前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように、前記複数の可変リアクタンス素子の一部に係る値としての、前記可変インダクタに係る値と、前記第1の可変キャパシタ又は前記第2の可変キャパシタに係る値と、を設定する。
 この態様によれば、整合回路は、可変インダクタと、該可変インダクタの一端に電気的に接続された第1の可変キャパシタと、該可変インダクタの他端に電気的に接続された第2の可変キャパシタと、を有する、所謂π型整合回路である。
 設定手段は、推定手段により推定された入力インピーダンスに基づいて、出力インピーダンスと入力インピーダンスとが理論上整合するように、可変インダクタに係る値と、第1の可変キャパシタ又は第2の可変キャパシタに係る値と、を設定する。このように構成すれば、比較的容易にして、入力インピーダンスに対応するインピーダンス点をスミスチャート上の整合点付近まで移動させることができる。
 実施形態に係るインピーダンス整合装置の他の態様では、前記設定手段は、前記抽出された反射信号の大きさが第1閾値以下となるまで、前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する。
 この態様によれば、比較的容易にして、インピーダンス整合をとることができる。「第1閾値」は、複数の可変リアクタンス素子の少なくとも一つに係る値の調整を継続するか否かを決定する値であり、予め固定値として、或いは、何らかの物理量若しくはパラメータに応じた可変値として設定されている。
 「第1閾値」は、実験的若しくは経験的に、又はシミュレーションにより、例えば反射信号の大きさと、該反射信号が送信回路に与える影響との関係を求め、該求められた関係に基づいて、反射信号が送信回路に与える影響が許容範囲内となるような反射信号の大きさとして設定すればよい。
 この態様では、前記設定手段は、前記抽出された反射信号の大きさが前記第1閾値以下となった後、前記第1閾値より大きくなった場合、前記抽出された反射信号の大きさが再び前記第1閾値以下となるまで、前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整してよい。
 このように構成すれば、送信回路の動作中にインピーダンス整合が崩れた場合にも、適切にインピーダンス整合をとることができ、実用上非常に有利である。
 或いは、本実施形態に係るインピーダンス整合装置の他の態様では、前記推定手段は、前記抽出された入射信号及び反射信号に基づいて反射係数を逐次推定し、前記設定手段は、前記抽出された反射信号に代えて、前記推定された反射係数の大きさが第2閾値以下となるまで、前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する。
 この態様によれば、比較的容易にして、インピーダンス整合をとることができる。「第2閾値」は、複数の可変リアクタンス素子の少なくとも一つに係る値を調整を継続するか否かを決定する値であり、予め固定値として、或いは、何らかの物理量若しくはパラメータに応じた可変値として設定されている。
 「第2閾値」は、実験的若しくは経験的に、又はシミュレーションにより、例えば反射係数の大きさと、該反射係数が送信回路に与える影響との関係を求め、該求められた関係に基づいて、反射係数が送信回路に与える影響が許容範囲内となるような反射係数の大きさとして設定すればよい。
 この態様では、前記設定手段は、前記推定された反射係数の大きさが前記第2閾値以下となった後、前記第2閾値より大きくなった場合、前記推定された反射係数の大きさが再び前記第2閾値以下となるまで、前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整してよい。
 このように構成すれば、送信回路の動作中にインピーダンス整合が崩れた場合にも、適切にインピーダンス整合をとることができ、実用上非常に有利である。
 本実施形態に係るインピーダンス整合装置の他の態様では、前記送信回路は、前記送信アンテナと対向して配置される受信アンテナを備える受信回路に対し、非接触で電力を伝送可能な回路であり、前記設定手段は、前記送信回路から前記受信回路へ電力が伝送されている際に、前記抽出された反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する。
 この態様によれば、送信回路は、該送信回路の送信アンテナと対向して配置される受信アンテナを備える受信回路に対して、非接触で電力を伝送可能に構成されている。ここで、送信回路から受信回路に対して電力伝送を行う場合、例えばバッテリ等の受信回路側の負荷の値が変化することに起因して、送信回路のインピーダンス整合が崩れることが、本願発明者の研究により判明している。
 しかるに本実施形態では、設定手段により、送信回路から受信回路へ電力が伝送されている際に、抽出された反射信号に応じて複数の可変リアクタンス素子の少なくとも一つに係る値が調整される。この結果、送信回路から受信回路への電力伝送中であっても適切にインピーダンス整合を行うことができる。
 (インピーダンス整合方法)
 実施形態に係るインピーダンス整合方法は、送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路上の、前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、を備えるインピーダンス整合装置において、前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合方法であって、前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定工程と、前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記抽出された反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定工程と、を備える。
 実施形態に係るインピーダンス整合方法によれば、上述した実施形態に係るインピーダンス整合装置と同様に、電気回路の配線パターンに起因する影響が存在しても、短時間で適切にインピーダンス整合を行うことができる。
 尚、実施形態に係るインピーダンス整合方法においても、上述した実施形態に係るインピーダンス整合装置における各種態様と同様の各種態様を採ることができる。
 (コンピュータプログラム)
 実施形態に係るコンピュータプログラムは、送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路上の、前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、を備え、前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合装置に搭載されたコンピュータを、前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定手段と、前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記抽出された反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定手段と、として機能させる。
 本発明のコンピュータプログラムによれば、当該コンピュータプログラムを格納するRAM(Random Access Memory)、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(DVD Read Only Memory)等の記録媒体から、当該コンピュータプログラムを、インピーダンス整合装置に備えられたコンピュータに読み込んで実行させれば、或いは、当該コンピュータプログラムを、通信手段を介してダウンロードさせた後に実行させれば、上述した実施形態に係るインピーダンス整合装置を比較的容易にして実現できる。これにより、上述した実施形態に係るインピーダンス整合装置と同様に、電気回路の配線パターンに起因する影響が存在しても、短時間で適切にインピーダンス整合を行うことができる。
 <第1実施例>
 本発明のインピーダンス整合装置に係る第1実施例について、図1乃至図12に基づいて説明する。
 (装置の構成)
 第1実施例に係るインピーダンス整合装置の構成を、図1を参照して説明する。図1は、第1実施例に係るインピーダンス整合装置の構成を示すブロック図である。
 図1において、送信回路10は、送信アンテナ11及び送信側回路部12を備えて構成されている。送信側回路部12は、増幅部13及び送信信号源14を備えて構成されている。受信回路20は、受信アンテナ21及び受信側回路部22を備えて構成されている。受信側回路部22は、整流回路23及び負荷装置24を備えて構成されている。
 送信アンテナ11と受信アンテナ21とが、所定の距離を隔てて対向配置された状態で、送信信号源14から送信アンテナ11に信号(電力)が供給されると、送信アンテナ11から受信アンテナ21へ、例えば電磁共鳴方式等により非接触で電力が伝送される。受信回路20では、受信アンテナ21を介して受信した電力が、例えばバッテリ等である負荷装置24に供給される。
 インピーダンス整合装置100は、送信アンテナ11と送信側回路部12との間に電気的に配置された可変整合回路110と、該可変整合回路110と送信側回路部12との間に電気的に配置された方向性結合器120と、入力インピーダンス推定部130と、整合回路設定値算出部140と、を備えて構成されている。
 可変整合回路110は、可変インダクタLと、該可変インダクタLの一端に電気的に接続された可変キャパシタC1と、該可変インダクタLの他端に電気的に接続された可変キャパシタC2と、を備えて構成されている。つまり、可変整合回路110は、π型整合回路である。尚、可変整合回路110は、π型整合回路に限らず、例えばL型、逆L型、T型等の各種態様を採ることができる。
 可変インダクタL、並びに可変キャパシタC1及びC2は、可変インダクタ素子や可変キャパシタ素子に限らず、例えば、互いに値の異なる複数の固定容量型のインダクタやキャパシタを、メカニカルリレー若しくは半導体リレー、又はMEMS(Micor Electro Mechanical System)スイッチ等により電気的に直列又は並列に接続することにより実現されてよい。可変キャパシタC1及びC2は、バリアブルコンデンサ(所謂バリコン)の回転軸をステッピングモータ等で回転させ、所望の容量値が得られる構成としてもよい。
 方向性結合器120は、送信側回路部12から送信アンテナ11に向かって伝搬する信号である入射信号と、送信アンテナ11から送信側回路部12に向かって伝搬する信号である反射信号と、を抽出する。尚、方向性結合器120に代えて、サーキュレータとアッテネータとを組み合わせた回路等を用いてもよい。
 入力インピーダンス推定部130は、方向性結合器120により抽出された入射信号及び反射信号に基づいて、送信アンテナ11の入力インピーダンスを推定する。尚、入力インピーダンスは、例えば入射信号と反射信号との振幅比率や位相差等から推定すればよい。
 整合回路設定値算出部140は、推定された入力インピーダンスに基づいて、出力インピーダンスと入力インピーダンスとが理論上整合するように、可変整合回路110を構成する可変インダクタL並びに可変キャパシタC1及びC2のうち一部に係る値を設定する。その後、整合回路設定値算出部140は、方向性結合器120により抽出された反射信号に応じて、可変インダクタL並びに可変キャパシタC1及びC2の少なくとも一つに係る値を調整する。
 尚、入力インピーダンス推定部130は、入射信号及び反射信号に基づいて、複素反射係数も算出する。整合回路設定値算出部140が、反射信号に代えて、算出された複素反射係数に応じて、可変インダクタL並びに可変キャパシタC1及びC2の少なくとも一つに係る値を調整するように構成してもよい。
 本実施例に係る「送信信号源14」、「方向性結合器120」、「入力インピーダンス推定部130」及び「整合回路設定値算出部140」は、夫々、本発明に係る「電源」、「入射信号・反射信号抽出部」、「推定手段」及び「設定手段」の一例である。本実施例に係る「可変インダクタL、並びに可変キャパシタC1及びC2」は、本発明に係る「複数の可変リアクタンス素子」の一例である。
 (インピーダンス整合処理)
 次に、上述の如く構成されたインピーダンス整合装置100において実施されるインピーダンス整合処理について、詳しく説明する。
 先ず、図2を参照して、本実施例に係るインピーダンス整合処理の概念について説明する。図2は、第1実施例に係るインピーダンス整合処理の概念を示す概念図である。図2中の円は、スミスチャートを示している。
 本実施例に係るインピーダンス整合処理では、整合回路設定値算出部140により、先ず、入力インピーダンス推定部130により推定された入力インピーダンス(図2中の“Zin”参照)に基づいて、出力インピーダンスと入力インピーダンスとが理論上整合するように、可変整合回路110を構成する可変インダクタL並びに可変キャパシタC1及びC2のうち一部に係る値が設定される(図2中では、可変インダクタL及び可変キャパシタC2に係る値を設定)、ステップ1の処理が実施される。
 次に、整合回路設定値算出部140により、方向性結合器120により抽出された反射信号に応じて、可変インダクタL並びに可変キャパシタC1及びC2の少なくとも一つに係る値が調整される、ステップ2の処理が実施される。このステップ2の処理は、反射信号の大きさ(反射信号に代えて反射係数を用いる場合には、反射係数の値)が所定の閾値以下となるまで継続される。
 次に、インピーダンス整合処理のステップ1の処理について、図3のフローチャートを参照して説明を加える。尚、ステップ1の処理の開始前には、例えば可変整合回路110を迂回する回路(図示せず)等により、可変整合回路110に入射信号及び反射信号が供給されないようにされる。また、インピーダンス整合処理が終了するまでは、送信アンテナ11から受信アンテナ21へ電力伝送が行われる場合に比べて微弱な電力(即ち、定格電力よりも弱い電力)が、送信信号源14から出力される。
 図3において、先ず、入力インピーダンス推定部130は、方向性結合器120により抽出された入射信号及び反射信号を取得する(ステップS101)。次に、入力インピーダンス推定部130は、取得された入射信号及び反射信号に基づいて、複素反射係数を算出する(ステップS102)。尚、複素反射係数の算出方法には、公知の各種態様を適用可能であるので説明を割愛する。
 次に、入力インピーダンス推定部130は、算出された複素反射係数に基づいて、入力インピーダンスを算出する(ステップS103)。続いて、整合回路設定値算出部140は、算出された入力インピーダンスに基づいて、出力インピーダンスと入力インピーダンスとを整合させるための、可変インダクタL、並びに可変キャパシタC1及びC2の一部に係る理論値を算出する(ステップS104)。
 次に、整合回路設定値算出部140は、算出された理論値に対応する値となるように、可変インダクタL、並びに可変キャパシタC1及びC2の一部に係る値を設定する(ステップS105)。
 ここで、上記ステップS104の処理において理論値が算出される可変整合回路110の要素について説明する。
 上記ステップS103の処理において算出された入力インピーダンスに対応するスミスチャート上のインピーダンス点Zinが、図4(a)に示すように、太線で囲われた領域Aに含まれる場合、可変整合回路110の可変インダクタL及び可変キャパシタC1(図4(b)参照)に係る理論値が算出される。
 具体的には例えば、先ず、スミスチャート上においてインピーダンス点Zinを、時計回りに回転させて、“r=1”の等レジスタンス円との交点Rが求められる。そして、インピーダンス点Zinを交点Rまで移動させるために必要な補正量A1が求められる。次に、インピーダンス点Zinを、“r=1”の等レジスタンス円に沿って、交点Rから整合点Pまで移動させるために必要な補正量A2が求められる。該求められた補正量A1及びA2が、夫々、可変キャパシタC1及び可変インダクタLに係る理論値になる。
 他方、算出された入力インピーダンスに対応するスミスチャート上のインピーダンス点Zinが、図5(a)に示すように、太線で囲われた領域Bに含まれる場合、可変整合回路110の可変インダクタL及び可変キャパシタC2(図5(b)参照)に係る理論値が算出される。
 具体的には例えば、先ず、スミスチャート上においてインピーダンス点Zinを、時計回りに回転させて、“g=1”の等コンダクタンス円との交点Qが求められる。そして、インピーダンス点Zinを交点Qまで移動させるために必要な補正量B1が求められる。次に、インピーダンス点Zinを、“g=1”の等コンダクタンス円に沿って、交点Qから整合点Pまで移動させるために必要な補正量B2が求められる。該求められた補正量B1及びB2が、夫々、可変インダクタL及び可変キャパシタC2に係る理論値になる。
 ところで、実際の回路には、例えば配線パターン間の寄生容量、配線パターン自身のインダクタンス成分等が存在するため、上述したインピーダンス整合処理のステップ1の処理だけでは、出力インピーダンスと入力インピーダンスとの整合がとれないことが多い。しかしながら、ステップ1の処理を行うことで、インピーダンス点Zinを、スミスチャート上における整合点付近まで移動させることができる。このため、ステップ1の処理の結果を、後述するインピーダンス整合処理のステップ2の処理の初期値として用いることにより、該ステップ2の処理に要する時間を短縮することが可能となる。
 次に、インピーダンス整合処理のステップ2の処理について、図6及び図7のフローチャートを参照して説明を加える。尚、図6及び図7における閾値は、全て同一の値である。
 図6において、先ず、整合回路設定値算出部140は、方向性結合器120により抽出された反射信号の絶対値“|Γ|”が閾値以下であるか否かを判定する(ステップS201)。反射信号の絶対値が閾値以下であると判定された場合(ステップS201:Yes)、整合回路設定値算出部140は、再びステップS201の処理を実施する。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS201:No)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC2各々の値を、暫定的に、“L+ΔL”及び“C2+ΔC2”に変更する(ステップS202)。続いて、整合回路設定値算出部140は、該暫定的な変更の後の反射信号の絶対値が閾値以下であるか否かを判定する(ステップS203)。
 反射信号の絶対値が閾値以下であると判定された場合(ステップS203:Yes)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC2各々の値を、正式に、“L+ΔL”及び“C2+ΔC2”に変更する(ステップS204)。この際、可変キャパシタC1の値は変更されない(即ち、初期値のままである)。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS203:No)、整合回路設定値算出部140は、例えばメモリ(図示せず)等に、暫定的な変更後の反射信号の絶対値を、パラメータGamma1の値として格納する(ステップS205)。
 次に、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC2各々の値を、暫定的に、“L+ΔL”及び“C2-ΔC2”に変更する(ステップS206)。尚、ステップS206の処理では、上記ステップS202の処理で変更された後の値が更に変更されるのではなく、ステップS206の処理の前に一旦初期値に戻された後に変更される(以降、同じ)。
 整合回路設定値算出部140は、該暫定的な変更の後の反射信号の絶対値が閾値以下であるか否かを判定する(ステップS207)。反射信号の絶対値が閾値以下であると判定された場合(ステップS207:Yes)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC2各々の値を、正式に、“L+ΔL”及び“C2-ΔC2”に変更する(ステップS208)。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS207:No)、整合回路設定値算出部140は、例えばメモリ等に、暫定的な変更後の反射信号の絶対値を、パラメータGamma2の値として格納する(ステップS209)。次に、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC2各々の値を、暫定的に、“L-ΔL”及び“C2+ΔC2”に変更する(ステップS210)。
 整合回路設定値算出部140は、該暫定的な変更の後の反射信号の絶対値が閾値以下であるか否かを判定する(ステップS211)。反射信号の絶対値が閾値以下であると判定された場合(ステップS211:Yes)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC2各々の値を、正式に、“L-ΔL”及び“C2+ΔC2”に変更する(ステップS212)。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS211:No)、整合回路設定値算出部140は、例えばメモリ等に、暫定的な変更後の反射信号の絶対値を、パラメータGamma3の値として格納する(ステップS213)。次に、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC2各々の値を、暫定的に、“L-ΔL”及び“C2-ΔC2”に変更する(ステップS214)。
 整合回路設定値算出部140は、該暫定的な変更の後の反射信号の絶対値が閾値以下であるか否かを判定する(ステップS215)。反射信号の絶対値が閾値以下であると判定された場合(ステップS215:Yes)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC2各々の値を、正式に、“L-ΔL”及び“C2-ΔC2”に変更する(ステップS216)。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS216:No)、整合回路設定値算出部140は、例えばメモリ等に、暫定的な変更後の反射信号の絶対値を、パラメータGamma4の値として格納する(ステップS217)。次に、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC1各々の値を、暫定的に、“L+ΔL”及び“C1+ΔC1”に変更する(ステップS218)(図7参照)。
 整合回路設定値算出部140は、該暫定的な変更の後の反射信号の絶対値が閾値以下であるか否かを判定する(ステップS219)。反射信号の絶対値が閾値以下であると判定された場合(ステップS219:Yes)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC1各々の値を、正式に、“L+ΔL”及び“C1+ΔC1”に変更する(ステップS220)。この際、可変キャパシタC2の値は変更されない(即ち、初期値のままである)。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS219:No)、整合回路設定値算出部140は、例えばメモリ等に、暫定的な変更後の反射信号の絶対値を、パラメータGamma5の値として格納する(ステップS221)。次に、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC1各々の値を、暫定的に、“L+ΔL”及び“C1-ΔC1”に変更する(ステップS222)。
 整合回路設定値算出部140は、該暫定的な変更の後の反射信号の絶対値が閾値以下であるか否かを判定する(ステップS223)。反射信号の絶対値が閾値以下であると判定された場合(ステップS223:Yes)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC1各々の値を、正式に、“L+ΔL”及び“C1-ΔC1”に変更する(ステップS224)。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS223:No)、整合回路設定値算出部140は、例えばメモリ等に、暫定的な変更後の反射信号の絶対値を、パラメータGamma6の値として格納する(ステップS225)。次に、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC1各々の値を、暫定的に、“L-ΔL”及び“C1+ΔC1”に変更する(ステップS226)。
 整合回路設定値算出部140は、該暫定的な変更の後の反射信号の絶対値が閾値以下であるか否かを判定する(ステップS227)。反射信号の絶対値が閾値以下であると判定された場合(ステップS227:Yes)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC1各々の値を、正式に、“L-ΔL”及び“C1+ΔC1”に変更する(ステップS228)。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS227:No)、整合回路設定値算出部140は、例えばメモリ等に、暫定的な変更後の反射信号の絶対値を、パラメータGamma7の値として格納する(ステップS229)。次に、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC1各々の値を、暫定的に、“L-ΔL”及び“C1-ΔC1”に変更する(ステップS230)。
 整合回路設定値算出部140は、該暫定的な変更の後の反射信号の絶対値が閾値以下であるか否かを判定する(ステップS231)。反射信号の絶対値が閾値以下であると判定された場合(ステップS231:Yes)、整合回路設定値算出部140は、可変インダクタL及び可変キャパシタC1各々の値を、正式に、“L-ΔL”及び“C1-ΔC1”に変更する(ステップS232)。
 反射信号の絶対値が閾値より大きいと判定された場合(ステップS231:No)、整合回路設定値算出部140は、例えばメモリ等に、暫定的な変更後の反射信号の絶対値を、パラメータGamma8の値として格納する(ステップS232)。
 次に、整合回路設定値算出部140は、格納されたパラメータGamma1~Gamma8各々の値の最小値を探索する(ステップS234)。続いて、整合回路設定値算出部140は、探索された最小値に対応する、可変インダクタL及び可変キャパシタC1各々の値、或いは可変インダクタL及び可変キャパシタC2各々の値を、正式に設定する(即ち、初期値が更新される)(ステップS235)。その後、整合回路設定値算出部140は、上述したステップS202の処理(図6参照)を実施する。
 尚、図6及び図7のフローチャートを、状態遷移図として表わすと図8のようになる。図8は、第1実施例に係るインピーダンス整合処理におけるステップ2の処理を示す状態遷移図である。
 (効果)
 次に、本実施例に係るインピーダンス整合処理の効果について、図9乃至図12を参照して説明する。図9は、第1実施例に係るインピーダンス整合処理の結果の一例を示す図である。図10は、比較例に係るインピーダンス整合処理の結果の一例を示す図である。図11は、第1実施例に係るインピーダンス整合処理の結果の他の例を示す図である。図12は、比較例に係るインピーダンス整合処理の結果の他の例を示す図である。
 図9及び図10に示した例は、送信アンテナ11の入力インピーダンスの初期値が22Ωである場合(即ち、入力インピーダンスの初期値に対応するインピーダンス点Zinが、スミスチャート上の領域B(図5参照)にある場合)の例である。この場合、本実施例に係るインピーダンス整合処理のステップ1の処理(図3参照)では、可変インダクタL及び可変キャパシタC2の理論値が算出される。
 図9に示すように、本実施例に係るインピーダンス整合処理により、送信回路10に係るインピーダンスが整合されるまでにかかる時間は、1.0秒である。他方で、図10に示すように、比較例に係るインピーダンス整合処理により、送信回路10に係るインピーダンスが整合されるまでにかかる時間は、3.2秒である。このように、本実施例に係るインピーダンス整合処理は、比較例に係るインピーダンス整合処理に比べ、約3分の1の期間でインピーダンスを整合させることができる。
 図11及び図12に示した例は、送信アンテナ11の入力インピーダンスの初期値が220Ωである場合(即ち、入力インピーダンスの初期値に対応するインピーダンス点Zinが、スミスチャート上の領域A(図4参照)にある場合)の例である。この場合、本実施例に係るインピーダンス整合処理のステップ1の処理では、可変インダクタL及び可変キャパシタC1の理論値が算出される。
 図11に示すように、本実施例に係るインピーダンス整合処理により、送信回路10に係るインピーダンスが整合されるまでにかかる時間は、3.4秒である。他方で、図12に示すように、比較例に係るインピーダンス整合処理により、送信回路10に係るインピーダンスが整合されるまでにかかる時間は、7.8秒である。このように、本実施例に係るインピーダンス整合処理は、比較例に係るインピーダンス整合処理に比べ、約2分の1の期間でインピーダンスを整合させることができる。
 尚、上述した本実施例に係るインピーダンス整合処理のステップ2に係る説明では、“|Γ|”を「反射信号の絶対値」としたが、反射信号に変えて複素反射係数を用いる場合、「反射信号の絶対値」を「複素反射係数の絶対値」と読み替えればよい。
 <第2実施例>
 本発明のインピーダンス整合装置に係る第2実施例について、図13に基づいて説明する。尚、第2実施例では、インピーダンス整合処理の一部が異なる以外は、上述した第1実施例と同様であるので、重複する説明を適宜省略し、基本的に第1実施例と異なる点について図13に基づいて説明する。
 (インピーダンス整合処理)
 第2実施例に係るインピーダンス整合処理のステップ2の処理について、図13のフローチャートを参照して説明する。本実施例では、最急降下法を用いたインピーダンス整合が実施される。尚、インピーダンス整合処理のステップ1の処理は、上述した第1実施例に係るインピーダンス整合処理のステップ1の処理と同様であるので説明を省略する。
 図13において、先ず、整合回路設定値算出部140は、可変インダクタL、可変キャパシタC1及び可変キャパシタC2各々に対応する変数L(m)、C1(m)及びC2(m)各々に初期値をセットする(ステップS301)。尚、変数L(m)、C1(m)及びC2(m)各々の初期値は、インピーダンス整合処理のステップ1の処理の結果得られた値である。
 次に、整合回路設定値算出部140は、変数L(m)、C1(m)及びC2(m)各々の初期値に対応するように、可変インダクタL、可変キャパシタC1及び可変キャパシタC2各々の値を設定した後、方向性結合器120により抽出された反射信号に基づいて、反射電力値Prを取得する(ステップS302)。尚、反射電力値Prは、反射信号の絶対値の二乗と、入射電力値Pinとの積として求められる(即ち、Pr=|Γ|×Pin)。
 次に、整合回路設定値算出部140は、可変インダクタLの値を、Ltmp(=L(m)+ΔL)に変更する(ステップS303)。尚、この際、可変キャパシタC1及びC2の値は変更されない(即ち、初期値のままである)。
 整合回路設定値算出部140は、可変インダクタLの値を変更した後、方向性結合器120により抽出された反射信号に基づいて、反射電力値Prtmpを取得する(ステップS304)。次に、整合回路設定値算出部140は、反射電力値Prと反射電力値Prtmpとの差分ΔPrを算出する(ステップS305)。続いて、整合回路設定値算出部140は、勾配gradL(=ΔPr/ΔL)を算出する(ステップS306)。
 次に、整合回路設定値算出部140は、可変キャパシタC1の値を、C1tmp(=C1(m)+ΔC)に変更する(ステップS307)。尚、この際、可変インダクタL及び可変キャパシタC2の値は変更されない(即ち、初期値のままである)。
 整合回路設定値算出部140は、可変キャパシタC1の値を変更した後、方向性結合器120により抽出された反射信号に基づいて、反射電力値Prtmpを取得する(ステップS308)。次に、整合回路設定値算出部140は、反射電力値Prと反射電力値Prtmpとの差分ΔPrを算出する(ステップS309)。続いて、整合回路設定値算出部140は、勾配gradC1(=ΔPr/ΔC)を算出する(ステップS310)。
 次に、整合回路設定値算出部140は、可変キャパシタC2の値を、C2tmp(=C2(m)+ΔC)に変更する(ステップS311)。尚、この際、可変インダクタL及び可変キャパシタC1の値は変更されない(即ち、初期値のままである)。
 整合回路設定値算出部140は、可変キャパシタC2の値を変更した後、方向性結合器120により抽出された反射信号に基づいて、反射電力値Prtmpを取得する(ステップS312)。次に、整合回路設定値算出部140は、反射電力値Prと反射電力値Prtmpとの差分ΔPrを算出する(ステップS313)。続いて、整合回路設定値算出部140は、勾配gradC2(=ΔPr/ΔC)を算出する(ステップS314)。
 次に、整合回路設定値算出部140は、可変インダクタL、可変キャパシタC1及び可変キャパシタC2各々に対応する新たな変数L(m+1)(=変数L(m)+α・gradL)、変数C1(m+1)(=変数C1(m)+α・gradC1)、及び変数C2(m+1)(=変数C2(m)+α・gradC2)各々を求める(ステップS315)。尚、“α”は所定の比例定数である。
 次に、整合回路設定値算出部140は、変数L(m+1)、変数C1(m+1)及び変数C2(m+1)に対応するように、可変インダクタL、可変キャパシタC1及び可変キャパシタC2各々の値を設定して、方向性結合器120により抽出された反射信号に基づいて反射電力値Prを取得する(ステップS316)。
 次に、整合回路設定値算出部140は、取得された反射電力値Prが、閾値Prthrより小さいか否かを判定する(ステップS317)。取得された反射電力値Prが、閾値Prthrより小さいと判定された場合(ステップS317:Yes)、整合回路設定値算出部140は、処理を終了する。他方、取得された反射電力値Prが、閾値Prthr以上であると判定された場合(ステップS317:No)、整合回路設定値算出部140は、上述したステップS303の処理を実施する。
 尚、本発明は、上記実施例で挙げた非接触電力伝送の技術分野に限らず、例えば通信の技術分野にも適用可能である。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うインピーダンス整合装置及び方法、並びにコンピュータプログラムもまた本発明の技術的範囲に含まれるものである。
 10…送信回路、11…送信アンテナ、12…送信側回路部、13…増幅部、14…送信信号源14、20…受信回路、21…受信アンテナ、22…受信側回路部、23…整流回路、24…負荷装置、100…インピーダンス整合装置、110…可変整合回路、120…方向性結合器、130…入力インピーダンス推定部、140…整合回路設定値算出部

Claims (9)

  1.  送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路の前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合装置であって、
     前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、
     前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、
     前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定手段と、
     前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記抽出された反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定手段と、
     を備えることを特徴とするインピーダンス整合装置。
  2.  前記整合回路は、前記複数の可変リアクタンス素子として、可変インダクタと、前記可変インダクタの一端に電気的に接続された第1の可変キャパシタと、前記可変インダクタの他端に電気的に接続された第2の可変キャパシタと、を有し、
     前記設定手段は、前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように、前記複数の可変リアクタンス素子の一部に係る値としての、前記可変インダクタに係る値と、前記第1の可変キャパシタ又は前記第2の可変キャパシタに係る値と、を設定する
     ことを特徴とする請求項1に記載のインピーダンス整合装置。
  3.  前記設定手段は、前記抽出された反射信号の大きさが第1閾値以下となるまで、前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整することを特徴とする請求項1に記載のインピーダンス整合装置。
  4.  前記設定手段は、前記抽出された反射信号の大きさが前記第1閾値以下となった後、前記第1閾値より大きくなった場合、前記抽出された反射信号の大きさが再び前記第1閾値以下となるまで、前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整することを特徴とする請求項3に記載のインピーダンス整合装置。
  5.  前記推定手段は、前記抽出された入射信号及び反射信号に基づいて反射係数を逐次推定し、
     前記設定手段は、前記抽出された反射信号に代えて、前記推定された反射係数の大きさが第2閾値以下となるまで、前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する
     ことを特徴とする請求項1に記載のインピーダンス整合装置。
  6.  前記設定手段は、前記推定された反射係数の大きさが前記第2閾値以下となった後、前記第2閾値より大きくなった場合、前記推定された反射係数の大きさが再び前記第2閾値以下となるまで、前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整することを特徴とする請求項5に記載のインピーダンス整合装置。
  7.  前記送信回路は、前記送信アンテナと対向して配置される受信アンテナを備える受信回路に対し、非接触で電力を伝送可能な回路であり、
     前記設定手段は、前記送信回路から前記受信回路へ電力が伝送されている際に、前記抽出された反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する
     ことを特徴とする請求項1に記載のインピーダンス整合装置。
  8.  送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路上の、前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、を備えるインピーダンス整合装置において、前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合方法であって、
     前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定工程と、
     前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記抽出された反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定工程と、
     を備えることを特徴とするインピーダンス整合方法。
  9.  送信アンテナと、前記送信アンテナに対して電力を供給可能な電源と、を備える送信回路上の、前記電源と前記送信アンテナとの間に電気的に配置され、複数の可変リアクタンス素子を有する整合回路と、前記電源と前記整合回路との間に電気的に配置され、前記電源から前記送信アンテナに向かって伝搬する電力である入射信号及び、前記送信アンテナから前記電源に向かって伝搬する電力である反射信号を抽出する入射信号・反射信号抽出回路と、を備え、前記送信アンテナの入力インピーダンスと、前記電源の出力インピーダンスとのインピーダンス整合を行うインピーダンス整合装置に搭載されたコンピュータを、
     前記抽出された入射信号及び反射信号に基づいて前記入力インピーダンスを推定する推定手段と、
     前記推定された入力インピーダンスに基づいて、前記出力インピーダンスと前記入力インピーダンスとが理論上整合するように前記複数の可変リアクタンス素子の一部に係る値を設定した後に、前記抽出された反射信号に応じて前記複数の可変リアクタンス素子の少なくとも一つに係る値を調整する設定手段と、
     として機能させることを特徴とするコンピュータプログラム。
PCT/JP2012/072473 2012-09-04 2012-09-04 インピーダンス整合装置及び方法、並びにコンピュータプログラム WO2014037994A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/425,938 US9520905B2 (en) 2012-09-04 2012-09-04 Impedance matching apparatus and method, and computer program
PCT/JP2012/072473 WO2014037994A1 (ja) 2012-09-04 2012-09-04 インピーダンス整合装置及び方法、並びにコンピュータプログラム
JP2014534063A JP5856305B2 (ja) 2012-09-04 2012-09-04 整合装置、インピーダンス整合方法及びコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072473 WO2014037994A1 (ja) 2012-09-04 2012-09-04 インピーダンス整合装置及び方法、並びにコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2014037994A1 true WO2014037994A1 (ja) 2014-03-13

Family

ID=50236647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072473 WO2014037994A1 (ja) 2012-09-04 2012-09-04 インピーダンス整合装置及び方法、並びにコンピュータプログラム

Country Status (3)

Country Link
US (1) US9520905B2 (ja)
JP (1) JP5856305B2 (ja)
WO (1) WO2014037994A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075952A1 (ja) * 2014-11-11 2016-05-19 三菱重工業株式会社 整合回路及び無線通信装置
WO2016136444A1 (ja) * 2015-02-27 2016-09-01 株式会社日立国際電気 整合器及び整合方法
EP3039802A4 (en) * 2014-07-15 2016-11-09 Mediatek Singapore Pte Ltd SIMPLIFIED CLOSED LOOP ANTENNA METHOD
US20170331314A1 (en) * 2016-05-12 2017-11-16 Honeywell International Inc. Auto-tunable wireless charger
KR20180010239A (ko) * 2015-06-30 2018-01-30 가부시키가이샤 히다치 고쿠사이 덴키 정합기 및 정합 방법
US10736050B2 (en) 2018-07-09 2020-08-04 Honeywell International Inc. Adjusting transmission power of an antenna based on an object causing path loss in a communication link
US10818477B2 (en) 2015-10-26 2020-10-27 Trumpf Huettinger Gmbh + Co. Kg Impedance matching between loads and power generators

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097804A1 (ja) * 2013-12-26 2015-07-02 三菱電機エンジニアリング株式会社 高周波電源用自動整合回路
WO2017159151A1 (ja) * 2016-03-18 2017-09-21 株式会社日立国際電気 整合器
US10355662B2 (en) * 2016-12-06 2019-07-16 Honeywell International Inc. Impedance matching using tunable elements
TWI641217B (zh) * 2017-09-15 2018-11-11 瑞柯科技股份有限公司 具備同軸纜線供電功能的電子裝置
CN109474731A (zh) * 2018-12-22 2019-03-15 Oppo(重庆)智能科技有限公司 射频调试方法及相关产品
CN110311646A (zh) * 2019-06-28 2019-10-08 高斯贝尔数码科技股份有限公司 一种微波功率源与反应腔的自适应匹配方法及系统
US11438850B2 (en) * 2020-09-09 2022-09-06 Samsung Electronics Co., Ltd. Data-driven methods for look up table-free closed-loop antenna impedance tuning
DE102021201937A1 (de) * 2021-03-01 2022-09-01 TRUMPF Hüttinger GmbH + Co. KG Verfahren zur Impedanzanpassung, Impedanzanpassungsanordnung und Plasmasystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134800A (ja) * 1995-11-08 1997-05-20 Jeol Ltd 高周波装置
JP2004085446A (ja) * 2002-08-28 2004-03-18 Daihen Corp インピーダンス整合器の出力端特性解析方法、およびインピーダンス整合器、ならびにインピーダンス整合器の出力端特性解析システム
JP2010041558A (ja) * 2008-08-07 2010-02-18 Yokohama National Univ インピーダンス整合装置、およびインピーダンス整合方法
JP4856288B1 (ja) * 2010-08-10 2012-01-18 パイオニア株式会社 インピーダンス整合装置、制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951009A (en) * 1989-08-11 1990-08-21 Applied Materials, Inc. Tuning method and control system for automatic matching network
US5629653A (en) * 1995-07-07 1997-05-13 Applied Materials, Inc. RF match detector circuit with dual directional coupler
JP2001274651A (ja) 2000-03-27 2001-10-05 Japan Radio Co Ltd インピーダンス整合装置、インピーダンス整合用コンダクタンス検出回路、およびインピーダンス整合方法
US6946847B2 (en) 2002-02-08 2005-09-20 Daihen Corporation Impedance matching device provided with reactance-impedance table
JP2003318636A (ja) 2002-02-22 2003-11-07 Matsushita Electric Ind Co Ltd ヘリカルアンテナ装置及びそれを備えた無線通信装置
JP4027935B2 (ja) 2002-11-01 2007-12-26 富士通株式会社 制御装置および制御方法
CA2700235A1 (en) * 2006-10-10 2008-04-17 Medical Device Innovations Limited Apparatus for treating tissue with microwave radiation and antenna calibration system and method
US20100315280A1 (en) * 2009-06-12 2010-12-16 Khosrow Bakhtar Multi-Platform Radar with Forced Resonating Antennas for Embedded Detection and Volumetric Imaging
US8131232B2 (en) * 2009-10-09 2012-03-06 Texas Instruments Incorporated Method and apparatus for antenna tuning
JP2011166382A (ja) * 2010-02-08 2011-08-25 Panasonic Corp 送信装置及びそれを備える高周波無線通信システム
WO2012020476A1 (ja) * 2010-08-10 2012-02-16 パイオニア株式会社 インピーダンス整合装置、制御方法
WO2015033632A1 (ja) * 2013-09-05 2015-03-12 株式会社村田製作所 インピーダンス変換回路、アンテナ装置および無線通信装置
US9287624B2 (en) * 2013-10-21 2016-03-15 Hong Kong Applied Science and Technology Research Institute Company Limited Antenna circuit and a method of optimisation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134800A (ja) * 1995-11-08 1997-05-20 Jeol Ltd 高周波装置
JP2004085446A (ja) * 2002-08-28 2004-03-18 Daihen Corp インピーダンス整合器の出力端特性解析方法、およびインピーダンス整合器、ならびにインピーダンス整合器の出力端特性解析システム
JP2010041558A (ja) * 2008-08-07 2010-02-18 Yokohama National Univ インピーダンス整合装置、およびインピーダンス整合方法
JP4856288B1 (ja) * 2010-08-10 2012-01-18 パイオニア株式会社 インピーダンス整合装置、制御方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165317A (zh) * 2014-07-15 2016-11-23 联发科技(新加坡)私人有限公司 用于简化的闭环天线调谐的方法
EP3039802A4 (en) * 2014-07-15 2016-11-09 Mediatek Singapore Pte Ltd SIMPLIFIED CLOSED LOOP ANTENNA METHOD
WO2016075952A1 (ja) * 2014-11-11 2016-05-19 三菱重工業株式会社 整合回路及び無線通信装置
JPWO2016136444A1 (ja) * 2015-02-27 2017-12-07 株式会社日立国際電気 整合器及び整合方法
KR20170107545A (ko) * 2015-02-27 2017-09-25 가부시키가이샤 히다치 고쿠사이 덴키 정합기 및 정합 방법
WO2016136444A1 (ja) * 2015-02-27 2016-09-01 株式会社日立国際電気 整合器及び整合方法
KR101965995B1 (ko) * 2015-02-27 2019-04-04 가부시키가이샤 히다치 고쿠사이 덴키 정합기 및 정합 방법
US10291198B2 (en) 2015-02-27 2019-05-14 Hitachi Kokusai Electric Inc. Matching device and matching method
KR20180010239A (ko) * 2015-06-30 2018-01-30 가부시키가이샤 히다치 고쿠사이 덴키 정합기 및 정합 방법
KR102048231B1 (ko) * 2015-06-30 2019-11-25 가부시키가이샤 히다치 고쿠사이 덴키 정합기 및 정합 방법
US10812036B2 (en) 2015-06-30 2020-10-20 Hitachi Kokusai Electric Inc. Matching box and matching method
US10818477B2 (en) 2015-10-26 2020-10-27 Trumpf Huettinger Gmbh + Co. Kg Impedance matching between loads and power generators
US20170331314A1 (en) * 2016-05-12 2017-11-16 Honeywell International Inc. Auto-tunable wireless charger
US10736050B2 (en) 2018-07-09 2020-08-04 Honeywell International Inc. Adjusting transmission power of an antenna based on an object causing path loss in a communication link

Also Published As

Publication number Publication date
JP5856305B2 (ja) 2016-02-09
US20150236728A1 (en) 2015-08-20
US9520905B2 (en) 2016-12-13
JPWO2014037994A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5856305B2 (ja) 整合装置、インピーダンス整合方法及びコンピュータプログラム
EP3411937B1 (en) Methods and apparatus for power loss calibration in a wireless power system
US20140191819A1 (en) Impedance matching device and control method
EP3304688B1 (en) Fast method for identifying coil misalignment/mutualcoupling in wireless charging systems
WO2011049769A3 (en) Methods and apparatus for tuning matching networks
CN104349567A (zh) 射频电源系统和利用射频电源系统进行阻抗匹配的方法
US9641017B2 (en) Method and apparatus for wirelessly transmitting power and power transmission information
HK1131268A1 (en) Resonant circuit tuning system with dynamic impedance matching
Seo et al. Study on Two‐Coil and Four‐Coil Wireless Power Transfer Systems Using Z‐Parameter Approach
WO2013052277A3 (en) Adaptive tuning of an impedance matching circuit in a wireless device
US20140077613A1 (en) Apparatus and method for controlling resonator of wireless power transmission system
WO2011156555A3 (en) Coil configurations for inductive power transfer
EP3132518B1 (en) System and method for frequency protection in wireless charging
WO2008033762A3 (en) Apparatus and method for switching between matching impedances
JP2018503063A (ja) 誘導電力送信器
US20150042173A1 (en) Method and apparatus for wireless power transmission for efficent power distribution
WO2011148254A8 (en) Power feeding system and vehicle
EP3025537B1 (en) Method and apparatus for authentication in wireless power transmission system
WO2008126240A1 (ja) 同期フェーザ測定装置及びこれを用いた母線間位相角差測定装置
Hwang et al. An analysis of magnetic resonance coupling effects on wireless power transfer by coil inductance and placement
US20120217926A1 (en) Wireless power transfer
WO2006044722A3 (en) Apparatus and methods for improving the stability of rf power delivery to a plasma load
US10797535B2 (en) Q-factor measurement
WO2015029221A1 (ja) 非接触電力受電システム、非接触電力伝送システム、制御方法、コンピュータプログラム及び記録媒体
EP3561730B1 (fr) Procédé de réglage de la phase du signal émis par un objet capable de communiquer sans contact avec un lecteur par modulation active de charge, et objet correspondant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14425938

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12884331

Country of ref document: EP

Kind code of ref document: A1