WO2014037792A2 - Procédé de séparation d'au moins deux substrats selon une interface choisie - Google Patents

Procédé de séparation d'au moins deux substrats selon une interface choisie Download PDF

Info

Publication number
WO2014037792A2
WO2014037792A2 PCT/IB2013/001937 IB2013001937W WO2014037792A2 WO 2014037792 A2 WO2014037792 A2 WO 2014037792A2 IB 2013001937 W IB2013001937 W IB 2013001937W WO 2014037792 A2 WO2014037792 A2 WO 2014037792A2
Authority
WO
WIPO (PCT)
Prior art keywords
interface
substrates
separation
blade
chosen
Prior art date
Application number
PCT/IB2013/001937
Other languages
English (en)
Other versions
WO2014037792A3 (fr
Inventor
Didier Landru
Christophe Figuet
Original Assignee
Soitec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec filed Critical Soitec
Priority to US14/424,311 priority Critical patent/US9437473B2/en
Priority to JP2015530504A priority patent/JP6286775B2/ja
Priority to CN201380046291.1A priority patent/CN104620368B/zh
Priority to EP13782822.4A priority patent/EP2893554B1/fr
Publication of WO2014037792A2 publication Critical patent/WO2014037792A2/fr
Publication of WO2014037792A3 publication Critical patent/WO2014037792A3/fr
Priority to US15/256,265 priority patent/US10093086B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • a special case of such a structure is a “peelable” structure ( “debondable structure” according to English terminology), wherein the separation interface is an interface in which a molecular bonding has been achieved.
  • molecular adhesion bonding bonding by intimate contact of the surfaces of the two substrates, embodying the adhesion forces, mainly the forces of Van der Waals and n using no adhesive layer.
  • a) sticking a mechanical stiffener it may be desirable to stick a mechanical stiffener on a substrate or a thin thin layer to prevent damage or breakage during certain manufacturing steps, then to be able to remove the mechanical stiffener when its presence is no longer necessary.
  • the detachment makes it possible to take off two substrates which would not have been glued correctly a first time, then to reattach them after cleaning, in order to improve the profitability of a manufacturing process and of avoid, for example, the disposal of poorly bonded substrates.
  • Temporary protection during certain stages of storage or transport of substrates, especially in plastic boxes, it may be useful to temporarily protect their surfaces, especially those intended to be used later for the manufacture of electronic components, so to avoid any risk of contamination.
  • a simple solution is to stick two substrates so that their faces to be protected are respectively bonded to each other, and then to take off these two substrates during their final use.
  • d) double transfer of a layer it consists in producing a reversible bonding interface between an active layer and a first support substrate (possibly made of However, there may also be applications in which it is desired to separate a structure formed of two assembled substrates, according to an interface which is not a bonding interface.
  • Such an interface may be, for example, an interface between a first and a second material, which may have been joined to each other by a supply of the second material on the first, for example by a deposit, an epitaxy, etc.
  • such an interface may be, for example, a fragile zone formed inside a material and materialized by the presence of bubbles, inclusions, etc.
  • a separation according to an interface that is not a bonding interface can notably be used in the transfer of a layer from a first substrate to a second substrate.
  • Said layer to be transferred may thus not have been formed by bonding to the first substrate but, for example, have been formed by epitaxy or deposition on said substrate, or, alternatively, be part of a thicker layer inside. of which it has been delimited by a layer of bubbles which weakens the thick layer.
  • these two “substrates to be separated” may be two layers of the same substrate or two distinct substrates.
  • Maszara established the following relation: in which d represents the thickness of the blade inserted between the two bonded substrates, t represents the thickness of each of the two bonded substrates, E represents the Young's modulus along the axis of separation, ⁇ represents the bonding energy and L represents the length of the crack between the two equilibrium substrates.
  • bonding energy is based on the assumption that the energy required to separate the two substrates, or energy of rupture of the interface (which is the energy effectively measured by the method using a blade) is equal to the bonding energy of said substrates.
  • the substrates or layers to be separated have sufficient rigidities to be separated with a blade, it is possible to separate them by separating them sufficiently from one another at their chamfered edge, which has the effect of effect of creating a separation wave. This propagates from the point of the edge of the substrates where it is initiated, through the entire surface of these substrates.
  • Stress corrosion consists of combining with the spreading force of the blade the application of a fluid to the separation interface.
  • Such an interface contains siloxane bonds (Si-O-Si), which are broken by water molecules brought by the fluid.
  • Cha et al in "Why debonding is useful in SOI? Electrochemical Society Proceedings, Vol. 99-35, pp. 19-128, propose a two-stage separation, consisting of partially separating the substrates by means of a blade and then introducing deionized water into the gap thus formed until the complete separation of the substrates.
  • the interface in which the separation is desired has a very high breaking energy, for example greater than 1 J / m 2 , or even greater than 1.5 J / m 2 .
  • SOI silicon on insulator
  • SiOI semiconductor-on-insulator
  • this structure is carried out by layer transfer, that is to say by assembling a donor substrate comprising the semiconductor layer and the support substrate, the dielectric layer at the interface, it is generally implemented. a heat treatment to increase the breaking energy at the interface.
  • the peripheral zone is removed by chemical etching or with the aid of a laser, until reaching the central zone at which mechanical separation can be implemented (for example, by means of a jet of water or air under pressure, by traction or by the insertion of a blade).
  • An object of the invention is therefore to provide a separation method for separating two substrates assembled, according to one interface chosen from among others, the interfaces having very high bonding energies, identical or different, without risk of fracture or loss. damage to said substrates.
  • an interface sensitive to stress corrosion that is to say to the combined action of said spreading force and a fluid capable of breaking siloxane (Si-O-Si) bonds, is chosen for separation; present at said interface,
  • a fluid is applied in the gap between said spaced apart substrates while continuing the insertion of said blade, so as to reduce the breaking energy of the chosen interface by stress corrosion.
  • substrate covers a single or multilayer substrate and whose periphery has a chamfer on which a blade can bear to cause the separation of two bonded substrates.
  • a substrate may itself contain one or more interfaces.
  • a separation interface is defined in this text as a physical boundary between two layers, according to which a separation wave can propagate. It is understood that the two layers in question may be in two different materials, said materials being able to be joined by any type of addition of one material to the other (in particular epitaxy, deposition, bonding, oxidation, in particular thermal oxidation), or to form two parts of a thicker layer, delimited by a fragile zone (in particular containing bubbles, inclusions, etc.).
  • said peripheral region of the chosen interface is in the form of a ring.
  • the peripheral region having a lower breaking energy is formed prior to the assembly of the two substrates.
  • the peripheral region having a lower breaking energy is formed after the two substrates are assembled.
  • the peripheral region is formed by laser irradiation of the chosen interface.
  • the peripheral region is formed by etching the chosen interface.
  • the structure comprises a semiconductor-on-insulator structure comprising a supporting substrate, a layer of buried oxide of silicon and a silicon layer, the separation interface consisting of interface between the oxide layer and the silicon layer.
  • the breaking energy of each of the separation interfaces may be greater than 1 J / m 2 , preferably greater than 1.5 J / m 2 .
  • the breaking energy in said peripheral region of the chosen separation interface is less than or equal to 1 J / m 2 .
  • the breaking energy in the remainder of said separation interface may be greater than or equal to 1 J / m 2 , preferably greater than or equal to 1.5 J / m 2 .
  • said chosen interface is a silicon / silicon oxide interface.
  • the fluid applied between the substrates is advantageously chosen from deionized water, ethanol, water vapor, ammonia, and hydrazine.
  • FIGS. 2A and 2B illustrate, in plan view, two modes of damage to the interface 11;
  • FIGS. 3A and 3B illustrate the successive steps of the separation of the structure
  • FIG. 4 is a structure of silicon-on-insulator type that can be separated according to an exemplary implementation of the invention
  • FIG. 5 illustrates the insertion of the blade in order to separate the structure of FIG. 4.
  • the structure S to be separated comprises two substrates S1 and S2. At least one of these substrates is intended for use in electronics, optics, optoelectronics and / or photovoltaics.
  • the structure S furthermore comprises two separation interfaces 11, 12 respectively having breaking energies ⁇ 1, ⁇ 2 (expressed in J / m 2 ).
  • At least one of the interfaces 11 and 12 may be a sticking interface, while the other interface is an interface of another type (for example, resulting from an epitaxy, a repository , etc.).
  • the interfaces 11 and 12 may both be glue interfaces.
  • the substrates S1 and S2 may have been glued along the interface 12, while the interface 11 is an interface formed during the epitaxy of a material on a support, said material and the support forming together the substrate S1.
  • the structure may include more interfaces without departing from the scope of the present invention. Then will be applied to each of said other interfaces the teaching relating to the interface 12.
  • the interface 11 is advantageously an interface sensitive to stress corrosion.
  • the materials chosen on either side of the interface 11 generate siloxane bonds which are liable to be broken by a fluid under the action of a spacing force of the substrates S1 and S2.
  • the materials on either side of the interface 11 may be identical or different, as long as siloxane bonds exist between said materials.
  • Interfaces which contain such siloxane bonds are interfaces involving in particular the oxide 'of silicon (Si0 2), whether native or formed intentionally on a support (by deposition, oxidation, etc.), silicon, when it is assembled by hydrophilic bonding, and / or silicon oxynitrides.
  • the means for generating an interface comprising siloxane bonds are very diverse and include, in particular, methods for bonding, deposition of an oxide layer, oxidation of silicon, treatment of silicon with oxygen plasma, or implantation. oxygen.
  • the interface 11 may be a bonding interface, that is to say that is bonded, during the manufacture of one of the substrates or the structure, two materials by molecular adhesion.
  • the interface 11 may be formed by bonding two silicon layers each covered with a native oxide layer by which they are in contact.
  • the interface 11 may be formed by bonding a silicon layer, optionally covered with a native oxide layer, and a silicon oxide layer.
  • the interface 11 may be formed by a technique other than gluing.
  • the interface 11 may be formed by embrittlement of a layer of a material containing siloxane bonds, for example by ion implantation or laser illumination.
  • the interface 11 has a high breaking energy, that is to say greater than or equal to 1 J / m 2 , preferably greater than or equal to 1, 5 J / m 2 .
  • the Maszara method mentioned above for measuring bonding energy can be applied more generally to the measurement of the breaking energy of an interface.
  • the separation in which it is desired that the separation does not take place, it may or may not be sensitive to stress corrosion.
  • This other interface 12 also advantageously has a high breaking energy, whether it is greater or less than the breaking energy of the interface 11 chosen to perform the separation.
  • This embrittlement (which results in a localized reduction of the energy of rupture, allowing for example to reach a breaking energy inferior or equal to 1 J / m 2 ) is obtained by a localized damage on the periphery of the interface 11.
  • the damaged region R1 of the interface 11 is included in a sector of the peripheral ring of the interface 11.
  • the angular amplitude of this sector is between 2 and 30 °.
  • the damaged region R1 of the interface 11, whose width in the radial direction is preferably between 0.3 mm and 10 mm, is in the form of a peripheral ring.
  • the treatment is implemented after the formation of the structure; the invention thus makes it possible to separate a structure even if its manufacturing method does not contain any step dedicated to the localized damage of the interface 11.
  • the damage to the region R1 is obtained by laser irradiation of the chosen interface 11.
  • the laser beam is selected so as to selectively heat the interface 11 to weaken, causing damage to said interface and consequently the decrease in its breaking energy.
  • Said damage may be, for example, the thermal decomposition of a material present at the interface in a gaseous phase.
  • one of the materials present at the interface is a polymer or a ceramic.
  • the damage to the region R1 is obtained by etching the selected interface 11.
  • Said etching is carried out by means of an etching agent making it possible to selectively attack one of the materials present at the interface 11, without attacking the materials present at the interface 12.
  • the application of ultrasound can also be envisaged to reduce locally the breaking energy of the interface 11.
  • the breaking energy in the region R1 of the interface 11 is less than the breaking energy in the rest of the interface, and can be considered as a sufficiently low breaking energy not to risk causing fracture of the substrates during the insertion of the blade and the separation primer. Moreover, the breaking energy of the interface 11 in the region R1 is smaller than the breaking energy of the interface 12, at least in the region intended for insertion of the blade.
  • the blade allows a large separation of the substrates, so as to allow their physical separation without coming into contact with the front faces (that is to say the faces of said substrates at the interface) , to avoid damaging them.
  • the blade must be inserted between the substrates in a plane parallel to the plane of the separation interface.
  • the substrates are held by a support arranged in such a way that at least one of the substrates is capable of deforming, in order to avoid any rupture of the substrates.
  • the structure is positioned vertically in a separation device which comprises, in its lower part, a structure retaining member and, in its upper part, a vertically displaceable separating member comprising the blade, in the axis of the retaining member.
  • the retaining member comprises a groove having a bottom and inclined edges on either side of said bottom.
  • the bottom of the groove is wide enough to receive the assembled structure without exerting stress on it, while the edges are high enough to prevent the substrates from falling after their separation.
  • This spacing of the two parts over a length L has the effect of initiating the formation of a separation wave.
  • the breaking energy becomes sufficiently low to avoid any risk of breaking substrates when applying the spreading force
  • the structure S is held in a vertical position during the separation.
  • the fluid can be introduced in different ways between the substrates.
  • the structure S can be partially immersed in a bath of the fluid promoting stress corrosion.
  • the fluid can be projected, preferably continuously, onto the structure, particularly at the insertion region of the blade, once it has been introduced between the substrates.
  • the interface 12 is also sensitive to stress corrosion, it is important to initiate the opposite the separation "dry", that is to say in the absence of any fluid promoting corrosion under constrained in the insertion region of the blade, and it is expected that the separation is initiated to contact the selected interface with the stress corrosion promoting fluid.
  • contacting the selected interface 11 with a stress corrosion promoting fluid makes it possible to facilitate and accelerate the separation by reducing the breaking energy of said interface. This continues the insertion of the blade in the presence of the fluid until the complete separation of the substrates.
  • the invention is particularly suitable for separation along the interfaces of the silicon / silicon oxide type, and any other interface sensitive to stress corrosion and having a high energy of rupture.
  • the structure may consist of substrates of large diameter, for example of 300 mm in diameter.
  • FIG. 4 illustrates a substrate S1 to be separated, said substrate being a structure of silicon-on-insulator type (SOI, acronym for the English term “Silicon On Insulator”).
  • SOI silicon-on-insulator type
  • the Smart Cut TM process typically comprises:
  • the substrate S1 thus comprises two interfaces: the interface 11 between the silicon layer 3 and the oxide layer 2 (which is an interface resulting from the oxidation of silicon), and the interface 12 between the oxide layer 2 and the support substrate 1 (which is a bonding interface).
  • the silicon / oxide interface 11 has a high breaking energy, of the order of
  • the energy of this interface may be decreased locally so as to be less than the breaking energy of the interface 12 in the region R1 of the start of the separation.
  • the interface 11 may be locally weakened by laser irradiation or ultrasonic treatment.
  • the substrate S1 is glued, via the thin layer 3, to a second substrate S2 which provides a second bearing chamfer for the blade used for the separation.
  • a third interface 13 is thus formed between the thin layer 3 and the substrate S2.
  • the breaking energy of said interface 13 is chosen to be greater than the breaking energy of the interface 11 in the region R1, in order to avoid that, during the insertion of the blade, the separation does not occur. is performed according to the interface 13.
  • This method therefore allows to disassemble the active layer of an SOI, even when no provision has been made during its manufacture to make it removable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Recrystallisation Techniques (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un procédé de séparation d'au moins deux substrats (S1, S2) faisant partie d'une structure (S) comprenant au moins deux interfaces (I1, I2) de séparation s'étendant parallèlement aux faces principales de ladite structure, le long d'une interface (I1) choisie parmi lesdites interfaces, l'un au moins de ces deux substrats étant destiné à être utilisé dans l'électronique, l'optique, l'optoélectronique et/ou le photovoltaïque, ladite séparation étant réalisée par l'insertion d'une lame (B) entre lesdits substrats (S1, S2) et l'application par ladite lame d'un effort d'écartement des deux substrats, caractérisé en ce que : - on choisit pour la séparation une interface (I1) sensible à la corrosion sous contrainte, c'est- à-dire à l'action combinée dudit effort d'écartement et d'un fluide susceptible de rompre des liaisons siloxane (Si-O-Si) présentes à ladite interface (I1), - avant l'insertion de ladite lame, on endommage au moins une partie d'une région périphérique (R1) de l'interface (I1) choisie comprenant la région d'insertion de la lame (B), de manière à ce que l'énergie de rupture dans ladite région périphérique (R1) soit plus faible que celle des autres interfaces dans la région d'insertion de la lame, permettant ainsi d'initier l'écartement des substrats (S1, S2) selon l'interface (I1) choisie dans la région endommagée (R1), puis en ce que - l'on applique un fluide dans l'intervalle entre lesdits substrats (S1, S2) écartés tout en poursuivant l'insertion de ladite lame, de sorte à diminuer l'énergie de rupture de l'interface (I1) choisie par corrosion sous contrainte.

Description

PROCEDE DE SEPARATION D'AU MOINS DEUX SUBSTRATS SELON UNE INTERFACE
CHOISIE
DOMAINE DE L'INVENTION
L'invention concerne un procédé de séparation d'une structure comprenant deux substrats assemblés, l'un au moins de ces deux substrats étant destiné à être utilisé dans l'électronique, l'optique, l'optoélectronique et/ou le photovoltaïque, la séparation ayant lieu le long d'une interface présente dans la structure, dite interface de séparation
ARRIERE PLAN DE L'INVENTION
Un cas particulier d'une telle structure est une structure « décollable » (« debondable structure » selon la terminologie anglo-saxonne), dans laquelle l'interface de séparation est une interface selon laquelle un collage par adhésion moléculaire a été réalisé.
Par « collage par adhésion moléculaire », on désigne un collage par contact intime des surfaces des deux substrats, mettant en uvre des forces d'adhésion, principalement les forces de Van der Walls, et n utilisant pas de couche adhésive.
Sans vouloir être limitatif, on peut toutefois considérer qu'une structure décollable peut être utilisée principalement dans quatre applications différentes :
a) collage d'un raidisseur mécanique : il peut être souhaitable de coller un raidisseur mécanique sur un substrat ou une couche mince fragile pour éviter son endommagement ou sa rupture durant certaines étapes de fabrication, puis de pouvoir retirer ce raidisseur mécanique lorsque sa présence n'est plus nécessaire.
b) rectification d'un mauvais collage : le décollement permet de décoller deux substrats qui n'auraient pas été collés correctement une première fois, puis de les recoller après nettoyage, afin d'améliorer la rentabilité d'un procédé de fabrication et d'éviter par exemple la mise au rebut de substrats mal collés.
c) protection temporaire : lors de certaines étapes de stockage ou de transport de substrats, notamment dans des boites en matière plastique, il peut être utile de protéger temporairement leurs surfaces, notamment celles destinées à être utilisées ultérieurement pour la fabrication de composants électroniques, afin d'éviter tout risque de contamination. Une solution simple consiste à coller deux substrats de façon que leurs faces à protéger soient collées respectivement l'une avec l'autre, puis à décoller ces deux substrats lors de leur utilisation finale.
d) double transfert d'une couche : il consiste à réaliser une interface de collage réversible entre une couche active et un premier substrat support (éventuellement réalisé en Cependant, il peut également se trouver des applications dans lesquelles on souhaite séparer une structure, formée de deux substrats assemblés, selon une interface qui n'est pas une interface de collage.
Une telle interface peut être, par exemple, une interface entre un premier et un second matériau, qui peuvent avoir été joints l'un à l'autre par un apport du second matériau sur le premier, par exemple par un dépôt, une épitaxie, etc.
En variante, une telle interface peut être, par exemple, une zone fragile formée à l'intérieur d'un matériau et matérialisée par la présence de bulles, d'inclusions, etc.
Une séparation selon une interface qui n'est pas une interface de collage peut notamment trouver application dans le transfert d'une couche d'un premier substrat vers un second substrat.
Ladite couche à transférer peut ainsi ne pas été formée par collage sur le premier substrat mais, par exemple, avoir été formée par épitaxie ou dépôt sur ledit substrat, ou, de manière alternative, faire partie d'une couche plus épaisse à l'intérieur de laquelle elle a été délimitée par une couche de bulles qui fragilise la couche épaisse.
Quelles que soient les applications envisagées, il est nécessaire d'effectuer cette séparation, sans endommager, rayer, ou contaminer la surface des deux substrats situés de part et d'autre de l'interface de séparation et sans casser ces deux substrats.
En fonction des différentes applications, ces deux "substrats à séparer" peuvent être deux couches d'un même substrat ou deux substrats distincts.
En outre, plus les dimensions des deux substrats de la structure à séparer sont importantes ou plus leur énergie de liaison est forte et plus la séparation est difficile à réaliser, notamment sans dommages.
On sait par ailleurs d'après les travaux de recherche de Maszara concernant la mesure de l'énergie de collage entre deux substrats, (voir l'article de W.P Maszara, G. Goetz, A. Caviglia et J.B McKitterick : J. Appl Phys. 64 (1988) 4943) qu'il est possible de mesurer l'énergie de collage entre deux substrats, en introduisant une lame mince entre les deux, au niveau de leur interface de collage.
Maszara a établi la relation suivante :
Figure imgf000004_0001
dans laquelle d représente l'épaisseur de la lame insérée entre les deux substrats collés, t représente l'épaisseur de chacun des deux substrats collés, E représente le module de Young selon l'axe du décollement, γ représente l'énergie de collage et L représente la longueur de la fissure entre les deux substrat à l'équilibre.
Dans la formule ci-dessus, on part de l'hypothèse que les deux substrats sont de dimensions identiques.
Grâce à la relation précitée, il est possible en mesurant L de déterminer l'énergie de collage γ.
Cette définition de l'énergie de « collage » repose sur l'hypothèse que l'énergie nécessaire pour séparer les deux substrats, ou énergie de rupture de l'interface (qui est l'énergie effectivement mesurée par la méthode utilisant une lame) est égale à l'énergie de collage desdits substrats.
En réalité, lors de la séparation des substrats, une partie de l'énergie est dissipée non dans la rupture de l'interface elle-même mais dans d'autres phénomènes, tels que des déformations du ou des matériaux présents à l'interface.
Dans la suite du texte, on désignera donc par énergie de rupture d'une interface l'énergie à fournir pour séparer deux substrats ou couches selon ladite interface.
Dans la mesure où les substrats ou couches à séparer présentent des rigidités suffisantes pour être séparés avec une lame, il est possible de les séparer en les écartant suffisamment l'un de l'autre, au niveau de leur bord chanfreiné, ce qui a pour effet de créer une onde de séparation. Celle-ci se propage depuis le point du bord des substrats où elle est initiée, à travers toute la surface de ces substrats.
Par ailleurs, il est connu d'assister la séparation par le phénomène dit de corrosion sous contrainte.
La corrosion sous contrainte consiste à combiner à l'effort d'écartement de la lame l'application d'un fluide à l'interface de séparation.
La corrosion sous contrainte est particulièrement mise à profit lorsque l'un au moins des substrats est en silicium et que l'interface comprend de l'oxyde de silicium, qu'il s'agisse d'un oxyde natif ou d'un oxyde formé intentionnellement, par exemple pour former une couche de collage ou une couche isolante.
En effet, une telle interface contient des liaisons siloxane (Si-O-Si), qui sont rompues par des molécules d'eau apportées par le fluide.
L'énergie de rupture de l'interface est ainsi notablement diminuée.
Pour la description du processus de corrosion sous contrainte, on pourra se référer au chapitre 14, intitulé "Debonding of Wafer-Bonded Interfaces for Handling and Transfer Applications" de J. Bagdahn et M. Petzold, dans l'ouvrage "Wafer Bonding: Applications and Technology" dirigé par M. Alexe et U. Gôsele, Springer, 2004.
En particulier, Cha et al, dans « Why debonding is useful in SOI? », Electrochemical Society Proceedings, Vol. 99-35, pp. 1 19-128, proposent une séparation en deux temps, consistant à écarter partiellement les substrats au moyen d'une lame puis à introduire de l'eau déionisée dans l'intervalle ainsi formé jusqu'à la séparation complet des substrats.
Cependant, dans certaines applications, l'interface selon laquelle on souhaite effectuer la séparation présente une énergie de rupture très élevée, par exemple supérieure à 1 J/m2, voire supérieure à 1 ,5 J/m2.
Tel est le cas par exemple d'une structure de type silicium sur isolant (SOI) ou plus largement d'une structure de type semi-conducteur sur isolant (SeOI), qui comprend un substrat support, une couche diélectrique enterrée (par exemple une couche d'oxyde) et une couche semi-conductrice (de silicium dans le cas d'un SOI).
Lorsque cette structure est réalisée par transfert de couche, c'est-à-dire par assemblage d'un substrat donneur comprenant la couche semi-conductrice et du substrat support, la couche diélectrique se trouvant à l'interface, on met généralement en oeuvre un traitement thermique visant à augmenter l'énergie de rupture à l'interface.
Ceci permet d'éviter que la structure ne se sépare lors du transfert de la couche semi- conductrice ou lors des étapes ultérieures de traitement du SOI.
A titre d'exemple, on peut ainsi atteindre une énergie de rupture de l'ordre de 1 ,6 J/m2 à l'interface.
Or, en raison de cette énergie de rupture très élevée, si l'on tente d'insérer une lame pour séparer la couche semi-conductrice, il existe un risque important de casser ladite couche au lieu de la séparer le long de l'interface.
Le document US 7,713,369 propose un procédé de fabrication d'une structure démontable constituée de l'assemblage de deux substrats, dans lequel on forme à l'interface, ici, de collage, une zone périphérique présentant une énergie de rupture élevée et une zone centrale présentant une énergie de rupture faible.
Ainsi, pour séparer les deux substrats, on retire la zone périphérique par une attaque chimique ou à l'aide d'un laser, jusqu'à atteindre la zone centrale au niveau de laquelle on peut mettre en œuvre une séparation mécanique (par exemple, au moyen d'un jet d'eau ou d'air sous pression, par traction ou par l'insertion d'une lame).
Cependant, la formation de ces deux zones d'énergies de rupture différenciées sur une même interface est contraignante à mettre en oeuvre. Par ailleurs, certaines structures peuvent comporter plusieurs interfaces, la séparation des substrats se faisant nécessairement au niveau de l'interface ayant la plus faible énergie de rupture. Cette interface, prédéfinie par ses caractères techniques, peut ne pas être celle qu'un utilisateur aurait choisie pour effectuer la séparation des substrats à l'endroit voulu.
Un but de l'invention est donc de proposer un procédé de séparation permettant de séparer deux substrats assemblés, selon une interface choisie parmi d'autres, les interfaces ayant des énergies de liaison très élevées, identiques ou différentes, sans risque de fracture ou d'endommagement desdits substrats. BREVE DESCRIPTION DE L'INVENTION
Conformément à l'invention, il est proposé un procédé de séparation d'au moins deux substrats contenus dans une structure (S), la structure comprenant au moins deux interfaces de séparation s'étendant parallèlement aux faces principales de ladite structure, le long d'une interface choisie parmi lesdites interfaces, l'un au moins de ces deux substrats étant destiné à être utilisé dans l'électronique, l'optique, l'optoélectronique et/ou le photovoltaïque, ladite séparation étant réalisée par l'insertion d'une lame entre lesdits substrats et l'application par ladite lame d'un effort d'écartement des deux substrats, ledit procédé étant caractérisé en ce que :
- on choisit pour la séparation une interface sensible à la corrosion sous contrainte, c'est-à-dire à l'action combinée dudit effort d'écartement et d'un fluide susceptible de rompre des liaisons siloxane (Si-O-Si) présentes à ladite interface,
- avant l'insertion de ladite lame, on endommage au moins une partie d'une région périphérique de l'interface choisie comprenant la région d'insertion de la lame, de manière à ce que l'énergie de rupture dans ladite région périphérique soit plus faible que celle des autres interfaces dans la région d'insertion de la lame, permettant ainsi d'initier l'écartement des substrats selon l'interface choisie dans la région endommagée, puis en ce que
- l'on applique un fluide dans l'intervalle entre lesdits substrats écartés tout en poursuivant l'insertion de ladite lame, de sorte à diminuer l'énergie de rupture de l'interface choisie-par corrosion sous contrainte.
Dans le présent texte, le terme "substrat" couvre un substrat mono ou multicouches et dont la périphérie présente un chanfrein sur lequel une lame peut prendre appui pour provoquer l'écartement de deux substrats collés. Par ailleurs, un substrat peut lui-même contenir une ou plusieurs interfaces.
Une interface de séparation est définie dans le présent texte comme étant une frontière physique entre deux couches, selon laquelle une onde de séparation peut se propager. Il est entendu que les deux couches en question peuvent être en deux matériaux différents, lesdits matériaux pouvant être joints par tout type d'apport d'un matériau sur l'autre (notamment épitaxie, dépôt, collage, oxydation, notamment oxydation thermique), ou bien former deux parties d'une couche plus épaisse, délimitées par une zone fragile (notamment contenant des bulles, des inclusions, etc.).
Selon un mode de réalisation, ladite région périphérique de l'interface choisie se présente sous la forme d'une couronne.
Selon une forme d'exécution de l'invention, la région périphérique présentant une énergie de rupture plus faible est formée préalablement à l'assemblage des deux substrats.
De manière alternative, la région périphérique présentant une énergie de rupture plus faible est formée après l'assemblage des deux substrats.
Selon un mode de réalisation, la région périphérique est formée par irradiation laser de l'interface choisie.
Selon un mode de réalisation, la région périphérique est formée par attaque chimique de l'interface choisie.
Par exemple, ladite attaque chimique est réalisée par l'application d'acide fluorhydrique. Selon une application avantageuse de l'invention, la structure comprend une structure de type semi-conducteur sur isolant comprenant un substrat support, une couche d'oxyde de silicium enterrée et une couche de silicium, l'interface de séparation consistant en l'interface entre la couche d'oxyde et la couche de silicium.
L'énergie de rupture de chacune des interfaces de séparation peut être supérieure à 1 J/m2, de préférence supérieure à 1 ,5 J/m2.
De préférence, l'énergie de rupture dans ladite région périphérique de l'interface de séparation choisie est inférieure ou égale à 1 J/m2.
En revanche, l'énergie de rupture dans le reste de ladite interface de séparation peut être supérieure ou égale à 1 J/m2, de préférence supérieure ou égale à 1 ,5 J/m2.
Selon un mode de réalisation particulier, ladite interface choisie est une interface silicium / oxyde de silicium.
Le fluide appliqué entre les substrats est avantageusement choisi parmi l'eau déionisée, l'éthanol, la vapeur d'eau, l'ammoniaque, et l'hydrazine.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue en coupe d'une structure à séparer ; - les figures 2A et 2B illustrent en vue de dessus deux modes d'endommagement de l'interface 11 ;
- les figures 3A et 3B illustrent les étapes successives de la séparation de la structure ;
- la figure 4 est une structure de type silicium sur isolant pouvant être séparée selon un exemple de mise en œuvre de l'invention ;
- la figure 5 illustre l'insertion de la lame en vue de séparer la structure de la figure 4.
DESCRIPTION DETAILLEE DE L'INVENTION
En référence à la figure 1 , la structure S à séparer comprend deux substrats S1 et S2. L'un au moins de ces substrats est destiné à être utilisé dans l'électronique, l'optique, l'optoélectronique et/ou le photovoltaïque.
La structure S comprend par ailleurs deux interfaces de séparation 11 , 12 présentant respectivement des énergies de rupture γ1 , γ2 (exprimées en J/m2).
Comme mentionné plus haut, l'une au moins des interfaces 11 et 12 peut être une interface de collage, tandis que l'autre interface est une interface d'un autre type (par exemple, résultant d'une épitaxie, d'un dépôt, etc.).
De manière alternative, les interfaces 11 et 12 peuvent être toutes les deux des interfaces de collage.
Par exemple, les substrats S1 et S2 peuvent avoir été collés le long de l'interface 12, tandis que l'interface 11 est une interface formée lors de l'épitaxie d'un matériau sur un support, ledit matériau et le support formant ensemble le substrat S1.
On considère que c'est selon l'interface 11 que la séparation doit avoir lieu.
Naturellement, la structure pourra comprendre davantage d'interfaces sans pour autant sortir du cadre de la présente invention. On appliquera alors à chacune desdites autres interfaces l'enseignement relatif à l'interface 12.
L'interface 11 est avantageusement une interface sensible à la corrosion sous contrainte.
Plus précisément, les matériaux choisis de part et d'autre de l'interface 11 génèrent des liaisons siloxane qui sont susceptibles d'être rompues par un fluide sous l'action d'un effort d'écartement des substrats S1 et S2.
Les matériaux de part et d'autre de l'interface 11 peuvent être identiques ou différents, pour autant qu'il existe des liaisons siloxane entre lesdits matériaux.
Les interfaces qui contiennent de telles liaisons siloxane sont des interfaces mettant en jeu notamment l'oxyde' de silicium (Si02), qu'il soit natif ou formé intentionnellement sur un support (par dépôt, oxydation, etc.), le silicium, lorsqu'il est assemblé par collage hydrophile, et/ou des oxynitrures de silicium.
Les moyens de générer une interface comprenant des liaisons siloxane sont très divers et incluent notamment des procédés de collage, de dépôt d'une couche d'oxyde, d'oxydation du silicium, de traitement du silicium par plasma oxygène, ou encore d'implantation d'oxygène.
Ainsi, l'interface 11 peut être une interface de collage, c'est-à-dire selon laquelle on a collé, lors de la fabrication de l'un des substrats ou de la structure, deux matériaux par adhésion moléculaire.
Par exemple, l'interface 11 peut être formée par collage de deux couches de silicium recouvertes chacune d'une couche d'oxyde natif par lesquelles elles sont en contact.
En variante, l'interface 11 peut être formée par collage d'une couche de silicium, éventuellement recouverte d'une couche d'oxyde natif, et d'une couche d'oxyde de silicium.
De manière alternative, l'interface 11 peut être formée par une autre technique que le collage.
Par exemple, l'interface 11 peut être formée par fragilisation d'une couche d'un matériau contenant des liaisons siloxane, par exemple par implantation ionique ou illumination laser.
Par ailleurs, selon un mode de réalisation avantageux de l'invention, l'interface 11 présente une énergie de rupture élevée, c'est-à-dire supérieure ou égale à 1 J/m2, de préférence supérieure ou égale à 1 ,5 J/m2.
La méthode de Maszara évoquée plus haut pour mesurer l'énergie de collage peut être appliquée de manière plus générale à la mesure de l'énergie de rupture d'une interface.
En ce qui concerne l'autre interface 12, selon laquelle on souhaite que la séparation n'ait pas lieu, elle peut être sensible ou non à la corrosion sous contrainte.
Cette autre interface 12 présente par ailleurs avantageusement une énergie de rupture élevée, qu'elle soit supérieure ou inférieure à l'énergie de rupture de l'interface 11 choisie pour effectuer la séparation.
Avant de procéder à la séparation de la structure S, on fait en sorte de fragiliser l'interface 11 dans une région périphérique comprenant la région d'insertion de la lame.
Cette fragilisation (qui se traduit par une diminution localisée de l'énergie de rupture, permettant par exemple d'atteindre une énergie de rupture inférieure ou égale à 1 J/m2) est obtenue par un endommagement localisé à la périphérie de l'interface 11 .
Selon un mode de réalisation, illustré à la figure 2A, la région endommagée R1 de l'interface 11 est comprise dans un secteur de la couronne périphérique de l'interface 11 .
De préférence, l'amplitude angulaire de ce secteur est comprise entre 2 et 30°. Selon un autre mode de réalisation, la région endommagée R1 de l'interface 11 , dont la largeur dans la direction radiale est de préférence comprise entre 0,3 mm et 10 mm, se présente sous la forme d'une couronne périphérique.
Différents traitements permettent d'endommager la région R1 de l'interface 11 choisie. L'homme du métier pourra choisir de mettre en œuvre le traitement choisi avant ou après l'assemblage des substrats formant la structure S, notamment en tenant compte des conditions pratiques de mise en oeuvre du procédé de fabrication de la structure.
De manière avantageuse, le traitement est mis en œuvre après la formation de la structure ; l'invention permet ainsi de séparer une structure même si son procédé de fabrication ne contient aucune étape dédiée à l'endommagement localisé de l'interface 11.
Selon un mode de réalisation, l'endommagement de la région R1 est obtenu par irradiation laser de l'interface 11 choisie.
Le faisceau laser est choisi de sorte à chauffer sélectivement l'interface 11 à affaiblir, provoquant un endommagement de ladite interface et par conséquent la diminution de son énergie de rupture.
Ledit endommagement peut être, par exemple, la décomposition thermique d'un matériau présent à l'interface en une phase gazeuse.
Tel est le cas notamment lorsque l'un des matériaux présents à l'interface est un polymère ou une céramique.
De manière alternative, l'endommagement de la région R1 est obtenu par une attaque chimique de l'interface 11 choisie.
Ladite attaque chimique est mise en œuvre au moyen d'un agent de gravure permettant d'attaquer sélectivement l'un des matériaux présents à l'interface 11 , sans attaquer les matériaux présents à l'interface 12.
L'homme du métier est à même de sélectionner l'agent de gravure approprié en fonction de la nature des matériaux de l'interface 11.
L'application d'ultrasons peut également être envisagée pour diminuer localement l'énergie de rupture de l'interface 11 .
Quel que soit le traitement d'endommagement choisi, à l'issue de ce traitement, l'énergie de rupture dans la région R1 de l'interface 11 est inférieure à l'énergie de rupture dans le reste de l'interface, et peut être considérée comme une énergie de rupture suffisamment faible pour ne pas risquer d'occasionner de fracture des substrats lors de l'insertion de la lame et de l'amorce de séparation. Par ailleurs, l'énergie de rupture de l'interface 11 dans la région R1 est inférieure à l'énergie de rupture de l'interface 12, au moins dans la région prévue pour l'insertion de la lame.
Ceci permet d'assurer que, lors de l'insertion de la lame, l'amorce de séparation s'effectue bien le long de l'interface 11 (qui présente localement l'énergie de rupture la plus faible) et non le long de l'interface 12.
En référence à la figure 3A, la séparation consiste à insérer une lame B, de préférence épaisse, entre les deux substrats S1 , S2 de la structure S, depuis la périphérie de celle-ci, et à appliquer un effort d'écartement sur les chanfreins desdits substrats.
Par épaisse, on entend le fait que la lame permet un écartement important des substrats, de sorte à permettre leur séparation physique sans entrer en contact avec les faces avant (c'est-à-dire les faces desdits substrats situées à l'interface), afin d'éviter de les endommager.
Par ailleurs, la lame doit être insérée entre les substrats selon un plan parallèle au plan de l'interface de séparation.
Lors de la séparation, les substrats sont maintenus par un support agencé de telle sorte que l'un au moins des substrats soit susceptible de se déformer, afin d'éviter toute rupture des substrats.
Ainsi, selon un mode de réalisation préféré, la structure est positionnée verticalement dans un dispositif de séparation qui comprend, dans sa partie inférieure, un organe de retenue de la structure et, dans sa partie supérieure, un organe de séparation mobile en translation verticale comprenant la lame, dans l'axe de l'organe de retenue.
L'organe de retenue comprend une gorge présentant un fond et des bords inclinés de part et d'autre dudit fond. Le fond de la gorge est suffisamment large pour recevoir la structure assemblée sans exercer de contrainte sur celle-ci, tandis que les bords sont suffisamment hauts pour éviter toute chute des substrats après leur séparation.
Le déplacement de la lame en direction de l'intérieur de la structure provoque un effet de coin et récartement des deux parties de celle-ci selon l'interface 11 (voir figure 3B, sur laquelle l'interface 12 n'a pas été représentée).
Cet écartement des deux parties sur une longueur L a pour effet d'initier la formation d'une onde de séparation.
Après le début de l'écartement des substrats, on applique, dans l'intervalle entre les substrats, un fluide F favorisant la corrosion sous contrainte. Sous l'effet combiné de ce fluide F et de l'effort d'écartement exercé par la lame B, les liaisons siloxane de l'interface 11 se rompent, ce qui se traduit par une diminution sensible de l'énergie de rupture de ladite interface.
En particulier, l'énergie de rupture devient suffisamment faible pour éviter tout risque de casse des substrats lors de l'application de l'effort d'écartement
De manière avantageuse, la structure S est maintenue en position verticale lors de la séparation.
En effet, cette position favorise le ruissellement du fluide utilisé pour la corrosion sous contrainte le long de l'interface 11
Dans ce cas, la lame B est préférentiellement orientée verticalement et introduite au sommet de ladite structure, de sorte que l'onde séparation se déplace vers le bas en devenant horizontale au fur et à mesure qu'elle s'éloigne du point d'insertion de la lame.
Parmi les fluides favorisant la corrosion sous contrainte, on peut citer, de manière non limitative, l'eau déionisée, l'éthanol, la vapeur d'eau, l'ammoniaque et l'hydrazine.
Le fluide peut être introduit de différentes manières entre les substrats.
Ainsi, selon un mode de réalisation, la structure S peut être partiellement immergée dans un bain du fluide favorisant la corrosion sous contrainte.
De manière alternative, le fluide peut être projeté, de préférence de manière continue, sur la structure, notamment au niveau de la région d'insertion de la lame, une fois que celle-ci a été introduite entre les substrats.
Dans le cas où l'interface 12 est également sensible à la corrosion sous contrainte, il est important d'initier la contraire la séparation « à sec », c'est-à-dire en l'absence de tout fluide favorisant la corrosion sous contrainte dans la région d'insertion de la lame, et l'on attend que la séparation soit amorcée pour mettre en contact l'interface choisie avec le fluide favorisant la corrosion sous contrainte.
En effet, si l'on mettait en contact, dans la région d'insertion de la lame, les différentes interfaces sensibles à la corrosion sous contrainte avec le fluide dès l'insertion de la lame, ledit fluide aurait pour effet de diminuer l'énergie de rupture de chacune de ces interfaces, conduisant ainsi à un nivellement des énergies de rupture desdites interfaces
En revanche, l'initiation à sec permet d'éviter un tel nivellement et d'initier la séparation selon l'interface choisie, qui présente, au moins localement, l'énergie de rupture la plus faible.
Une fois la séparation amorcée, la mise en contact de l'interface 11 choisie avec un fluide favorisant la corrosion sous contrainte permet de faciliter et d'accélérer la séparation en diminuant l'énergie de rupture de ladite interface. On poursuit ainsi l'insertion de la lame en présence du fluide jusqu'à la séparation complète des substrats.
L'invention est particulièrement adaptée à la séparation le long des interfaces de type silicium / oxyde de silicium, et à toute autre interface sensible à la corrosion sous contrainte et présentant une énergie de rupture élevée.
La séparation décrite ci-dessus peut être obtenue sur des structures de toutes dimensions.
Notamment, la structure peut être constituée de substrats de grand diamètre, par exemple de 300 mm de diamètre.
Exemple de mise en œuyre de l'invention
La figure 4 illustre un substrat S1 à séparer, ledit substrat étant une structure de type silicium sur isolant (SOI, acronyme du terme anglo-saxon « Silicon On Insulator »).
Le substrat S1 comprend successivement un substrat support 1 , une couche 2 d'oxyde de silicium enterrée, parfois désignée par le terme « BOX » (acronyme du terme anglo-saxon « Buried OXide »), et une couche mince 3 de silicium, dite couche active, qui est généralement destinée à recevoir des composants pour l'électronique, l'optique, l'optoélectronique et/ou le photovoltaïque.
Les procédés permettant la fabrication d'un tel substrat sont bien connus de l'homme du métier.
On citera notamment les procédés de transfert de couche, et plus particulièrement le procédé Smart Cut™.
Selon un exemple de mise en œuvre, le procédé Smart Cut™ comprend typiquement :
- la fourniture d'un substrat donneur comprenant la couche de silicium à transférer sur le substrat support,
- la formation d'une couche d'oxyde à la surface du substrat donneur (par exemple par oxydation thermique),
- l'introduction d'espèces atomiques (par exemple par implantation) dans le substrat donneur, de sorte à créer une zone de fragilisation délimitant la couche de silicium à transférer sur le substrat support,
- le collage par adhésion moléculaire de la couche d'oxyde sur le substrat support,
- la fracture du substrat donneur le long de la zone de fragilisation, conduisant au transfert de la couche de silicium sur le substrat support,
- des étapes éventuelles de finition de la couche de silicium transférée (recuit, polissage, etc.). Le substrat S1 comprend donc deux interfaces : l'interface 11 entre la couche 3 de silicium et la couche 2 d'oxyde (qui est une interface résultant de l'oxydation du silicium), et l'interface 12 entre la couche d'oxyde 2 et le substrat support 1 (qui est une interface de collage).
L'interface silicium/oxyde 11 présente une énergie de rupture élevée, de l'ordre de
1 ,6 J/m2.
L'énergie de cette interface peut être diminuée localement de sorte à être inférieure à l'énergie de rupture de l'interface 12 dans la région R1 de l'amorce de la séparation.
Par exemple, on peut fragiliser localement l'interface 11 par une irradiation laser ou par un traitement ultrasons.
Comme illustré à la figure 5, le substrat S1 est collé, par l'intermédiaire de la couche mince 3, à un second substrat S2 qui procure un second chanfrein d'appui pour la lame employée pour la séparation. On forme ainsi une troisième interface 13, entre la couche mince 3 et le substrat S2.
L'énergie de rupture de ladite interface 13 est choisie de sorte à être supérieure à l'énergie de rupture de l'interface 11 dans la région R1 , afin d'éviter que, lors de l'insertion de la lame, la séparation ne s'effectue selon l'interface 13.
L'insertion de la lame B entre les substrats S1 et S2, dans la région endommagée R1 de l'interface 11 , permet d'amorcer la séparation selon ladite interface 11 , puis on applique, par exemple par projection, de l'eau déionisée dans l'intervalle entre les substrats, jusqu'au complet détachement des deux substrats.
Cette méthode permet donc de démonter la couche active d'un SOI, même lorsqu'aucune disposition n'a été prise lors de sa fabrication pour la rendre démontable.

Claims

REVENDICATIONS
1 . Procédé de séparation d'au moins deux substrats (S1 , S2) faisant partie d'une structure (S) comprenant au moins deux interfaces (11 , 12) de séparation s'étendant parallèlement aux faces principales de ladite structure, le long d'une interface (11 ) choisie parmi lesdites interfaces, l'un au moins de ces deux substrats étant destiné à être utilisé dans l'électronique, l'optique, l'optoélectronique et/ou le photovoltaïque, ladite séparation étant réalisée par l'insertion d'une lame (B) entre lesdits substrats (S1 , S2) et l'application par ladite lame d'un effort d'écartement des deux substrats, caractérisé en ce que :
- on choisit pour la séparation une interface (11 ) sensible à la corrosion sous contrainte, c'est-à-dire à l'action combinée dudit effort d'écartement et d'un fluide susceptible de rompre des liaisons siloxane (Si-O-Si) présentes à ladite interface (11 ),
- avant l'insertion de ladite lame, on endommage au moins une partie d'une région périphérique (R1 ) de l'interface (11 ) choisie comprenant la région d'insertion de la lame (B), de manière à ce que l'énergie de rupture dans ladite région périphérique (R1 ) soit plus faible que celle des autres interfaces dans la région d'insertion de la lame, permettant ainsi d'initier l'écartement des substrats (S1 , S2) selon l'interface (11 ) choisie dans la région endommagée (R1 ), puis en ce que
- l'on applique un fluide dans l'intervalle entre lesdits substrats (S1 , S2) écartés tout en poursuivant l'insertion de ladite lame, de sorte à diminuer l'énergie de rupture de l'interface (11 ) choisie par corrosion sous contrainte.
2. Procédé selon la revendication 1 , caractérisé en ce que ladite région périphérique (R1 ) de l'interface choisie (11 ) se présente sous la forme d'une couronne.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la région périphérique (R1) présentant une énergie de rupture plus faible est formée préalablement à l'assemblage des deux substrats.
4 Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la région périphérique (R1 ) présentant une énergie de rupture plus faible est formée après l'assemblage des deux substrats.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la région périphérique (R1 ) est formée par irradiation laser de l'interface (11 ) choisie.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la région périphérique (R1 ) est formée par attaque chimique de l'interface (11 ) choisie.
7. Procédé selon la revendication 6, caractérisé en ce que ladite attaque chimique est réalisée par l'application d'acide fluorhydrique.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la structure (S) comprend une structure de type semi-conducteur sur isolant comprenant un substrat support (1 ), une couche d'oxyde de silicium enterrée (2) et une couche de silicium (3), l'interface de séparation (11 ) consistant en l'interface entre la couche d'oxyde (2) et la couche de silicium (3).
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'énergie de rupture de chacune des interfaces de séparation est supérieure à 1 J/m2, de préférence supérieure à 1 ,5 J/m2.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'énergie de rupture dans ladite région périphérique (R1 ) de l'interface de séparation (11 ) choisie est inférieure ou égale à 1 J/m2.
1 1 . Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'énergie de rupture dans le reste de l'interface de séparation (11 ) est supérieure ou égale à 1 J/m2, de préférence supérieure ou égale à 1 ,5 J/m2.
12. Procédé selon l'une des revendications 1 à 1 1 , caractérisé en ce que ladite interface (11 ) choisie est une interface silicium / oxyde de silicium.
13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que le fluide appliqué entre les substrats est choisi parmi l'eau déionisée, l'éthanol, la vapeur d'eau, l'ammoniaque, et l'hydrazine.
PCT/IB2013/001937 2012-09-07 2013-09-04 Procédé de séparation d'au moins deux substrats selon une interface choisie WO2014037792A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/424,311 US9437473B2 (en) 2012-09-07 2013-09-04 Method for separating at least two substrates along a selected interface
JP2015530504A JP6286775B2 (ja) 2012-09-07 2013-09-04 選択された界面に沿って少なくとも2つの基板を分離するための方法
CN201380046291.1A CN104620368B (zh) 2012-09-07 2013-09-04 用于沿选择的界面分离至少两个衬底的方法
EP13782822.4A EP2893554B1 (fr) 2012-09-07 2013-09-04 Procédé de séparation d'au moins deux substrats selon une interface choisie
US15/256,265 US10093086B2 (en) 2012-09-07 2016-09-02 Method for separating at least two substrates along a selected interface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1258403 2012-09-07
FR1258403A FR2995447B1 (fr) 2012-09-07 2012-09-07 Procede de separation d'au moins deux substrats selon une interface choisie

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/424,311 A-371-Of-International US9437473B2 (en) 2012-09-07 2013-09-04 Method for separating at least two substrates along a selected interface
US15/256,265 Continuation US10093086B2 (en) 2012-09-07 2016-09-02 Method for separating at least two substrates along a selected interface

Publications (2)

Publication Number Publication Date
WO2014037792A2 true WO2014037792A2 (fr) 2014-03-13
WO2014037792A3 WO2014037792A3 (fr) 2014-11-20

Family

ID=47215594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/001937 WO2014037792A2 (fr) 2012-09-07 2013-09-04 Procédé de séparation d'au moins deux substrats selon une interface choisie

Country Status (6)

Country Link
US (2) US9437473B2 (fr)
EP (1) EP2893554B1 (fr)
JP (1) JP6286775B2 (fr)
CN (1) CN104620368B (fr)
FR (1) FR2995447B1 (fr)
WO (1) WO2014037792A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179892A1 (fr) * 2015-05-14 2016-11-17 浙江中纳晶微电子科技有限公司 Procédé de séparation de tranches
EP3260511A1 (fr) * 2016-06-24 2017-12-27 Commissariat à l'énergie atomique et aux énergies alternatives Procede de collage reversible entre deux elements

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995445B1 (fr) * 2012-09-07 2016-01-08 Soitec Silicon On Insulator Procede de fabrication d'une structure en vue d'une separation ulterieure
JPWO2015152158A1 (ja) * 2014-03-31 2017-04-13 株式会社Joled 積層体および積層体の剥離方法ならびに可撓性デバイスの製造方法
JP6268483B2 (ja) * 2014-06-03 2018-01-31 旭硝子株式会社 積層体の剥離装置及び剥離方法並びに電子デバイスの製造方法
DE102015210384A1 (de) * 2015-06-05 2016-12-08 Soitec Verfahren zur mechanischen Trennung für eine Doppelschichtübertragung
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) * 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
FR3103313B1 (fr) * 2019-11-14 2021-11-12 Commissariat Energie Atomique Procédé de démontage d’un empilement d’au moins trois substrats

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713369B2 (en) 2001-04-13 2010-05-11 Commissariat A L'energie Atomique Detachable substrate or detachable structure and method for the production thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291313B1 (en) * 1997-05-12 2001-09-18 Silicon Genesis Corporation Method and device for controlled cleaving process
CN1146973C (zh) * 1997-05-12 2004-04-21 硅源公司 受控切分处理
FR2823012B1 (fr) * 2001-04-03 2004-05-21 Commissariat Energie Atomique Procede de transfert selectif d'au moins un element d'un support initial sur un support final
US7075104B2 (en) * 2001-09-12 2006-07-11 Reveo, Inc. Microchannel plates and biochip arrays, and methods of making same
FR2857983B1 (fr) * 2003-07-24 2005-09-02 Soitec Silicon On Insulator Procede de fabrication d'une couche epitaxiee
US20050150597A1 (en) * 2004-01-09 2005-07-14 Silicon Genesis Corporation Apparatus and method for controlled cleaving
CN1648632A (zh) * 2005-01-31 2005-08-03 哈尔滨工业大学 硅片键合强度的测量方法
WO2006091817A2 (fr) * 2005-02-22 2006-08-31 2082710 Ontario Limited Procede et dispositif destines a determiner un ensemble de parametres de fonctionnement pour un separateur mineral de lit fluidise
KR20070107180A (ko) * 2005-02-28 2007-11-06 실리콘 제너시스 코포레이션 기판 강화 방법 및 그 결과물인 디바이스
EP1705697A1 (fr) * 2005-03-21 2006-09-27 S.O.I. Tec Silicon on Insulator Technologies S.A. Structure multi-couche à gradient de composition et sa fabrication
EP1763069B1 (fr) 2005-09-07 2016-04-13 Soitec Méthode de fabrication d'un hétérostructure
EP1933384B1 (fr) 2006-12-15 2013-02-13 Soitec Hétérostructure de semi-conducteurs
FR2923079B1 (fr) 2007-10-26 2017-10-27 S O I Tec Silicon On Insulator Tech Substrats soi avec couche fine isolante enterree
CN101904017A (zh) 2008-02-26 2010-12-01 硅绝缘体技术有限公司 制造半导体衬底的方法
FR2933534B1 (fr) 2008-07-03 2011-04-01 Soitec Silicon On Insulator Procede de fabrication d'une structure comprenant une couche de germanium sur un substrat
FR2934925B1 (fr) 2008-08-06 2011-02-25 Soitec Silicon On Insulator Procede de fabrication d'une structure comprernant une etape d'implantations d'ions pour stabiliser l'interface de collage.
FR2938118B1 (fr) 2008-10-30 2011-04-22 Soitec Silicon On Insulator Procede de fabrication d'un empilement de couches minces semi-conductrices
FR2938119B1 (fr) 2008-10-30 2011-04-22 Soitec Silicon On Insulator Procede de detachement de couches semi-conductrices a basse temperature
EP2202795A1 (fr) 2008-12-24 2010-06-30 S.O.I. TEC Silicon Procédé de fabrication de substrat semi-conducteur et substrat semi-conducteur
FR2942568B1 (fr) 2009-02-24 2011-08-05 Soitec Silicon On Insulator Procede de fabrication de composants.
EP2230683B1 (fr) * 2009-03-18 2016-03-16 EV Group GmbH Dispositif et procédé de séparation d'une tranche de silicium à partir d'un support
US8501537B2 (en) 2011-03-31 2013-08-06 Soitec Methods for bonding semiconductor structures involving annealing processes, and bonded semiconductor structures formed using such methods
FR2977073B1 (fr) 2011-06-23 2014-02-07 Soitec Silicon On Insulator Procede de transfert d'une couche de semi-conducteur, et substrat comprenant une structure de confinement
FR2977069B1 (fr) 2011-06-23 2014-02-07 Soitec Silicon On Insulator Procede de fabrication d'une structure semi-conductrice mettant en oeuvre un collage temporaire
FR2980280B1 (fr) 2011-09-20 2013-10-11 Soitec Silicon On Insulator Procede de separation d'une couche dans une structure composite
FR2980279B1 (fr) 2011-09-20 2013-10-11 Soitec Silicon On Insulator Procede de fabrication d'une structure composite a separer par exfoliation
TWI444295B (zh) * 2011-11-18 2014-07-11 Au Optronics Corp 脫黏器及自基板分離薄膜的方法
FR2984007B1 (fr) 2011-12-13 2015-05-08 Soitec Silicon On Insulator Procede de stabilisation d'une interface de collage situee au sein d'une structure comprenant une couche d'oxyde enterree et structure obtenue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713369B2 (en) 2001-04-13 2010-05-11 Commissariat A L'energie Atomique Detachable substrate or detachable structure and method for the production thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHA ET AL.: "Why debonding is useful in SOI?", ELECTROCHEMICAL SOCIETY PROCEEDINGS, vol. 99-35, pages 119 - 128
DE J. BAGDAHN; M. PETZOLD; M. ALEXE; U. GÔSELE: "Wafer Bonding: Applications and Technology", 2004, SPRINGER, article "Debonding of Wafer-Bonded Interfaces for Handling and Transfer Applications"
W.P MASZARA; G. GOETZ; A. CAVIGLIA; J.B .MCKITTERICK, J. APPL PHYS., vol. 64, 1988, pages 4943

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179892A1 (fr) * 2015-05-14 2016-11-17 浙江中纳晶微电子科技有限公司 Procédé de séparation de tranches
TWI627123B (zh) * 2015-05-14 2018-06-21 浙江中納晶微電子科技有限公司 分離載具-工件鍵合堆疊的方法
EP3260511A1 (fr) * 2016-06-24 2017-12-27 Commissariat à l'énergie atomique et aux énergies alternatives Procede de collage reversible entre deux elements
FR3053046A1 (fr) * 2016-06-24 2017-12-29 Commissariat Energie Atomique Procede de collage reversible entre deux elements
US10305147B2 (en) 2016-06-24 2019-05-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for reversible bonding between two elements

Also Published As

Publication number Publication date
US9437473B2 (en) 2016-09-06
JP2015531540A (ja) 2015-11-02
FR2995447A1 (fr) 2014-03-14
US20160368259A1 (en) 2016-12-22
FR2995447B1 (fr) 2014-09-05
EP2893554A2 (fr) 2015-07-15
CN104620368A (zh) 2015-05-13
EP2893554B1 (fr) 2019-01-02
CN104620368B (zh) 2016-12-07
US10093086B2 (en) 2018-10-09
JP6286775B2 (ja) 2018-03-07
US20150221544A1 (en) 2015-08-06
WO2014037792A3 (fr) 2014-11-20

Similar Documents

Publication Publication Date Title
EP2893554B1 (fr) Procédé de séparation d'au moins deux substrats selon une interface choisie
EP2893555B1 (fr) Dispositif de séparation de deux substrats
FR2797347A1 (fr) Procede de transfert d'une couche mince comportant une etape de surfragililisation
EP2842155B1 (fr) Procede de collage dans une atmosphere de gaz presentant un coefficient de joule-thomson negatif
FR2855909A1 (fr) Procede d'obtention concomitante d'au moins une paire de structures comprenant au moins une couche utile reportee sur un substrat
EP2538438B1 (fr) Procédé de fabrication d'une structure semi-conductrice mettant en oeuvre un collage temporaire
FR2892228A1 (fr) Procede de recyclage d'une plaquette donneuse epitaxiee
EP1520669B1 (fr) Procédé de séparation de plaques collées entre elles pour constituer une structure empilée
EP2302666B1 (fr) Procédé de planarisation par ultrasons d'un substrat dont une surface a été libérée par fracture d'une couche enterrée fragilisée
EP2893559B1 (fr) Procédé de fabrication d'une structure en vue d'une séparation ultérieure
FR3063176A1 (fr) Masquage d'une zone au bord d'un substrat donneur lors d'une etape d'implantation ionique
EP2511951A1 (fr) Méthode de recyclage d'un substrat source
EP2676288B1 (fr) Procede de realisation d'un support de substrat
WO2020188169A1 (fr) Procede de transfert d'une couche utile sur une substrat support
FR2995446A1 (fr) Procede de fabrication d'une structure comprenant au moins deux interfaces
FR2997553A1 (fr) Procede de separation mecanique d'une structure formee de deux substrats monocristallins
WO2020188171A1 (fr) Dispositif de maintien pour un ensemble à fracturer
EP3496133A1 (fr) Procede de collage par adhesion directe d'un premier substrat a un deuxieme substrat
FR2848723A1 (fr) Outil pour la desolidarisation de plaques dans le domaine des substrats semiconducteurs, ensemble de tels outils et procedes associes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782822

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2015530504

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14424311

Country of ref document: US