WO2014036917A1 - 一种倒装太阳能电池芯片及其制备方法 - Google Patents

一种倒装太阳能电池芯片及其制备方法 Download PDF

Info

Publication number
WO2014036917A1
WO2014036917A1 PCT/CN2013/082786 CN2013082786W WO2014036917A1 WO 2014036917 A1 WO2014036917 A1 WO 2014036917A1 CN 2013082786 W CN2013082786 W CN 2013082786W WO 2014036917 A1 WO2014036917 A1 WO 2014036917A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
metal layer
chip
flip
Prior art date
Application number
PCT/CN2013/082786
Other languages
English (en)
French (fr)
Inventor
熊伟平
林桂江
吴志敏
宋明辉
安晖
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2014036917A1 publication Critical patent/WO2014036917A1/zh
Priority to US14/633,947 priority Critical patent/US20150171245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a flip chip solar cell chip and a preparation method thereof, and belongs to the field of semiconductor optoelectronic devices and technologies.
  • Solar cell power generation is an important part of the future new energy field.
  • the current cost of solar cell power generation is still high.
  • the most direct and effective method is to improve the photoelectric conversion efficiency of solar cells.
  • the power loss of the internal series resistance of the battery is one of the most important factors.
  • the power loss of the series resistance of the battery is determined by the series resistance and the magnitude of the photo-generated current.
  • the power loss is proportional to the square of the photo-generated current of the battery, thus reducing the photo-generated current of the battery.
  • the battery voltage method can effectively reduce the power loss of the series resistance of the battery, which is especially important in the application of high-concentration solar cells (currently, concentrating solar cells are mostly used. At a concentration of about 1000 times, the current density is 13-15A/cm. 2 ).
  • Reducing the area of the battery chip is one of the most effective ways to reduce the photo-generated current of the battery, while also reducing the series resistance of the battery.
  • reducing the battery chip area means that in the case of the same power generation requirements, the package quantity of the battery, that is, the packaging cost will be multiplied, such as a 1 cm 2
  • the high-concentration solar cell chip is simply packaged into a solar receiver and divided into 0.04 cm. 2
  • the battery chip needs to be packaged into 25 receivers. Although the battery efficiency is improved, the packaging cost is multiplied, and the final power generation cost is likely to increase.
  • the present invention provides a flip chip solar cell chip and a method of fabricating the same.
  • a flip chip solar cell chip comprising: an insulating transfer substrate, a bonding metal layer, and a flip-chip solar cell epitaxial layer, wherein the flip-chip solar cell epitaxial layer passes through the bonding metal layer
  • the transfer substrate is characterized in that: the flip-chip solar cell epitaxial layer and the bonding metal layer are divided into at least several units, and the surface of the split flip-chip solar cell epitaxial layer is provided with a front electrode, The bonding metal layer is interconnected end to end with the front electrode such that the separated epitaxial layers form a series connection.
  • the transfer substrate is selected from the group consisting of a polished glass, an undoped silicon wafer, or an organic insulating substrate.
  • the bonding metal layer is a highly electrically conductive material that acts both as a bonding dielectric layer and as a back electrode.
  • each of the cells exposes a portion of the bonding metal layer, one end of which is connected to the epitaxial layer of the cell, and the other end of which extends to the epitaxial layer of the adjacent cells.
  • the bonding metal layer of the first unit is connected to the front electrode of the second unit through a metal connection layer.
  • the method further includes an insulating layer between the adjacent two units, the metal connecting layer is located on the insulating layer, the insulating film has a width larger than the connecting metal layer, and the length is smaller than the connecting metal layer. Electrical isolation of the connecting metal layer from the sidewalls of the epitaxial layer is ensured, thereby enabling the formation of a number of fully isolated small solar cells on the same transfer substrate.
  • a method of fabricating a flip-chip solar cell chip comprising the steps of: 1 Providing an insulating transfer substrate and a flip-chip solar cell epitaxial layer; 2) transferring the flip-chip solar cell epitaxial layer to the insulating transfer substrate by a metal bonding process through a bonding metal layer; Dividing the flip-chip solar cell epitaxial layer together with the bonding metal layer into a plurality of cells; 4) etching the solar cell epitaxial layer of each cell to expose a portion of the bonding metal layer; 5) preparing a front electrode on the front side of each unit of the epitaxial layer; The exposed bonding metal layer is interconnected with the front electrode to form a series connection.
  • the step 4 In the middle, the exposed metal layer exposed by each unit is connected to the solar cell epitaxial layer at one end, and the other end extends to the epitaxial layer of the adjacent unit.
  • the step 6 The method comprises: forming an insulating layer between the exposed metal layer exposed by each unit and the epitaxial layer of the adjacent unit; forming a metal connecting layer on the insulating layer, connecting the exposed bonding metal layer and the phase a front surface electrode of the adjacent unit; wherein the insulating film has a width larger than the connecting metal layer and the length is smaller than the connecting metal layer, thereby ensuring electrical insulation between the connecting metal layer and the sidewall of the epitaxial layer, thereby forming on the same transfer substrate A number of fully isolated small solar cells.
  • the invention has the advantages that the solar cell epitaxial layer is divided into completely isolated portions to form a series, which greatly reduces the photo-generated current, thereby reducing the power consumption of the battery chip series resistance, and the output voltage is multiplied, thereby improving the battery chip.
  • the photoelectric conversion efficiency does not increase the packaging cost because the divided parts are not completely separated from each other.
  • the bonding metal layer as the back electrode, it is necessary to epitaxially grow a highly doped, thick back surface photocurrent collecting layer without flip-chip bonding, and the epitaxially grown semiconductor photocurrent collecting layer resistor Higher, resistive power loss is high, so the use of a bonded metal layer as the back electrode allows for extremely low resistive losses in the back electrode.
  • FIG. 1 to FIG. 12 are schematic diagrams showing a process flow of preparing a flip-chip solar cell chip according to an embodiment of the present invention.
  • the following embodiment discloses a flip-chip solar cell chip structure and a preparation method thereof, the device structure comprising: an insulating transfer substrate, a bonding metal layer and a flip-chip solar cell epitaxial layer, wherein the flip-chip solar cell epitaxial layer passes the key
  • the metal layer is bonded to the transfer substrate.
  • the flip-chip solar cell epitaxial layer and the bonding metal layer are divided into at least several cells, and the surface of each of the epitaxial layers is provided with a front electrode which is interconnected with the bonding metal layer so that the divided epitaxial layers form a series connection.
  • the insulating transfer substrate may be an insulating material such as a polished glass, a silicon wafer or an organic insulating substrate, preferably a heat dissipating substrate.
  • a method for preparing a flip-chip solar cell chip mainly comprises the steps of substrate transfer, epitaxial wafer division, fabrication of conductive connection, etc. 1 to 12 are explained in detail.
  • the flip-chip solar cell epitaxial wafer comprises a flip-chip solar cell epitaxial substrate 003 and an epitaxial layer 002, and the bonded transfer substrate 001 is an undoped silicon wafer.
  • the electron beam evaporation method is used to vapor-deposit the bonding metal layer on the surface of the flip-chip solar cell epitaxial layer 002 and the transfer substrate 001, respectively. 004.
  • the flip-chip solar cell epitaxial wafer and the bonded transfer substrate are bonded to the metal layer by a metal bonding process. Bond together.
  • the flip-chip solar cell epitaxial substrate 003 is removed by chemical etching.
  • each unit has an 'L' distribution and is divided into a body area and a connection area, wherein the end protrusions are connection areas, and each unit starts from The beginning S is located in the main body, the end E Located in the connection area.
  • connection region of each unit is etched away by photolithography, etching, etc., to expose a portion of the bonding metal layer 004 underneath.
  • 8 is a sectional view along line A-A.
  • FIG. 9 is a partial cross-sectional view of the portion B in Figure 9.
  • connection metal layer is formed over the insulating layer 005 by photolithography, metal evaporation, metal stripping, or the like.
  • a front electrode 007 is formed on the surface of the divided epitaxial layer.
  • the connection metal layer 006 has a width slightly smaller than the insulating film 005, and the length is slightly larger than the insulating film 005
  • the electrical connection between the back surface electrode (i.e., the bonding metal layer 004) of the adjacent divided portion and the front surface electrode 007 is realized without forming a leakage or even a short circuit through the sidewall of the epitaxial layer.
  • Figure 12 is the B in Figure 11 The partial cross-sectional view can be seen from the figure.
  • the adjacent two dividing units are covered with an insulating layer 005 at the end of the first and last ends to avoid leakage or short circuit in the sidewall of the epitaxial layer.
  • a metal connecting wire 006 is formed on the upper side to realize the first and last interconnection of the bonding metal layer and the front electrode, so that a series small solar cell array is formed on the same transfer substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种倒装太阳能电池芯片及其制备方法,包含:一键合转移衬底(001),所述的键合转移衬底(001)为绝缘体;一键合金属层(004);一倒装太阳能电池外延层(002);所述的倒装太阳能电池外延层(002)通过键合金属层(004)与键合转移衬底(001)贴合;所述的倒装太阳能电池外延层(002)连同键合金属层(004)被分割成至少两部分以上;所述的被分割开的倒装太阳能电池外延层(002)表面形成有正面电极(007);键合金属层(004)与正面电极(007)首尾互连,使得分割开后的外延层形成串联。其优点在于,电池外延层被分割成完全隔离的若干部分后形成串联,大大降低了光生电流,从而降低了电池芯片串联电阻的功耗,而输出电压成倍增加,提高电池芯片光电转换效率;采用键合金属层作为背电极,实现了背电极极低的电阻性损耗。

Description

一种倒装太阳能电池芯片及其制备方法
本申请主张如下优先权:中国发明专利申请号 201210322001.9 ,题为 ' 一种倒装太阳能电池芯片及其制备方法 ' ,于 2012 年 9 月 4日 提交。 上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种倒装太阳能电池芯片及其制备方法,属半导体光电子器件与技术领域。
背景技术
太阳能电池发电是未来新能源领域的重要组成部分,然而目前太阳能电池发电成本还较高,要降低成本,最直接有效地方法就是提高太阳能电池的光电转换效率。影响太阳能电池光电转换效率的因素很多,其中电池内部串联电阻的功率损耗是最重要的因素之一。
电池串联电阻的功率损耗由串联电阻以及光生电流的大小共同决定,在电池串联电阻一定的情况下,其功率损耗与电池的光生电流大小的二次方成正比,因此降低电池光生电流的同时提高电池电压的方法能有效地降低电池串联电阻的功率损耗,这一点在高倍聚光型太阳能电池的应用中尤为重要(目前聚光型太阳能电池多应用于 1000 倍左右聚光条件下,其电流密度达 13-15A/cm2 )。
减小电池芯片面积是降低电池光生电流的最有效方法之一,同时还可降低电池串联电阻。然而,减少电池芯片面积意味着在相同发电量要求的情况下,电池的封装数量即封装成本将成倍增加,如一颗 1 cm2 的高倍聚光太阳能电池芯片只需封装成一个太阳光接收器,而将其分割成 0.04 cm2 的电池芯片则需封装成 25 个接收器,虽然电池效率提高了,但封装成本成倍增加,最终的发电成本很有可能反而升高。
发明内容
针对上述问题,本发明提出了一种倒装太阳能电池芯片及其制备方法。
根据本发明的第一个方面,一种倒装太阳能电池芯片,包含:绝缘性转移衬底,键合金属层及倒装太阳能电池外延层,所述倒装太阳能电池外延层通过键合金属层与转移衬底贴合,其特征在于:所述倒装太阳能电池外延层连同键合金属层被分割成至少若干单元,所述被分割开的倒装太阳能电池外延层表面设置有正面电极,所述键合金属层与所述正面电极首尾互连,使得分割开后的外延层形成串联连接。
优选地,所述转移衬底选自抛光玻璃、非掺杂硅片或有机绝缘衬底。
优选地,所述键合金属层为高电导材料,其既作为键合介质层,同时又作为背电极。
优选地,所述每个单元露出部分键合金属层,其一端与该单元的外延层连接,另一端向相邻各单元的外延层延伸。进一步地,所述相邻的两个单元之间,第一单元的键合金属层通过一金属连接层与第二单元的正面电极连接。更进一步地,还包括一绝缘层,其位于相邻的两个单元之间,所述金属连接层位于所述绝缘层上,所述绝缘薄膜的宽度大于连接金属层,长度小于连接金属层,保证了所述连接金属层与外延层侧壁的电绝缘,从而实现在同一转移衬底上形成若干完全隔离的小型太阳能电池。
根据本发明的第二个方面,一种倒装太阳能电池芯片的制备方法,包括步骤: 1 )提供一绝缘转移衬底及一倒装太阳能电池外延层; 2 )通过一键合金属层,采用金属键合工艺将所述倒装太阳能电池外延层转移至绝缘性转移衬底上; 3 )将倒装太阳能电池外延层连同键合金属层分割成若干单元; 4 )蚀刻各单元的太阳能电池外延层,露出部分键合金属层; 5 )在各单元的外延层正面制备正面电极; 6 )将露出的键合金属层与正面电极首尾互连,形成串联连接。
在本方法中,优选地,所述步骤 4 )中,各单元露出的键合金属层一端与太阳能电池外延层连接,另一端向相邻单元的外延层延伸。所述步骤 6 )包括:在各个单元露出的键合金属层与相邻单元的外延层之间形成一绝缘层;在所述绝缘层上形成一金属连接层,其连接所述露出的键合金属层和相邻单元的正面电极;其中,所述绝缘薄膜的宽度大于连接金属层,长度小于连接金属层,保证了所述连接金属层与外延层侧壁的电绝缘,从而实现在同一转移衬底上形成若干完全隔离的小型太阳能电池。
本发明的优点在于,将太阳能电池外延层分割成完全隔离的若干部分后形成串联,大大降低了光生电流,从而降低了电池芯片串联电阻的功耗,而输出电压成倍增加,提高了电池芯片光电转换效率,同时又由于分割开的各部分并未完全相互脱离,因此不会增加封装成本。进一步地,采用键合金属层作为背电极,避免了在未进行倒装键合的情况下必须外延生长高掺杂、厚度大的背面光生电流收集层,而外延生长的半导体光生电流收集层电阻较高、电阻性功率损耗高,因此,采用键合金属层作为背电极可实现背电极极低的电阻性损耗。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 ~图 12 为根据本发明实施的一种倒装太阳能电池芯片制备工艺流程示意图。
图中各标号表示:
001 :转移衬底;
002 :倒装太阳能电池外延层;
003 :倒装太阳能电池外延衬底;
004 :键合金属层;
005 :绝缘层;
006 :连接金属层;
007 :正面电极
具体实施方式
下面实施例公开了一种倒装太阳能电池芯片结构及其制备方法,该器件结构包括:绝缘性转移衬底,键合金属层及倒装太阳能电池外延层,其中倒装太阳能电池外延层通过键合金属层与转移衬底贴合。倒装太阳能电池外延层连同键合金属层被分割成至少若干单元,各单元外延层表面设置有正面电极,其与键合金属层首尾互连,使得分割开后的外延层形成串联连接。在一些实施例中,绝缘性转移衬底可以为抛光玻璃、硅片或有机绝缘衬底等绝缘性材料,以散热基板为佳。
下面结合对本发明的实施作进一步描述,但不应以此限制本发明的保护范围。一种倒装太阳能电池芯片的制备方法,主要包括衬底转移、外延片分割、制作导电连接等步骤,下面结合图 1 ~图 12 进行具体说明。
如图 1 所示,提供倒装太阳能电池外延片及绝缘性转移衬底 001 。其中倒装太阳能电池外延片包括倒装太阳能电池外延衬底 003 及外延层 002 ,键合转移衬底 001 为未经掺杂的硅片。
如图 2 所示,采用电子束蒸镀方法分别在倒装太阳能电池外延层 002 及转移衬底 001 表面蒸镀键合金属层 004 。
如图 3 所示,采用金属键合工艺将倒装太阳能电池外延片及键合转移衬底通过键合金属层 004 键合在一起。
如图 4 所示,采用化学腐蚀方法去除倒装太阳能电池外延衬底 003 。
如图 5 所示,通过光刻、蚀刻等工艺步骤将倒装太阳能电池外延层 002 连同键合金属层 004 蚀刻成若干个单元,其中相邻图形之间的间距为 20 ~ 50 微米之间,在保证图形之间完全分割的前提下尽量少浪费面积。图 6 为完成此步骤后的样品的俯视图,从图中可看出,每个单元呈' L '分布,分为主体区和连线区,其中末端突出部为连线区,且每个单元的起始端 S 位于主体区,末端 E 位于连线区。
如图 7 所示,采用光刻、蚀刻等工艺将各单元的连线区的外延层蚀刻去除,露出其下的部分键合金属层 004 ,图 8 为沿线 A-A 的剖面图。
如图 9 所示,在电池芯片表面蒸镀绝缘层,通过光刻、蚀刻等工艺形成横跨相邻的分割单元边缘的绝缘层 005 ,此处采用的绝缘薄膜为电子束蒸镀的二氧化硅材料。图 10 为图 9 中 B 部的局部剖面图。
如图 11 所示,采用光刻、金属蒸镀、金属剥离等工艺在绝缘层 005 之上形成连接金属层 006 ,同时在分割开的外延层表面形成正面电极 007 。其中,连接金属层 006 宽度略小于所述的绝缘薄膜 005 ,长度略大于绝缘薄膜 005 ,从而实现相邻分割部分的背面电极(即键合金属层 004 )与正面电极 007 的电连接,同时又不会经外延层侧壁形成漏电甚至短路。
图 12 为图 11 中 B 的局部剖面图,从图中可看出,相邻的两个分割单元,在首尾相接的地方,其下方覆盖有绝缘层 005 ,避免外延层侧壁产生漏电或短路,在绝缘层 005 上方形成金属连接线 006 ,实现键合金属层与正面电极首尾互连,实现在同一转移衬底上形成串联式小型太阳能电池阵列。

Claims (10)

  1. 一种倒装太阳能电池芯片,包含:绝缘性转移衬底,键合金属层及倒装太阳能电池外延层,所述倒装太阳能电池外延层通过键合金属层与转移衬底贴合,其特征在于:
    所述倒装太阳能电池外延层连同键合金属层被分割成至少若干单元,所述被分割开的倒装太阳能电池外延层表面设置有正面电极,所述键合金属层与所述正面电极首尾互连,使得分割开后的外延层形成串联连接。
  2. 根据权利要求 1 所述的太阳能电池芯片,其特征在于:所述转移衬底选自抛光玻璃、非掺杂硅片或有机绝缘衬底。
  3. 根据权利要求 1 所述的太阳能电池芯片,其特征在于:所述键合金属层为高电导材料,其既作为键合介质层,同时又作为背电极。
  4. 根据权利要求 3 所述的太阳能电池芯片,其特征在于:所述每个单元露出部分键合金属层,其一端与该单元的外延层连接,另一端向相邻各单元的外延层延伸。
  5. 根据权利要求 4 所述的太阳能电池芯片,其特征在于:相邻的两个单元之间,第一单元的键合金属层通过一金属连接层与第二单元的外延层连接。
  6. 根据权利要求 5 所述的太阳能电池芯片,其特征在于:还包括一绝缘层,其位于相邻的两个单元之间,所述金属连接层位于所述绝缘层上。
  7. 根据权利要求 6 所述的太阳能电池芯片,其特征在于:所述绝缘薄膜的宽度大于连接金属层,长度小于连接金属层,保证了所述连接金属层与外延层侧壁的电绝缘,从而实现在同一转移衬底上形成若干完全隔离的小型太阳能电池。
  8. 一种倒装太阳能电池芯片的制备方法,包括步骤:
    1 )提供一绝缘转移衬底及一倒装太阳能电池外延层;
    2 )通过一键合金属层,采用金属键合工艺将所述倒装太阳能电池外延层转移至绝缘性转移衬底上;
    3 )将倒装太阳能电池外延层连同键合金属层分割成若干单元;
    4 )蚀刻各单元的太阳能电池外延层,露出部分键合金属层;
    5 )在各单元的外延层正面制备正面电极;
    6 )将露出的键合金属层与正面电极首尾互连,形成串联连接。
  9. 根据权利要求 8 所述的太阳能电池芯片的制备方法,其特征在于:所述步骤 4 )中,各单元露出的键合金属层一端与太阳能电池外延层连接,另一端向相邻单元的外延层的延伸。
  10. 根据权利要求 8 所述的太阳能电池芯片的制备方法,其特征在于:所述步骤 6 )包括:
    在各个单元露出的键合金属层与相邻单元的外延层之间形成一绝缘层;
    在所述绝缘层上形成一金属连接层,其连接所述露出的键合金属层和相邻单元的正面电极;
    其中,所述绝缘薄膜的宽度大于连接金属层,长度小于连接金属层,保证了所述连接金属层与外延层侧壁的电绝缘,从而实现在同一转移衬底上形成若干完全隔离的小型太阳能电池。
PCT/CN2013/082786 2012-09-04 2013-09-02 一种倒装太阳能电池芯片及其制备方法 WO2014036917A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/633,947 US20150171245A1 (en) 2012-09-04 2015-02-27 Flip-chip Solar Cell Chip and Fabrication Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210322001.9 2012-09-04
CN201210322001.9A CN102800726B (zh) 2012-09-04 2012-09-04 一种倒装太阳能电池芯片及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/633,947 Continuation US20150171245A1 (en) 2012-09-04 2015-02-27 Flip-chip Solar Cell Chip and Fabrication Method Thereof

Publications (1)

Publication Number Publication Date
WO2014036917A1 true WO2014036917A1 (zh) 2014-03-13

Family

ID=47199783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082786 WO2014036917A1 (zh) 2012-09-04 2013-09-02 一种倒装太阳能电池芯片及其制备方法

Country Status (3)

Country Link
US (1) US20150171245A1 (zh)
CN (1) CN102800726B (zh)
WO (1) WO2014036917A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020547A (zh) * 2022-07-12 2022-09-06 中国电子科技集团公司第十八研究所 一种激光光伏器件的成型工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800726B (zh) * 2012-09-04 2015-04-29 天津三安光电有限公司 一种倒装太阳能电池芯片及其制备方法
CN104009046B (zh) * 2013-02-27 2017-10-24 中国科学院苏州纳米技术与纳米仿生研究所 倒装结构的激光光伏电池及其制作方法
CN104009047B (zh) * 2013-02-27 2017-10-24 中国科学院苏州纳米技术与纳米仿生研究所 一种倒装结构的激光光伏电池及其制作方法
CN104393065B (zh) * 2014-11-26 2017-06-06 天津三安光电有限公司 太阳能电池芯片、采用该芯片的太阳能电池模组以及其制作方法
CN109545867A (zh) * 2018-09-29 2019-03-29 南京邮电大学 悬空p-n结量子阱基串联阵列能量系统及制备方法
CN111640814B (zh) * 2020-06-05 2022-05-20 天津三安光电有限公司 一种太阳电池结构及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157622A (zh) * 2011-03-08 2011-08-17 中国科学院苏州纳米技术与纳米仿生研究所 一种串联式单片集成多结薄膜太阳能电池的制造方法
CN102299210A (zh) * 2011-09-14 2011-12-28 中国科学院苏州纳米技术与纳米仿生研究所 倒装薄膜太阳能电池的制作方法
CN102800726A (zh) * 2012-09-04 2012-11-28 天津三安光电有限公司 一种倒装太阳能电池芯片及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183975A (ja) * 1985-02-12 1986-08-16 Teijin Ltd 薄膜太陽電池の加工方法
DE69738307T2 (de) * 1996-12-27 2008-10-02 Canon K.K. Herstellungsverfahren eines Halbleiter-Bauelements und Herstellungsverfahren einer Solarzelle
US20050282307A1 (en) * 2004-06-21 2005-12-22 Daniels John J Particulate for organic and inorganic light active devices and methods for fabricating the same
US20100236607A1 (en) * 2008-06-12 2010-09-23 General Electric Company Monolithically integrated solar modules and methods of manufacture
US20100147353A1 (en) * 2008-12-15 2010-06-17 Kishore Kamath Integrated Shunt Protection Diodes For Thin-Film Photovoltaic Cells And Modules
CN101656275B (zh) * 2009-09-08 2012-01-04 厦门市三安光电科技有限公司 一种倒装型多结化合物太阳电池芯片的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157622A (zh) * 2011-03-08 2011-08-17 中国科学院苏州纳米技术与纳米仿生研究所 一种串联式单片集成多结薄膜太阳能电池的制造方法
CN102299210A (zh) * 2011-09-14 2011-12-28 中国科学院苏州纳米技术与纳米仿生研究所 倒装薄膜太阳能电池的制作方法
CN102800726A (zh) * 2012-09-04 2012-11-28 天津三安光电有限公司 一种倒装太阳能电池芯片及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020547A (zh) * 2022-07-12 2022-09-06 中国电子科技集团公司第十八研究所 一种激光光伏器件的成型工艺
CN115020547B (zh) * 2022-07-12 2024-05-28 中国电子科技集团公司第十八研究所 一种激光光伏器件的成型工艺

Also Published As

Publication number Publication date
CN102800726A (zh) 2012-11-28
US20150171245A1 (en) 2015-06-18
CN102800726B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2014036917A1 (zh) 一种倒装太阳能电池芯片及其制备方法
CN102437243B (zh) 异质浮动结背钝化的hit太阳能电池结构及其制备工艺
US10573764B2 (en) Solar cell with reduced base diffusion area
EP2609628B1 (en) Photovoltaic device and module with improved passivation and a method of manufacturing.
KR100809248B1 (ko) 반도체 이종구조 나노선을 이용한 광기전력 소자 및 그제조방법
WO2019105085A1 (zh) 异质结太阳能电池及其制备方法
JP2014075526A (ja) 光電変換素子および光電変換素子の製造方法
WO2015032241A1 (zh) 集成旁路二极管的太阳电池及其制备方法
CN103187476B (zh) 太阳能电池的制备方法
TW201438265A (zh) 具有貫穿襯底的通孔的多結太陽能電池
JP2001085731A (ja) 光電圧生成器
JPH11312816A (ja) 集積型薄膜太陽電池モジュール
CN103187456B (zh) 太阳能电池
CN103137716B (zh) 太阳能电池、太阳能电池组及其制备方法
CN107425083A (zh) 一种叠层背钝化太阳能电池及其制备方法
JPH11261086A (ja) 光起電力装置及び太陽電池モジュール
TWI816357B (zh) 太陽能電池模組及其製備方法
WO2011065611A1 (ko) 태양전지 및 태양전지 제조방법
CN103187453A (zh) 太阳能电池
JP2013219185A (ja) 太陽電池、太陽電池パネル、及び太陽電池の製造方法
KR101172619B1 (ko) Ain 패시베이션막을 구비하는 실리콘 태양전지
KR101612805B1 (ko) 박막형 태양전지 모듈 및 그의 제조방법
CN113571621A (zh) 一种多单元式的发光二极管及其制作方法
JP6198813B2 (ja) 光電変換素子、光電変換モジュールおよび太陽光発電システム
TW202341510A (zh) 槽式太陽能電池模組及其製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834878

Country of ref document: EP

Kind code of ref document: A1