WO2014034420A1 - 抵抗変化メモリ素子 - Google Patents

抵抗変化メモリ素子 Download PDF

Info

Publication number
WO2014034420A1
WO2014034420A1 PCT/JP2013/071742 JP2013071742W WO2014034420A1 WO 2014034420 A1 WO2014034420 A1 WO 2014034420A1 JP 2013071742 W JP2013071742 W JP 2013071742W WO 2014034420 A1 WO2014034420 A1 WO 2014034420A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance change
electrode
memory element
change memory
insulating film
Prior art date
Application number
PCT/JP2013/071742
Other languages
English (en)
French (fr)
Inventor
精祐 児子
満徳 勝
佐藤 正幸
裕一 笹島
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to JP2014532913A priority Critical patent/JP6196623B2/ja
Priority to US14/418,021 priority patent/US20150171319A1/en
Priority to CN201380040723.8A priority patent/CN104520991A/zh
Publication of WO2014034420A1 publication Critical patent/WO2014034420A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0097Erasing, e.g. resetting, circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/25Multistable switching devices, e.g. memristors based on bulk electronic defects, e.g. trapping of electrons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]

Definitions

  • the present invention relates to a resistance change memory element.
  • SRAM Static Random Access Memory
  • DRAM Dynamic RAM
  • flash memory flash memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic RAM
  • flash memory flash memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic RAM
  • flash memory flash memory
  • the SRAM cannot be increased in capacity because it is difficult to achieve high integration.
  • DRAM can be accessed at high speed, so it is used as a cache memory.
  • DRAM also requires a refresh operation at the time of reading because it is a data destructive read type.
  • the flash memory can hold data after power-off, and thus is used for storing a relatively small amount of data.
  • the element constituting the ReRAM has a structure in which a lower electrode, a resistance change insulating film, and an upper electrode are sequentially stacked. By applying a voltage pulse between the upper electrode and the lower electrode, the resistance of the resistance change insulating film is increased. The value can be reversibly changed.
  • a resistive nonvolatile memory can be realized by reading a resistance value that changes by this reversible resistance changing operation.
  • a ReRAM is configured by arranging ReRAM elements in a matrix to form a memory cell array and arranging peripheral circuits for controlling data writing, erasing, and reading operations for each memory cell of the memory cell array.
  • the research and development object of ReRAM is performed on a metal oxide film that changes resistance and a device (for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1) suitable for the electrode metal material.
  • JP 2012-33649 A JP 2005-183570 A JP 2010-15562 A
  • All of the disclosed ReRAMs have a two-electrode structure in which the front and back surfaces of the insulator are sandwiched between two electrodes, and utilize the phenomenon that the insulator changes its resistance when voltage is applied.
  • the reason for this is that the two-electrode structure is easy to integrate into the memory due to its simple structure, and the Schottky barrier that is inevitably formed between the metal oxide film and the electrode metal performs an important function for the switching mechanism, and at the same time, This is advantageous in that it operates at high speed.
  • the structure in which the front and back surfaces of the resistance change film of the insulator are sandwiched between two electrodes is suitable for high memory integration.
  • wiring since wiring is performed on the front and back surfaces, wiring cannot be processed at once, and the distance between the wirings becomes the thickness of the resistance change film. There is a problem in that it is difficult to mix with other semiconductor elements because there is a case where the insulation between the two becomes inferior.
  • a form for solving the above problem is as described in items (1) to (6) below.
  • a resistance change memory element comprising: a gate electrode disposed on a second main surface of the resistance change insulating film facing the first main surface. Since the source electrode and the drain electrode are provided on the same plane, electrode wiring can be performed on the same plane, and insulation between the wirings can be ensured by adjusting the wiring spacing in a plane, so that other semiconductors It becomes easy to mix with the element.
  • An insulating film is provided between two metal electrodes. Each time electrons tunnel, the junction is repeatedly charged and discharged, and the junction voltage decreases or increases accordingly, thereby writing (also referred to as “on operation”) or erasing (“off”). Also called “operation”).
  • the off-current can be made smaller than that of the two-electrode resistance change memory element that is turned off by the passing current.
  • the resistance change memory according to the embodiment of the present invention has an effect that the source electrode and the drain electrode are placed on the same end face of the resistance change insulating film, thereby facilitating mixed mounting with other semiconductor elements. Play.
  • FIG. 1 is a cross-sectional view showing an example of a two-electrode resistance change memory element.
  • a conventional two-electrode type resistance change memory element 10 shown in FIG. 1 has a structure in which a lower electrode 5, a resistance change insulating film 8, and an upper electrode 7 are laminated in order. By applying a voltage pulse between the electrodes 7, the resistance value of the resistance change insulating film 8 can be reversibly changed.
  • the two-electrode resistance change memory element 10 is stacked on the insulating film 5 and the substrate 11.
  • a method for manufacturing the two-electrode resistance change memory element 10 will be described.
  • a silicon oxide film is formed as the insulating film 5 on the single crystal silicon substrate 11 by a thermal oxidation method.
  • Al is formed as a lower electrode 5 on the silicon oxide film by sputtering.
  • a hafnium oxide film having a thickness of, for example, about 3 nm is formed on the lower electrode 5 by an ALD (Atomic Layer Deposition) method as a variable resistance insulating film 8, for example.
  • an Al film having a thickness of 100 nm is formed on the surface by high vacuum vapor deposition to form an upper electrode 7 having a thickness of 25 ⁇ m ⁇ .
  • the IV characteristics of the element are shown in FIG.
  • the state goes from the high resistance state to the low resistance state at 2.5 V through the current limiting diode of 28 ⁇ A.
  • the off-current reaches 18 mA before reaching 1 V, and a unipolar operation is performed to rapidly return to the high resistance state.
  • the off-state current of the comparative example is about four orders of magnitude larger than that of the embodiment of the present invention, and the superiority regarding power saving of the three-electrode resistance change memory element of the present invention is clear.
  • FIG. 2 is a cross-sectional view showing an example of a 3-electrode resistance change memory element.
  • the resistance change memory element 20A shown in FIG. 2 is a top gate electric field type.
  • the three-electrode resistance change memory element 20A includes a source electrode 17A, a drain electrode 18A, and a gate electrode 19A.
  • the source electrode 17A, the drain electrode 18A, and the gate electrode 19A have a resistance change insulating film 8 therebetween. Pinch.
  • an alumina insulating film 15A is provided between them.
  • the alumina insulating film 16A insulates between the source and the drain.
  • an AC film of 50 nm thick Al 2 O 3 is formed thereon, and Al and O 2 are formed thereon.
  • a 30 nm thick AlOx film is formed by co-sputtering Al 2 O 3 (Al: DC5W, Al 2 O 3 : AC200W, in Ar), and then 50 nm thick Al 2 O 3 is AC formed thereon.
  • a photoresist film is applied, and a 2 mm square gate electrode lead-out port is dry-etched to an Al film using the photomask 1, and similarly 2 ⁇ m using the photomask 2.
  • the corner source and drain electrodes (distance between electrodes: 0.6 ⁇ m) were dry etched to the AlOx film. Thereafter, Al having a thickness of 200 nm was formed by DC sputtering, and a source electrode and a drain electrode were formed using the photomask 3.
  • FIG. 3 is a cross-sectional view showing an example of a resistance change type memory element according to another embodiment.
  • the resistance change memory element 20B shown in FIG. 3 is a bottom gate electric field type.
  • the resistance change memory element 20B includes a source electrode 17B, a drain electrode 18B, and a gate electrode 19B.
  • the source electrode 17B, the drain electrode 18B, and the gate electrode 19B sandwich the resistance change insulating film 8 therebetween. .
  • an alumina insulating film 16B is provided between them.
  • an alumina insulating film 15B is provided between them.
  • Non-Patent Document 2 the first principle calculation describes the electron and atomic configuration related to oxygen deficiency in amorphous alumina.
  • the first-principles calculation is based on a DFT (Density Functional Theory) in a LDA (Local Density Application) and a plane-wave based pseudopotential method.
  • the present inventors verified the electronic state in the on / off state derived from the first principle calculation result of Non-Patent Document 2 by measuring the thermally stimulated current.
  • Vo electrons electrons trapped by Vo in the aluminum oxide film (hereinafter referred to as AlOx) having high-density oxygen deficiency oxygen vacancy (Vo) are at a level 0.17 to 0.41 eV below the conduction band.
  • AlOx aluminum oxide film having high-density oxygen deficiency oxygen vacancy
  • variable resistance insulating film that generates high-density oxygen vacancies is not limited to an aluminum oxide film, and may be a metal oxide film other than a transition metal. This point will be described later in “(4) Metal oxide film other than transition metal”.
  • Non-Patent Document 2 activation energy is required to convert the Vo electrons in the on state into hot electrons.
  • the three-electrode resistance change memory elements 20A and 20B can perform electron extraction that does not require hot electronization. That is, the three-electrode resistance change memory elements 20A and 20B can directly extract electrons to the electrodes by an electric field.
  • the operation principle will be described in detail.
  • the Schottky barrier is changed into an electric field enhanced type (Fowler-Nordheim).
  • the tunneled electrons are injected into Vo of the resistance change insulating film, forming a Vo conduction band and being turned on.
  • the off operation when the potentials of the source electrode and the drain electrode are lowered by a certain voltage (for example, 3 V) with respect to the gate potential, electrons are extracted to the source electrode and the drain electrode to be turned off.
  • FIG. 4A is a diagram showing an example of a two-electrode resistance change memory element provided with a circuit for measuring current-voltage (IV) characteristics.
  • the measurement circuit 30 includes a power supply 31, a current limiting diode 33 that limits the current, and a switch 35 that switches the diode.
  • the current limit value of the current limit diode 33 is 28 ⁇ A.
  • FIG. 4B is a diagram illustrating an example of IV characteristics of a two-electrode resistance change memory element. The operation of the two-electrode resistance change memory element will be described with reference to FIGS. 4A and 4B.
  • the switch 35 is passed through the current limiting diode 33 and is current limited by the current limiting diode 33 to apply a voltage.
  • the threshold value 2.5 V
  • the resistance change insulating film 8 changes from the high resistance state to the low resistance state and is turned on (101).
  • FIG. 5A is a diagram showing an example of a three-electrode resistance change memory element provided with a circuit for measuring IV characteristics.
  • the measurement circuit 40 includes a power supply 41, a current limiting diode 43 that limits the current, and a switch 45 that switches the diode.
  • the current limit value of the current limit diode 43 is 28 ⁇ A.
  • the voltage shown in Table 1 is applied to the source electrode, the drain electrode, and the gate electrode by the measurement circuit 40 to perform writing / erasing / reading.
  • FIG. 5B is a diagram illustrating an example of IV characteristics of a three-electrode resistance change memory element.
  • the operation of the three-electrode resistance change memory element will be described with reference to FIGS. 5A and 5B.
  • the switch 35 is passed through the current limiting diode 33 and is current limited by the current limiting diode 33 to apply a voltage.
  • the gate electrode is grounded.
  • the switch 35 when the voltage between the source and the drain is increased to 2 to 3 V, the high resistance state is changed to the low resistance state (103).
  • the switch 35 was switched to set both the source and drain electrode voltages to 3 V and the gate electrode potential to 0 V, the resistance change insulating film 8 returned to the high resistance state (104).
  • a minute current of 0.7 ⁇ A detected at a voltage of 0.1 V in the second cycle is considered to be part of the off-current.
  • FIG. 6A is a diagram for explaining an on / off mechanism of a two-electrode resistance change memory element.
  • FIG. 6B is a diagram for explaining an on / off mechanism of the three-electrode resistance change memory element. 42 indicates vacant Vo (Vo having no electrons), 43 indicates localized one-electron state Vo (insulating state in which a minute current due to hopping conduction flows), and 44 indicates delocalized 1
  • An electronic state Vo (a metal conduction state in which a conduction band is formed) is shown, and 45 is an electron extracted to become a vacant Vo (the energy level of Vo increases with the structural relaxation of Al ions in the vicinity of Vo). The state of merging with the lower end of the conduction band is shown.
  • the ON mechanism is shown in the column “OFF ⁇ ON” in both cases of the two-electrode type resistance change memory and the three-electrode type resistance change memory.
  • the Schottky barrier formed between the metal (Al) and the metal oxide film (AlOx) is trapped by Vo in the Fowler-Nordheim (FN) tunnel, and the Vo electron density is 10 21 cm ⁇ 3 or more,
  • the Vo electrons are spatially overlapped to form a band, resulting in the metal conduction (ON) state shown in the (ON) column.
  • the two-electrode resistance change memory and the three-electrode resistance change memory are completely different.
  • the two-electrode resistance change memory as shown in “ON ⁇ OFF” in FIG. 6B, when a large off-current flows, some electrons are excited to the upper conduction band by the kinetic energy of the electrons that are increased by hot electrons. Thus, the overlap of the electron wave functions is interrupted at that point. As a result, electrons on the downstream side of the interrupted portion are extracted to the electrode by the electric field.
  • the OFF mechanism of the three-electrode resistance change memory is such that Vo electrons in the ON state are extracted to the source / drain electrodes by the field effect of the gate voltage. It is a simple mechanism that decreases and localizes, and the band disappears and becomes a band insulator (off) state. That is, an off current having a high current density for hot electron conversion is not necessary, and the off mechanism can be controlled by the gate voltage.
  • the aluminum oxide film used for the resistance change insulating film is 2 ⁇ 10 21 cm ⁇ 3 or more. Need to have Vo. In the case where the Vo density is 10 19 to 10 20 cm ⁇ 3 , even when electrons are trapped in all of the Vos, the wave function overlap of the Vo electrons is insufficient and the Vo band is not formed. do not become. In that case, as reported by Hickmot in Non-Patent Document 3 and Non-Patent Document 4, if the applied voltage is increased above the threshold value, the current once increases, but the voltage is further increased without switching to the low resistance state.
  • the off mechanism of the three-electrode resistance change memory element is clearly different from that of a mere field effect transistor.
  • a field effect transistor when a sufficient positive potential is applied to the gate electrode, the positive potential electrostatically attracts negative charges on the semiconductor and acts to repel the majority carrier holes from the surface of the substrate.
  • the concentration of minority carrier electrons at the interface between the insulating layer and the substrate increases, and eventually this becomes comparable to the density of majority carrier holes.
  • a sufficiently large potential is applied to the gate, the density of electrons on the surface exceeds the density of holes, and a so-called inversion layer is generated.
  • the inverted charge at the interface between the insulating layer and the semiconductor provides a connection channel between the source and drain, a potential difference between these two electrodes causes a current to flow between them. In that case, the device is said to be in the ON state, and the gate voltage required to allow conduction is known as the threshold voltage. On the other hand, before inversion, there is no conduction in the channel, so no current can flow and the device is turned off.
  • connection channel disappears in a distributed state.
  • the three-electrode type resistance change memory element electrons are injected from the outside of the element through the electrode into the resistance change insulating film to increase, thereby forming a connection channel.
  • the injected electrons are trapped in oxygen vacancies and become energetically stable, so that they become nonvolatile.
  • the off state electrons captured in oxygen vacancies are extracted to the outside of the device through the source / drain electrodes and reduced by an electric field having a high gate voltage with respect to the source / drain electrode potential, Localizes, extinguishes the connection channel, and turns off so that no current flows.
  • the three-electrode resistance change memory element is the same as the field effect transistor in that it has a gate electrode, but has a fundamental difference between volatile and non-volatile, and its operation mechanism is also clearly different.
  • the resistance change insulation according to the present embodiment has oxygen deficiency. However, it is not enough to have oxygen deficiency. For example, in the case of Sn, since there are a plurality of bonding states with oxygen such as SnO, SnO2, and SnO3, even if oxygen vacancies exist, the change in the bonding state between injected and extracted electrons and Sn and O balances. No increase or decrease of electrons in oxygen deficient sites (oxygen vacancies). In the resistance change memory element according to the present embodiment, electrons are transferred between the oxygen vacancy (Vo) and the electrode by the following reactions 1 and 2, and the insulating state and the conductive state are switched.
  • Vo oxygen vacancy
  • Reaction 1 Vo2 ++ e- ⁇ Vo1 + Electrons are injected into empty Vo (Vo2 +) to become Vo1 +, and when Vo1 + increases, a conduction band is formed and becomes conductive.
  • Reaction 2 Vo1 +-e- ⁇ When electrons are extracted from Vo2 + Vo to become Vo2 +, the conduction band is interrupted and an insulating state is obtained. That is, it is preferable that electrons be exchanged only between the electrode and Vo, and the change in the bonding state of Sn and O becomes a disturbance factor in reactions 1 and 2. The same happens with transition metals with varying valences.
  • TaO2 and Ta2O5 exist, and simultaneously with the transfer of injected electrons, the following chemical reaction occurs in which O moves between the electrodes.
  • the ReRAM according to Patent Document 3 has a feature of extremely low power consumption. However, since the operation involves movement of O ions, the number of times the memory can be rewritten is 10 6, the same as that of flash memory, and the durability of DRAM is extremely inferior. In this embodiment using a physical change in which only electrons without chemical change such as movement of O ions are increased or decreased, the number of rewritable memories is increased in principle.
  • the metal oxide film used for the resistance change insulating film of the present embodiment is suitably Al, Zn, or In, which is an element in which all of the inner shell electrons are packed and does not change in valence and has a stable bonding state with oxygen. Even when transition metals such as Ti and Ni are added to increase conductivity, the amount of addition must be 3% by weight or less to suppress the leakage current generated in the off state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

抵抗変化絶縁膜(8)と、前記抵抗変化絶縁膜の第1主面上に配置されるソース電極(17A)と、前記第1主面上に配置されるドレイン電極(18A)と、前記第1主面上に向かい合う前記抵抗変化絶縁膜の第2主面上に配置されるゲート電極(19A)とを備える抵抗変化メモリ素子(20A)が提供される。

Description

抵抗変化メモリ素子
 本発明は、抵抗変化メモリ素子に関する。
 現在、読み書き可能なメモリとして標準的に利用されているのは、SRAM(Static Random Access Memory)、DRAM(Dynamic RAM)、フラッシュメモリである。SRAMは、揮発性であるという欠点に加えて、高集積化が困難なために大容量化ができないが、高速アクセスが可能であるため、キャッシュメモリなどに利用されている。DRAMも揮発性という欠点に加えて、データ破壊読出し型であるために読出し時にリフレッシュ動作が必要であるが、大容量化できるという特性を生かしてパソコンの主メモリに多用されている。フラッシュメモリは、電源遮断後のデータが保持できるため、比較的小容量のデータ保存に利用されているが、書込み時間がDRAMより長くかかる。
 これら標準メモリに対して、高性能化という観点から新型メモリが開発されている。例えば、電圧を印加することによって可逆的に電気抵抗が変化する可変抵抗素子を用いて、データを保持する方式の不揮発性メモリが提案されている(「ReRAM(Resistive Random Access Memory)」とも呼ばれている)。
 ReRAMを構成する素子は、下部電極と抵抗変化絶縁膜と上部電極とが順に積層された構造となっており、上部電極及び下部電極間に電圧パルスを印加することにより、抵抗変化絶縁膜の抵抗値を可逆的に変化させることができる性質を有する。この可逆的な抵抗変化動作によって変化する抵抗値を読み出すことによって、抵抗性不揮発性メモリが実現できる。ReRAM素子をマトリクス状に配列してメモリセルアレイを形成して、メモリセルアレイの各メモリセルに対するデータの書き込み、消去、及び読み出し動作を制御する周辺回路を配置して、ReRAMが構成される。
 ReRAMの研究開発対象は、抵抗変化する金属酸化膜、及び、それに適した電極金属の材料に関する工夫(例えば、特許文献1、特許文献2、非特許文献1)等を対象に行われている。
特開2012-33649号公報 特開2005-183570号公報 特開2010-15662号公報
Z. Wei, T. Takagi et al. IEDM (2008) Highly Reliable TaOx ReRAM and Direct EVidence of Redox Reaction Mechanism H. Momida, S. Nigo et al. APL. 98, 042102 (2011) Effect of vacancy-type oxygen deficiency on electronic structure in amorphous alumina T. W. Hickmott APL. 88, 2805 (2000) Voltage-depend dielectric breakdown and Voltage-controlled negative resistance in anodized Al-Al2O3-Au diodes T. W. Hickmott APL. 100, 083712 (2006) A breakdown mechanism in metal-insulator-metal structures
 開示のReRAMは、どれも、絶縁体の表裏を2つの電極で挟んだ2電極型構造をしており、電圧印可によって絶縁体が抵抗変化する現象を利用している。その理由は、2電極構造は、構造が単純なためメモリ集積化し易く、金属酸化膜と電極金属間に必然的に形成されるショットキー障壁が、スイッチング機構に重要な機能を果たすと同時に、電流の輸送が多数キャリアで行われるため、高速動作する利点がある。
 絶縁体の抵抗変化膜の表裏を2つの電極で挟んだ構造は、メモリの高集積化に適している。しかしながら、他の半導体素子と混載して使用する場合には、表裏の2面に配線するため、一括して配線加工できないことに加えて、配線間距離が抵抗変化膜の厚さになり、配線間が絶縁不良になる場合が発生するために、他の半導体素子との混載が難しいという問題がある。
 上記課題を解決する形態は、以下に示す項目(1)~(6)に記載のようなものである。
 (1)抵抗変化絶縁膜と、
 前記抵抗変化絶縁膜の第1主面上に配置されるソース電極と、
 前記第1主面上に配置されるドレイン電極と、
 前記第1主面上に向かい合う前記抵抗変化絶縁膜の第2主面上に配置されるゲート電極とを備える、抵抗変化メモリ素子。
 互いに同平面に設けられたソース電極とドレイン電極であるため、同一平面に電極配線をすることができ、配線間の絶縁性は平面的に配線間隔を調整することによって確保できるため、他の半導体素子との混載が容易になる。
 (2)前記ソース電極と前記ドレイン電極との間に、絶縁膜を備える、項目1に記載の抵抗変化メモリ素子。
 2つの金属電極の間に絶縁膜を備え、電子がトンネルするたびに接合は充放電を繰り返し、それに伴い接合電圧は、減少または増加により、書込み(「オン動作」ともいう)または消去(「オフ動作」ともいう)する。通過電流によりオフさせる2電極型抵抗変化メモリ素子より、オフ電流を小さくすることができる。
 (3)前記ゲート電極の電位を、前記ソース電極及び前記ドレイン電極の電位より高くして、消去動作を行う、項目1又は2に記載の抵抗変化型メモリ素子。
 ゲート電圧から、抵抗変化絶縁膜に電圧をかけて、オフすることで、ソース電極とドレイン電極の間に電流を流すことなく記憶電荷を抽出し、オフ電流を小さくすることができる。
 (4)前記抵抗変化絶縁膜の積層方向と直交に前記ソース電極と前記ドレイン電極を配置する、項目項目1~3の何れかに記載の抵抗変化メモリ素子。
 動作電流が抵抗変化絶縁膜の積層面方向に流れるので、酸素欠損が界面にできやすい界面効果を奏し、積層面を貫通して電流が流れる従来の構造に比べ、電流が流れ易く、高速動作することに加え、抵抗変化絶縁膜へのダメージ発生を解消する。
 (5)2×1021cm-3以上の酸素欠損(Vo)を有するアルミ酸化膜、又は、遷移金属以外の金属酸化膜を、前記抵抗変化絶縁膜として用いる、項目1~4の何れか1項に記載の抵抗変化メモリ素子。
 (6)前記遷移金属は、Zn、In、Gaである項目5に記載の抵抗変化メモリ素子。
 本発明の一実施形態に係る抵抗変化メモリは、ソース電極と、ドレイン電極とを、抵抗変化絶縁膜の同端面に載置することにより、他の半導体素子との混載が容易になるという効果を奏する。
2電極型抵抗変化メモリ素子の一例を示す断面図である。 3電極型抵抗変化メモリ素子の一例を示す断面図である。 3電極型抵抗変化メモリ素子の別な一例を示す断面図である。 電流―電圧(IV)特性の測定用の回路を設けた2電極型抵抗変化メモリ素子の一例を示す図である。 2電極型抵抗変化メモリのIV特性の一例を示す図である。 IV特性の測定用の回路を設けた3電極型抵抗変化メモリ素子の一例を示す図である。 3電極型抵抗変化メモリのIV特性の一例を示す図である。 2電極型抵抗変化メモリ素子のオンオフ機構を説明する図である。 3電極型抵抗変化メモリ素子のオンオフ機構を説明する図である。
 以下、図面を参照して、本発明の実施形態について説明する。
 (1)2電極型抵抗変化メモリ素子の構成
 図1は、2電極型抵抗変化メモリ素子の一例を示す断面図である。図1に示される従来の2電極で2電極型抵抗変化メモリ素子10は、下部電極5と抵抗変化絶縁膜8と上部電極7とが順に積層された構造となっており、下部電極5及び上部電極間7に電圧パルスを印加することにより、抵抗変化絶縁膜8の抵抗値を可逆的に変化させることができる。2電極型抵抗変化メモリ素子10は、絶縁膜5と基盤11の上に積層される。
 2電極型抵抗変化メモリ素子10の製造方法について示す。まず、単結晶シリコン基板11上に、絶縁膜5としてシリコン酸化膜を熱酸化法により形成する。その後、下部電極5としてAlを、スパッタリング法によりシリコン酸化膜上に形成する。その後、下部電極5上に、抵抗変化絶縁膜8として、例えば、厚さが約3nmの酸化ハフニウム膜を、均一に形成するためALD(Atomic Layer Deposition)法で形成する。次に、表面に高真空蒸着によって100nm厚のAlを成膜して25μmΦの上部電極7を成形する。
 素子のIV特性を図1に示す。28μAの電流制限ダイオードを経由した状態で、2.5Vで高抵抗状態から低抵抗状態になる。電流制限ダイオードをバイパスした状態で、電圧を2Vまで増加すると、1Vに達する前にオフ電流が18mAに達し、急激に高抵抗状態に戻るユニポーラ動作をする。比較例のオフ電流は、本発明の実施例に比べ、4桁程度大きい値であり、本発明の3電極型抵抗変化メモリ素子の省電力に関する優位性が明らかである。
 (2)3電極型抵抗変化メモリ素子の構成
 図2は、3電極型抵抗変化メモリ素子の一例を示す断面図である。図2に示される抵抗変化メモリ素子20Aは、トップゲート電界型である。3電極型抵抗変化メモリ素子20Aは、ソース電極17A、ドレイン電極18A、及びゲート電極19Aを備え、ソース電極17A及びドレイン電極18Aと、ゲート電極19Aとは、それらの間に、抵抗変化絶縁膜8を挟持する。ソース電極17A及びドレイン電極18Aとゲート電極19Aとの短絡を防ぐために、それらの間に、アルミナ絶縁膜15Aが設けられる。また、アルミナ絶縁膜16Aはソースとドレイン間を絶縁する。ソース電極17Aの電位を上げると、電子が抵抗変化絶縁膜8にトンネルして充電され、それに伴い抵抗が減少して、オンする。
 ゲート電極19Aの電位をソース電極17Aとドレイン電極18Aの電位より高くすると、抵抗変化絶縁膜8の中で非局在化して伝導バンドを形成していた電子は、電界効果によってソース電極17Aとドレイン電極18Aに抽出されて減少し、局在化してオフ状態になる。このような、電界効果を抵抗変化メモリのオフ機構とすることによって、オフ電流を大幅に低下できるが、その作用原理は、後述する。
 表面にSiOを付けたSi基板にAlをDCスパッタ成膜して500nm厚のボトムゲート電極を形成した後、その上に50nm厚のAlをAC成膜し、その上にAlとAlを同時スパッタ(Al:DC5W、Al:AC200W、Ar中)によって30nm厚のAlOx膜を成膜、その上に50nm厚のAlをAC成膜する。パッシベーション膜として200nm厚さのSiOをプラズマ成膜した後、ホトレジスト膜を塗布してホトマスク1を用いて2mm角のゲート電極取り出し口をAl膜までドライエッチングし、同様にホトマスク2を用いて2μm角のソース電極とドレイン電極(電極間距離:0.6μm)部をAlOx膜までドライエッチングした。その後、200nm厚さのAlをDCスパッタ成膜し、ホトマスク3を用いてソース電極とドレイン電極を形成した。
 図3は、別な実施形態に係る抵抗変化型メモリ素子の一例を示す断面図である。図3に示される抵抗変化メモリ素子20Bは、ボトムゲート電界型である。抵抗変化メモリ素子20Bは、ソース電極17B、ドレイン電極18B、及びゲート電極19Bを備え、ソース電極17B及びドレイン電極18Bと、ゲート電極19Bとは、それらの間に、抵抗変化絶縁膜8を挟持する。ソース電極17Bとゲート電極18Bとの短絡を防ぐために、それらの間に、アルミナ絶縁膜16Bが設けられる。また、ゲート電極19Bと、ソース電極17B及びドレイン電極18Bとの短絡を防ぐために、それらの間に、アルミナ絶縁膜15Bが設けられる。
 (3)抵抗変化メモリ素子の動作原理
 非特許文献2では、第1原理計算によって、アモルファスアルミナにおける酸素欠損に関係する電子および原子構成が説明されている。第1原理計算は、LDA(Local Density Approximation)内のDFT(Density Functional Theory)及び、平面波基底の擬ポテンシャル手法に基づいている。本発明者らは、非特許文献2の第1原理計算結果から導いたオン・オフ状態における電子状態を熱刺激電流測定によって検証した。その結果、高密度の酸素欠損Oxygen vacancy(Vo)を有するアルミ酸化膜(以下AlOx)のVoにトラップされた電子(以下Vo電子)は、伝導帯から0.17~0.41eV下のレベルにあることが判った。通常のn型Si半導体のドナー準位は伝導帯から0.029eV下のレベルにあるため、ドナー準位の電子は室温で伝導帯に励起されるのに対し、Vo電子はより深いレベルにあるため伝導帯に励起するにはホットエレクトロン化する必要があり、その活性化エネルギーを電流によってVo電子に与えるには電流密度を大きくする必要があった。なお、本実施形態において、高密度の酸素欠損を生じる抵抗変化絶縁膜は、アルミ酸化膜に限定されず、遷移金属以外の金属酸化膜であってもよい。この点は、「(4)遷移金属以外の金属酸化膜」で後述する。
 非特許文献2の第1原理計算結果によれば、オン状態にあるVo電子をホットエレクトロン化するために活性化エネルギーが必要である。この問題を解決するために、3電極型抵抗変化メモリ素子20A、20Bは、ホットエレクトロン化を必要としない電子抽出が可能である。即ち、3電極型抵抗変化メモリ素子20A、20Bは、電界によって電子をダイレクトに電極に抽出することができる。以下、その動作原理を詳細に説明する。
 3電極型抵抗変化メモリ素子は、オン動作に関しては、2電極型抵抗変化メモリと同様に、ソース電極とドレイン電極間に閾値以上の電圧を印可すると、ショットキー障壁を電界強化型(Fowler-Nordheim)トンネリングした電子が抵抗変化絶縁膜のVoに注入されて、Vo伝導バンドを形成してオン状態になる。オフ動作に関しては、ゲート電位に対してソース電極とドレイン電極の電位を共にある電圧(例えば、3V)だけ低くすると電子がソース電極とドレイン電極に抽出されてオフ状態になる。
 図4Aは電流―電圧(IV)特性の測定用の回路を設けた2電極型抵抗変化メモリ素子の一例を示す図である。測定用の回路30は、電源31、電流制限する電流制限ダイオード33、ダイオードの切替を行うスイッチ35を有する。電流制限ダイオード33の電流制限値は、28μAである。
 図4Bは、2電極型抵抗変化メモリ素子のIV特性の一例を示す図である。図4A及び図4Bを用いて、2電極型抵抗変化メモリ素子の動作を説明する。最初に、スイッチ35を、電流制限ダイオード33を通過させて、電流制限ダイオード33によって電流制限して電圧印可する。閾値(2.5V)に達すると、抵抗変化絶縁膜8は、高抵抗状態から低抵抗状態に変化してオン状態になる(101)。次に、オン状態で、スイッチ35を、電流制限ダイオード33をバイパスさせて電圧印加すると、1Vで18mAのオフ電流が流れ、低抵抗状態から高抵抗状態に変化してオフ状態になる(102)。
 図5AはIV特性の測定用回路を設けた3電極型抵抗変化メモリ素子の一例を示す図である。測定用の回路40は、電源41、電流制限する電流制限ダイオード43、ダイオードの切替を行うスイッチ45を有する。電流制限ダイオード43の電流制限値は、28μAである。測定用の回路40によって、表1に示す電圧をソース電極とドレイン電極及びゲート電極に印可して書込・消去・読出を行う。
Figure JPOXMLDOC01-appb-T000001
 図5Bは、3電極型抵抗変化メモリ素子のIV特性の一例を示す図である。図5A及び図5Bを用いて、3電極型抵抗変化メモリ素子の動作を説明する。最初に、スイッチ35を、電流制限ダイオード33を通過させて、電流制限ダイオード33によって電流制限して電圧印可する。ゲート電極は接地しておく。この例ではソース・ドレイン間の電圧を2~3Vに増加すると高抵抗状態から低抵抗状態になる(103)。次に、スイッチ35を切り替えて、ソース・ドレイン電極電圧を共に3Vとし、ゲート電極電位を0Vにすると、抵抗変化絶縁膜8は、高抵抗状態に戻った(104)。その際のオフ電流は正確に測定されていないが、2サイクル目の電圧0.1Vで検出された微小電流0.7μAがオフ電流の一部と考えられる。
 このように、3電極型抵抗変化メモリ素子は、2電極型抵抗変化メモリ素子より、オフ電流が劇的に下がることがわかる。
 図6Aは、2電極型抵抗変化メモリ素子のオンオフ機構を説明する図である。図6Bは、3電極型抵抗変化メモリ素子のオンオフ機構を説明する図である。42は、空位のVo(電子の存在しないVo)を示し、43は、局在した1電子状態のVo(ホッピング伝導による微小電流が流れる絶縁状態)を示し、44は、非局在化した1電子状態のVo(伝導バンドを形成した金属伝導状態)を示し、45は、電子抽出されて空位になったVo(Vo近傍のAlイオンの構造緩和を伴って、Voのエネルギーレベルが上昇して伝導帯下端に合体した状態)をそれぞれ示す。
 第1原理計算から導いたVoバンドモデルによれば、2電極型抵抗変化メモリと3電極型抵抗変化メモリのどちらの場合であっても、オン機構は「オフ→オン」の列に示すように、金属(Al)と金属酸化膜(AlOx)間に形成されたショットキー障壁を、Fowler-Nordheim(FN)トンネルした電子がVoに捕捉され、Vo電子密度が1021cm-3以上になると、Vo電子が空間的に重なってバンドを形成して(オン)の列に示す金属伝導(オン)状態になる。
 一方、オフ機構に関しては、2電極型抵抗変化メモリと3電極型抵抗変化メモリは全く異なる。2電極型抵抗変化メモリでは、図6Bの「オン→オフ」に示すように、大きなオフ電流が流れるとホットエレクトロン化されて増大した電子の運動エネルギーによって一部の電子が上の伝導帯に励起され、その個所で電子の波動関数の重なりが途切れた状態になる。その結果、途切れた個所の下流側の電子は電界によって電極に抽出される。伝導帯に励起された電子の一部はエネルギーを失って再びVoに捕捉されるが、大半はドレイン電極に流出し、系全体ではVoに捕捉された電子が減少してVo電子が局在化し、バンドが消滅してバンド絶縁体(オフ)の状態になると考えられる。このように観測しているのは、このメカニズムは10ns以下の高速でシーケンシャルに進むため、観察することも制御することも困難だからである。
 これに対し、3電極型抵抗変化メモリのオフ機構は、図6Bの「オン→オフ」に示すように、オン状態にあるVo電子が、ゲート電圧の電界効果によってソース・ドレイン電極に抽出されて減少して局在化し、バンドが消滅してバンド絶縁体(オフ)の状態になる単純なメカニズムである。つまり、ホットエレクトロン化するための電流密度の高いオフ電流が不要になり、ゲート電圧によってオフ機構を制御することができる。
 非特許文献2の第1原理計算結果によって抵抗変化メモリの動作原理を解明することによって得られた知見に基づいており、抵抗変化絶縁膜に用いるアルミ酸化膜は2×1021cm-3以上のVoを有する必要がある。Vo密度が1019~1020cm-3の場合には、その全てのVoに電子が捕捉された場合でもVo電子の波動関数の重なりが不十分で、Voバンドが形成されないため、金属伝導状態にならない。その場合はHickmottが非特許文献3と非特許文献4で報告しているように、印可電圧を閾値以上に増加させると、一旦、電流が増加するが低抵抗状態にスイッチングすることなく、更に電圧を上昇させると電流が低下して高抵抗状態に戻るいわゆる負性抵抗を示す。第1原理計算によるAl4873のスーパセルの酸素原子73個から酸素原子2個を欠損させた場合には、電子注入によるVo電子の波動関数の重なりが発生し、Voバンドが形成されることが判った。このシミュレーション結果からスイッチングに必要なVo密度は(1)式で求まる2×1021cm-3であり、熱刺激電流測定によって算定した電子数とオーダが一致する。Hickmottが負性抵抗現象を見つけたVo密度1019~1020cm-3ではVo電子の波動関数の重なりが発生しないが、2×1021cm-3以上になるとVo電子の波動関数の重なりが発生して低抵抗状態にスイッチングすることが明らかになった。
 2÷73×1023 = 2×1021cm-3 (1023:アボガドロ数) (1)
 なお、3電極型抵抗変化メモリ素子のオフ機構は、単なる電界効果トランジスタとは明確に異なる。電界効果トランジスタでは、十分な正電位がゲート電極に印加されると、この正電位が、半導体上に負電荷を静電気的に引き付け、基板の表面から多数キャリアの正孔を反発するようにはたらく。ゲートに印加された電位が高くなると、絶縁層と基板の界面の少数キャリア電子の濃度が高くなり、最終的に、これは、多数キャリアの正孔の密度に匹敵するようになる。十分に大きな電位がゲートに印加された場合、表面の電子の密度は、正孔の密度を超え、いわゆる反転層が生成される。絶縁層と半導体の界面における反転電荷が、ソースとドレインの間に接続チャネルを提供するため、これらの2つの電極の間の電位差により、それらの電極の間に電流が流れる。その場合、素子は、ON状態にあると言われ、伝導を可能にするために必要なゲート電圧は、閾値電圧として知られる。一方、反転する前には、チャネル内に伝導はなく、したがって電流が流れることができず、素子はOFF状態となる。
 電界効果トランジスタでは、半導体中に分散して内蔵している電子をゲート電圧によってゲート絶縁膜直下に集めて反転層を形成して接続チャネルにするため、ゲート電圧を切れば、自然に電子は元の分散状態となって接続チャネルは消滅する。
 一方、3電極型抵抗変化メモリ素子では、電子が素子の外部から電極を通して抵抗変化絶縁膜に注入されて増加することによって接続チャネルを形成する。この注入された電子は酸素空孔に捕獲されてエネルギー的に安定であるために不揮発性になる。オフ状態にする際は、ソース・ドレイン電極電位に対して高いゲート電圧の電界によって、酸素空孔に捕獲されている電子を、ソース・ドレイン電極を通して素子の外部に抽出して減少させることによって、局在化し、接続チャネルを消滅し、電流が流れないオフ状態にする。このように、3電極型抵抗変化メモリ素子は、電界効果トランジスタとはゲート電極を有する点では同じであるが、揮発性と不揮発性の根本的な差異があり、その作用機構も明確に異なる。
 (4)遷移金属以外の金属酸化膜
 アルミ酸化膜を用いて説明したように、本実施形態に係る抵抗変化絶縁は酸素欠損を有する。しかし、酸素欠損を有するだけでは不十分である。例えばSnの場合は、SnO、SnO2、SnO3等の酸素との結合状態が複数存在するため、酸素欠損が存在しても、注入・抽出した電子とSnとOの結合状態の変化がバランスして、酸素欠損サイト(酸素空孔)の電子の増減が発生しない。本実施形態に係る抵抗変化メモリ素子では、下記の反応1,2によって、酸素空孔(Vo)と電極との間で電子の授受が行われて絶縁状態と導通状態が切り替わる。
 反応1:Vo2++ e-  →Vo1+
 空の Vo(Vo2+)に電子が注入されてVo1+ になり、Vo1+が増加すると、伝導バンドが形成されて導通状態になる。
 反応2:Vo1+ - e-  →Vo2+   Voから電子が抽出されてVo2+なると、伝導バンドが途切れて絶縁状態になる。
 つまり、電子の授受が電極とVoの間でのみ行われる状況にすることが好ましく、SnとOの結合状態が変わることは、反応1,2の外乱要因になる。同様なことが価数の変化する遷移金属の場合に起きる。例えば、4価と5価に価数変化するTaでは、TaO2とTa2O5が存在し、注入電子の授受と同時に、Oが電極間を移動する下記の化学反応が起きる。
 Ta2O5+2e-(導通状態)⇔2TaO2+2O-(絶縁状態)
 特許文献3に係るReRAMは、消費電力が非常に低い特長がある。しかし、Oイオンの移動を伴う動作であるため、メモリの書き換え可能回数はフラッシュメモリ並みの10の6乗であり、DRAMの耐久性に甚だしく劣る。Oイオンが移動するような化学的変化を伴わない電子のみが増減する物理変化を利用した本実施形態は、メモリの書き換え可能回数が原理的に大きくなる。つまり、本実施形態の抵抗変化絶縁膜に用いる金属酸化膜は、内殻電子が全て詰った価数変化しない元素で、且つ酸素との結合状態が安定したAlやZn、Inが適している。遷移金属のTiやNi等を添加して導電性を高める場合であっても、添加量は3重量%以下にしてオフ状態で発生するリーク電流を低く抑える必要がある。
 以上説明した実施形態は典型例として挙げたに過ぎず、その各実施形態の構成要素の組合せ、変形及びバリエーションは当業者にとって明らかであり、当業者であれば本発明の原理及び請求の範囲に記載した発明の範囲を逸脱することなく上述の実施形態の種々の変形を行えることは明らかである。
 5 下部電極
 7 上部電極
 8 抵抗変化絶縁膜
 10 2電極型抵抗変化メモリ素子
 11 基盤
 16A、16B アルミナ絶縁膜
 17A、17B ソース電極
 18A、18B ドレイン電極
 19A、19B ゲート電極
 20A、20B 3電極型抵抗変化メモリ素子
 30 2電極型抵抗変化メモリ素子の測定用回路
 31、41 電源
 33、43 電流制限ダイオード
 35、45 スイッチ
 40 3電極型抵抗変化メモリ素子の測定用回路

Claims (6)

  1.  抵抗変化絶縁膜と、
     前記抵抗変化絶縁膜の第1主面上に配置されるソース電極と、
     前記第1主面上に配置されるドレイン電極と、
     前記第1主面上に向かい合う前記抵抗変化絶縁膜の第2主面上に配置されるゲート電極とを備える、抵抗変化メモリ素子。
  2.  前記ソース電極と前記ドレイン電極との間に、絶縁膜を備える、請求項1に記載の抵抗変化メモリ素子。
  3.  前記ゲート電極の電位を、前記ソース電極及び前記ドレイン電極の電位より高くして、消去動作を行う、請求項1又は2に記載の抵抗変化型メモリ素子。
  4.  前記抵抗変化絶縁膜の積層方向と直交に前記ソース電極と前記ドレイン電極を配置する、請求項請求項1~3の何れかに記載の抵抗変化メモリ素子。
  5.  2×1021cm-3以上の酸素欠損(Vo)を有するアルミ酸化膜、又は、遷移金属以外の金属酸化膜を、前記抵抗変化絶縁膜として用いる、請求項1~4の何れか1項に記載の抵抗変化メモリ素子。
  6.  前記遷移金属は、Zn、In、Gaである請求項5に記載の抵抗変化メモリ素子。
PCT/JP2013/071742 2012-08-31 2013-08-11 抵抗変化メモリ素子 WO2014034420A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014532913A JP6196623B2 (ja) 2012-08-31 2013-08-11 抵抗変化メモリ素子
US14/418,021 US20150171319A1 (en) 2012-08-31 2013-08-11 Resistance change memory element
CN201380040723.8A CN104520991A (zh) 2012-08-31 2013-08-11 电阻变化存储器元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-192699 2012-08-31
JP2012192699 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034420A1 true WO2014034420A1 (ja) 2014-03-06

Family

ID=50183236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071742 WO2014034420A1 (ja) 2012-08-31 2013-08-11 抵抗変化メモリ素子

Country Status (5)

Country Link
US (1) US20150171319A1 (ja)
JP (1) JP6196623B2 (ja)
CN (1) CN104520991A (ja)
TW (1) TW201419600A (ja)
WO (1) WO2014034420A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056246A1 (en) * 2014-08-22 2016-02-25 SK Hynix Inc. Electronic device
KR20210061903A (ko) * 2019-11-20 2021-05-28 삼성전자주식회사 비휘발성 메모리 소자 및 이의 동작 방법
US11600774B2 (en) 2019-11-20 2023-03-07 Samsung Electronics Co., Ltd. Nonvolatile memory device and operating method of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170365641A1 (en) * 2016-06-16 2017-12-21 HGST Netherlands B.V. Non-volatile double schottky barrier memory cell
JP2018085361A (ja) * 2016-11-21 2018-05-31 東芝メモリ株式会社 抵抗変化素子及び記憶装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281497A (ja) * 2003-03-13 2004-10-07 Sharp Corp 抵抗変化機能体、メモリおよびその製造方法並びに半導体装置および電子機器
JP2006339667A (ja) * 2003-07-18 2006-12-14 Nec Corp スイッチング素子、書き換え可能な論理集積回路およびメモリ素子
WO2009025037A1 (ja) * 2007-08-22 2009-02-26 Fujitsu Limited 抵抗変化型素子
JP2012039042A (ja) * 2010-08-11 2012-02-23 Sony Corp メモリ素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544012A (zh) * 2010-12-17 2012-07-04 复旦大学 Mos结构的存储单元、阵列、存储器及其操作方法
KR20130014200A (ko) * 2011-07-29 2013-02-07 삼성전자주식회사 저항 변화 물질을 포함하는 반도체 소자 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281497A (ja) * 2003-03-13 2004-10-07 Sharp Corp 抵抗変化機能体、メモリおよびその製造方法並びに半導体装置および電子機器
JP2006339667A (ja) * 2003-07-18 2006-12-14 Nec Corp スイッチング素子、書き換え可能な論理集積回路およびメモリ素子
WO2009025037A1 (ja) * 2007-08-22 2009-02-26 Fujitsu Limited 抵抗変化型素子
JP2012039042A (ja) * 2010-08-11 2012-02-23 Sony Corp メモリ素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056246A1 (en) * 2014-08-22 2016-02-25 SK Hynix Inc. Electronic device
CN105374841A (zh) * 2014-08-22 2016-03-02 爱思开海力士有限公司 电子器件
US20170077181A1 (en) * 2014-08-22 2017-03-16 SK Hynix Inc. Electronic device
US9905613B2 (en) * 2014-08-22 2018-02-27 SK Hynix Inc. Movement of oxygen vacancies in an electronic device
KR20210061903A (ko) * 2019-11-20 2021-05-28 삼성전자주식회사 비휘발성 메모리 소자 및 이의 동작 방법
KR102296316B1 (ko) * 2019-11-20 2021-08-31 삼성전자주식회사 비휘발성 메모리 소자 및 이의 동작 방법
US11600774B2 (en) 2019-11-20 2023-03-07 Samsung Electronics Co., Ltd. Nonvolatile memory device and operating method of the same

Also Published As

Publication number Publication date
US20150171319A1 (en) 2015-06-18
TW201419600A (zh) 2014-05-16
JPWO2014034420A1 (ja) 2016-08-08
CN104520991A (zh) 2015-04-15
JP6196623B2 (ja) 2017-09-13

Similar Documents

Publication Publication Date Title
Chang et al. Physical and chemical mechanisms in oxide-based resistance random access memory
US9397141B2 (en) Current selector for non-volatile memory in a cross bar array based on defect and band engineering metal-dielectric-metal stacks
JP5154138B2 (ja) n+界面層を備えた可変抵抗ランダムアクセスメモリ素子
CN101064359B (zh) 包括可变电阻材料的非易失存储器件
KR100790861B1 (ko) 나노 도트를 포함하는 저항성 메모리 소자 및 그 제조 방법
JP6750507B2 (ja) 選択素子およびメモリセルならびに記憶装置
US8871621B2 (en) Method of forming an asymmetric MIMCAP or a schottky device as a selector element for a cross-bar memory array
JP6196623B2 (ja) 抵抗変化メモリ素子
Li et al. Utilizing sub-5 nm sidewall electrode technology for atomic-scale resistive memory fabrication
US9853212B2 (en) Resistive switching in memory cells
Yu et al. Metal oxide resistive switching memory
CN102077348B (zh) 非易失性存储元件和具备该非易失性存储元件的半导体存储装置
US20120305878A1 (en) Resistive switching memory device
Chen et al. Resistance switching for RRAM applications
RU2468471C1 (ru) Способ получения энергонезависимого элемента памяти
US20150137062A1 (en) Mimcaps with quantum wells as selector elements for crossbar memory arrays
US9373786B1 (en) Two terminal resistive access devices and methods of formation thereof
KR20090076077A (ko) 저항성 메모리 소자
TW201611243A (zh) 記憶體結構及其製備方法
JP6092696B2 (ja) 可変抵抗素子を用いたメモリセル
US20170365605A1 (en) Non-volatile schottky barrier field effect transistor
Kunitsyn et al. Bipolar resistive switching in Al 2 O 3/TiO 2 structure at low temperature
KR101974777B1 (ko) 비휘발성 메모리 기능을 갖는 트랜지스터 및 이의 작동 방법
Chen et al. Integration of ZnO-Based Resistive-Switching Memory and Ge2Sb2Te5-Based Phase-Change Memory
Choi et al. High-speed multibit operation of a dual vacancy-type oxide device with extended bi-polar resistive switching behaviors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418021

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014532913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832666

Country of ref document: EP

Kind code of ref document: A1