WO2014034368A1 - 静圧気体ラジアル軸受 - Google Patents

静圧気体ラジアル軸受 Download PDF

Info

Publication number
WO2014034368A1
WO2014034368A1 PCT/JP2013/070860 JP2013070860W WO2014034368A1 WO 2014034368 A1 WO2014034368 A1 WO 2014034368A1 JP 2013070860 W JP2013070860 W JP 2013070860W WO 2014034368 A1 WO2014034368 A1 WO 2014034368A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
sintered layer
powder sintered
layer portion
metal
Prior art date
Application number
PCT/JP2013/070860
Other languages
English (en)
French (fr)
Inventor
熊谷 真文
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Priority to KR1020157002771A priority Critical patent/KR20150051993A/ko
Priority to CN201380041376.0A priority patent/CN104520600B/zh
Publication of WO2014034368A1 publication Critical patent/WO2014034368A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0618Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/10Porosity

Definitions

  • the present invention relates to a hydrostatic gas radial bearing that supports a radial load of a rotating body to be supported in a non-contact manner, and in particular, can discharge compressed gas uniformly from the entire surface of the bearing surface, and has a higher throttle effect.
  • the present invention relates to a hydrostatic gas radial bearing capable of obtaining
  • Patent Document 1 discloses a hydrostatic gas bearing capable of accurately adjusting the size and distribution state of pores formed on the bearing surface, and thereby imparting a throttling effect to gas discharge from the bearing surface. ing.
  • This static pressure gas bearing has a surface constriction layer which is a porous material made of a sintered body of bronze powder having an average particle diameter of 5 ⁇ m on a base material which is a sintered material of bronze powder having an average particle diameter of 60 ⁇ m.
  • a base material is prepared by performing a first sintering process on a bronze powder having an average particle diameter of 60 ⁇ m.
  • the surface of the base material to be a joint surface with the surface squeezing layer is finished by machining, and then the base material is applied to the surface of the bronze powder having an average particle size of 5 ⁇ m to be the surface squeezing layer filled in the container.
  • the surface of the base material that becomes the joint surface with the squeezing layer is placed face down, and the second sintering process is performed. Thereby, a static pressure gas bearing made of a sintered body having a two-layer structure of the base material and the surface drawn layer is produced.
  • the hydrostatic gas bearing described in Patent Document 1 is a plate-type bearing used for a thrust bearing, and application to a bush-type bearing used for a radial bearing is not considered.
  • bronze powders having different average particle diameters are used for the base material and the surface drawn layer, the material management and procurement costs increase.
  • the bronze powder constituting the base material is preliminarily sintered to create the base material, and then the bronze powder constituting the surface throttle layer is sintered to form the surface throttle layer on the base material. For this reason, two sintering processes are required, which increases the manufacturing cost. For this reason, cost increases further.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a static pressure gas radial bearing capable of uniformly discharging compressed gas from the entire bearing surface and obtaining a higher squeezing effect. It is to provide. Another object of the present invention is to provide a hydrostatic gas radial bearing that can be manufactured at low cost.
  • the cylindrical first metal powder sintered layer portion having an inner peripheral surface as a bearing surface is used as a core, and the core is placed in a cylindrical mold. By placing and sintering the metal powder in the gap between the core and the mold, it is formed on the outer peripheral surface of the first metal powder sintered layer portion. From the first metal powder sintered layer portion, A hydrostatic gas radial bearing having a second sintered metal powder layer having a high porosity was also formed.
  • the first aspect of the present invention is a hydrostatic gas radial bearing that supports a radial load of a rotating body to be supported in a non-contact manner on a bearing surface, A cylindrical first metal powder sintered layer portion having an inner peripheral surface as the bearing surface; A second metal powder sintered layer portion formed on the outer peripheral surface of the first metal powder sintered layer portion and having a porosity larger than that of the first metal powder sintered layer portion, The first metal powder sintered layer portion is formed by primary sintering, The second metal powder sintered layer has the first metal powder sintered layer portion as a core, the core is disposed in a cylindrical mold, and the gap between the core and the mold is filled with the metal powder. Then, it is formed by secondary sintering.
  • a metal powder having substantially the same average particle diameter is used for the first and second metal powder sintered layers, and the temperature is lower and shorter than the primary sintering condition of the first metal powder sintered layer.
  • the second metal powder sintered layer portion may be formed by sintering under secondary sintering conditions.
  • a cylindrical green compact made of a mixed powder containing electrolytic copper powder and tin powder is used as a core, and the core is disposed in a cylindrical mold.
  • the cylindrical first metal powder sintered layer portion having the inner peripheral surface as a bearing surface and the outer periphery of the first metal powder sintered layer portion are filled with a spherical bronze alloy powder and sintered in the gap between A static pressure gas radial bearing having a second metal powder sintered layer portion formed on the surface and having a porosity higher than that of the first metal powder sintered layer portion was formed.
  • the second aspect of the present invention is a static pressure gas radial bearing that supports a radial load of a rotating body to be supported in a non-contact manner on a bearing surface,
  • a cylindrical first metal powder sintered layer portion having an inner peripheral surface as the bearing surface;
  • a second metal powder sintered layer portion formed on the outer peripheral surface of the first metal powder sintered layer portion and having a porosity larger than that of the first metal powder sintered layer portion,
  • the first and second metal powder sintered layer portions have a cylindrical green compact made of a mixed powder containing electrolytic copper powder and tin powder as a core, and the core is disposed in a cylindrical mold. They are formed together by filling a gap between the core and the mold with spherical bronze alloy powder and sintering.
  • a metal sleeve may be used as the cylindrical mold so that the sleeve functions as a back metal.
  • a molding die as a cylindrical mold, a laminate composed of the first metal powder sintered layer portion and the second metal powder sintered layer portion is first formed, and then the laminate is made of metal.
  • the sleeve may function as a back metal by press-fitting into a manufactured sleeve.
  • the first metal powder sintered layer portion or a cylindrical green compact made of a mixed powder containing electrolytic copper powder and tin powder is used as a core, and the core is disposed in a cylindrical mold.
  • the second metal powder sintered with a larger porosity than the cylindrical first metal powder sintered layer portion having the inner peripheral surface as the bearing surface is formed on the outer peripheral surface of the first metal powder sintered layer portion, a static pressure gas capable of uniformly discharging compressed gas from the entire bearing surface and obtaining a higher squeezing effect.
  • a radial bearing can be provided.
  • metal powder having substantially the same average particle diameter is used for the first and second metal powder sintered layers, and the temperature is lower and shorter than the primary sintering conditions of the first metal powder sintered layer.
  • the second metal powder sintered layer is formed according to the secondary sintering conditions to be performed, the same material can be used for the first and second metal powder sintered layers, so the material management and procurement costs Thus, a hydrostatic gas radial bearing can be manufactured at low cost.
  • a cylindrical green compact made of a mixed powder containing electrolytic copper powder and tin powder is used as a core, the core is placed in a cylindrical mold, and a spherical bronze is placed in the gap between the core and the mold.
  • the first and second metal powder sintered layer portions are formed by filling and sintering the alloy powder, the first and second metal powder sintered layer portions are formed by a single sintering. Since a columnar core for forming a through-hole into which a support object is inserted can be formed at the same time, the manufacturing cost can be reduced, and thereby a hydrostatic gas radial bearing can be manufactured at a low cost.
  • FIG. 1 (A) is an external view of static pressure gas radial bearings 1A to 1C according to the first to third embodiments of the present invention
  • FIG. 1 (B) shows the first embodiment of the present invention
  • FIG. 1C is a front view of the static pressure gas radial bearing 1A
  • FIG. 1C is a cross-sectional view taken along the line AA of the static pressure gas radial bearing 1A shown in FIG. 1B
  • FIG. 2 (A) is a front view of the static pressure gas radial bearing 1B according to the second embodiment of the present invention
  • FIG. 2 (B) is a diagram of the static pressure gas radial bearing 1B shown in FIG. 2 (A).
  • FIG. 1 (A) is an external view of static pressure gas radial bearings 1A to 1C according to the first to third embodiments of the present invention
  • FIG. 1 (B) shows the first embodiment of the present invention
  • FIG. 1C is a front view of the static pressure gas radial bearing 1A
  • FIG. 2C is a sectional view taken along the line BB, and FIG. 2C is a diagram for explaining the arrangement in the mold.
  • FIG. 3 (A) is a front view of a static pressure gas radial bearing 1C according to the third embodiment of the present invention
  • FIG. 3 (B) is a diagram of the static pressure gas radial bearing 1C shown in FIG. 3 (A). It is CC sectional drawing.
  • FIG. 1 (A) is an external view of static pressure gas radial bearings 1A to 1C according to the first to third embodiments of the present invention.
  • FIG. 1 (B) is a front view of a static pressure gas radial bearing 1A according to the present embodiment
  • FIG. 1 (C) is a cross section taken along the line AA of the static pressure gas radial bearing 1A shown in FIG. 1 (B).
  • a hydrostatic gas radial bearing 1A includes a cylindrical first metal powder sintered layer portion 2A having an inner peripheral surface 21 as a bearing surface, and a first metal powder sintered material.
  • a second metal powder sintered layer portion 3 formed on the outer peripheral surface 22 of the layer portion 2A, and a back metal 4 formed on the outer peripheral surface 32 of the second metal powder sintered layer portion 3. ing.
  • the static pressure gas radial bearing 1A supports the radial load of the rotating body to be supported in a non-contact manner.
  • the first metal powder sintered layer portion 2A is composed of a porous body obtained by sintering a spherical bronze alloy powder.
  • the cylindrical cores are arranged in the cylindrical mold in the axial center of each other. Is prepared by filling the gap between the outer peripheral surface of the core and the inner peripheral surface of the mold with a spherical bronze alloy powder having a desired average particle diameter, followed by primary sintering after pressurization. Is done. At this time, primary sintering conditions such as sintering temperature and sintering time are adjusted so that the porosity of the first metal powder sintered layer portion 2A is, for example, 10% or less.
  • the second metal powder sintered layer portion 3 is composed of a porous body obtained by sintering a spherical bronze alloy powder having substantially the same average particle diameter as the first metal powder sintered layer portion 2A.
  • a cylindrical first metal powder sintered layer portion 2A is used as a core, and the cores are arranged in a metal cylindrical sleeve using the core as a mold so that their axes coincide with each other.
  • Second metal powder sintering by filling the gap between the surface and the inner peripheral surface of the sleeve with spherical bronze alloy powder and secondary sintering the core, filled spherical bronze alloy powder and sleeve together
  • the layer portion 3 is formed on the outer peripheral surface 22 of the first metal powder sintered layer portion 2A in a state of being diffusion bonded to the first metal powder sintered layer portion 2A.
  • the secondary sintering conditions such as the sintering temperature and the sintering time are such that the porosity of the second metal powder sintered layer portion 3 is larger than the porosity of the first metal powder sintered layer portion 2A.
  • the temperature is set at a lower temperature and in a shorter time than the primary sintering conditions.
  • the compressed gas supplied to the outer peripheral surface 32 of the second metal powder sintered layer portion 3 via the back metal 4 by an air supply pump (not shown) It reaches the inner peripheral surface 31 of the second metal powder sintered layer portion 3 through the pores in the metal powder sintered layer portion 3 and is supplied to the outer peripheral surface 22 of the first metal powder sintered layer portion 2A. . Then, it reaches the inner peripheral surface 21 of the first metal powder sintered layer portion 2A, which is the bearing surface, through the pores in the first metal powder sintered layer portion 2A, and from the entire inner peripheral surface 21. It is discharged uniformly.
  • a compressed gas layer is formed between the bearing surface 21 and the outer peripheral surface of the rotating body (not shown) inserted into the through hole 11 of the hydrostatic gas radial bearing 1A, and the radial load of the rotating body is not increased. Supported by contact.
  • the porosity (for example, 10% or less) of the first metal powder sintered layer portion 2A is smaller than the porosity (for example, 25% or more) of the second metal powder sintered layer portion 3; Since the pores in the metal powder sintered layer portion 3 function as a throttle portion of the compressed gas flow path, the compressed gas discharged from the inner peripheral surface 21 of the first metal powder sintered layer portion 2A is throttled, The discharge amount is adjusted.
  • the forming material of the first and second metal powder sintered layer portions 2A and 3 is determined by a common measurement / calculation method (for example, a sieving method).
  • the second metal is sintered under secondary sintering conditions using a spherical bronze alloy powder having an approximately equal average particle diameter and lower temperature and shorter time than the primary sintering conditions of the first metal powder sintered layer portion 2A.
  • the porosity of the second metal powder sintered layer portion 3 is made larger than the porosity of the first metal powder sintered layer portion 2A.
  • the back metal 4 can be formed together with the second metal powder sintered layer portion 3, thereby further reducing the manufacturing cost.
  • the first metal powder sintered layer portion 2A is subjected to two sintering processes (primary sintering and secondary sintering), the first metal powder sintering is performed during the secondary sintering. While the layer part 2A is diffusion bonded to the second metal powder sintered layer part 3, the sintering of the first metal powder sintered layer part 2A further proceeds, and the pores of the first metal powder sintered layer part 2A The rate is even smaller. For this reason, the compressed gas discharged from the inner peripheral surface 21 of the first metal powder sintered layer portion 2A can be more effectively squeezed, the amount of compressed air consumed is smaller, and the static rigidity is higher. A pressurized gas radial bearing 1A can be realized.
  • the first and second metal powder sintered layers are provided by providing seal layers (not shown) on both end faces 23 and 33 of the first and second metal powder sintered layer portions 2A and 3. You may make it prevent the leak of the compressed gas from the both end surfaces 23 and 33 of 2 A of layered parts.
  • FIG. 2 (A) is a front view of the static pressure gas radial bearing 1B according to the present embodiment
  • FIG. 2 (B) is a BB cross section of the static pressure gas radial bearing 1B shown in FIG. 2 (A).
  • FIG. 2 (B) components having the same functions as those of the static pressure gas radial bearing 1A according to the first embodiment shown in FIG.
  • the hydrostatic gas radial bearing 1B supports the radial load of the rotating body to be supported in a non-contact manner, similarly to the hydrostatic gas radial bearing 1A according to the first embodiment.
  • a static pressure gas radial bearing 1B includes a cylindrical first metal powder sintered layer portion 2B having an inner peripheral surface 21 as a bearing surface and outer peripheral surfaces of the first metal powder sintered layer portion 2B.
  • the second metal powder sintered layer portion 3 formed on 22 and the back metal 4 formed on the outer peripheral surface 32 of the second metal powder sintered layer portion 3 are provided.
  • the first metal powder sintered layer 2B sinters a cylindrical green compact 5 made of a copper-tin mixed powder containing at least electrolytic copper powder and tin powder. It is formed by.
  • the electrolytic copper powder has a branch and leaf shape that can be easily solidified, and the tin powder is softer than the spherical bronze alloy powder. For this reason, the cylindrical green compact 5 can be easily obtained by pressure molding of the copper tin mixed powder containing the electrolytic copper powder and the tin powder.
  • the second metal powder sintered layer portion 3 is composed of a porous body obtained by sintering a spherical bronze alloy powder.
  • the green compact 5 is sintered by a single sintering process to form the first metal powder sintered layer portion 2B, and the filled spherical bronze alloy powder 6 is sintered.
  • the second metal powder sintered layer portion 3 is formed on the outer peripheral surface 22 of the first metal powder sintered layer portion 2B while being diffusion bonded to the first metal powder sintered layer portion 2B.
  • the back metal 4 is formed by the sleeve 7 on the outer peripheral surface 32 of the second metal powder sintered layer portion 3 in a state of being diffusion bonded to the second metal powder sintered layer portion 3.
  • the spherical bronze alloy powder used for forming the second metal powder sintered layer portion 3 has at least the porosity of the second metal powder sintered layer portion 3 as the first metal powder sintered layer.
  • the thing of the average particle diameter which can be made larger than the porosity of the part 2B is used.
  • the porosity of the first metal powder sintered layer portion 2B is 10% or less
  • the second metal powder so that the porosity of the second metal powder sintered layer portion 3 is 25% or more.
  • the average particle diameter of the spherical bronze alloy powder used for forming the sintered layer portion 3 is selected.
  • the compressed gas supplied to the outer peripheral surface 32 of the second metal powder sintered layer portion 3 through the back metal 4 by an air supply pump (not shown) It reaches the inner peripheral surface 31 of the second metal powder sintered layer portion 3 through the pores in the metal powder sintered layer portion 3 and is supplied to the outer peripheral surface 22 of the first metal powder sintered layer portion 2B. . Then, it reaches the inner peripheral surface 21 of the first metal powder sintered layer portion 2B, which is the bearing surface, through the pores in the first metal powder sintered layer portion 2B, and is uniform from the entire inner peripheral surface 21. Discharged.
  • a compressed gas layer is formed between the bearing surface 21 and a rotating body (not shown) inserted into the through hole 11 of the static pressure gas radial bearing 1B, and the radial load of the rotating body is supported without contact. Is done.
  • the porosity (for example, 10% or less) of the first metal powder sintered layer portion 2B is smaller than the porosity (for example, 25% or more) of the second metal powder sintered layer portion 3; Since the pores in the metal powder sintered layer portion 3 function as a throttle portion of the compressed gas flow path, the compressed gas discharged from the inner peripheral surface 21 of the first metal powder sintered layer portion 2B is throttled, The discharge amount is adjusted.
  • a cylindrical green compact 5 made of a copper-tin mixed powder containing at least electrolytic copper powder and tin powder is used as a core, and the green compact 5 is used as a cylindrical sleeve.
  • the spherical bronze alloy powder 6 is filled in the gap between the outer peripheral surface of the green compact 5 and the inner peripheral surface of the sleeve 7 and sintered.
  • the second metal powder sintered layer portions 2B and 3 can be simultaneously manufactured in a state of being bonded to each other, and the back metal 4 is simultaneously bonded onto the outer peripheral surface 32 of the second metal powder sintered layer portion 3. be able to.
  • the green compact 5 obtained by press-molding the copper tin mixed powder containing at least electrolytic copper powder and tin powder can be used as the core, the first metal powder sintered layer for use as the core It is not necessary to prepare 2B in advance by primary sintering. For this reason, unlike the first embodiment described above, the sintering process is only required once. Therefore, the manufacturing cost can be further reduced as compared with the first embodiment described above, whereby the static gas radial bearing 1B can be manufactured at a lower cost.
  • a sealing layer (not shown) is provided on both end faces 23 and 33 of the first and second metal powder sintered layer portions 2B and 3.
  • a sealing layer (not shown) is provided on both end faces 23 and 33 of the first and second metal powder sintered layer portions 2B and 3.
  • FIG. 3A is a front view of the static pressure gas radial bearing 1C according to the present embodiment
  • FIG. 3B is a cross-sectional view taken along the line CC of the static pressure gas radial bearing 1C shown in FIG. FIG.
  • a static pressure gas radial bearing 1C includes a cylindrical first metal powder sintered layer portion 2C having an inner peripheral surface 21 as a bearing surface, and an outer peripheral surface 22 of the first metal powder sintered layer 2C.
  • the second metal powder sintered layer portion 3 formed above and the back metal 4 formed on the outer peripheral surface 32 of the second metal powder sintered layer portion 3 are provided.
  • the first metal powder sintered layer portion 2C is composed of a porous body obtained by sintering a spherical bronze alloy powder.
  • the columnar cores are arranged in the center of the cylindrical mold. Are arranged so as to coincide with each other, and a spherical bronze alloy powder having a desired average particle diameter is filled in a gap between the outer peripheral surface of the core and the inner peripheral surface of the molding die, and primary sintering is performed.
  • primary sintering conditions such as sintering temperature and sintering time are adjusted so that the porosity of the first metal powder sintered layer portion 2C is, for example, 10% or less.
  • 3 parts of the second sintered metal powder layer is a porous body obtained by sintering a spherical bronze alloy powder having a larger average particle diameter than the spherical bronze alloy powder used in the first sintered metal powder layer 2C.
  • a cylindrical first metal powder sintered layer portion 2C is used as a core, and the core is disposed in a metal cylindrical sleeve using the core as a mold so that the axes of the cores coincide with each other.
  • a spherical bronze alloy powder having an average particle size larger than the spherical bronze alloy powder used for the first metal powder sintered layer portion 2C is filled in the gap between the surface and the inner peripheral surface of the sleeve, and the core is filled.
  • the second metal powder sintered layer portion 3 is formed on the outer peripheral surface 22 of the first metal powder sintered layer portion 2C in a state of being diffusion bonded to the first metal powder sintered layer portion 2C, and the back metal 4 is formed by this sleeve.
  • the second It is formed in a state of being diffusion bonded and attributes powder sintered layer portion 3.
  • the porosity of the second metal powder sintered layer portion 3 is set to the porosity of the first metal powder sintered layer portion 2C.
  • An average particle size that can be made larger is used. For example, when the porosity of the first metal powder sintered layer portion 2C is 10% or less, the spherical bronze alloy powder is formed so that the porosity of the second metal powder sintered layer portion 3 is 25% or more. An average particle size is selected.
  • the compressed gas supplied to the outer peripheral surface 32 of the second metal powder sintered layer portion 3 via the back metal 4 by an air supply pump (not shown) It reaches the inner peripheral surface 31 of the second metal powder sintered layer 3 via the pores in the metal powder sintered layer 3 and is supplied to the outer peripheral surface 22 of the first metal powder sintered layer 2C. Then, it reaches the inner peripheral surface 21 of the first metal powder sintered layer portion 2C, which is the bearing surface, through the pores in the first metal powder sintered layer portion 2C, and is uniform from the entire inner peripheral surface 21. Discharged.
  • a compressed gas layer is formed between the bearing surface 21 and the outer peripheral surface of the rotating body (not shown) inserted into the through hole 11 of the static pressure gas radial bearing 1C, and the radial load of the rotating body is not increased. Supported by contact.
  • the porosity (for example, 10% or less) of the first metal powder sintered layer portion 2C is smaller than the porosity (for example, 25% or more) of the second metal powder sintered layer portion 3; Since the pores in the powder sintered layer portion 2C function as a throttle portion of the compressed gas flow path, the compressed gas discharged from the inner peripheral surface 21 of the first metal powder sintered layer portion 2C is throttled and discharged. The amount is adjusted.
  • the static pressure gas radial bearing 1C it is possible to form the back metal 4 together with the second metal powder sintered layer portion 3 by using a metal sleeve as a mold. As a result, the manufacturing cost can be reduced.
  • a common measurement / calculation method (for example, a sieving method or the like) is used as a forming material of the second metal powder sintered layer portion 3 rather than a spherical bronze alloy powder used as a forming material of the first metal powder sintered layer portion 2C.
  • a common measurement / calculation method for example, a sieving method or the like.
  • the first metal powder sintering is performed during the secondary sintering. While the layer part 2C is diffusion bonded to the second metal powder sintered layer part 3, the sintering of the first metal powder sintered layer part 2C further proceeds, and the pores of the first metal powder sintered layer part 2C The rate is even smaller. For this reason, clogging occurs more reliably in the entire first metal powder sintered layer portion 2C, and the compressed gas discharged from the inner peripheral surface 21 of the first metal powder sintered layer portion 2C is more effectively reduced. Therefore, it is possible to realize the static pressure gas radial bearing 1C that consumes less compressed air and has higher rigidity.
  • a sealing layer (not shown) is provided on both end surfaces 23 and 33 of the first and second metal powder sintered layer portions 2C and 3. Further, leakage of compressed gas from both end faces 23 and 33 of the first and second metal powder sintered layer portions 2C and 3 may be prevented.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the gist.
  • the outer shape of the back metal 4 is formed in a cylindrical shape, but may be a prismatic shape.
  • the shape of the bearing surface of the first metal powder sintered layer portions 2A to 2C is not limited to a cylindrical shape, and may be a shape that matches the shape of the support target, such as a prismatic shape.
  • the back metal 4 is formed together with the second metal powder sintered layer portion 3 by using a metal sleeve as a mold.
  • a metal sleeve as a mold
  • a general cylindrical mold is used to form a laminate composed of the first metal powder sintered layer portion 2C and the second metal powder sintered layer portion 3.
  • This sleeve is formed by press-fitting the first and second metal powder sintered layer portions 2A to 2C 3 formed before the back metal 4 and then diffusion-bonded and integrated with each other into the metal sleeve. May function as the back metal 4.
  • the present invention can be applied to a hydrostatic gas radial bearing that supports a radial load of a rotating body to be supported in a non-contact manner.
  • 1A, 1B, 1C static pressure gas radial bearing
  • 2A, 2B, 2C first metal powder sintered layer portion
  • 3 second metal powder sintered layer portion
  • 4 back metal
  • 5 green compact
  • 6 spherical bronze alloy powder
  • 7 sleeve
  • 11 through hole
  • 21 inner peripheral surface (bearing surface) of first metal powder sintered layers 2A to 2C
  • 22 first metal powder sintered layer 2A To 2C outer peripheral surface
  • 23 both end surfaces of the first metal powder sintered layers 2A to 2C
  • 31 inner peripheral surface of the second metal powder sintered layer 3
  • 32 second metal powder sintered layer 3 33: both end faces of the second metal powder sintered layer 3

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 軸受面の全面から圧縮気体を均一に吐出可能であり、かつより高い絞り効果を得ることが可能な静圧気体ラジアル軸受を提供する。静圧気体ラジアル軸受1Aは、内周面21を軸受面とする円筒状の第一の金属粉末焼結層部2Aと、第一の金属粉末焼結層部2Aの外周面22上に形成され、第一の金属粉末焼結層部2Aよりも気孔率が大きい第二の金属粉末焼結層3と、第二の金属粉末焼結層部3の外周面32上に形成されたバックメタル4と、を備える。第一及び第二の金属粉末焼結層部2A、3の形成材料にはほぼ同じ平均粒径の球状青銅合金粉末が用いられる。第二の金属粉末焼結層部3は、第一の金属粉末焼結層部2Aをコアとして金属製のスリーブ内に配置し、このコアとスリーブとの隙間に球状青銅合金粉末を充填して、第一の金属粉末焼結層部2Aよりも低温かつ短時間で焼結されることにより、第一の金属粉末焼結層部2Aより気孔率が大きくなる。

Description

静圧気体ラジアル軸受
 本発明は、支持対象である回転体のラジアル方向の荷重を非接触で支持する静圧気体ラジアル軸受に関し、特に、軸受面の全面から圧縮気体を均一に吐出可能であり、かつより高い絞り効果を得することが可能な静圧気体ラジアル軸受に関する。
 特許文献1には、軸受面に形成される気孔のサイズおよび分布状態を精度よく調整でき、これにより軸受面からの気体の吐出に絞り効果を付与することが可能な静圧気体軸受が開示されている。
 この静圧気体軸受は、平均粒径60μmの青銅粉末の焼結体からなる多孔質材である母材に、平均粒径5μmの青銅粉末の焼結体からなる多孔質材である表面絞り層を接合した二層構造を有している。製造方法としては、まず、平均粒径60μmの青銅粉末に対して1回目の焼結処理を行うことにより母材を作製する。つぎに、表面絞り層との接合面となる母材の面を機械加工により仕上げ、それから、容器内に充填された表面絞り層となる平均粒径5μmの青銅粉末上に、母材を、表面絞り層との接合面となる母材の面を下にして載せ、2回目の焼結処理を行う。これにより、母材と表面絞り層との二層構造を有した焼結体かなる静圧気体軸受が作製される。
特開2000-27865号公報
 しかしながら、特許文献1に記載の静圧気体軸受は、スラスト軸受に用いられるプレート型の軸受であり、ラジアル軸受に用いられるブッシュ型の軸受への適用が考慮されていない。また、母材と表面絞り層とに、互いに平均粒径の異なる青銅粉末を用いるため、材料の管理、調達コストが嵩む。その上、母材を構成する青銅粉末に予め焼結処理を行って母材を作成した後、表面絞り層を構成する青銅粉末に焼結処理を行って母材上に表面絞り層を形成するため、2回の焼結処理が必要となり、製造コストが嵩む。このため、さらにコストが嵩む。
 本発明は上記事情に鑑みてなされたものであり、その目的は、軸受面の全面から圧縮気体を均一に吐出可能であり、かつより高い絞り効果を得ることが可能な静圧気体ラジアル軸受を提供することにある。また、本発明の他の目的は、低コストで製造可能な静圧気体ラジアル軸受を提供することにある。
 上記課題を解決するために、本発明の第一の態様では、内周面を軸受面とする筒状の第一の金属粉末焼結層部をコアとして、このコアを筒状の型内に配置し、このコアと型との隙間に金属粉末を充填して焼結することにより、第一の金属粉末焼結層部の外周面上に形成され、第一の金属粉末焼結層部よりも気孔率が大きい第二の金属粉末焼結層部を有する静圧気体ラジアル軸受を形成した。
 例えば、本発明の第一の態様は、支持対象である回転体のラジアル方向の荷重を軸受面で非接触支持する静圧気体ラジアル軸受であって、
 内周面を前記軸受面とする筒状の第一の金属粉末焼結層部と、
 前記第一の金属粉末焼結層部の外周面上に形成され、前記第一の金属粉末焼結層部よりも大きな気孔率を有する第二の金属粉末焼結層部と、を備え、
 前記第一の金属粉末焼結層部は、一次焼結することにより形成され、
 前記第二の金属粉末焼結層は、前記第一の金属粉末焼結層部をコアとして、当該コアを筒状の型内に配置し、当該コアと当該型との隙間に金属粉末を充填して二次焼結することにより形成される。
 ここで、前記第一および第二の金属粉末焼結層部に、ほぼ同じ平均粒径の金属粉末を用い、前記第一の金属粉末焼結層の一次焼結条件よりも低温かつ短時間とする二次焼結条件で焼結することにより、前記第二の金属粉末焼結層部を形成してもよい。
 また、本発明の第二の態様では、電解銅粉末および錫粉末を含む混合粉末からなる筒状の圧粉体をコアとして、このコアを筒状の型内に配置し、このコアと型との隙間に球状青銅合金粉末を充填して焼結することにより、内周面を軸受面とする筒状の第一の金属粉末焼結層部と、第一の金属粉末焼結層部の外周面上に形成され、第一の金属粉末焼結層部よりも気孔率が大きい第二の金属粉末焼結層部と、を有する静圧気体ラジアル軸受を形成した。
 例えば、本発明の第二の態様は、支持対象である回転体のラジアル方向の荷重を軸受面で非接触支持する静圧気体ラジアル軸受であって、
 内周面を前記軸受面とする筒状の第一の金属粉末焼結層部と、
 前記第一の金属粉末焼結層部の外周面上に形成され、前記第一の金属粉末焼結層部よりも大きな気孔率を有する第二の金属粉末焼結層部と、を備え、
 前記第一および第二の金属粉末焼結層部は、電解銅粉末および錫粉末を含む混合粉末からなる筒状の圧粉体をコアとして、当該コアを筒状の型内に配置し、当該コアと当該型との隙間に球状青銅合金粉末を充填して焼結することにより一緒に形成される。
 なお、第一および第二の態様において、筒状の型として金属製のスリーブを使用することにより、このスリーブがバックメタルとして機能するようにしてもよい。あるいは、筒状の型として成形型を使用することにより第一の金属粉末焼結層部および第二の金属粉末焼結層部からなる積層体を先に形成し、その後、この積層体を金属製のスリーブに圧入することにより、このスリーブがバックメタルとして機能するようにしてもよい。
 本発明では、第一の金属粉末焼結層部あるいは電解銅粉末および錫粉末を含む混合粉末からなる筒状の圧粉体をコアとして、このコアを筒状の型内に配置し、このコアと型との隙間に金属粉末を充填して焼結することにより、内周面を軸受面とする筒状の第一の金属粉末焼結層部よりも気孔率が大きい第二の金属粉末焼結層部を第一の金属粉末焼結層部の外周面に形成するので、軸受面の全面から圧縮気体を均一に吐出可能であり、かつより高い絞り効果を得ることが可能な静圧気体ラジアル軸受を提供できる。
 また、本発明において、第一および第二の金属粉末焼結層部にほぼ同じ平均粒径の金属粉末を用い、第一の金属粉末焼結層の一次焼結条件よりも低温かつ短時間とする二次焼結条件により第二の金属粉末焼結層を形成する場合には、第一および第二の金属粉末焼結層部に同じ材料を用いることができるので、材料の管理、調達コストを低減でき、これにより低コストで静圧気体ラジアル軸受を製造できる。
 また、本発明において、電解銅粉末および錫粉末を含む混合粉末からなる筒状の圧粉体をコアとして、このコアを筒状の型内に配置し、このコアと型との隙間に球状青銅合金粉末を充填して焼結することにより、第一および第二の金属粉末焼結層部を形成する場合には、一回の焼結で第一および第二の金属粉末焼結層部を同時に形成でき、かつ、支持対象が挿入される貫通孔を形成するための柱状のコアが不要となるため、製造コストを低減でき、これにより低コストで静圧気体ラジアル軸受を製造できる。
図1(A)は、本発明の第一~第三実施の形態に係る静圧気体ラジアル軸受1A~1Cの外観図であり、図1(B)は、本発明の第一実施の形態に係る静圧気体ラジアル軸受1Aの正面図であり、図1(C)は、図1(B)に示す静圧気体ラジアル軸受1AのA-A断面図である。 図2(A)は、本発明の第二実施の形態に係る静圧気体ラジアル軸受1Bの正面図であり、図2(B)は、図2(A)に示す静圧気体ラジアル軸受1BのB-B断面図であり、図2(C)は、鋳型内の配置を説明する図である。 図3(A)は、本発明の第三実施の形態に係る静圧気体ラジアル軸受1Cの正面図であり、図3(B)は、図3(A)に示す静圧気体ラジアル軸受1CのC-C断面図である。
 以下に、本発明の実施の形態について、図面を参照して説明する。
 図1(A)は、本発明の第一~第三実施形態に係る静圧気体ラジアル軸受1A~1Cの外観図である。
 <第一実施の形態>
 まず、本発明の第一実施の形態を説明する。
 図1(B)は、本実施の形態に係る静圧気体ラジアル軸受1Aの正面図であり、図1(C)は、図1(B)に示す静圧気体ラジアル軸受1AのA-A断面図である。
 図示するように、本実施の形態に係る静圧気体ラジアル軸受1Aは、内周面21を軸受面とする円筒状の第一の金属粉末焼結層部2Aと、第一の金属粉末焼結層部2Aの外周面22上に形成された第二の金属粉末焼結層部3と、第二の金属粉末焼結層部3の外周面32上に形成されたバックメタル4と、を備えている。このような構造により、静圧気体ラジアル軸受1Aは、支持対象である回転体のラジアル方向の荷重を非接触で支持する。
 第一の金属粉末焼結層部2Aは、球状青銅合金粉末を焼結することにより得られる多孔質体で構成されている。例えば、支持対象である回転体が挿入される貫通孔11を第一の金属粉末焼結層部2Aの内部に形成するために、円筒状の成形型内に円柱状のコアを互いの軸心が一致するように配置し、このコアの外周面と成形型の内周面との隙間に、所望の平均粒径を有する球状青銅合金粉末を充填し、加圧後に一次焼結することにより作製される。このとき、焼結温度、焼結時間等の一次焼結の条件は、第一の金属粉末焼結層部2Aの気孔率が例えば10%以下となるように調整される。
 第二の金属粉末焼結層部3は、第一の金属粉末焼結層部2Aとほぼ同じ平均粒径の球状青銅合金粉末を焼結することにより得られる多孔質体で構成されている。例えば、円筒状の第一の金属粉末焼結層部2Aをコアとして、このコアを型として用いる金属製の円筒状のスリーブ内に互いの軸心が一致するように配置し、このコアの外周面とスリーブの内周面との隙間に球状青銅合金粉末を充填して、コア、充填された球状青銅合金粉末、およびスリーブを一緒に二次焼結することにより、第二の金属粉末焼結層部3が、第一の金属粉末焼結層部2Aの外周面22上に、第一の金属粉末焼結層部2Aと拡散接合した状態で形成されるとともに、このスリーブにより、バックメタル4が、第二の金属粉末焼結層部3の外周面32上に、第二の金属粉末焼結層部3と拡散接合した状態で形成される。このとき、焼結温度、焼結時間等の二次焼結の条件は、第二の金属粉末焼結層部3の気孔率が第一の金属粉末焼結層部2Aの気孔率よりも大きくなるように(例えば第二の金属粉末焼結層部3の気孔率が25%以上となるように)、一次焼結の条件よりも低温、短時間に設定される。
 このような静圧気体ラジアル軸受1Aにおいて、図示していない給気ポンプによりバックメタル4を介して第二の金属粉末焼結層部3の外周面32に供給された圧縮気体は、第二の金属粉末焼結層部3内の気孔を介して第二の金属粉末焼結層部3の内周面31に到達し、第一の金属粉末焼結層部2Aの外周面22に供給される。それから、第一の金属粉末焼結層部2A内の気孔を介して、軸受面である第一の金属粉末焼結層部2Aの内周面21に到達して、この内周面21全域から均一に吐出される。これにより、軸受面21と静圧気体ラジアル軸受1Aの貫通孔11に挿入された不図示の回転体の外周面との間に圧縮気体層が形成され、この回転体のラジアル方向の荷重が非接触で支持される。この際、第一の金属粉末焼結層部2Aの気孔率(例えば10%以下)が第二の金属粉末焼結層部3の気効率(例えば25%以上)よりも小さく、この第二の金属粉末焼結層部3内の気孔が圧縮気体の流路の絞り部として機能するため、第一の金属粉末焼結層部2Aの内周面21から吐出される圧縮気体が絞られ、その吐出量が調整される。
 本実施の形態に係る静圧気体ラジアル軸受1Aでは、第一および第二の金属粉末焼結層部2A、3の形成材料に、共通の測定・算出方法(例えばふるい分け法等)により決定された平均粒径がほぼ等しい球状青銅合金粉末を用い、第一の金属粉末焼結層部2Aの一次焼結条件よりも低温かつ短時間とする二次焼結条件で焼結して第二の金属粉末焼結層部3を形成することにより、第二の金属粉末焼結層部3の気孔率を第一の金属粉末焼結層部2Aの気孔率よりも大きくしている。このように、第一および第二の金属粉末焼結層部2A、3に同じ材料を用いることで、材料の管理、調達コストを低減することができ、これにより低コストで静圧気体ラジアル軸受1Aを製造することができる。
 また、型として金属製のスリーブを用いることにより、バックメタル4を第二の金属粉末焼結層部3と一緒に形成することが可能となり、これにより製造コストをさらに低減することができる。
 また、第一の金属粉末焼結層部2Aに対しては2回の焼結処理(一次焼結、二次焼結)が行われるため、二次焼結中、第一の金属粉末焼結層部2Aが第二の金属粉末焼結層部3と拡散接合するとともに、第一の金属粉末焼結層部2Aの焼結がさらに進んで、第一の金属粉末焼結層部2Aの気孔率がさらに小さくなる。このため、第一の金属粉末焼結層部2Aの内周面21から吐出する圧縮気体をより効果的に絞ることが可能となり、圧縮空気の消費量がより少なく、かつ、より高剛性な静圧気体ラジアル軸受1Aを実現することができる。
 なお、本実施の形態において、第一および第二の金属粉末焼結層部2A、3の両端面23、33に図示していないシール層を設けることにより、第一および第二の金属粉末焼結層部2A、3の両端面23、33からの圧縮気体の漏れを防止するようにしてもよい。
 <第二実施の形態>
 つぎに、本発明の第二実施の形態を説明する。
 図2(A)は、本実施の形態に係る静圧気体ラジアル軸受1Bの正面図であり、図2(B)は、図2(A)に示す静圧気体ラジアル軸受1BのB-B断面図である。なお、図2において、図1に示す第一実施の形態に係る静圧気体ラジアル軸受1Aと同じ機能を有するものには同じ符号を付している。
 本実施の形態に係る静圧気体ラジアル軸受1Bは、上記第一実施の形態に係る静圧気体ラジアル軸受1Aと同様、支持対象である回転体のラジアル方向の荷重を非接触で支持する。
 図示するように、静圧気体ラジアル軸受1Bは、内周面21を軸受面とする円筒状の第一の金属粉末焼結層部2Bと、第一の金属粉末焼結層部2Bの外周面22上に形成された第二の金属粉末焼結層部3と、第二の金属粉末焼結層部3の外周面32上に形成されたバックメタル4と、を備えている。
 第一の金属粉末焼結層2Bは、図2(C)に示すように、少なくとも電解銅粉末および錫粉末を含む銅錫混合粉末で構成された円筒状の圧粉体5を焼結することにより形成される。ここで、電解銅粉末は、球状青銅合金粉末と異なり、固形化が容易な枝葉形状を有しており、錫粉末は、球状青銅合金粉末に比べて柔らかい。このため、電解銅粉末および錫粉末を含む銅錫混合粉末の加圧成形により円筒状の圧粉体5を容易に得ることができる。
 第二の金属粉末焼結層部3は、球状青銅合金粉末を焼結することにより得られる多孔質体で構成されている。図2(C)に示すように、第一の金属粉末焼結層部2Bとなる円筒状の圧粉体5をコアとして、この圧粉体5を型として用いる金属製の円筒状のスリーブ7内に互いの軸心が一致するように配置し、この圧粉体5の外周面とスリーブ7の内周面との隙間に所望の平均粒径を有する球状青銅合金粉末6を充填して、コア、充填された球状青銅合金粉末6、およびスリーブ7を一緒に焼結する。これにより、1回の焼結処理で圧粉体5が焼結されて、第一の金属粉末焼結層部2Bが形成されるとともに、充填された球状青銅合金粉末6が焼結されて、第二の金属粉末焼結層部3が、第一の金属粉末焼結層部2Bの外周面22上に、第一の金属粉末焼結層部2Bと拡散接合した状態で形成される。さらに、スリーブ7により、バックメタル4が、第二の金属粉末焼結層部3の外周面32上に、第二の金属粉末焼結層部3と拡散接合した状態で形成される。ここで、第二の金属粉末焼結層部3を形成するために用いられる球状青銅合金粉末には、少なくとも第二の金属粉末焼結層部3の気孔率を第一の金属粉末焼結層部2Bの気孔率よりも大きくすることのできる平均粒径のものが用いられる。例えば、第一の金属粉末焼結層部2Bの気孔率が10%以下である場合、第二の金属粉末焼結層部3の気孔率が25%以上となるように、第二の金属粉末焼結層部3を形成するために用いられる球状青銅合金粉末の平均粒径が選択される。
 上記構成の静圧気体ラジアル軸受1Bにおいて、図示していない給気ポンプによりバックメタル4を介して第二の金属粉末焼結層部3の外周面32に供給された圧縮気体は、第二の金属粉末焼結層部3内の気孔を介して第二の金属粉末焼結層部3の内周面31に到達し、第一の金属粉末焼結層部2Bの外周面22に供給される。それから、第一の金属粉末焼結層部2B内の気孔を介して、軸受面である第一の金属粉末焼結層部2Bの内周面21に到達し、この内周面21全域から均一に吐出される。これにより、軸受面21と静圧気体ラジアル軸受1Bの貫通孔11に挿入された不図示の回転体との間に圧縮気体層が形成され、この回転体のラジアル方向の荷重が非接触で支持される。この際、第一の金属粉末焼結層部2Bの気孔率(例えば10%以下)が第二の金属粉末焼結層部3の気効率(例えば25%以上)よりも小さく、この第二の金属粉末焼結層部3内の気孔が圧縮気体の流路の絞り部として機能するため、第一の金属粉末焼結層部2Bの内周面21から吐出される圧縮気体が絞られ、その吐出量が調整される。
 本実施の形態に係る静圧気体ラジアル軸受1Bでは、少なくとも電解銅粉末および錫粉末を含む銅錫混合粉末からなる円筒状の圧粉体5をコアとして、この圧粉体5を円筒状のスリーブ7内に配置し、この圧粉体5の外周面とスリーブ7の内周面との隙間に球状青銅合金粉末6を充填して焼結することにより、1回の焼結で、第一および第二の金属粉末焼結層部2B、3を互いに接合した状態で同時に作製することができ、さらに、第二の金属粉末焼結層部3の外周面32上にバックメタル4を同時に接合することができる。また、少なくとも電解銅粉末および錫粉末を含む銅錫混合粉末を加圧成形することにより得られる圧粉体5をコアとして利用可能なため、コアとして利用するために第一の金属粉末焼結層2Bを一次焼結により予め作製しておく必要がない。このため、上記の第一実施の形態とは異なり、焼結工程が一回で済む。したがって、上記の第一実施の形態に比べて製造コストをさらに低減でき、これにより、さらに低コストな静圧気体ラジアル軸受1Bを製造することができる。
 なお、上記第一実施の形態と同様に、本実施の形態において、第一および第二の金属粉末焼結層部2B、3の両端面23、33に、図示していないシール層を設けることにより、第一および第二の金属粉末焼結層部2B、3の両端面23、33からの圧縮気体の漏れを防止するようにしてもよい。
 <第三実施の形態>
 つぎに、本発明の第三実施の形態を説明する。
 図3(A)は、本実施の形態に係る静圧気体ラジアル軸受1Cの正面図であり、図3(B)は、図3(A)に示す静圧気体ラジアル軸受1CのC-C断面図である。なお、図3において、図1に示す第一実施の形態に係る静圧気体ラジアル軸受1Aと同じ機能を有するものには同じ符号を付している。
 本実施の形態に係る静圧気体ラジアル軸受1Cは、上記第一および第二実施の形態に係る静圧気体ラジアル軸受1A、1Bと同様、支持対象である回転体のラジアル方向の荷重を非接触で支持する。
 図示するように、静圧気体ラジアル軸受1Cは、内周面21を軸受面とする円筒状の第一の金属粉末焼結層部2Cと、第一の金属粉末焼結層2Cの外周面22上に形成された第二の金属粉末焼結層部3と、第二の金属粉末焼結層部3の外周面32上に形成されたバックメタル4と、を備えている。
 第一の金属粉末焼結層部2Cは、球状青銅合金粉末を焼結することにより得られる多孔質体で構成されている。例えば、支持対象である回転体が挿入される貫通孔11を第一の金属粉末焼結層部2Cの内部に形成するために、円筒状の成形型内に円柱状のコアを互いの軸心が一致するように配置し、このコアの外周面と成形型の内周面との隙間に、所望の平均粒径を有する球状青銅合金粉末を充填し、一次焼結することにより作製される。このとき、焼結温度、焼結時間等の一次焼結の条件は、第一の金属粉末焼結層部2Cの気孔率が例えば10%以下となるように調整される。
 第二の金属粉末焼結層3部は、第一の金属粉末焼結層部2Cに用いる球状青銅合金粉末よりも大きな平均粒径の球状青銅合金粉末を焼結することにより得られる多孔質体で構成されている。例えば、円筒状の第一の金属粉末焼結層部2Cをコアとして、このコアを型として用いる金属製の円筒状のスリーブ内に互いの軸心が一致するように配置し、このコアの外周面とスリーブの内周面との隙間に、第一の金属粉末焼結層部2Cに用いる球状青銅合金粉末よりも大きな平均粒径の球状青銅合金粉末を充填して、コア、充填された、第一の金属粉末焼結層部2Cに用いる球状青銅合金粉末よりも大きな平均粒径の球状青銅合金粉末、およびスリーブを一緒に二次焼結することにより、第二の金属粉末焼結層部3が、第一の金属粉末焼結層部2Cの外周面22上に、第一の金属粉末焼結層部2Cと拡散接合した状態で形成されるとともに、このスリーブにより、バックメタル4が、第二の金属粉末焼結層部3の外周面32上に、第二の金属粉末焼結層部3と拡散接合した状態で形成される。ここで、第二の金属粉末焼結層部3に用いる球状青銅合金粉末には、少なくとも第二の金属粉末焼結層部3の気孔率を第一の金属粉末焼結層部2Cの気孔率より大きくすることのできる平均粒径のものが用いられる。例えば、第一の金属粉末焼結層部2Cの気孔率が10%以下である場合、第二の金属粉末焼結層部3の気孔率が25%以上となるように、球状青銅合金粉末の平均粒径が選択される。
 上記構成の静圧気体ラジアル軸受1Cにおいて、図示していない給気ポンプによりバックメタル4を介して第二の金属粉末焼結層部3の外周面32に供給された圧縮気体は、第二の金属粉末焼結層3部内の気孔を介して第二の金属粉末焼結層部3の内周面31に到達し、第一の金属粉末焼結層部2Cの外周面22に供給される。それから、第一の金属粉末焼結層部2C内の気孔を介して、軸受面である第一の金属粉末焼結層部2Cの内周面21に到達し、この内周面21全域から均一に吐出される。これにより、軸受面21と静圧気体ラジアル軸受1Cの貫通孔11に挿入された不図示の回転体の外周面との間に圧縮気体層が形成され、この回転体のラジアル方向の荷重が非接触で支持される。この際、第一の金属粉末焼結層部2Cの気孔率(例えば10%以下)が第二の金属粉末焼結層部3の気孔率(例えば25%以上)より小さく、この第一の金属粉末焼結層部2C内の気孔が圧縮気体の流路の絞り部として機能するため、第一の金属粉末焼結層部2Cの内周面21から吐出される圧縮気体が絞られ、その吐出量が調整される。
 本実施の形態に係る静圧気体ラジアル軸受1Cでは、型として金属製のスリーブを用いることにより、バックメタル4を第二の金属粉末焼結層部3と一緒に形成することが可能となり、これにより製造コストを低減することができる。
 また、第二の金属粉末焼結層部3の形成材料に、第一の金属粉末焼結層部2Cの形成材料とする球状青銅合金粉末よりも、共通の測定・算出方法(例えばふるい分け法等)により決定された平均粒径が大きな球状青銅合金粉末を用い、かつ、第一の金属粉末焼結層部2Cの一次焼結条件よりも低温かつ短時間とする二次焼結条件で焼結して第二の金属粉末焼結層部3を形成しているため、より確実に第二の金属粉末焼結層部3の気孔率を第一の金属粉末焼結層部2Cの気孔率よりも大きくすることができる。
 また、第一の金属粉末焼結層部2Cに対しては2回の焼結処理(一次焼結、二次焼結)が行われるため、二次焼結中、第一の金属粉末焼結層部2Cが第二の金属粉末焼結層部3と拡散接合するとともに、第一の金属粉末焼結層部2Cの焼結がさらに進んで、第一の金属粉末焼結層部2Cの気孔率がさらに小さくなる。このため、第一の金属粉末焼結層部2C全体においてより確実に目詰まりが生じ、第一の金属粉末焼結層部2Cの内周面21から吐出される圧縮気体をより効果的に絞ることが可能となり、圧縮空気の消費量がより少なく、かつ、より高剛性な静圧気体ラジアル軸受1Cを実現することができる。
 なお、上記第一実施の形態と同様に、本実施の形態において、第一および第二の金属粉末焼結層部2C、3の両端面23、33に図示していないシール層を設けることにより、第一および第二の金属粉末焼結層部2C、3の両端面23、33からの圧縮気体の漏れを防止するようにしてもよい。
 なお、本発明は、上記の各実施の形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。例えば、上記の各実施の形態において、バックメタル4の外形は円柱状に形成されているが、角柱状であってもよい。また、第一の金属粉末焼結層部2A~2Cの軸受面の形状も、円柱状に限定されるものではなく、角柱状等、支持対象の形状に合わせた形状であればよい。
 また、上記の各実施の形態では、型として金属製のスリーブを用いることにより、バックメタル4を第二の金属粉末焼結層部3と一緒に形成しているが、本発明はこれに限定されない。例えば、型として金属製のスリーブを用いる代わりに一般的な筒状の成形型を用いて、第一の金属粉末焼結層部2Cおよび第二の金属粉末焼結層部3からなる積層体をバックメタル4より先に形成し、その後、互いに拡散接合されて一体化された第一および第二の金属粉末焼結層部2A~C、3を金属製のスリーブに圧入することにより、このスリーブをバックメタル4として機能させるようにしてもよい。
 本発明は、支持対象である回転体のラジアル方向の荷重を非接触で支持する静圧気体ラジアル軸受に適用可能である。
 1A、1B、1C:静圧気体ラジアル軸受、 2A、2B、2C:第一の金属粉末焼結層部、 3:第二の金属粉末焼結層部、 4:バックメタル、5:圧粉体、6:球状青銅合金粉末、7:スリーブ、 11:貫通孔、 21:第一の金属粉末焼結層2A~2Cの内周面(軸受面)、 22:第一の金属粉末焼結層2A~2Cの外周面、 23:第一の金属粉末焼結層2A~2Cの両端面、 31:第二の金属粉末焼結層3の内周面、 32:第二の金属粉末焼結層3の外周面、 33:第二の金属粉末焼結層3の両端面

Claims (6)

  1.  支持対象である回転体のラジアル方向の荷重を軸受面で非接触支持する静圧気体ラジアル軸受であって、
     内周面を前記軸受面とする筒状の第一の金属粉末焼結層部と、
     前記第一の金属粉末焼結層部の外周面上に形成され、前記第一の金属粉末焼結層部よりも大きな気孔率を有する第二の金属粉末焼結層部と、を備え、
     前記第一の金属粉末焼結層部は、一次焼結することにより形成され、
     前記第二の金属粉末焼結層は、前記第一の金属粉末焼結層部をコアとして、当該コアを筒状の型内に配置し、当該コアと当該型との隙間に金属粉末を充填して二次焼結することにより形成される
     ことを特徴とする静圧気体ラジアル軸受。
  2.  請求項1に記載の静圧気体ラジアル軸受であって、
     前記第一および第二の金属粉末焼結層部には、ほぼ同じ平均粒径の球状青銅合金粉末が用いられており、
     前記第二の金属粉圧焼結層部は、前記第一の金属粉末焼結層部の一次焼結条件よりも低温かつ短時間とする二次焼結条件で焼結することにより形成される
     ことを特徴とする静圧気体ラジアル軸受。
  3.  請求項1に記載の静圧気体ラジアル軸受であって、
     前記第一の金属粉末焼結層部には、前記第二の金属粉末焼結層部に用いる球状青銅合金粉末より大きな平均粒径の球状青銅合金粉末が用いられている
     ことを特徴とする静圧気体ラジアル軸受。
  4.  支持対象である回転体のラジアル方向の荷重を軸受面で非接触支持する静圧気体ラジアル軸受であって、
     内周面を前記軸受面とする筒状の第一の金属粉末焼結層部と、
     前記第一の金属粉末焼結層部の外周面上に形成され、前記第一の金属粉末焼結層部よりも大きな気孔率を有する第二の金属粉末焼結層部と、を備え、
     前記第一および第二の金属粉末焼結層部は、電解銅粉末および錫粉末を含む混合粉末からなる筒状の圧粉体をコアとして、当該コアを筒状の型内に配置し、当該コアと当該型との隙間に球状青銅合金粉末を充填して焼結することにより一緒に形成される
     ことを特徴とする静圧気体ラジアル軸受。
  5.  請求項1ないし4のいずれか一項に記載の静圧気体ラジアル軸受であって、
     前記第二の金属粉末焼結層部の外周面上に形成されたバックメタルをさらに備え、
     前記バックメタルは、前記型として用いられた金属製のスリーブである
     ことを特徴とする静圧気体ラジアル軸受。
  6.  請求項1ないし4のいずれか一項に記載の静圧気体ラジアル軸受であって、
     前記第二の金属粉末焼結層部の外周面上に形成されたバックメタルをさらに備え、
     前記型は、成形型であり、
     前記バックメタルは、前記第二の金属粉末焼結層部が圧入された金属製のスリーブである
     ことを特徴とする静圧気体ラジアル軸受。
PCT/JP2013/070860 2012-08-28 2013-08-01 静圧気体ラジアル軸受 WO2014034368A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157002771A KR20150051993A (ko) 2012-08-28 2013-08-01 정압 기체 래디얼 베어링
CN201380041376.0A CN104520600B (zh) 2012-08-28 2013-08-01 静压气体径向轴承

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-187458 2012-08-28
JP2012187458A JP5965783B2 (ja) 2012-08-28 2012-08-28 静圧気体ラジアル軸受の製造方法

Publications (1)

Publication Number Publication Date
WO2014034368A1 true WO2014034368A1 (ja) 2014-03-06

Family

ID=50183186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070860 WO2014034368A1 (ja) 2012-08-28 2013-08-01 静圧気体ラジアル軸受

Country Status (5)

Country Link
JP (1) JP5965783B2 (ja)
KR (1) KR20150051993A (ja)
CN (1) CN104520600B (ja)
TW (1) TW201408897A (ja)
WO (1) WO2014034368A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644029B (zh) * 2016-06-30 2018-12-11 祥瑩有限公司 雙層滑動軸承
CN115057101A (zh) * 2022-06-02 2022-09-16 深圳市恒歌科技有限公司 一种金属香水挥发盖及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162966A (ja) * 1997-08-28 1999-03-05 Toshiba Mach Co Ltd 静圧軸受及びその製造方法
JP2000009142A (ja) * 1998-06-18 2000-01-11 Asahi Optical Co Ltd 軸受装置の製造方法および軸受装置
JP2005221002A (ja) * 2004-02-05 2005-08-18 Nsk Ltd 気体絞り層の形成方法
JP2006097797A (ja) * 2004-09-29 2006-04-13 Oiles Ind Co Ltd 多孔質静圧気体軸受及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385618B2 (ja) * 2002-08-28 2009-12-16 オイレス工業株式会社 多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受
KR100600668B1 (ko) * 2004-10-18 2006-07-13 한국과학기술연구원 다공성 포일을 갖는 공기 포일 베어링

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162966A (ja) * 1997-08-28 1999-03-05 Toshiba Mach Co Ltd 静圧軸受及びその製造方法
JP2000009142A (ja) * 1998-06-18 2000-01-11 Asahi Optical Co Ltd 軸受装置の製造方法および軸受装置
JP2005221002A (ja) * 2004-02-05 2005-08-18 Nsk Ltd 気体絞り層の形成方法
JP2006097797A (ja) * 2004-09-29 2006-04-13 Oiles Ind Co Ltd 多孔質静圧気体軸受及びその製造方法

Also Published As

Publication number Publication date
JP2014043918A (ja) 2014-03-13
KR20150051993A (ko) 2015-05-13
JP5965783B2 (ja) 2016-08-10
TW201408897A (zh) 2014-03-01
CN104520600A (zh) 2015-04-15
CN104520600B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
US6872002B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP5965783B2 (ja) 静圧気体ラジアル軸受の製造方法
JPH11158511A (ja) 多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受
CN105393005A (zh) 烧结轴承及其制造方法
US20190353205A1 (en) Method of molding double-layer sliding bearing
JP6502085B2 (ja) 圧粉体及びその製造方法
CN104755199B (zh) 滑动构件以及滑动构件的制造方法
JP2002122142A (ja) 焼結含油軸受およびその製造方法およびモータ
JP7199969B2 (ja) 焼結含油軸受及びその製造方法
JPH04307112A (ja) 焼結含油軸受の製造方法
JP4442012B2 (ja) 多孔質静圧気体軸受及びその製造方法
JP2014043918A5 (ja)
US11073178B2 (en) Oil-impregnated sintered bearing and method for manufacturing the same
JP7253874B2 (ja) 動圧軸受及びその製造方法
JP2008231576A (ja) 多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受
JP2006090482A (ja) 多孔質静圧気体軸受及びその製造方法
JPH06123313A (ja) 焼結含油軸受
JPS62167922A (ja) 焼結含油軸受
JP2006097797A (ja) 多孔質静圧気体軸受及びその製造方法
JP4983904B2 (ja) 多孔質静圧気体軸受及びその製造方法
WO2023203892A1 (ja) チタン系圧粉体の製造方法及び、チタン系焼結体の製造方法
CN207514081U (zh) 一种交叉式四通换向阀体内壁锡青铜复合衬套
JPH11172305A (ja) 複層摺動部材
JP5131256B2 (ja) 多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受
JP2016180496A (ja) 軸受部材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157002771

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832930

Country of ref document: EP

Kind code of ref document: A1